US3219435A - Method and apparatus for producing metal blocks by electron beams - Google Patents

Method and apparatus for producing metal blocks by electron beams Download PDF

Info

Publication number
US3219435A
US3219435A US20977A US2097760A US3219435A US 3219435 A US3219435 A US 3219435A US 20977 A US20977 A US 20977A US 2097760 A US2097760 A US 2097760A US 3219435 A US3219435 A US 3219435A
Authority
US
United States
Prior art keywords
electron
electrode
pool
melting
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US20977A
Other languages
English (en)
Inventor
Gruber Helmut
Scheidig Helmut
Eckstein Horst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Application granted granted Critical
Publication of US3219435A publication Critical patent/US3219435A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams

Definitions

  • the present invention relates to a method and apparatus for producing metal blocks by melting the metal in a vacuum or inert atmosphere of reduced pressure by means of electron beams.
  • this method of melting metals by means of an electron bombardment involves considerable difliculties which are primarily caused by the fact that during the melting operation considerable amounts of gases emerge from the treated material which may result in glow discharges between the electrodes.
  • glow discharges prevent the necessary concentration of electric energy upon the ends of the consumable electrodes to be melted off, result in a strong increase in the current, and especially consume a considerable amount of the electric energy Within the plasma of the discharge so that the amount of energy required for melting is no longer available.
  • the invention provides the electron generators in such a position that the electron beams will be passed at a downwardly inclined direction upon the lower end of a vertical consumable electrode in order to heat this end until it is melted in the form of drops which fall into the pool of molten metal below. Due to the fact that the rays of the electron beam "ice diverge, a considerable part of the electrons flow past the consumable electrode and impinge upon the pool. These electrons give up their energy to the pool and thereby keep the same in a liquid condition.
  • the method according to the invention is applicable particularly for melting larger blocks of metal and has the advantage that the electron source may be mounted at a considerable distance from the electrode to be melted and the molten material in the pool. It is thus possible to reduce the danger of the occurrence of glow discharges since the gases developing during the melting process may be pumped oif in the vicinity of the melting point on the electrode and will therefore not reach the electron source. Furthermore, it is possible to make the distance between the end of the electrode and the surface of the pool relatively small.
  • the electron-generating chamber is additionally separated from the melting chamber by an apertured partition and is also kept by a separate pump unit at a very low pressure, it is impossible that glow discharges will reach the electron source.
  • the generating chamber of the electrons which is shielded by a diaphragm will then always be under such a low pressure that the gas developed from the molten metal will not be able to exert any influence within that chamber.
  • the pressure within the generating chamber of the electrons should then preferably amount to approximately 10 to 10- mm. Hg.
  • the main furnace chamber 1 is provided with a suction outlet 2 leading to an evacuating pump, not shown, and a furnace head 3 which contains suitable sealing means 4 for a vacuum-tight insertion and vertical sliding movement of an electrode supporting rod 5 which carries on its lower end a consumable electrode 6.
  • sealing means 4 may be of any conventional type and may consist of a suitable packing or may, as indicated, also include one or more intermediate suction stages which may be connected to a suitable evacuating pump, not shown, by means of an outlet 4.
  • the electrode 6 is to be gradually melted at its lower end by two or more electron beams 7, and the melting metal then drops downwardly into a pool 8 of molten metal which gradually builds up a metal block 9 within a crucible 10 which is surrounded by a water jacket 11 through which cooling water is circulated.
  • Crucible 10 has a slidable hollow bottom 12 and is mounted on a bar 13 by means of which it is adapted to be raised and lowered by a suitable mechanical or hydraulic elevating mechanism, not shown, which is preferably disposed under a vacuum within the lower extension 14 of crucible 10.
  • the elevating bar 13 contains water conduits 15 which are connected to the hollow bottom 12 to circulate cooling water therethrough, and the other parts of the elevating mechanism which are contained in the crucible extension 14 may also be water-cooled.
  • This elevating mechanism is designed to maintain the surface of the pool at all times at the same level and to lower the metal block 9 gradually within crucible 10 as it is being formed therein by the molten metal dripping from electrode 6 and subsequently solidifying under the cooling action of the walls and the slidable bottom 12 of the crucible.
  • the electron beams 7 are produced by two or more electron generators or guns 16, each of which consists of a cathode 17, focusing means 18, and a diaphragm 19 with an aperture therein.
  • the electron beam may be further controlled, for example, by magnetic coils 20.
  • the two or more generators 16 are provided with separate evacuating conduits 21 which lead to a common outlet 22 which is preferably connected to a pump unit separate from the pump or pumps for evacuating the other parts of the apparatus.
  • the electron generators 16 are mounted on furnace chamber 1 so that the diverging electron beams 7 will be directed at a downwardly inclined angle and their centers intersect with the central axis of furnace chamber 1 at a certain distance from the lower end of crucible 10.
  • the consumable electrode 6 is connected to the supporting rod 5 and the lattter is drawn upwardly to such an extent that the lower end of electrode 6 will be disposed at a level above that which will be reached subsequently by the electron beams 7.
