US3414475A - Heat pipes - Google Patents

Heat pipes Download PDF

Info

Publication number
US3414475A
US3414475A US550029A US55002966A US3414475A US 3414475 A US3414475 A US 3414475A US 550029 A US550029 A US 550029A US 55002966 A US55002966 A US 55002966A US 3414475 A US3414475 A US 3414475A
Authority
US
United States
Prior art keywords
condensate
zone
capillary
heat
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US550029A
Inventor
Fiebelmann Peter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
European Atomic Energy Community Euratom
Original Assignee
European Atomic Energy Community Euratom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Atomic Energy Community Euratom filed Critical European Atomic Energy Community Euratom
Application granted granted Critical
Publication of US3414475A publication Critical patent/US3414475A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/257Promoting flow of the coolant using heat-pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • HEAT PIPES Filed May 13. 1966 5 Sheets-Sheet 5 United States Patent 3,414,475 HEAT PIPES Peter Fiebelmann, Besozzo, Italy, assiguor to European Atomic Energy Community (Euratom), Brussels, Belgium Filed May 13, 1966, Ser. No. 550,029 Claims priority, application Germany, May 20, 1965, E 29,347 13 Claims. (Cl. 176-72) ABSTRACT OF THE DISCLOSURE A tubular heat pipe comprising an evaporization zone, with an internally mounted fissile heat source, and a condensation zone, with external secondary cooling means.
  • the pipe is at least partially filled with a liquid coolant which evaporates in the ev'aporization zone and returns, after condensing, along the inner surface of the pipe walls to the evaporization zone.
  • a circular gap is formed between the tube wall and the heat source with a capillary inlet.
  • a heat pipe is a transfer device comprising a container, condensable vapour, and capillary means disposed within the container capable'of causing the transport of the condensed vapour from a cooler area of the container to a hotter area.
  • the transport of the vapour through the container uses, as the driving force, the difference in vapour pressures in the high temperature zone and the cold temperature zone.
  • the liquid which condenses in the cold zone is returned to the evaporation zone by capillary action.
  • fluid circulation is established in the pipe with the non-heated end of the pipe acting as a condenser. By means of this circulation, a heat flux is created to flow from the heated end of the pipe to the non-heated end of the pipe.
  • Such heat pipes are described by Grover, Cotter and Erickson, Structures of Very High Thermal Conductance, 35 Journal of Applied Physics, 1990/91 (June 1964).
  • the main risk in this respect lies in the known manner of returning the condensate to the evaporation zone, for the condensate always enters the evaporation zone from the edge thereof, and so the pressure in such zone is the main factor in determining whether or not the (externally) heated surface of the evaporation zone is completely wetted with condensate. Above a particular heating power orwhich is the same thingbeyoud a particular length of evaporation zone, it becomes impossible to ensure that condensate is supplied as far as the pipe base (i.e. the end of the pipe remote from the evaporation zone). The remote walls of the evaporator therefore dry out.
  • the invention seeks to solve or reduce this problem by separating the evaporation zone from the condensate arrival zone. In practical terms, this means that the condensate entering the evaporation zone is kept away from the heated evaporator surface but is subsequently supplied uniformly to the whole of such surface.
  • the invention accordingly provides a heat pipe in which the condensate returning to the evaporation zone travels on one side of a capillary structure and then passes through the structure to the other side where it is evaporated.
  • the evaporation zone is internally heated and the returning condensate passes first behind a capillary partition which separates the evaporation zone and the heat source from the remainder of the space in the tube and through which the condensate flows into the evaporation zone by capillary action.
  • the source may be a fissile bar disposed in the evaporation zone symmetrically of the axis thereof, and the capillary partition may be a concentric porous tube.
  • This embodiment has already been tested satisfactorily with an electric heater simulating the nuclear fuel rod. In this way up to several metres length of rod can be cooled by heat pipes, for example under conditions of weightlessness in outer space.
  • the evaporation zone is heated at one side, the condensation zone for example is cooled at one side or on all sides, and the condensate returning to the evaporation zone passes through a capillary structure at a location apart from the heated side.
  • the capillary structure may leave an evaporation zone free internally but provide all the external wall parts of the evaporation zone-the heated as well as the unheated surfaces.
  • FIGURE 1 is a view in vertical section of a heat pipe which is heated centrally by a nuclear fuel rod in the evaporation zone;
  • FIGURE 2 is a partial view showing a variant of FIG- URE 1;
  • FIGURE 3 is a diagrammatic view in longitudinal section of a heat pipe which is heated externally at one side;
  • FIGURE 4 shows a first variant of the heat pipe of FIGURE 3
  • FIGURE 5 shows a second variant of the heat pipe of FIGURE 3
  • FIGURE 6 is a view, in a section perpendicular to the longitudinal axis, of a heat pipe unit which is heated centrally by a nuclear fuel rod and which has a number of evaporation zones.
  • FIGURE 1 there can be seen a heat pipe 1, a heat source 2, a capillary tubular liner or insert 3, for instance, of sintered ceramic material, a gas tight tubular top member 4, a capillary condensate return structure 5, a cooling water system 6, entry and exit pipes 7, 8 thereof, a sealing bush 9, an associated screwed plug 10 and a co-operating ring gasket 11.
  • the device is arranged for vertical operation. A number of devices of this kind can be combined to form a reactor rod lattice, in which event the heat source 2 would, as shown, be a nuclear fuel rod.
