US3229759A - Evaporation-condensation heat transfer device - Google Patents
Evaporation-condensation heat transfer device Download PDFInfo
- Publication number
- US3229759A US3229759A US327559A US32755963A US3229759A US 3229759 A US3229759 A US 3229759A US 327559 A US327559 A US 327559A US 32755963 A US32755963 A US 32755963A US 3229759 A US3229759 A US 3229759A
- Authority
- US
- United States
- Prior art keywords
- container
- heat
- region
- vapour
- capillary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009833 condensation Methods 0.000 title description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 9
- 229910001093 Zr alloy Inorganic materials 0.000 claims abstract description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 12
- 239000011734 sodium Substances 0.000 abstract description 12
- 229910052708 sodium Inorganic materials 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052715 tantalum Inorganic materials 0.000 abstract description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 239000004332 silver Substances 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 3
- 239000012611 container material Substances 0.000 abstract 1
- 239000013529 heat transfer fluid Substances 0.000 abstract 1
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000005499 meniscus Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 241000792765 Minous Species 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 241000746181 Therates Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/02—Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/257—Promoting flow of the coolant using heat-pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/905—Materials of manufacture
Definitions
- the temperature at this place be as high as possible since therate of emission of radiant energy from the surface of abody is a function of the temperature to the fourth ,power.
- the present invention is a device in which this funcrtion is accomplished by a wick of suitable capillary structure.
- Devices of this general class will hereinafter be referred to as heat pipes, although it should be kept in mind that the shape of the device is not a matter for concern.
- a heat pipe may be regarded as a synergistic engineering structure which is equivalent to a material having a thermal conductivity greatly exceeding that of any known metal.
- the invention is a heat transfer device comprising a container, said container enclosing a condensable vapor and capillary means within the container capable of causing the transport of the condensed vapor from a cooler area of the container to a hotter area.
- the transport of the vapor through the container uses, as the driving force, the difference in vapor pressures in the high temperature zone and cold temperature zone.
- the liquid which condenses in the cold zone is returned to the evaporation zone by capillary action.
- the forces to move fluids by capillary action are, of course, derived by the system attempting to arrive at a minimum free energy configuration,
- FIGURE 1 is a schematic diagram of the principle of operation of a heat pipe.
- FIGURE 2 represents the temperature profiles of a heat pipe representing the steady state temperatures measured at a number of input power levels.
- FIGURE 3 is a cross section of an embodiment of the invention wherein the capillary material covers the entire inner surface of the container except for a portion of the condensing region.
- FIGURE 1 The principle of operation of a heat pipe is shown schematically in FIGURE 1.
- the wick is saturated with a Wetting liquid.
- P P O The resulting difference in vapor pressure, drives the vapor from evaporator region 1 to condenser region 2.
- the depletion of liquid by evaporation causes the vapor-liquid interface in the evaporator to retreat into the wick surface where the typical meniscus has a radius of curvature, r equal to, or greater than, the largest capillary pore radius.
- the capillary represented in the drawing as a wire mesh is shown at 3.
- the pressure in the adjacent liquid will then be P (27 cos 0) /r where 7 is the surface tension and 0 the contact angle.
- the pressure in the condenser liquid is then, P (2'y cos 0)/r
- the pressure drop available to drive the liquid through the wick from the condenser to the evaporator against the viscous retarding force is where p is the liquid density, g the acceleration of gravity, and k and h the heights of the liquid surfaces above a "reference level. This pressure drop may be made positive by choosing the capillary pore size sufficiently small.
- a liquid sodium heat pipe was made for operation at about 1100 K.
- the containing tube was made of 347 stainless steel, GD, /8" I.D., and 12" long, with welded end-caps.
- the wick was made of -mesh 304 stainless steel screen with 0.005" diameter wires. This was formed in a spiral of five layers and fitted closely against the inner wall of the tube, leaving an ID. of /2".
- the pipe was loaded with 15 grams of solid sodium, evacuated to about 10* mm. Hg and sealed. When the top third of the pipe is heated by induction, the remarkably efficient heat transfer caused the heat pipe to be luminous almost to the cold end of the pipe.
- the 111- minous zone in the heat pipe terminates before reaching the bottom due to the relatively low thermal conductivity of the liquid sodium sump.
- a second sodium heat pipe was made similar in all respects to the first except that the length was increased to 36".
- the sodium charge was increased to 40 grams.
- This heat pipe was placed in a vacuum chamber and about at one end was heated by electron bombardment from a concentric spiral filament.
- the data of FIGURE 2 were obtained after the pipe had been vacuum-baked at 1070 K. for two days.
- the vacuum baking, when using sodium as a coolant, is rather important owing to the fact that hydrogen is an impurity in sodium metal. Hydrogen is liberated in the reversible reaction NaH Na+%H AH3 -14 kcal.
- FIGURE 2 which is a plot of the steady state temperatures measured at a number of input power levels versus the distances along the heat pipe, the region of rapidly decreasing temperature is caused by the presence of hydrogen gas. The temperature plateaus extending out from the heat region are of principal interest. This is the refluxing region.
- the method of measurement (five chromel-alumel thermocouples welded at intervals along the 36 pipe) was not precise enough to detect the minute temperature gradients but they do not exceed 0.05 K./ cm.
- the heat pipe is behaving in a manner equivalent to a solid bar of material having a thermal conductivity in excess of 10 cal./sec.-cm.- K.
- a calculation based on a detailed dynamic model of the heat pipe which will not be elaborated here, indicates that the actual temperature gradients are at least an order of magnitude less than this upper limit.
- the shape of the device is a matter of discretion. Hollow plates, rods, etc., are equally adaptable to the present inventive concept.
- the pipe be heated at one end and condense at the other.
- the pipe may be heated somewhere along its length and condense at both ends.
- Capillary material should be present at the point at which the heat transfer pipe is to be heated. However, it is not necessary that the capillary material cover the entire condensing region, only that the capillary material extend into the condenser region. This con struction is shown in FIGURE 3 wherein 1 represents the evaporator region and the condenser region is shown at 2.
- the material comprising the capillary path is a matter of complete discretion.
- glass frit, wire mesh, tubes, etc. may be utilized; the only requirement being that the pore size be sufficiently small to produce capillary action. Since capillary action is utilized to return the liquid from condenser to evaporator regions, the heat pipe will work under gravity-free conditions and even, to some extent, against the force of gravity.