  • the furnace is then hermetically closed and evacuated.
  • the electron generators or guns 16 are started and electrode 6 is lowered until electron beams 7 will melt the lower end of the electrode.
  • the molten metal dripping downwardly from electrode 6 will then form a crucible 10 a pool 8 of molten metal. Since electron beams 7 are not sharply focused upon the end of electrode 6, the diverging rays of the beams will impinge upon the surface of pool 8 and keep the same in a liquid condition.
  • the bottom 12 of the crucible is lowered so that the surface of the pool will always remain at substantially the same level.
  • the downward feed of electrode 6 by feeding means is preferably controlled automatically so that the lower end of electrode 6, while being consumed during the melting process, will always be disposed at substantially the same level within the range of intersection of the diverging electron beams 7
  • a suitable gas for example, helium or argon
  • a suitable damper or throttle 24 in the suction outlet socket 2 to permit the latter to be at least partly closed.
  • the superiority of the method according to the invention over the known method is particularly impressive when the melting furnace is filled out by a gaseous component.
  • the cathode for producing the electron rays was disposed at the inside of the melting furnace in the near vicinity of the consumable electrode to be melted. If the gas pressure in such a furnace increases only slightly, gas discharges will occur with the result that the energy of the electron rays will no longer be concentrated upon the end of the electrode but be scattered around the inside of the furnace in the form of a plasma.
  • the electrode 6 as well as the pool of molten metal are grounded by electrical conductors 25, and the electrons are produced within the electron generators 16 which are shielded from the furnace chamber 1 and are supplied with the necessary voltages through suitable insulators and conductors. Since the electron generators 16 are also evacuated separately from the furnace chamber, there is practically no possibility for the occurrence of any glow discharges.
  • An electron beam melting furnace comprising a vacuum furnace chamber having a container for molten metal, means for feeding a consumable electrode to be melted into said chamber above said container, at least one electron gun having an apertured diaphragm connected to said furnace chamber for directing a focused electron beam through said apertured diaphragm into said furnace chamber against an electrode fed by said means for feeding to thereby melt material from the electrode to drop into said container to form a molten pool, and to direct a focused electron beam into said container to heat the molten pool, and means for separately evacuating said chamber and said electron gun on opposite sides of said apertured diaphragm whereby said furnace chamber may be evacuated to a low pressure and said electron gun may be separately evacuated to a lower pressure.
  • An electron beam melting furnace in which said electron gun is connected to said furnace chamber to direct an electron beam against the electrode at an oblique angle and there-past into said container.
  • An electron beam melting furnace in which said means for feeding a consumable electrode to be melted is means for feeding the consumable electrode vertically downwardly above said container and in which said electron gun is directed obliquely downwardly so that an electron beam therefrom is partially directed against the tip of a consumable electrode being fed by said means for feeding and there-past into said container.
  • An electron beam melting furnace including a multiple number of electron guns positioned about the axis of a consumable electrode being fed by said means for feeding each directed obliquely downwardly to intersect at said axis so that an electron beam therefrom is partially directed against the tip of a consumable electrode being fed by said means for feeding and there-past into said container.
  • An electron beam melting furnace including means for supplying an inert gas to said furnace chamber and means for throttling said evacuating means of said chamber to prevent said inert gas from being immediately evacuated from said chamber.
  • An electron beam melting furnace according to claim 1 in which said container is in the form of a cooled mold having a slidable bottom.
  • An electron beam melting furnace including at least two electron guns having apertured diaphragms connected to said furnace, one of said guns being positioned for directing a focused electron beam through its apertured diaphragm into said furnace chamber against an electrode fed by said means for feeding and other of said electron guns being positioned to direct a focused electron beam through its apertured diaphragm into said furnace chamber into said container.
  • a method of melting metal which comprises directing a focused beam of electrons from an electron gun through an apertured diaphragm into a vacuum furnace chamber against the tip of a consumable electrode in the chamber, melting metal from the electrode with said beam to thereby form a molten pool of metal below the electrode, directing a focused beam of electron from an electron gun through an apertured diaphragm into the furnace chamber against said molten pool evacuating said chamber to a low pressure and separately evacuating said gun on the inlet side of said aperture diaphragm to a lower pressure.
  • Method according to claim 10 which includes feed ing the electrode at a rate equal to the melting rate and thereby maintain the tip spatially positioned at a substantially fixed point in the chamber.
  • Method according to claim 8 in which the molten pool is formed in a cooled mold having a slidable bottom and which includes slidably lowering the bottom at a rate to maintain the surface of the pool at a substantially constant level.
US20977A 1959-04-24 1960-04-08 Method and apparatus for producing metal blocks by electron beams Expired - Lifetime US3219435A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEH36211A DE1110877B (de) 1959-04-24 1959-04-24 Verfahren zum Erschmelzen von Metallbloecken mittels Elektronenstrahlen