  • FIGURE 1 does not show the heat carrying vehicle which, when a nuclear fuel element is used as heat source, is a meltable and ev-aporable metal.
  • the heat pipe When the heat pipe is off, the heat vehicle is in the collecting space 12; when the pipe is started up, the heat vehicle in the space 12 is evaporated therefrom by auxiliary heating in the heat pipe.
  • there is a two-phase circulation of the heat vehicle-a vapour phase which rises along the heat pipe axis, and a liquid phase which flows down the pipe wallbetween the condensation zone and the evaporation zone.
  • the evaporation zone of the heat pipe is the annular space 13 between the heat source 2 and the capillary liner 3.
  • the outer ring space 14 is devised to form a condensate reservoir, for the separation between the evaporation zone and the condensate supply zone is achieved by the evaporation zone-in this case the annular space 13being internally heated-Le. by the heat source 2 and by the returning condensate first going behind a partitioni.e., the liner 3which separates the vapour space and the heat source from the remainder of the gas space of the pipe and through which the condensate can flow into the evaporation zone by capillary action. Consequently, the returning condensate entering the evaporation zone is not heated to such an extent as wholly to evaporate before reaching the bottom of the tube.
  • Another advantage of the ring space 14 is that condensate is supplied therefrom uniformly and to all places of the evaporator surfacei.e., the inside surface of the porous liner 3.
  • the function of the top member 4 on the liner 3 is to provide a Communication pressurewise between the ring space 14 and the condensation zone, in order that the vapour pressure drop between the evaporation zone and the condensation zone may be fully used to supply the evaporator surface with condensate. If the member 4 is of substantial length, it should be heat-insulated.
  • the width of the gap between the porous liner 3 and the heat pipe wall does not affect the return movement of the condensate since the condensate descends to the evaporation zone by gravity.
  • the gap need not therefore be capillary, and so the annular space 14 acts purely as a condensate collecting space.
  • the gap when the heat tube is operated horizontally or in a position inclined to the horizontal in a gravitational field and when the tube is operated in weightless space, the gap must either be a capillary gap over its whole 1engthi.e., it must act as a capillaryor it must have a capillary constriction at least at the top end of the porous liner, for in these cases the condensate return must be produced and maintained by capillary action. Consequently, in this case too, the pressure difference between the evaporation zone and the condensation zone is used. If the space 14 is connected to the condensation zone by a capillary zone only at the top end, the wider part of the space 14 lower down is merely a condensate collecting space.
  • the heating of the heat pipe must be so devise-d that the level of condensate at least into the constriction is sufiicient for capillary connection.
  • the annular space 14a between the impervious top member 4 and the heat tube wall can be used for capillary connection of the ring space 14 provided that the condensate extends into this ring space or gap.
  • the effective capillary widths at the various places of the heat pipe i.e., those liquid surfaces of the capillary gaps and passages which are exposed to the gas spacemust, from the condensation zone to the evaporation zone of the tube, at least stay constant and will preferably decrease substantially steplessly.
  • the smallest gap between the wires of the condensate return structure 5 must be larger at the top end of the condensation zone than any capillary connection gap which there may be in the annular space between the top member 4 or liner 3, and the latter g-ap must in turn be larger than the pores of the liner 3 which, as already mentioned, have a capillary action.
  • the theoretical capillary ceiling of a capillary, and the delivery of condensate to the evaporation space vary in inverse proportion to effective capillary width.
  • the space 14 is devised as a condensate collecting space, there is a chance, if the heat vehicle used is water or a similar thinly viscous liquid, that, more particularly when the heat pipe is out of operation, the condensate in the ring space 14 may discharge slowly through the pores of the liner 3 into the collecting space 12, with the result that at starting or when the pipe is heated up abruptly from low-load conditions, too little, if any, condensate is initially present in the porous liner.
  • FIGURE 2 shows how an impervious partition 15 can be inserted into an annular space 14 devised as a condensate collecting space, a capillary gap 16 being left between the partition 15 and the porous liner 3.
  • the partition 15 extends over the whole length of the porous insert 3 and is spaced apart therefrom by means of pimples or the like on the inside.
  • Gaps 17, 18 are left at the top and bottom ends of the partition 15, the bottom gap 17 being a condensate entry gap while the top gap 18 gives communication with the gas space of the pipe.
  • the maximum level of condensate in the space 1 4 is the top edge of the partition 15.
  • FIGURE 3 shows an embodiment of the invention wherein the effect of the porous liner hereinbefore described is produced by a stack of annular rings 19 and wherein, to improve further the separation between the evaporation zone and the condensation flow zone, the evaporation zone is heated only at one side and, correspondingly, the condensation zone is cooled only at the opposite side, as indicated by arrows f and 1 at the evaporation zone and condensation zone respectively of a heat pipe 20.
  • the returning condensate in the evaporation space goes by capillary action between the rings 19 from the unheated wall to the heated wall, as indicated by arrows f
  • the rings are formed with spacing pimples or protuberances or the like, for stacking at a capillary spacing, and also bear laterally against the pipe wall by way of similar protuberances or the like.