- a heat transfer device comprising a container having condenser and evaporator regions composed of niobiuml% zirconium alloy, said container enclosing a condensable vapor consisting of lithium, capillary means, said capillary means covering the entire inner surface of the container except for a portion of the condensing region, the quantity of condensable vapor present being just suflicient to saturate the capillary means when condensed and provide a small excess, said capillary means capable of causing the transport of the condensed vapor from the cooler area of the container to the hotter area.
- a heat transfer device comprising a container having condenser and evaporator regions composed of niobium- 1% zirconium alloy, the exterior portion of said container being smooth and said container enclosing a condensable vapor consisting of lithium, capillary means, said capillary means covering the entire inner surface of the container except for a portion of the condensing region, the quantity of condensable vapor present being just sufficient to saturate the capillary means when condensed and provides a small excess, said capillary means capable of causing the transport of the condensed vapor from the cooler area of the container to the hotter area.
- a heat transfer device comprising a container having condenser and evaporator regions composed of niobium- 1% zirconium alloy, the exterior portion of said container being smooth, said container enclosing a condensable vapor consisting of lithium, capillary means, said capillary means covering the entire inner surface of the container except for a portion of the condensing region, the quantity of condensable vapor present being just suflicient to saturate the capillary means when condensed and provide a small excess, the pore radius of the capillary material being slightly smaller than r r being defined by making the expression 'Y( '2) 2 1)-P 2 1) slightly positive, Where p is the liquid density, g the acceleration of gravity, b and 12 the heights of liquid surfaces in the evaporator and condenser regions above a reference level, 7 is the surface tension, 0 the contact angle, P and P are the vapor pressures in the evaporator and condenser regions, and r the
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- High Energy & Nuclear Physics (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Lasers (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1027719D GB1027719A (enrdf_load_stackoverflow) | 1963-12-02 | ||
US327559A US3229759A (en) | 1963-12-02 | 1963-12-02 | Evaporation-condensation heat transfer device |
FR996190A FR1415208A (fr) | 1963-12-02 | 1964-11-25 | Procédé et appareil pour le transfert de chaleur |
SE14435/64A SE307799B (enrdf_load_stackoverflow) | 1963-12-02 | 1964-11-30 | |
DEU11233A DE1264461B (de) | 1963-12-02 | 1964-12-01 | Waermerohr |
NL6413971A NL6413971A (enrdf_load_stackoverflow) | 1963-12-02 | 1964-12-02 | |
JP6742364A JPS417278B1 (enrdf_load_stackoverflow) | 1963-12-02 | 1964-12-02 | |
BE656515D BE656515A (enrdf_load_stackoverflow) | 1963-12-02 | 1964-12-02 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US327559A US3229759A (en) | 1963-12-02 | 1963-12-02 | Evaporation-condensation heat transfer device |
Publications (1)
Publication Number | Publication Date |
---|---|
US3229759A true US3229759A (en) | 1966-01-18 |
Family
ID=23277053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US327559A Expired - Lifetime US3229759A (en) | 1963-12-02 | 1963-12-02 | Evaporation-condensation heat transfer device |
Country Status (7)
Country | Link |
---|---|
US (1) | US3229759A (enrdf_load_stackoverflow) |
JP (1) | JPS417278B1 (enrdf_load_stackoverflow) |
BE (1) | BE656515A (enrdf_load_stackoverflow) |
DE (1) | DE1264461B (enrdf_load_stackoverflow) |
GB (1) | GB1027719A (enrdf_load_stackoverflow) |
NL (1) | NL6413971A (enrdf_load_stackoverflow) |
SE (1) | SE307799B (enrdf_load_stackoverflow) |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3302042A (en) * | 1965-10-23 | 1967-01-31 | George M Grover | Nuclear reactor with thermionic converter |
US3305005A (en) * | 1965-12-03 | 1967-02-21 | George M Grover | Capillary insert for heat tubes and process for manufacturing such inserts |
US3378449A (en) * | 1967-07-27 | 1968-04-16 | Atomic Energy Commission Usa | Nuclear reactor adapted for use in space |
US3378454A (en) * | 1965-09-17 | 1968-04-16 | Euratom | Nuclear fuel arrangement |
US3399717A (en) * | 1966-12-27 | 1968-09-03 | Trw Inc | Thermal switch |
US3403075A (en) * | 1965-08-23 | 1968-09-24 | Euratom | Nuclear reactor |
US3402761A (en) * | 1967-02-17 | 1968-09-24 | Navy Usa | Controllable heat pipe apparatus |
US3405299A (en) * | 1967-01-27 | 1968-10-08 | Rca Corp | Vaporizable medium type heat exchanger for electron tubes |
US3414475A (en) * | 1965-05-20 | 1968-12-03 | Euratom | Heat pipes |
US3414050A (en) * | 1967-04-11 | 1968-12-03 | Navy Usa | Heat pipe control apparatus |
US3426220A (en) * | 1966-02-16 | 1969-02-04 | Rca Corp | Heat-sensitive seal for thermionic converters |
US3435889A (en) * | 1966-04-25 | 1969-04-01 | Martin Marietta Corp | Heat pipes for non-wetting fluids |
US3441752A (en) * | 1964-12-14 | 1969-04-29 | Atomic Energy Commission | Thermionic converter device |
US3450195A (en) * | 1967-03-16 | 1969-06-17 | Gen Electric | Multiple circuit heat transfer device |