Publications (1)

Publication Number Publication Date
US3219435A true US3219435A (en) 1965-11-23

Family

ID=7152937

Family Applications (1)

Application Number Title Priority Date Filing Date
US20977A Expired - Lifetime US3219435A (en) 1959-04-24 1960-04-08 Method and apparatus for producing metal blocks by electron beams

Country Status (5)

Country Link
US (1) US3219435A (de)
CH (1) CH382320A (de)
DE (1) DE1110877B (de)
FR (1) FR1249096A (de)
GB (1) GB945992A (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265801A (en) * 1960-08-22 1966-08-09 Ass Elect Ind Electron beam furnaces
US3267529A (en) * 1961-10-04 1966-08-23 Heraeus Gmbh W C Apparatus for melting metals under high vacuum
US3305923A (en) * 1964-06-09 1967-02-28 Ind Fernand Courtoy Bureau Et Methods for bonding dissimilar materials
US3330901A (en) * 1964-03-25 1967-07-11 Lokomotivbau Elektrotech Electron bombardment melting furnace
US3417223A (en) * 1964-05-06 1968-12-17 Steigerwald Karl Heinz Welding process using radiant energy
US3533611A (en) * 1968-06-06 1970-10-13 Wheelabrator Corp Furnace ventilation system
US4488902A (en) * 1983-06-10 1984-12-18 Duval Corporation Horizontal, multistage electron beam refinement of metals with recycle
WO1984004933A1 (en) * 1983-06-10 1984-12-20 Duval Corp Electron beam refinement of metals, particularly copper
EP0248396A2 (de) * 1986-06-05 1987-12-09 Westinghouse Electric Corporation Verfahren zum Herstellen von Hüllmaterial durch kombiniertes Umschmelzen mit Elektronenstrahlen und Vakuum-Lichtbogen
EP0248397A2 (de) * 1986-06-05 1987-12-09 Westinghouse Electric Corporation Verfahren zum Herstellen von Zirkon für Schutzhüllen durch Schmelzen von geglühtem Zirkon mit Elektronenstrahlen
US4814136A (en) * 1987-10-28 1989-03-21 Westinghouse Electric Corp. Process for the control of liner impurities and light water reactor cladding
US4816214A (en) * 1987-10-22 1989-03-28 Westinghouse Electric Corp. Ultra slow EB melting to reduce reactor cladding
US4849013A (en) * 1986-06-05 1989-07-18 Westinghouse Electric Corp. Combined electron beam and vacuum arc melting for barrier tube shell material
US4988844A (en) * 1989-07-19 1991-01-29 Leybold A.G. Process for controlling the strike positions of a plurality of electron beams on a melting bath
EP0493550A1 (de) * 1990-07-19 1992-07-08 Axel Johnson Metals, Inc. Verfahren zum betrieb eines elektronenstrahlofens und eines zwischendruckelektronenstrahlofens
US5142549A (en) * 1989-09-05 1992-08-25 Bremer Siegfried M K Remelting apparatus and method for recognition and recovery of noble metals and rare earths
US5222547A (en) * 1990-07-19 1993-06-29 Axel Johnson Metals, Inc. Intermediate pressure electron beam furnace
DE4208484A1 (de) * 1992-03-14 1993-09-16 Leybold Durferrit Gmbh Magnetisches ablenksystem fuer einen hochleistungs-elektronenstrahl
US5263044A (en) * 1989-09-05 1993-11-16 Bremer Siegfried M K Remelting method for recognition and recovery of noble metals and rare metals
US5503655A (en) * 1994-02-23 1996-04-02 Orbit Technologies, Inc. Low cost titanium production