  • the spacing of the rings is such, at the opposite end of the heat pipe to the heating zone (area framed by chain lines) that, as considered over the whole group of rings, a condensate collecting space or a capillary space having the function described with reference to FIGURE 1 is provided.
  • the condensate is represented by a line of vs 21.
  • the spacing of the rings is such that the gaps between the rings have a capillary action.
  • the pipe vapour space is formed by the cumulative effect of all the apertures bounded by the rings, as indicated by arrows f
  • a gastight tubular top member 22, which has been described with reference to FIGURE 1, and .a condensate return structure 23, are provided in the central and top part respectively of the heat pipe.
  • Heat pipes having a stack of rings can have the variants, hereinbefore discussed with reference to FIGURE 1 of the annular space between the stack and heat pipe (capillary connection in the special cases of horizontal or substantially horizontal operation of the heat pipe in the gravitational field or of the tube operating in any position in conditions of weightlessness).
  • the effective capillary width can readily be devised to decrease downwards in the manner shown in FIGURES 4 and 5.
  • the first difference between FIG- URE 4 and FIGURE 3 is that heat pipe 24 of FIGURE 4 is filled right up with loose rings 25, so that manipulation is simpler than for the embodiment shown in FIGURE 1.
  • the between-rings spacings or gaps 26 decrease gradually from the condensation zone to the evaporation zone, to which end the spacing protuberances are of correspondingly changing size. Consequently, and as is required, the suction of the horizontal capillaries which are devised in this way with different widths decreases downwards.
  • Arrows f f represent the supply and removal of heat and arorws f represent the flow of condensate.
  • the vertical annular space 27, which is wider at the condensation end than at the evaporation end, can be devised either as a capillary or just as a condensate collecting space.
  • FIGURE 5 shows how the effect of variation in spacing can be achieved without altering the spacing between the rings.
  • Rings 28 are placed freely one above another with the interposition of spacing protuberances of the same height, horizontal capillary gaps 29 being left between individual rings.
  • the rings 28 are bevelled conically. Wedge-shaped ring grooves 30 of uniform depth are left; when the pipe is in operation theg rooves 30 fill up to dilferent levels with condensate in dependence upon pressure distribution in the gas space, the level of the condensate in the grooves 30 decreasing downwardly.
  • FIGURES 4 and 5 represent self-regulating hydraulic supply systems.
  • a continuous helically extending wire spiral can be used as capillary insert or liner instead of separate rings or segments.
  • FIGURE 6 shows how heat pipes having a stack of rings or segments for a nuclear fuel element can be used in practice.
  • a fissile rod 33 is inserted into an inner tubular member 31 having four radial ribs 32.
  • the ribs divide into four sub-chambers an annular chamber bounded by an outer covering pipe 34 which is the actual heat pipe.
  • Each sub-chamber forms an independent evaporation and condensation system of the kind shown in FIGURE 3, a central heat source of the kind shown in FIGURE 1 being used for all the evaporation spaces.
  • Combining the two principles optimises surfaces and volumes so far as thermal conditions and nuclear engineering are concerned.
  • the volume ratio of fissile to non-fissile material can be so devised for prismatic elements that even when the element is used in fast reactors criticality is reached with an adequate reserve of reactivity.
  • stacks of rings 35 having lateral and bottom spacing protuberances are introduced into the four working spaces of the element.
  • the between-rings spacing are such that the horizontal gaps form capillaries of graded width.
  • the gap 36 forms the condensate return space, and condensate is evaporated via the gap 37 into the vapour spaces 38, the condensate going from the outer ring arcs via the radial ring parts to the inner ring arcs.
  • the ring stacks can be replaced by a single porous capillary member corresponding in crosssectional shape to the tubular members 34, 31 with radial ribs 32--i.e., a capillary member which is double-walled and has radial partitions. Such a member would be inserted into the ring space between the outer tube 34 and the inner tubular member, which in this case is unribbed.
  • each heat pipe system can have horizontal partitions like tiers-i.e., in sections, each section operating axially as a separate heat pipe, so that the effect of temperature constancy is utilised zonewise in evaporation and condensation.
  • said capillary inlet comprises a plurality of stacks of metallic rings, each stack filling a segment of said gap, each ring being substantially perpendicular to the longitudinal axis of said pipe and being spaced from the adjacent rings by a capillary distance.
  • a heat pipe according to claim 1 in which said capillary-inlet is closer to said heat source than said pipe member forming a space larger than a capillary gap between said inlet and said pipe, said space being susbtantially completely filled with coolant liquid under operating condi tions.
  • a heat pipe according to claim 2 in which a metallic, non-porous tube is hermetically mounted on said tube of porous material and forms an extension thereof in the direction of the condensation zone.
  • a heat pipe according to claim 3 in which a metallic, non-porous tube is hermetically mounted on said stacks and forms an extension thereof in the direction of the condensation zone.
  • a heat pipe according to claim 3 in which the segments are hermetically separated from one another by radial walls.
  • a heat pipe according to claim 4 in which the tubes are hermetically separated from one another by radial walls.
  • a heat pipe according to claim 3 in which said stacks of rings extend substantially over the entire length of said pipe.
  • a heat pipe according to claim 3 in which at least one annular edge of said rings in the evaporization zone are bevelled.