US3457436A (en) * | 1966-11-07 | 1969-07-22 | Teledyne Inc | Heat pipes with unique radiator configuration in combination with thermoionic converters |
US3464889A (en) * | 1967-11-01 | 1969-09-02 | Atomic Energy Commission | Heat actuated control rod utilizing a cadmium-potassium mixture |
US3465813A (en) * | 1967-07-26 | 1969-09-09 | Trw Inc | Method of and means for increasing the heat transfer capability of a heat pipe |
US3468300A (en) * | 1968-11-13 | 1969-09-23 | Acf Ind Inc | Heat transfer means for a railway tank car |
US3490718A (en) * | 1967-02-01 | 1970-01-20 | Nasa | Capillary radiator |
US3502138A (en) * | 1967-08-14 | 1970-03-24 | Trw Inc | Means for regulating thermal energy transfer through a heat pipe |
US3503438A (en) * | 1968-10-25 | 1970-03-31 | Acf Ind Inc | Hydrogen release for a heat pipe |
US3509386A (en) * | 1967-09-06 | 1970-04-28 | Nasa | Heat pipe thermionic diode power system |
US3516487A (en) * | 1968-02-21 | 1970-06-23 | Gen Electric | Heat pipe with control |
US3517730A (en) * | 1967-03-15 | 1970-06-30 | Us Navy | Controllable heat pipe |
US3524772A (en) * | 1964-12-03 | 1970-08-18 | Nuclear Materials & Equipment | Generator of electrical energy |
US3525670A (en) * | 1968-12-17 | 1970-08-25 | Atomic Energy Commission | Two-phase fluid control system |
US3541487A (en) * | 1968-11-18 | 1970-11-17 | Westinghouse Electric Corp | Electrical winding having heat exchangers between layers of the winding for cooling the windings |
FR2035022A1 (fr) * | 1969-03-18 | 1970-12-18 | Heye Hermann Fa | Procede concu pour influencer la temperature des outils de machines a travailler le verre |
US3561525A (en) * | 1969-07-02 | 1971-02-09 | Energy Conversion Systemes Inc | Heat pipe condensate return |
US3563309A (en) * | 1968-09-16 | 1971-02-16 | Hughes Aircraft Co | Heat pipe having improved dielectric strength |
US3568762A (en) * | 1967-05-23 | 1971-03-09 | Rca Corp | Heat pipe |
US3585842A (en) * | 1969-05-12 | 1971-06-22 | Phillips Petroleum Co | Method and apparatus for temperature control |
US3595304A (en) * | 1967-09-15 | 1971-07-27 | Monsanto Co | Organic fluids for heat pipes |
US3603767A (en) * | 1969-09-03 | 1971-09-07 | Dynatherm Corp | Isothermal cooking or heating device |
US3603382A (en) * | 1969-11-03 | 1971-09-07 | Nasa | Radial heat flux transformer |
US3604503A (en) * | 1968-08-02 | 1971-09-14 | Energy Conversion Systems Inc | Heat pipes |
US3613774A (en) * | 1969-10-08 | 1971-10-19 | Sanders Associates Inc | Unilateral heat transfer apparatus |
US3613773A (en) * | 1964-12-07 | 1971-10-19 | Rca Corp | Constant temperature output heat pipe |
US3621906A (en) * | 1969-09-02 | 1971-11-23 | Gen Motors Corp | Control system for heat pipes |
US3651240A (en) * | 1969-01-31 | 1972-03-21 | Trw Inc | Heat transfer device |
US3651861A (en) * | 1970-01-15 | 1972-03-28 | Goetzewerke | Mold and method |
US3662137A (en) * | 1970-01-21 | 1972-05-09 | Westinghouse Electric Corp | Switchgear having heat pipes incorporated in the disconnecting structures and power conductors |
US3670495A (en) * | 1970-07-15 | 1972-06-20 | Gen Motors Corp | Closed cycle vapor engine |
US3672443A (en) * | 1969-01-28 | 1972-06-27 | Teledyne Inc | Thermal control and power flattening for radioisotopic thermodynamic power system |
US3677329A (en) * | 1970-11-16 | 1972-07-18 | Trw Inc | Annular heat pipe |
US3688838A (en) * | 1969-08-25 | 1972-09-05 | Bbc Brown Boveri & Cie | Heat tube |
US3699343A (en) * | 1969-08-19 | 1972-10-17 | Sanders Associates Inc | Condensation heated black body radiation source |
FR2135031A1 (en) * | 1971-04-21 | 1972-12-15 | Air Ind | Sealed tube heat exchanger - modified to avoid entrainment of liquid transfer medium during vaporization |
US3712053A (en) * | 1969-05-03 | 1973-01-23 | S Kofink | Thermal-mechanical energy transducer device |
US3763838A (en) * | 1970-12-23 | 1973-10-09 | Shell Oil Co | Carburetor having a heat pipe for vaporizing fuel |
US3786861A (en) * | 1971-04-12 | 1974-01-22 | Battelle Memorial Institute | Heat pipes |
US3788389A (en) * | 1971-08-25 | 1974-01-29 | Mc Donnell Douglas Corp | Permafrost structural support with heat pipe stabilization |
US3788388A (en) * | 1971-02-19 | 1974-01-29 | Q Dot Corp | Heat exchange system |
US3834457A (en) * | 1971-01-18 | 1974-09-10 | Bendix Corp | Laminated heat pipe and method of manufacture |
US3853112A (en) * | 1971-07-23 | 1974-12-10 | Thermo Electron Corp | Vapor transfer food preparation and heating apparatus |
US3854524A (en) * | 1972-09-07 | 1974-12-17 | Atomic Energy Commission | Thermal switch-heat pipe |
US3889096A (en) * | 1970-07-11 | 1975-06-10 | Philips Corp | Electric soldering iron delivering heat by change of state of a liquid heat transporting medium |
US3921710A (en) * | 1972-08-23 | 1975-11-25 | Tokico Ltd | Heat pipe and manufacturing method thereof |
DE2602211A1 (de) * | 1975-02-04 | 1976-08-05 | Philips Nv | Waermeaustauscher |
US4005297A (en) * | 1972-10-18 | 1977-01-25 | Westinghouse Electric Corporation | Vacuum-type circuit interrupters having heat-dissipating devices associated with the contact structures thereof |
US4108239A (en) * | 1975-04-10 | 1978-08-22 | Siemens Aktiengesellschaft | Heat pipe |
US4273100A (en) * | 1979-02-16 | 1981-06-16 | W. R. Grace & Co. | Passive solar heating and cooling panels |
US4282926A (en) * | 1978-02-24 | 1981-08-11 | James Howden And Company Australia Pty. Limited | Cooling of fluid streams |