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1273925A (fr) * 1960-09-06 1961-10-20 Applic Electro Thermiques Soc Procédé de déviation et de modulation en puissance d'un faisceau d'électrons dans un four à bombardement et appareillages de mise en oeuvre d'un tel procédé
US3170019A (en) * 1962-01-15 1965-02-16 Stauffer Chemical Co Electron beam furnace
US3237254A (en) * 1962-06-26 1966-03-01 Stauffer Chemical Co Vacuum casting
US3528484A (en) * 1967-09-15 1970-09-15 Edelstahlwerk Veb Crystallizers for vacuum-melting installations,particularly electronbeam melting furnaces
DE1758483B1 (de) * 1968-06-11 1971-02-11 Inst Elektroswarki Patona Verfahren zum Schmelzen mit Strahlen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423729A (en) * 1939-02-22 1947-07-08 Ruhle Rudolf Vaporization of substances in a vacuum
US2541764A (en) * 1948-04-15 1951-02-13 Battelle Development Corp Electric apparatus for melting refractory metals
US2686822A (en) * 1950-09-12 1954-08-17 Rem Cru Titanium Inc Consumable electrode furnace and method for producing titanium
US2793282A (en) * 1951-01-31 1957-05-21 Zeiss Carl Forming spherical bodies by electrons
US2858199A (en) * 1954-10-15 1958-10-28 Itt Crystal production
US2880483A (en) * 1957-06-11 1959-04-07 Stauffer Chemical Co Vacuum casting
US2968723A (en) * 1957-04-11 1961-01-17 Zeiss Carl Means for controlling crystal structure of materials
US2994801A (en) * 1959-06-05 1961-08-01 Stauffer Chemical Co Electron beam generation
US3005859A (en) * 1958-04-24 1961-10-24 Nat Res Corp Production of metals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE895474C (de) * 1951-09-08 1953-11-02 Licentia Gmbh Verfahren zum Schmelzen hochgereinigter Substanzen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423729A (en) * 1939-02-22 1947-07-08 Ruhle Rudolf Vaporization of substances in a vacuum
US2541764A (en) * 1948-04-15 1951-02-13 Battelle Development Corp Electric apparatus for melting refractory metals
US2686822A (en) * 1950-09-12 1954-08-17 Rem Cru Titanium Inc Consumable electrode furnace and method for producing titanium
US2793282A (en) * 1951-01-31 1957-05-21 Zeiss Carl Forming spherical bodies by electrons
US2858199A (en) * 1954-10-15 1958-10-28 Itt Crystal production
US2968723A (en) * 1957-04-11 1961-01-17 Zeiss Carl Means for controlling crystal structure of materials
US2880483A (en) * 1957-06-11 1959-04-07 Stauffer Chemical Co Vacuum casting
US3005859A (en) * 1958-04-24 1961-10-24 Nat Res Corp Production of metals
US2994801A (en) * 1959-06-05 1961-08-01 Stauffer Chemical Co Electron beam generation