Description

Dec. 3, 1968 P. FIEBELMANN 3,414,475
' HEAT PIPES Filed May 13, 1966 3 Sheets-Sheet 1 FIG 1 Dec. 3, 1968 P. FIEBELMANN 3,414,475
HEAT PIPES Filed May 13. 1966 5 Sheets-Sheet 5 United States Patent 3,414,475 HEAT PIPES Peter Fiebelmann, Besozzo, Italy, assiguor to European Atomic Energy Community (Euratom), Brussels, Belgium Filed May 13, 1966, Ser. No. 550,029 Claims priority, application Germany, May 20, 1965, E 29,347 13 Claims. (Cl. 176-72) ABSTRACT OF THE DISCLOSURE A tubular heat pipe comprising an evaporization zone, with an internally mounted fissile heat source, and a condensation zone, with external secondary cooling means. The pipe is at least partially filled with a liquid coolant which evaporates in the ev'aporization zone and returns, after condensing, along the inner surface of the pipe walls to the evaporization zone. A circular gap is formed between the tube wall and the heat source with a capillary inlet.
The invention relates to heat pipes. A heat pipe is a transfer device comprising a container, condensable vapour, and capillary means disposed within the container capable'of causing the transport of the condensed vapour from a cooler area of the container to a hotter area. The transport of the vapour through the container uses, as the driving force, the difference in vapour pressures in the high temperature zone and the cold temperature zone. The liquid which condenses in the cold zone is returned to the evaporation zone by capillary action. 'Ihus, fluid circulation is established in the pipe with the non-heated end of the pipe acting as a condenser. By means of this circulation, a heat flux is created to flow from the heated end of the pipe to the non-heated end of the pipe. Such heat pipes are described by Grover, Cotter and Erickson, Structures of Very High Thermal Conductance, 35 Journal of Applied Physics, 1990/91 (June 1964).
It is very important in the operation of heat pipes to ensure that an adequate supply of condensate reaches the evaporation space. If the supply is interrupted for any reason, the pipe becomes unserviceable and may even be destroyed.
The main risk in this respect lies in the known manner of returning the condensate to the evaporation zone, for the condensate always enters the evaporation zone from the edge thereof, and so the pressure in such zone is the main factor in determining whether or not the (externally) heated surface of the evaporation zone is completely wetted with condensate. Above a particular heating power orwhich is the same thingbeyoud a particular length of evaporation zone, it becomes impossible to ensure that condensate is supplied as far as the pipe base (i.e. the end of the pipe remote from the evaporation zone). The remote walls of the evaporator therefore dry out.
The invention seeks to solve or reduce this problem by separating the evaporation zone from the condensate arrival zone. In practical terms, this means that the condensate entering the evaporation zone is kept away from the heated evaporator surface but is subsequently supplied uniformly to the whole of such surface.
The invention accordingly provides a heat pipe in which the condensate returning to the evaporation zone travels on one side of a capillary structure and then passes through the structure to the other side where it is evaporated.
In one embodiment of the invention, the evaporation zone is internally heated and the returning condensate passes first behind a capillary partition which separates the evaporation zone and the heat source from the remainder of the space in the tube and through which the condensate flows into the evaporation zone by capillary action.
If a heat pipe is combined with a heat source in the form of a nuclear fuel element, the source may be a fissile bar disposed in the evaporation zone symmetrically of the axis thereof, and the capillary partition may be a concentric porous tube. This embodiment has already been tested satisfactorily with an electric heater simulating the nuclear fuel rod. In this way up to several metres length of rod can be cooled by heat pipes, for example under conditions of weightlessness in outer space.
In a second embodiment of the invention, to provide a separation between the evaporation zone and the condensate arrival zone, the evaporation zone is heated at one side, the condensation zone for example is cooled at one side or on all sides, and the condensate returning to the evaporation zone passes through a capillary structure at a location apart from the heated side. The capillary structure may leave an evaporation zone free internally but provide all the external wall parts of the evaporation zone-the heated as well as the unheated surfaces.
Particulars of the embodiments referred to and the operation of the corresponding heat pipes will now be described by Way of example, in greater detail with reference to the accompanying drawings wherein:
FIGURE 1 is a view in vertical section of a heat pipe which is heated centrally by a nuclear fuel rod in the evaporation zone;
FIGURE 2 is a partial view showing a variant of FIG- URE 1;
FIGURE 3 is a diagrammatic view in longitudinal section of a heat pipe which is heated externally at one side;
FIGURE 4 shows a first variant of the heat pipe of FIGURE 3;
FIGURE 5 shows a second variant of the heat pipe of FIGURE 3, and
FIGURE 6 is a view, in a section perpendicular to the longitudinal axis, of a heat pipe unit which is heated centrally by a nuclear fuel rod and which has a number of evaporation zones.
Referring to FIGURE 1, there can be seen a heat pipe 1, a heat source 2, a capillary tubular liner or insert 3, for instance, of sintered ceramic material, a gas tight tubular top member 4, a capillary condensate return structure 5, a cooling water system 6, entry and exit pipes 7, 8 thereof, a sealing bush 9, an associated screwed plug 10 and a co-operating ring gasket 11. The device is arranged for vertical operation. A number of devices of this kind can be combined to form a reactor rod lattice, in which event the heat source 2 would, as shown, be a nuclear fuel rod.
The heat pipe part encircled by the cooling system 6 forms the condensation zone of the heat pipe, and the heat-receiving part of the heat pipe forms the evaporation zone thereof. FIGURE 1 does not show the heat carrying vehicle which, when a nuclear fuel element is used as heat source, is a meltable and ev-aporable metal. When the heat pipe is off, the heat vehicle is in the collecting space 12; when the pipe is started up, the heat vehicle in the space 12 is evaporated therefrom by auxiliary heating in the heat pipe. In operation there is a two-phase circulation of the heat vehicle-a vapour phase which rises along the heat pipe axis, and a liquid phase which flows down the pipe wallbetween the condensation zone and the evaporation zone. The evaporation zone of the heat pipe is the annular space 13 between the heat source 2 and the capillary liner 3.
The outer ring space 14 is devised to form a condensate reservoir, for the separation between the evaporation zone and the condensate supply zone is achieved by the evaporation zone-in this case the annular space 13being internally heated-Le. by the heat source 2 and by the returning condensate first going behind a partitioni.e., the liner 3which separates the vapour space and the heat source from the remainder of the gas space of the pipe and through which the condensate can flow into the evaporation zone by capillary action. Consequently, the returning condensate entering the evaporation zone is not heated to such an extent as wholly to evaporate before reaching the bottom of the tube. Another advantage of the ring space 14 is that condensate is supplied therefrom uniformly and to all places of the evaporator surfacei.e., the inside surface of the porous liner 3.