US4294659A (en) * | 1977-02-04 | 1981-10-13 | United Kingdom Atomic Energy Authority | Apparatus for use in a liquid alkali metal environment |
US4320246A (en) * | 1978-05-04 | 1982-03-16 | Russell George F | Uniform surface temperature heat pipe and method of using the same |
US4413475A (en) * | 1982-07-28 | 1983-11-08 | Moscrip William M | Thermodynamic working fluids for Stirling-cycle, reciprocating thermal machines |
US4452298A (en) * | 1981-03-31 | 1984-06-05 | Mannesmann Aktiengesellschaft | Method and apparatus for cooling continuously cast metal strands |
US4478784A (en) * | 1982-06-10 | 1984-10-23 | The United States Of America As Represented By The United States Department Of Energy | Passive heat transfer means for nuclear reactors |
US4485670A (en) * | 1981-02-13 | 1984-12-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Heat pipe cooled probe |
US4526533A (en) * | 1981-10-02 | 1985-07-02 | A. Monforts Gmbh & Co. | Cylinder for guiding a web of textile material |
US4560533A (en) * | 1984-08-30 | 1985-12-24 | The United States Of America As Represented By The United States Department Of Energy | Fast reactor power plant design having heat pipe heat exchanger |
US4582121A (en) * | 1977-06-09 | 1986-04-15 | Casey Charles B | Apparatus for and method of heat transfer |
US4681995A (en) * | 1986-04-04 | 1987-07-21 | Ahern Brian S | Heat pipe ring stacked assembly |
US4697205A (en) * | 1986-03-13 | 1987-09-29 | Thermacore, Inc. | Heat pipe |
US4854378A (en) * | 1986-10-27 | 1989-08-08 | Zappia Joseph M | Heat transfer and fluid heating device |
US5002122A (en) * | 1984-09-25 | 1991-03-26 | Thermacore, Inc. | Tunnel artery wick for high power density surfaces |
US5947111A (en) * | 1998-04-30 | 1999-09-07 | Hudson Products Corporation | Apparatus for the controlled heating of process fluids |
WO2003071215A1 (en) | 2002-02-25 | 2003-08-28 | Mcgill University | Heat pipe |
US20050208908A1 (en) * | 2004-03-02 | 2005-09-22 | Rosemount Inc. | Process device with improved power generation |
US20050241807A1 (en) * | 2004-04-29 | 2005-11-03 | Jankowski Todd A | Off-axis cooling of rotating devices using a crank-shaped heat pipe |
US20060116102A1 (en) * | 2004-05-21 | 2006-06-01 | Brown Gregory C | Power generation for process devices |
US20060130654A1 (en) * | 2004-01-30 | 2006-06-22 | Ronald King | Method and apparatus for recovering water from atmospheric air |
US20060165150A1 (en) * | 2005-01-27 | 2006-07-27 | Hul-Chun Hsu | Method and apparatus for examining heat pipe temperature using infrared thermography |
US20070006993A1 (en) * | 2005-07-08 | 2007-01-11 | Jin-Gong Meng | Flat type heat pipe |
US20070084587A1 (en) * | 2004-07-21 | 2007-04-19 | Xiao Huang | Hybrid wicking materials for use in high performance heat pipes |
US20070151703A1 (en) * | 2005-12-30 | 2007-07-05 | Touzov Igor V | Grid and yarn membrane heat pipes |
US20080083445A1 (en) * | 2006-09-28 | 2008-04-10 | Swapan Chakraborty | Thermoelectric generator assembly for field process devices |
US20080083446A1 (en) * | 2005-03-02 | 2008-04-10 | Swapan Chakraborty | Pipeline thermoelectric generator assembly |
US20090309558A1 (en) * | 2008-06-17 | 2009-12-17 | Kielb John A | Rf adapter for field device with variable voltage drop |
US20090311975A1 (en) * | 2008-06-17 | 2009-12-17 | Vanderaa Joel D | Wireless communication adapter for field devices |
US20090311976A1 (en) * | 2008-06-17 | 2009-12-17 | Vanderaa Joel D | Form factor and electromagnetic interference protection for process device wireless adapters |
US20100000233A1 (en) * | 2006-07-25 | 2010-01-07 | Casper Krijno Groothuis | Method and apparatus for vaporizing a liquid stream |
US20100078151A1 (en) * | 2008-09-30 | 2010-04-01 | Osram Sylvania Inc. | Ceramic heat pipe with porous ceramic wick |
US20100079988A1 (en) * | 2008-09-30 | 2010-04-01 | Johnston David W | LED light source with an integrated heat pipe |
US20100109331A1 (en) * | 2008-11-03 | 2010-05-06 | Hedtke Robert C | Industrial process power scavenging device and method of deriving process device power from an industrial process |
US20100318007A1 (en) * | 2009-06-10 | 2010-12-16 | O'brien Donald J | Electromechanical tactile stimulation devices and methods |
US20110014882A1 (en) * | 2009-06-16 | 2011-01-20 | Joel David Vanderaa | Wire harness for field devices used in a hazardous locations |
US20120227247A1 (en) * | 2008-12-09 | 2012-09-13 | The Boeing Company | Controlling Temperature in Exothermic Reactions with a Phase Change Material |
US8538560B2 (en) | 2004-04-29 | 2013-09-17 | Rosemount Inc. | Wireless power and communication unit for process field devices |
US8787848B2 (en) | 2004-06-28 | 2014-07-22 | Rosemount Inc. | RF adapter for field device with low voltage intrinsic safety clamping |
RU2524480C2 (ru) * | 2012-11-01 | 2014-07-27 | Федеральное Государственное Бюджетное Образовательное Учреждение "Дагестанский Государственный Технический Университет" (Дгту) | Тепловая труба с применением трубчатых оптоволоконных структур |
EP2846092A2 (de) | 2013-09-07 | 2015-03-11 | Messer Austria GmbH | Brenner |
US20150204582A1 (en) * | 2012-07-31 | 2015-07-23 | University Of Ulster | Solar Water Heater |
US9310794B2 (en) | 2011-10-27 | 2016-04-12 | Rosemount Inc. | Power supply for industrial process field device |
DE102015002768A1 (de) | 2015-03-05 | 2016-09-08 | AMK Arnold Müller GmbH & Co. KG | Antriebssystem mit mindestens einem Wärmerohr und Verwendung desselben bei einem Antriebssystem |