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265801A (en) * 1960-08-22 1966-08-09 Ass Elect Ind Electron beam furnaces
US3267529A (en) * 1961-10-04 1966-08-23 Heraeus Gmbh W C Apparatus for melting metals under high vacuum
US3330901A (en) * 1964-03-25 1967-07-11 Lokomotivbau Elektrotech Electron bombardment melting furnace
US3417223A (en) * 1964-05-06 1968-12-17 Steigerwald Karl Heinz Welding process using radiant energy
US3305923A (en) * 1964-06-09 1967-02-28 Ind Fernand Courtoy Bureau Et Methods for bonding dissimilar materials
US3533611A (en) * 1968-06-06 1970-10-13 Wheelabrator Corp Furnace ventilation system
US4488902A (en) * 1983-06-10 1984-12-18 Duval Corporation Horizontal, multistage electron beam refinement of metals with recycle
WO1984004933A1 (en) * 1983-06-10 1984-12-20 Duval Corp Electron beam refinement of metals, particularly copper
US4518418A (en) * 1983-06-10 1985-05-21 Duval Corporation Electron beam refinement of metals, particularly copper
EP0248396A2 (de) * 1986-06-05 1987-12-09 Westinghouse Electric Corporation Verfahren zum Herstellen von Hüllmaterial durch kombiniertes Umschmelzen mit Elektronenstrahlen und Vakuum-Lichtbogen
EP0248397A2 (de) * 1986-06-05 1987-12-09 Westinghouse Electric Corporation Verfahren zum Herstellen von Zirkon für Schutzhüllen durch Schmelzen von geglühtem Zirkon mit Elektronenstrahlen
EP0248397A3 (en) * 1986-06-05 1990-05-02 Westinghouse Electric Corporation Prebaked zirconium for electron beam melted barrier tube shell material
EP0248396A3 (en) * 1986-06-05 1990-04-25 Westinghouse Electric Corporation Combined electron beam and vacuum arc melting for barrier tube shell material
US4849013A (en) * 1986-06-05 1989-07-18 Westinghouse Electric Corp. Combined electron beam and vacuum arc melting for barrier tube shell material
US4816214A (en) * 1987-10-22 1989-03-28 Westinghouse Electric Corp. Ultra slow EB melting to reduce reactor cladding
US4814136A (en) * 1987-10-28 1989-03-21 Westinghouse Electric Corp. Process for the control of liner impurities and light water reactor cladding
US4988844A (en) * 1989-07-19 1991-01-29 Leybold A.G. Process for controlling the strike positions of a plurality of electron beams on a melting bath
US5142549A (en) * 1989-09-05 1992-08-25 Bremer Siegfried M K Remelting apparatus and method for recognition and recovery of noble metals and rare earths
US5263044A (en) * 1989-09-05 1993-11-16 Bremer Siegfried M K Remelting method for recognition and recovery of noble metals and rare metals
EP0493550A1 (de) * 1990-07-19 1992-07-08 Axel Johnson Metals, Inc. Verfahren zum betrieb eines elektronenstrahlofens und eines zwischendruckelektronenstrahlofens
US5222547A (en) * 1990-07-19 1993-06-29 Axel Johnson Metals, Inc. Intermediate pressure electron beam furnace
EP0493550A4 (de) * 1990-07-19 1994-02-23 Axel Johnson Metals, Inc.
DE4208484A1 (de) * 1992-03-14 1993-09-16 Leybold Durferrit Gmbh Magnetisches ablenksystem fuer einen hochleistungs-elektronenstrahl
US5532446A (en) * 1992-03-14 1996-07-02 Leybold Durferrit Magnetic deflection system for a high-power electron beam
DE4208484C2 (de) * 1992-03-14 1998-09-17 Ald Vacuum Techn Gmbh Magnetisches Ablenksystem für einen Hochleistungs-Elektronenstrahl
US5503655A (en) * 1994-02-23 1996-04-02 Orbit Technologies, Inc. Low cost titanium production

Also Published As

Publication number Publication date
GB945992A (en) 1964-01-08
CH382320A (de) 1964-09-30
DE1110877B (de) 1961-07-13
FR1249096A (fr) 1960-12-23

Similar Documents

Publication Publication Date Title
US3219435A (en) Method and apparatus for producing metal blocks by electron beams
JP5781710B2 (ja) 鋳造又は噴霧されて粉末になる処理材料を製造する方法
US2880483A (en) Vacuum casting
US8748773B2 (en) Ion plasma electron emitters for a melting furnace
US3226223A (en) Method and apparatus for melting metals by inductive heating and electron bombardment
NO127254B (de)
US3585348A (en) Method and apparatus for welding metallic and nonmetallic materials by an electron beam under normal pressure
US3132198A (en) Electron beam furnace
US2981823A (en) Production of metals
US2935395A (en) High vacuum metallurgical apparatus and method
US2997760A (en) Continous vaccum casting process
US3087211A (en) Electron-beam furnace with opposedfield magnetic beam guidance
US3237254A (en) Vacuum casting
US3084037A (en) Gaseous ion purification process
US3267529A (en) Apparatus for melting metals under high vacuum
US3615345A (en) Method for producing ultra-high purity metal
US3156753A (en) Melting furnace for metals
US3769008A (en) Method for sintering workpieces of pressed powdered refractory metal or alloy and vacuum furnace for performing the same
US3170019A (en) Electron beam furnace
US3412196A (en) Electron beam vacuum melting furnace
CN220335289U (zh) 一种电子束加热熔料设备
US3189953A (en) Electron-beam furnace with magnetically guided beam
US3337676A (en) Electron beam melting apparatus
US3338706A (en) Metal processing method and resulting product
Eaton Electron beam fusion and its applications