The function of the top member 4 on the liner 3 is to provide a Communication pressurewise between the ring space 14 and the condensation zone, in order that the vapour pressure drop between the evaporation zone and the condensation zone may be fully used to supply the evaporator surface with condensate. If the member 4 is of substantial length, it should be heat-insulated. The other condensate return structure 5, in the form of a number of wires whose axes are parallel to one another and which extend into the condensate collecting chamberacts as a capillary structure and helps to even out the condensate return.
When the heat pipe is operated vertically in a gravitational field, the width of the gap between the porous liner 3 and the heat pipe wall does not affect the return movement of the condensate since the condensate descends to the evaporation zone by gravity. The gap need not therefore be capillary, and so the annular space 14 acts purely as a condensate collecting space.
On the other hand, when the heat tube is operated horizontally or in a position inclined to the horizontal in a gravitational field and when the tube is operated in weightless space, the gap must either be a capillary gap over its whole 1engthi.e., it must act as a capillaryor it must have a capillary constriction at least at the top end of the porous liner, for in these cases the condensate return must be produced and maintained by capillary action. Consequently, in this case too, the pressure difference between the evaporation zone and the condensation zone is used. If the space 14 is connected to the condensation zone by a capillary zone only at the top end, the wider part of the space 14 lower down is merely a condensate collecting space. The heating of the heat pipe must be so devise-d that the level of condensate at least into the constriction is sufiicient for capillary connection. The annular space 14a between the impervious top member 4 and the heat tube wall can be used for capillary connection of the ring space 14 provided that the condensate extends into this ring space or gap.
In all cases, the effective capillary widths at the various places of the heat pipei.e., those liquid surfaces of the capillary gaps and passages which are exposed to the gas spacemust, from the condensation zone to the evaporation zone of the tube, at least stay constant and will preferably decrease substantially steplessly. In FIGURE 1, therefore, the smallest gap between the wires of the condensate return structure 5 must be larger at the top end of the condensation zone than any capillary connection gap which there may be in the annular space between the top member 4 or liner 3, and the latter g-ap must in turn be larger than the pores of the liner 3 which, as already mentioned, have a capillary action. The theoretical capillary ceiling of a capillary, and the delivery of condensate to the evaporation space, vary in inverse proportion to effective capillary width.
If the space 14 is devised as a condensate collecting space, there is a chance, if the heat vehicle used is water or a similar thinly viscous liquid, that, more particularly when the heat pipe is out of operation, the condensate in the ring space 14 may discharge slowly through the pores of the liner 3 into the collecting space 12, with the result that at starting or when the pipe is heated up abruptly from low-load conditions, too little, if any, condensate is initially present in the porous liner.
As a constructional way of obviating this disadvantage, FIGURE 2 shows how an impervious partition 15 can be inserted into an annular space 14 devised as a condensate collecting space, a capillary gap 16 being left between the partition 15 and the porous liner 3. The partition 15 extends over the whole length of the porous insert 3 and is spaced apart therefrom by means of pimples or the like on the inside. Gaps 17, 18 are left at the top and bottom ends of the partition 15, the bottom gap 17 being a condensate entry gap while the top gap 18 gives communication with the gas space of the pipe. The maximum level of condensate in the space 1 4 is the top edge of the partition 15. Even when the condensate level drops as far as the bottom of the annular space 14, the gap 16 still remains full of condensate, so that the porous insert receives a supply of condensate in all conditions of operation. This feature is very useful in cases where the heat pipe output varies considerably, for despite variations in condensate level, the porous liner is always supplied uniformly with condensate.
FIGURE 3 shows an embodiment of the invention wherein the effect of the porous liner hereinbefore described is produced by a stack of annular rings 19 and wherein, to improve further the separation between the evaporation zone and the condensation flow zone, the evaporation zone is heated only at one side and, correspondingly, the condensation zone is cooled only at the opposite side, as indicated by arrows f and 1 at the evaporation zone and condensation zone respectively of a heat pipe 20. The returning condensate in the evaporation space goes by capillary action between the rings 19 from the unheated wall to the heated wall, as indicated by arrows f The rings are formed with spacing pimples or protuberances or the like, for stacking at a capillary spacing, and also bear laterally against the pipe wall by way of similar protuberances or the like. The spacing of the rings is such, at the opposite end of the heat pipe to the heating zone (area framed by chain lines) that, as considered over the whole group of rings, a condensate collecting space or a capillary space having the function described with reference to FIGURE 1 is provided. In FIG- URE 3 the condensate is represented by a line of vs 21. The spacing of the rings is such that the gaps between the rings have a capillary action. The pipe vapour space is formed by the cumulative effect of all the apertures bounded by the rings, as indicated by arrows f A gastight tubular top member 22, which has been described with reference to FIGURE 1, and .a condensate return structure 23, are provided in the central and top part respectively of the heat pipe.
Heat pipes having a stack of rings can have the variants, hereinbefore discussed with reference to FIGURE 1 of the annular space between the stack and heat pipe (capillary connection in the special cases of horizontal or substantially horizontal operation of the heat pipe in the gravitational field or of the tube operating in any position in conditions of weightlessness). In heat pipes having a stack of rings, the effective capillary width can readily be devised to decrease downwards in the manner shown in FIGURES 4 and 5. The first difference between FIG- URE 4 and FIGURE 3 is that heat pipe 24 of FIGURE 4 is filled right up with loose rings 25, so that manipulation is simpler than for the embodiment shown in FIGURE 1. The between-rings spacings or gaps 26 decrease gradually from the condensation zone to the evaporation zone, to which end the spacing protuberances are of correspondingly changing size. Consequently, and as is required, the suction of the horizontal capillaries which are devised in this way with different widths decreases downwards. Arrows f f represent the supply and removal of heat and arorws f represent the flow of condensate. The vertical annular space 27, which is wider at the condensation end than at the evaporation end, can be devised either as a capillary or just as a condensate collecting space. In the latter case, and in contrast to FIGURE 1, no capillary contact constriction is necessary since a capillary connection between the space 27 and the heat pipe gas space is provided by the between-rings gaps. Its condensate space therefore represents merely the hydraulic transmission path in the system of communicating gaps.