WO2017027098A1 (en) | 2015-08-13 | 2017-02-16 | P&T Global Solutions, Llc | Passively cooled ion exchange column |
US9674976B2 (en) | 2009-06-16 | 2017-06-06 | Rosemount Inc. | Wireless process communication adapter with improved encapsulation |
WO2017141121A1 (en) | 2016-02-18 | 2017-08-24 | Nova Chemicals (International) S.A. | Cracked gas quench heat exchanger using heat pipes |
US9951906B2 (en) | 2012-06-12 | 2018-04-24 | Shell Oil Company | Apparatus and method for heating a liquefied stream |
US20190029144A1 (en) * | 2015-12-23 | 2019-01-24 | Alaz-Arima, S.L. | Cooling device for a power converter |
US10203164B2 (en) | 2015-10-12 | 2019-02-12 | Alliance For Sustainable Energy, Llc | Solar thermoelectricity via advanced latent heat storage |
DE202019003115U1 (de) | 2019-07-26 | 2019-08-14 | Axel R. Hidde | Vorrichtung zur Oberflächentemperierung und Anleitung zu deren Herstellung |
US10761524B2 (en) | 2010-08-12 | 2020-09-01 | Rosemount Inc. | Wireless adapter with process diagnostics |
IT202100001565A1 (it) | 2021-01-27 | 2022-07-27 | Veil Energy S R L | Contenitore refrigerato e relativo utilizzo. |
US12054569B1 (en) | 2018-02-02 | 2024-08-06 | Triad National Security, Llc | Hierarchical printed product and composition and method for making the same |
WO2024210775A1 (en) * | 2023-04-03 | 2024-10-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Heat sink |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013013544A1 (de) | 2013-08-13 | 2015-02-19 | Oerlikon Textile Gmbh & Co. Kg | Kühlgalette |
RU2656037C1 (ru) * | 2017-06-30 | 2018-06-01 | Владимир Владимирович Сахаров | Напорный капиллярный насос |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2350348A (en) * | 1942-12-21 | 1944-06-06 | Gen Motors Corp | Heat transfer device |
US2394698A (en) * | 1942-08-07 | 1946-02-12 | Monmouth Products Company | Evaporator |
US2517654A (en) * | 1946-05-17 | 1950-08-08 | Gen Motors Corp | Refrigerating apparatus |
US2958021A (en) * | 1958-04-23 | 1960-10-25 | Texas Instruments Inc | Cooling arrangement for transistor |
US3043573A (en) * | 1956-02-16 | 1962-07-10 | Edward F Chandler | Thermo-transpiration portable air conditioner unit |
US3089318A (en) * | 1961-01-10 | 1963-05-14 | Boeing Co | Hypersonic cooling system |
US3152774A (en) * | 1963-06-11 | 1964-10-13 | Wyatt Theodore | Satellite temperature stabilization system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR859930A (fr) * | 1939-06-07 | 1941-01-02 | Air France | Perfectionnements apportés aux générateurs et échangeurs de chaleur et aux installations de chauffage comportant de semblables dispositifs |
US2960847A (en) * | 1957-09-04 | 1960-11-22 | Stewart Warner Corp | Heat exchanger |
-
0
- GB GB1027719D patent/GB1027719A/en active Active
-
1963
- 1963-12-02 US US327559A patent/US3229759A/en not_active Expired - Lifetime
-
1964
- 1964-11-30 SE SE14435/64A patent/SE307799B/xx unknown
- 1964-12-01 DE DEU11233A patent/DE1264461B/de active Pending
- 1964-12-02 JP JP6742364A patent/JPS417278B1/ja active Pending
- 1964-12-02 BE BE656515D patent/BE656515A/xx unknown
- 1964-12-02 NL NL6413971A patent/NL6413971A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2394698A (en) * | 1942-08-07 | 1946-02-12 | Monmouth Products Company | Evaporator |
US2350348A (en) * | 1942-12-21 | 1944-06-06 | Gen Motors Corp | Heat transfer device |
US2517654A (en) * | 1946-05-17 | 1950-08-08 | Gen Motors Corp | Refrigerating apparatus |
US3043573A (en) * | 1956-02-16 | 1962-07-10 | Edward F Chandler | Thermo-transpiration portable air conditioner unit |
US2958021A (en) * | 1958-04-23 | 1960-10-25 | Texas Instruments Inc | Cooling arrangement for transistor |
US3089318A (en) * | 1961-01-10 | 1963-05-14 | Boeing Co | Hypersonic cooling system |
US3152774A (en) * | 1963-06-11 | 1964-10-13 | Wyatt Theodore | Satellite temperature stabilization system |
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3524772A (en) * | 1964-12-03 | 1970-08-18 | Nuclear Materials & Equipment | Generator of electrical energy |
US3613773A (en) * | 1964-12-07 | 1971-10-19 | Rca Corp | Constant temperature output heat pipe |
US3441752A (en) * | 1964-12-14 | 1969-04-29 | Atomic Energy Commission | Thermionic converter device |
US3414475A (en) * | 1965-05-20 | 1968-12-03 | Euratom | Heat pipes |
US3403075A (en) * | 1965-08-23 | 1968-09-24 | Euratom | Nuclear reactor |
US3378454A (en) * | 1965-09-17 | 1968-04-16 | Euratom | Nuclear fuel arrangement |
US3302042A (en) * | 1965-10-23 | 1967-01-31 | George M Grover | Nuclear reactor with thermionic converter |
US3305005A (en) * | 1965-12-03 | 1967-02-21 | George M Grover | Capillary insert for heat tubes and process for manufacturing such inserts |
US3426220A (en) * | 1966-02-16 | 1969-02-04 | Rca Corp | Heat-sensitive seal for thermionic converters |
US3435889A (en) * | 1966-04-25 | 1969-04-01 | Martin Marietta Corp | Heat pipes for non-wetting fluids |
US3457436A (en) * | 1966-11-07 | 1969-07-22 | Teledyne Inc | Heat pipes with unique radiator configuration in combination with thermoionic converters |
US3399717A (en) * | 1966-12-27 | 1968-09-03 | Trw Inc | Thermal switch |
US3405299A (en) * | 1967-01-27 | 1968-10-08 | Rca Corp | Vaporizable medium type heat exchanger for electron tubes |
US3490718A (en) * | 1967-02-01 | 1970-01-20 | Nasa | Capillary radiator |