FIGURE 5 shows how the effect of variation in spacing can be achieved without altering the spacing between the rings. Rings 28 are placed freely one above another with the interposition of spacing protuberances of the same height, horizontal capillary gaps 29 being left between individual rings. On their inner edges near the vapour space, the rings 28 are bevelled conically. Wedge-shaped ring grooves 30 of uniform depth are left; when the pipe is in operation theg rooves 30 fill up to dilferent levels with condensate in dependence upon pressure distribution in the gas space, the level of the condensate in the grooves 30 decreasing downwardly. At the groove base the capillary gaps are so devised as to be just full of condensate in the evaporation zone when maximum heat output is being transmitted, the conical groove part above having just had all the liquid evaporated from it. In all, the embodiments shown in FIGURES 4 and 5 represent self-regulating hydraulic supply systems. A continuous helically extending wire spiral can be used as capillary insert or liner instead of separate rings or segments.
FIGURE 6 shows how heat pipes having a stack of rings or segments for a nuclear fuel element can be used in practice. A fissile rod 33 is inserted into an inner tubular member 31 having four radial ribs 32. The ribs divide into four sub-chambers an annular chamber bounded by an outer covering pipe 34 which is the actual heat pipe. Each sub-chamber forms an independent evaporation and condensation system of the kind shown in FIGURE 3, a central heat source of the kind shown in FIGURE 1 being used for all the evaporation spaces. Combining the two principles optimises surfaces and volumes so far as thermal conditions and nuclear engineering are concerned. The volume ratio of fissile to non-fissile material can be so devised for prismatic elements that even when the element is used in fast reactors criticality is reached with an adequate reserve of reactivity.
As in FIGURE 4 or 5, stacks of rings 35 having lateral and bottom spacing protuberances are introduced into the four working spaces of the element. The between-rings spacing are such that the horizontal gaps form capillaries of graded width. At the periphery of the element they leave free on the inside a gap 36 which is wider than a gap 37 at the fuel rod 33. The gap 36 forms the condensate return space, and condensate is evaporated via the gap 37 into the vapour spaces 38, the condensate going from the outer ring arcs via the radial ring parts to the inner ring arcs.
If required, the ring stacks can be replaced by a single porous capillary member corresponding in crosssectional shape to the tubular members 34, 31 with radial ribs 32--i.e., a capillary member which is double-walled and has radial partitions. Such a member would be inserted into the ring space between the outer tube 34 and the inner tubular member, which in this case is unribbed.
For very dense packing of elements of the kind shown in FIGURE 6 into a reactor rod lattice, the various items concerned are, conveniently, prismatic, e.g. hexagonal. For temperature equalisation along the fuel rod, each heat pipe system can have horizontal partitions like tiers-i.e., in sections, each section operating axially as a separate heat pipe, so that the effect of temperature constancy is utilised zonewise in evaporation and condensation.
What I claim is:
1. A tubular heat pipe comprising a tubular member having an evaporation zone and a condensation zone, a fissile=heat source mounted within said member in said evaporization zone, external secondary cooling means adjacent said condensaiton zone, a coolant liquid filling at least part of said tube, said coolant being evaporated in the evaporization zone and after condensing returning along the inner surface of the walls of said pipe member to the evaporization zone, capillary inlet means formed in an annular gap formed between the walls of said tube and said heat source, said capillary inlet extending at least along the total height of said heat source and allowing the coolant liquid to traverse said gap to approach said heat source.
2. A heat pipe according to claim 1 in which said capillary inlet comprises a tube of porous material having an outer diameter less than the inner diameter of said tube andan inner diameter greater than the outer diameter of said heat source.
3.- A heat pipe according to claim 1 in which said capillary inlet comprises a plurality of stacks of metallic rings, each stack filling a segment of said gap, each ring being substantially perpendicular to the longitudinal axis of said pipe and being spaced from the adjacent rings by a capillary distance.
4. A heat pipe according to claim 1 in which said capillary inlet comprises a plurality of tubes of porous material, each said tube filling a portion of said gap and having its longitudinal axis parallel to the longitudinal axis of said plpe.
5. A heat pipe according to claim 1 in which said capillary-inlet is closer to said heat source than said pipe member forming a space larger than a capillary gap between said inlet and said pipe, said space being susbtantially completely filled with coolant liquid under operating condi tions.
6. A heat pipe according to claim 2 in which a metallic, non-porous tube is hermetically mounted on said tube of porous material and forms an extension thereof in the direction of the condensation zone.
7. A heat pipe according to claim 3 in which a metallic, non-porous tube is hermetically mounted on said stacks and forms an extension thereof in the direction of the condensation zone.
8. A heat pipe according to claim 3 in which the segments are hermetically separated from one another by radial walls.
9. A heat pipe according to claim 4 in which the tubes are hermetically separated from one another by radial walls.
10. A heat pipe according to claim 3 in which said stacks of rings extend substantially over the entire length of said pipe.
11. A heat pipe according to claim 3 in which the spacing between the rings decreases from the condensation zone towards the evaporization zone.
12. A heat pipe according to claim 3 in which said rings are uniformly spaced.
13. A heat pipe according to claim 3 in which at least one annular edge of said rings in the evaporization zone are bevelled.
References Cited UNITED STATES PATENTS 3,229,759 1/ 1966 Grover 105 3,305,005 2/1967 Grover et al. 165-105 FOREIGN PATENTS 340,281 9/1959 Switzerland.
ROBERT A. OLEARY, Primary Examiner.
ALBERT W. DAVIS, JR., Assistant Examiner.
US550029A 1965-05-20 1966-05-13 Heat pipes Expired - Lifetime US3414475A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEE0029347 1965-05-20

Publications (1)

Publication Number Publication Date
US3414475A true US3414475A (en) 1968-12-03

Family

ID=7073868

Family Applications (1)

Application Number Title Priority Date Filing Date
US550029A Expired - Lifetime US3414475A (en) 1965-05-20 1966-05-13 Heat pipes

Country Status (5)

Country Link
US (1) US3414475A (en)
BE (1) BE681231A (en)
DE (1) DE1501506C3 (en)
GB (1) GB1143766A (en)
NL (1) NL6606974A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498369A (en) * 1968-06-21 1970-03-03 Martin Marietta Corp Heat pipes with prefabricated grooved capillaries and method of making
US3576210A (en) * 1969-12-15 1971-04-27 Donald S Trent Heat pipe
US3598180A (en) * 1970-07-06 1971-08-10 Robert David Moore Jr Heat transfer surface structure
US3621906A (en) * 1969-09-02 1971-11-23 Gen Motors Corp Control system for heat pipes
US3637007A (en) * 1967-08-14 1972-01-25 Trw Inc Method of and means for regulating thermal energy transfer through a heat pipe
US3811496A (en) * 1971-11-06 1974-05-21 Philips Corp Heat transfer device
US3812908A (en) * 1972-02-25 1974-05-28 Philips Corp Heat transferring device
US3857441A (en) * 1970-03-06 1974-12-31 Westinghouse Electric Corp Heat pipe wick restrainer
US3952798A (en) * 1970-08-31 1976-04-27 Xerox Corporation Internally heated heat pipe roller
US3962869A (en) * 1972-09-04 1976-06-15 Robert Bosch G.M.B.H. Equipment for exhaust gas detoxification in internal combustion engines
US4170262A (en) * 1975-05-27 1979-10-09 Trw Inc. Graded pore size heat pipe wick
US4275510A (en) * 1979-06-01 1981-06-30 George Odean F Heat recovery in a laundry system
US4560533A (en) * 1984-08-30 1985-12-24 The United States Of America As Represented By The United States Department Of Energy Fast reactor power plant design having heat pipe heat exchanger
WO1997008483A2 (en) * 1995-08-30 1997-03-06 Refmed Cryo-Medical Products Ltd. Heat pipe
US6768781B1 (en) * 2003-03-31 2004-07-27 The Boeing Company Methods and apparatuses for removing thermal energy from a nuclear reactor
US20060164809A1 (en) * 2005-01-21 2006-07-27 Delta Electronics, Inc. Heat dissipation module
US20070107877A1 (en) * 2005-11-17 2007-05-17 Foxconn Technology Co., Ltd. Heat pipe with multiple vapor-passages
US20090260793A1 (en) * 2008-04-21 2009-10-22 Wang Cheng-Tu Long-acting heat pipe and corresponding manufacturing method
CN111107945A (en) * 2017-09-22 2020-05-05 株式会社Lg化学 Method for producing a film
WO2022094593A1 (en) * 2020-10-29 2022-05-05 Westinghouse Electric Company Llc Devices, systems, and methods for removing heat from a nuclear reactor core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854454A (en) * 1973-11-01 1974-12-17 Therma Electron Corp Heat pipe water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH340281A (en) * 1955-03-17 1959-08-15 Parsons & Co Ltd C A Process for removing heat from a nuclear reactor or the like
US3229759A (en) * 1963-12-02 1966-01-18 George M Grover Evaporation-condensation heat transfer device
US3305005A (en) * 1965-12-03 1967-02-21 George M Grover Capillary insert for heat tubes and process for manufacturing such inserts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH340281A (en) * 1955-03-17 1959-08-15 Parsons & Co Ltd C A Process for removing heat from a nuclear reactor or the like
US3229759A (en) * 1963-12-02 1966-01-18 George M Grover Evaporation-condensation heat transfer device
US3305005A (en) * 1965-12-03 1967-02-21 George M Grover Capillary insert for heat tubes and process for manufacturing such inserts