US3402761A (en) * | 1967-02-17 | 1968-09-24 | Navy Usa | Controllable heat pipe apparatus |
US3517730A (en) * | 1967-03-15 | 1970-06-30 | Us Navy | Controllable heat pipe |
US3450195A (en) * | 1967-03-16 | 1969-06-17 | Gen Electric | Multiple circuit heat transfer device |
US3414050A (en) * | 1967-04-11 | 1968-12-03 | Navy Usa | Heat pipe control apparatus |
US3568762A (en) * | 1967-05-23 | 1971-03-09 | Rca Corp | Heat pipe |
US3465813A (en) * | 1967-07-26 | 1969-09-09 | Trw Inc | Method of and means for increasing the heat transfer capability of a heat pipe |
US3378449A (en) * | 1967-07-27 | 1968-04-16 | Atomic Energy Commission Usa | Nuclear reactor adapted for use in space |
US3502138A (en) * | 1967-08-14 | 1970-03-24 | Trw Inc | Means for regulating thermal energy transfer through a heat pipe |
US3509386A (en) * | 1967-09-06 | 1970-04-28 | Nasa | Heat pipe thermionic diode power system |
US3595304A (en) * | 1967-09-15 | 1971-07-27 | Monsanto Co | Organic fluids for heat pipes |
US3464889A (en) * | 1967-11-01 | 1969-09-02 | Atomic Energy Commission | Heat actuated control rod utilizing a cadmium-potassium mixture |
US3516487A (en) * | 1968-02-21 | 1970-06-23 | Gen Electric | Heat pipe with control |
US3604503A (en) * | 1968-08-02 | 1971-09-14 | Energy Conversion Systems Inc | Heat pipes |
US3563309A (en) * | 1968-09-16 | 1971-02-16 | Hughes Aircraft Co | Heat pipe having improved dielectric strength |
US3503438A (en) * | 1968-10-25 | 1970-03-31 | Acf Ind Inc | Hydrogen release for a heat pipe |
US3468300A (en) * | 1968-11-13 | 1969-09-23 | Acf Ind Inc | Heat transfer means for a railway tank car |
US3541487A (en) * | 1968-11-18 | 1970-11-17 | Westinghouse Electric Corp | Electrical winding having heat exchangers between layers of the winding for cooling the windings |
US3525670A (en) * | 1968-12-17 | 1970-08-25 | Atomic Energy Commission | Two-phase fluid control system |
US3672443A (en) * | 1969-01-28 | 1972-06-27 | Teledyne Inc | Thermal control and power flattening for radioisotopic thermodynamic power system |
US3651240A (en) * | 1969-01-31 | 1972-03-21 | Trw Inc | Heat transfer device |
FR2035022A1 (fr) * | 1969-03-18 | 1970-12-18 | Heye Hermann Fa | Procede concu pour influencer la temperature des outils de machines a travailler le verre |
US3712053A (en) * | 1969-05-03 | 1973-01-23 | S Kofink | Thermal-mechanical energy transducer device |
US3585842A (en) * | 1969-05-12 | 1971-06-22 | Phillips Petroleum Co | Method and apparatus for temperature control |
US3561525A (en) * | 1969-07-02 | 1971-02-09 | Energy Conversion Systemes Inc | Heat pipe condensate return |
US3699343A (en) * | 1969-08-19 | 1972-10-17 | Sanders Associates Inc | Condensation heated black body radiation source |
US3688838A (en) * | 1969-08-25 | 1972-09-05 | Bbc Brown Boveri & Cie | Heat tube |
US3621906A (en) * | 1969-09-02 | 1971-11-23 | Gen Motors Corp | Control system for heat pipes |
US3603767A (en) * | 1969-09-03 | 1971-09-07 | Dynatherm Corp | Isothermal cooking or heating device |
US3613774A (en) * | 1969-10-08 | 1971-10-19 | Sanders Associates Inc | Unilateral heat transfer apparatus |
US3603382A (en) * | 1969-11-03 | 1971-09-07 | Nasa | Radial heat flux transformer |
US3651861A (en) * | 1970-01-15 | 1972-03-28 | Goetzewerke | Mold and method |
US3662137A (en) * | 1970-01-21 | 1972-05-09 | Westinghouse Electric Corp | Switchgear having heat pipes incorporated in the disconnecting structures and power conductors |
US3889096A (en) * | 1970-07-11 | 1975-06-10 | Philips Corp | Electric soldering iron delivering heat by change of state of a liquid heat transporting medium |
US3670495A (en) * | 1970-07-15 | 1972-06-20 | Gen Motors Corp | Closed cycle vapor engine |
US3677329A (en) * | 1970-11-16 | 1972-07-18 | Trw Inc | Annular heat pipe |
US3763838A (en) * | 1970-12-23 | 1973-10-09 | Shell Oil Co | Carburetor having a heat pipe for vaporizing fuel |
US3834457A (en) * | 1971-01-18 | 1974-09-10 | Bendix Corp | Laminated heat pipe and method of manufacture |
US3788388A (en) * | 1971-02-19 | 1974-01-29 | Q Dot Corp | Heat exchange system |
US3786861A (en) * | 1971-04-12 | 1974-01-22 | Battelle Memorial Institute | Heat pipes |
FR2135031A1 (en) * | 1971-04-21 | 1972-12-15 | Air Ind | Sealed tube heat exchanger - modified to avoid entrainment of liquid transfer medium during vaporization |
US3853112A (en) * | 1971-07-23 | 1974-12-10 | Thermo Electron Corp | Vapor transfer food preparation and heating apparatus |
US3788389A (en) * | 1971-08-25 | 1974-01-29 | Mc Donnell Douglas Corp | Permafrost structural support with heat pipe stabilization |
US3921710A (en) * | 1972-08-23 | 1975-11-25 | Tokico Ltd | Heat pipe and manufacturing method thereof |
US3854524A (en) * | 1972-09-07 | 1974-12-17 | Atomic Energy Commission | Thermal switch-heat pipe |
US4005297A (en) * | 1972-10-18 | 1977-01-25 | Westinghouse Electric Corporation | Vacuum-type circuit interrupters having heat-dissipating devices associated with the contact structures thereof |
DE2602211A1 (de) * | 1975-02-04 | 1976-08-05 | Philips Nv | Waermeaustauscher |
US4108239A (en) * | 1975-04-10 | 1978-08-22 | Siemens Aktiengesellschaft | Heat pipe |
US4294659A (en) * | 1977-02-04 | 1981-10-13 | United Kingdom Atomic Energy Authority | Apparatus for use in a liquid alkali metal environment |
US4582121A (en) * | 1977-06-09 | 1986-04-15 | Casey Charles B | Apparatus for and method of heat transfer |