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637007A (en) * 1967-08-14 1972-01-25 Trw Inc Method of and means for regulating thermal energy transfer through a heat pipe
US3498369A (en) * 1968-06-21 1970-03-03 Martin Marietta Corp Heat pipes with prefabricated grooved capillaries and method of making
US3621906A (en) * 1969-09-02 1971-11-23 Gen Motors Corp Control system for heat pipes
US3576210A (en) * 1969-12-15 1971-04-27 Donald S Trent Heat pipe
US3857441A (en) * 1970-03-06 1974-12-31 Westinghouse Electric Corp Heat pipe wick restrainer
US3598180A (en) * 1970-07-06 1971-08-10 Robert David Moore Jr Heat transfer surface structure
US3952798A (en) * 1970-08-31 1976-04-27 Xerox Corporation Internally heated heat pipe roller
US3811496A (en) * 1971-11-06 1974-05-21 Philips Corp Heat transfer device
US3812908A (en) * 1972-02-25 1974-05-28 Philips Corp Heat transferring device
US3962869A (en) * 1972-09-04 1976-06-15 Robert Bosch G.M.B.H. Equipment for exhaust gas detoxification in internal combustion engines
US4170262A (en) * 1975-05-27 1979-10-09 Trw Inc. Graded pore size heat pipe wick
US4275510A (en) * 1979-06-01 1981-06-30 George Odean F Heat recovery in a laundry system
US4560533A (en) * 1984-08-30 1985-12-24 The United States Of America As Represented By The United States Department Of Energy Fast reactor power plant design having heat pipe heat exchanger
WO1997008483A3 (en) * 1995-08-30 1997-05-15 Refmed Cryo Medical Products L Heat pipe
WO1997008483A2 (en) * 1995-08-30 1997-03-06 Refmed Cryo-Medical Products Ltd. Heat pipe
US6768781B1 (en) * 2003-03-31 2004-07-27 The Boeing Company Methods and apparatuses for removing thermal energy from a nuclear reactor
US20050089130A1 (en) * 2003-03-31 2005-04-28 Moriarty Michael P. Methods and apparatuses for removing thermal energy from a nuclear reactor
US6888910B1 (en) * 2003-03-31 2005-05-03 The Boeing Company Methods and apparatuses for removing thermal energy from a nuclear reactor
US20060164809A1 (en) * 2005-01-21 2006-07-27 Delta Electronics, Inc. Heat dissipation module
US20070107877A1 (en) * 2005-11-17 2007-05-17 Foxconn Technology Co., Ltd. Heat pipe with multiple vapor-passages
US7445039B2 (en) * 2005-11-17 2008-11-04 Foxconn Technology Co., Ltd. Heat pipe with multiple vapor-passages
US8919427B2 (en) * 2008-04-21 2014-12-30 Chaun-Choung Technology Corp. Long-acting heat pipe and corresponding manufacturing method
US20090260793A1 (en) * 2008-04-21 2009-10-22 Wang Cheng-Tu Long-acting heat pipe and corresponding manufacturing method
CN111107945A (en) * 2017-09-22 2020-05-05 株式会社Lg化学 Method for producing a film
CN111107945B (en) * 2017-09-22 2022-12-27 株式会社Lg化学 Method for producing a film
WO2022094593A1 (en) * 2020-10-29 2022-05-05 Westinghouse Electric Company Llc Devices, systems, and methods for removing heat from a nuclear reactor core
TWI803036B (en) * 2020-10-29 2023-05-21 美商西屋電器公司 Devices, systems, and methods for removing heat from a nuclear reactor core
EP4325157A2 (en) 2020-10-29 2024-02-21 Westinghouse Electric Company Llc Devices, systems, and methods for removing heat from a nuclear reactor core
US11955249B2 (en) 2020-10-29 2024-04-09 Westinghouse Electric Company Llc Heat pipe having a wick between concentric inner and outer housings, for use in heat removal from a nuclear reactor core
EP4325157A3 (en) * 2020-10-29 2024-04-24 Westinghouse Electric Company Llc Devices, systems, and methods for removing heat from a nuclear reactor core

Also Published As

Publication number Publication date
NL6606974A (en) 1966-11-21
BE681231A (en) 1966-10-31
DE1501506A1 (en) 1969-09-04
GB1143766A (en)
DE1501506C3 (en) 1974-06-12
DE1501506B2 (en) 1973-11-22

Similar Documents

Publication Publication Date Title
US3414475A (en) Heat pipes
US3229759A (en) Evaporation-condensation heat transfer device
Stenger Experimental feasibility study of water-filled capillary-pumped heat-transfer loops
US3651240A (en) Heat transfer device
El-Genk et al. Determination of operation envelopes for closed, two-phase thermosyphons
US3677329A (en) Annular heat pipe
US3537514A (en) Heat pipe for low thermal conductivity working fluids
Dickey et al. Experimental and analytical investigation of a capillary pumped loop
Annamalai et al. Experimental investigation and CFD analysis of a air cooled condenser heat pipe
US3741289A (en) Heat transfer apparatus with immiscible fluids
US3934643A (en) Controllable heat pipe
US3746081A (en) Heat transfer device
US4510922A (en) Energy storage system having thermally stratified liquid
US3677336A (en) Heat link, a heat transfer device with isolated fluid flow paths
US2158238A (en) Process for thermal atmolysis and apparatus employing same
KR100368516B1 (en) Continuous steam generator
Wu et al. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles
El-Genk et al. Heat transfer correlations for liquid film in the evaporator of enclosed, gravity-assisted thermosyphons
US4545217A (en) Steam generating and condensing apparatus
US4007777A (en) Switchable heat pipe assembly
Bressler et al. Surface wetting through capillary grooves
Aghel et al. Experimental study on heat transfer characteristics of a modified two-phase closed thermosyphon
Chun Some experiments on screen wick dry-out limits
US3378454A (en) Nuclear fuel arrangement
JPS6383693A (en) Secondary cooling system of nuclear reactor