US4282926A (en) * | 1978-02-24 | 1981-08-11 | James Howden And Company Australia Pty. Limited | Cooling of fluid streams |
US4320246A (en) * | 1978-05-04 | 1982-03-16 | Russell George F | Uniform surface temperature heat pipe and method of using the same |
US4273100A (en) * | 1979-02-16 | 1981-06-16 | W. R. Grace & Co. | Passive solar heating and cooling panels |
US4485670A (en) * | 1981-02-13 | 1984-12-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Heat pipe cooled probe |
US4452298A (en) * | 1981-03-31 | 1984-06-05 | Mannesmann Aktiengesellschaft | Method and apparatus for cooling continuously cast metal strands |
US4526533A (en) * | 1981-10-02 | 1985-07-02 | A. Monforts Gmbh & Co. | Cylinder for guiding a web of textile material |
US4478784A (en) * | 1982-06-10 | 1984-10-23 | The United States Of America As Represented By The United States Department Of Energy | Passive heat transfer means for nuclear reactors |
US4413475A (en) * | 1982-07-28 | 1983-11-08 | Moscrip William M | Thermodynamic working fluids for Stirling-cycle, reciprocating thermal machines |
US4560533A (en) * | 1984-08-30 | 1985-12-24 | The United States Of America As Represented By The United States Department Of Energy | Fast reactor power plant design having heat pipe heat exchanger |
US5002122A (en) * | 1984-09-25 | 1991-03-26 | Thermacore, Inc. | Tunnel artery wick for high power density surfaces |
US4697205A (en) * | 1986-03-13 | 1987-09-29 | Thermacore, Inc. | Heat pipe |
US4681995A (en) * | 1986-04-04 | 1987-07-21 | Ahern Brian S | Heat pipe ring stacked assembly |
US4854378A (en) * | 1986-10-27 | 1989-08-08 | Zappia Joseph M | Heat transfer and fluid heating device |
US5947111A (en) * | 1998-04-30 | 1999-09-07 | Hudson Products Corporation | Apparatus for the controlled heating of process fluids |
WO2003071215A1 (en) | 2002-02-25 | 2003-08-28 | Mcgill University | Heat pipe |
US20060130654A1 (en) * | 2004-01-30 | 2006-06-22 | Ronald King | Method and apparatus for recovering water from atmospheric air |
US7306654B2 (en) | 2004-01-30 | 2007-12-11 | Ronald King | Method and apparatus for recovering water from atmospheric air |
US20050208908A1 (en) * | 2004-03-02 | 2005-09-22 | Rosemount Inc. | Process device with improved power generation |
US7957708B2 (en) | 2004-03-02 | 2011-06-07 | Rosemount Inc. | Process device with improved power generation |
US20050241807A1 (en) * | 2004-04-29 | 2005-11-03 | Jankowski Todd A | Off-axis cooling of rotating devices using a crank-shaped heat pipe |
US8538560B2 (en) | 2004-04-29 | 2013-09-17 | Rosemount Inc. | Wireless power and communication unit for process field devices |
US7168480B2 (en) * | 2004-04-29 | 2007-01-30 | Los Alamos National Security, Llc | Off-axis cooling of rotating devices using a crank-shaped heat pipe |
US20060116102A1 (en) * | 2004-05-21 | 2006-06-01 | Brown Gregory C | Power generation for process devices |
US8145180B2 (en) | 2004-05-21 | 2012-03-27 | Rosemount Inc. | Power generation for process devices |
US8787848B2 (en) | 2004-06-28 | 2014-07-22 | Rosemount Inc. | RF adapter for field device with low voltage intrinsic safety clamping |
US20070084587A1 (en) * | 2004-07-21 | 2007-04-19 | Xiao Huang | Hybrid wicking materials for use in high performance heat pipes |
US7828046B2 (en) | 2004-07-21 | 2010-11-09 | Xiao Huang | Hybrid wicking materials for use in high performance heat pipes |
US20060165150A1 (en) * | 2005-01-27 | 2006-07-27 | Hul-Chun Hsu | Method and apparatus for examining heat pipe temperature using infrared thermography |
US20080083446A1 (en) * | 2005-03-02 | 2008-04-10 | Swapan Chakraborty | Pipeline thermoelectric generator assembly |
US9184364B2 (en) | 2005-03-02 | 2015-11-10 | Rosemount Inc. | Pipeline thermoelectric generator assembly |
US20070006993A1 (en) * | 2005-07-08 | 2007-01-11 | Jin-Gong Meng | Flat type heat pipe |
US20070151703A1 (en) * | 2005-12-30 | 2007-07-05 | Touzov Igor V | Grid and yarn membrane heat pipes |
US9103498B2 (en) | 2006-07-25 | 2015-08-11 | Shell Oil Company | Method and apparatus for vaporizing a liquid stream |
US20100000233A1 (en) * | 2006-07-25 | 2010-01-07 | Casper Krijno Groothuis | Method and apparatus for vaporizing a liquid stream |
US8188359B2 (en) | 2006-09-28 | 2012-05-29 | Rosemount Inc. | Thermoelectric generator assembly for field process devices |
US20080083445A1 (en) * | 2006-09-28 | 2008-04-10 | Swapan Chakraborty | Thermoelectric generator assembly for field process devices |
US20090311975A1 (en) * | 2008-06-17 | 2009-12-17 | Vanderaa Joel D | Wireless communication adapter for field devices |
US20090309558A1 (en) * | 2008-06-17 | 2009-12-17 | Kielb John A | Rf adapter for field device with variable voltage drop |
US8929948B2 (en) | 2008-06-17 | 2015-01-06 | Rosemount Inc. | Wireless communication adapter for field devices |
US8847571B2 (en) | 2008-06-17 | 2014-09-30 | Rosemount Inc. | RF adapter for field device with variable voltage drop |
US8694060B2 (en) | 2008-06-17 | 2014-04-08 | Rosemount Inc. | Form factor and electromagnetic interference protection for process device wireless adapters |
US20090311976A1 (en) * | 2008-06-17 | 2009-12-17 | Vanderaa Joel D | Form factor and electromagnetic interference protection for process device wireless adapters |
US8827498B2 (en) * | 2008-09-30 | 2014-09-09 | Osram Sylvania Inc. | LED light source having glass heat pipe with fiberglass wick |
US20100078151A1 (en) * | 2008-09-30 | 2010-04-01 | Osram Sylvania Inc. | Ceramic heat pipe with porous ceramic wick |
US20100079988A1 (en) * | 2008-09-30 | 2010-04-01 | Johnston David W | LED light source with an integrated heat pipe |
US20100109331A1 (en) * | 2008-11-03 | 2010-05-06 | Hedtke Robert C | Industrial process power scavenging device and method of deriving process device power from an industrial process |
US20120227247A1 (en) * | 2008-12-09 | 2012-09-13 | The Boeing Company | Controlling Temperature in Exothermic Reactions with a Phase Change Material |
US9943992B2 (en) * | 2008-12-09 | 2018-04-17 | The Boeing Company | Controlling temperature in exothermic reactions with a phase change material |
US20100318007A1 (en) * | 2009-06-10 | 2010-12-16 | O'brien Donald J | Electromechanical tactile stimulation devices and methods |
US8626087B2 (en) | 2009-06-16 | 2014-01-07 | Rosemount Inc. | Wire harness for field devices used in a hazardous locations |
US9674976B2 (en) | 2009-06-16 | 2017-06-06 | Rosemount Inc. | Wireless process communication adapter with improved encapsulation |
US20110014882A1 (en) * | 2009-06-16 | 2011-01-20 | Joel David Vanderaa | Wire harness for field devices used in a hazardous locations |
US10761524B2 (en) | 2010-08-12 | 2020-09-01 | Rosemount Inc. | Wireless adapter with process diagnostics |
US9310794B2 (en) | 2011-10-27 | 2016-04-12 | Rosemount Inc. | Power supply for industrial process field device |
US9951906B2 (en) | 2012-06-12 | 2018-04-24 | Shell Oil Company | Apparatus and method for heating a liquefied stream |
US20150204582A1 (en) * | 2012-07-31 | 2015-07-23 | University Of Ulster | Solar Water Heater |
RU2524480C2 (ru) * | 2012-11-01 | 2014-07-27 | Федеральное Государственное Бюджетное Образовательное Учреждение "Дагестанский Государственный Технический Университет" (Дгту) | Тепловая труба с применением трубчатых оптоволоконных структур |
DE102013014988A1 (de) | 2013-09-07 | 2015-03-26 | Messer Austria Gmbh | Brenner |
EP2846092A2 (de) | 2013-09-07 | 2015-03-11 | Messer Austria GmbH | Brenner |
WO2016138979A1 (de) | 2015-03-05 | 2016-09-09 | AMK Arnold Müller GmbH & Co. KG | Antriebssystem mit mindestens einem wärmerohr und verwendung desselben bei einem antriebssystem |
DE102015002768A1 (de) | 2015-03-05 | 2016-09-08 | AMK Arnold Müller GmbH & Co. KG | Antriebssystem mit mindestens einem Wärmerohr und Verwendung desselben bei einem Antriebssystem |
WO2017027098A1 (en) | 2015-08-13 | 2017-02-16 | P&T Global Solutions, Llc | Passively cooled ion exchange column |
US11532405B2 (en) | 2015-08-13 | 2022-12-20 | P&T Global Solutions, Llc | Passively cooled ion exchange column |
US10203164B2 (en) | 2015-10-12 | 2019-02-12 | Alliance For Sustainable Energy, Llc | Solar thermoelectricity via advanced latent heat storage |
US20190029144A1 (en) * | 2015-12-23 | 2019-01-24 | Alaz-Arima, S.L. | Cooling device for a power converter |
WO2017141121A1 (en) | 2016-02-18 | 2017-08-24 | Nova Chemicals (International) S.A. | Cracked gas quench heat exchanger using heat pipes |
US12054569B1 (en) | 2018-02-02 | 2024-08-06 | Triad National Security, Llc | Hierarchical printed product and composition and method for making the same |
DE102019006060B3 (de) * | 2019-07-26 | 2020-11-12 | Axel R. Hidde | Vorrichtung zur Oberflächentemperierung |
DE202019003115U1 (de) | 2019-07-26 | 2019-08-14 | Axel R. Hidde | Vorrichtung zur Oberflächentemperierung und Anleitung zu deren Herstellung |
IT202100001565A1 (it) | 2021-01-27 | 2022-07-27 | Veil Energy S R L | Contenitore refrigerato e relativo utilizzo. |
WO2024210775A1 (en) * | 2023-04-03 | 2024-10-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Heat sink |
Also Published As
Publication number | Publication date |
---|---|
DE1264461B (de) | 1968-03-28 |
JPS417278B1 (enrdf_load_stackoverflow) | 1966-04-21 |
BE656515A (enrdf_load_stackoverflow) | 1965-04-01 |
SE307799B (enrdf_load_stackoverflow) | 1969-01-20 |
GB1027719A (enrdf_load_stackoverflow) | |
NL6413971A (enrdf_load_stackoverflow) | 1965-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3229759A (en) | Evaporation-condensation heat transfer device | |
Dunn et al. | The heat pipe | |
US3854454A (en) | Heat pipe water heater | |
US4909316A (en) | Dual-tube heat pipe type heat exchanger | |
US4394344A (en) | Heat pipes for use in a magnetic field | |
US3414475A (en) | Heat pipes | |
US4343763A (en) | Heat transfer system | |
US4270520A (en) | Solar collector comprising an evaporation/condensation system | |
Vasiliev et al. | Vapordynamic thermosyphon–heat transfer two-phase device for wide applications | |
US3435889A (en) | Heat pipes for non-wetting fluids | |
US3943964A (en) | Heating device | |
US3656545A (en) | Fibrous vapor cooling means | |
US3699343A (en) | Condensation heated black body radiation source | |
ChNookaraju et al. | Thermal analysis of gravity effected sintered wick heat pipe | |
US20210372711A1 (en) | Pressure capillary pump | |
US3857990A (en) | Heat pipe furnace | |
JP2663316B2 (ja) | ループ型ヒートパイプの蒸発部の構造 | |
US3571595A (en) | Variable rate neutron source | |
US3994336A (en) | Transformer for heat pipes | |
CN113008059A (zh) | 可用于电子产品的网络式铝基板多热沉板式散热器 | |
ES477188A1 (es) | Un dispositivo intercambiador de calor. | |
JPS6298191A (ja) | 圧力制御式ヒ−トパイプ | |
JPH0814776A (ja) | ヒートパイプ式熱交換器 | |
JPS5627891A (en) | Radiator | |
SU933713A1 (ru) | Фурма металлургической печи |