US3177328A - Sealed-in contact structure with extended glow discharge surfaces - Google Patents
Sealed-in contact structure with extended glow discharge surfaces Download PDFInfo
- Publication number
- US3177328A US3177328A US44195A US4419560A US3177328A US 3177328 A US3177328 A US 3177328A US 44195 A US44195 A US 44195A US 4419560 A US4419560 A US 4419560A US 3177328 A US3177328 A US 3177328A
- Authority
- US
- United States
- Prior art keywords
- contact
- area
- glow discharge
- areas
- making
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 238000009834 vaporization Methods 0.000 claims description 14
- 230000008016 vaporization Effects 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 2
- JZLMRQMUNCKZTP-UHFFFAOYSA-N molybdenum tantalum Chemical compound [Mo].[Ta] JZLMRQMUNCKZTP-UHFFFAOYSA-N 0.000 claims 1
- 239000011888 foil Substances 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- -1 for example Inorganic materials 0.000 description 4
- 229910052756 noble gas Inorganic materials 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 241001233242 Lontra Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/38—Cold-cathode tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0201—Materials for reed contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/64—Protective enclosures, baffle plates, or screens for contacts
- H01H1/66—Contacts sealed in an evacuated or gas-filled envelope, e.g. magnetic dry-reed contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H2001/0208—Contacts characterised by the material thereof containing rhenium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2893/00—Discharge tubes and lamps
- H01J2893/0064—Tubes with cold main electrodes (including cold cathodes)
- H01J2893/0065—Electrode systems
Definitions
- a sealed-in contact structure comprises magnetizable contact springs disposed within a glass tube which is hermetically fused at its ends.
- the glass tube may be filled with a protective gas, for example, a mixture of nitrogen and hydrogen, to prevent corrosion of the contacts.
- a protective gas for example, a mixture of nitrogen and hydrogen
- the same effect is obtained by filling the giass tube with a noble gas, for example, argon. Accordingly, such a structure constitutes in principle a contact arrangement disposed within a hermetically sealed chamber which is filled with a protective gas or a noble gas.
- the object of the present invention is to considerably increase the life of such contact structures.
- this object is realized by the provision of means, at the areas of the contacts over which a glow discharge extends upon contact actuation, forming a surface of a highmelting metal, for example, molybdenum, tungsten, tantalum, acting in the manner of a pure metal cathode.
- the invention is based upon recognition of the following observations:
- the contact springs of a contact structure may be compared with the electrodes of a gas discharge tube. Accordingly, a glow discharge will occur between the electrodes during the opening operation thereof in the presence of a voltage thereon which exceeds the firing voltage. This occurs especially when an inductive load, for example, a relay, is to be switched by means of such a contact structure. In such a case, the spontaneous current interruption elfects induction of a voltage peak appearing directly at the contact gap and thereby firing the glow discharge.
- metals with relatively high melting point for example, molybdenum, tungsten or tantalum, which oifer a very high resistance to the cathode vaporization occurring incident to glow discharges.
- Such metals have already been used in cathode tubes in connection with so-called pure metal cathodes.
- these metals appeared until now unsuitable for contact materials because experience with such contacts, operated in air, for example, tungsten contacts, showed that these materials tend, especially with weak loading, toward formation of high resistance layers and even insulating layers.
- the contact springs of sealedin contact devices therefore have usually been provided with a noble metal layer or coating, for example, gold, which is however less resistant against cathode vaporization.
- highmelting metals such, for example, as molybdenum, tantalum or tungsten, employed as surface materials of contact springs disposed in a hermetically sealed chamber or space filled with a protective gas or noble gas, make it possible to practically eliminate the 3,177,328 Patented Apr. 6, 1965 detrimental cathode vaporization; the otherwise observed tendency of such metals, to form high resistance layers or coatings being thereby prevented by the protective gas or noble gas.
- the above described measures taken in accordance with the invention result in long life of the contacts since undesired alteration thereof, due to glow discharge, is largely eliminated. This also results in an improvement with respect to the time constants of the electric and magnetic characteristics.
- the highmelting metal is provided upon the contact springs in the form of foils.
- FIG. 1 shows an embodiment of a sealed-in contact device or structure according to the invention with the highmelting metal secured to the contact spring in the manner of foils;
- FIGS. 2 and 3 illustrate an embodiment in which the highmelting metal is riveted to a contact spring.
- FIG. 1 numeral it indicates the sealing or protective tube containing the contact springs 2 and 3.
- the tube 1 is made of glass and is fused at its ends about the contact springs 2 and 3.
- the contact springs 2 and 3 are within the contact points or areas thereof provided each with a foil 4 consisting of a highmelting metal, for example, molybdenum.
- the foil 4- is drawn about the respective contact springs 2 and 3 so as to produce relatively large areas which are adapted to otter a correspondingly high resistance against cathode vaporization incident to a glow discharge occurring in operation of the structure.
- the rivet 5 has a dish-shaped part disposed on a spring such as indicated at 7, facing in the direction of the other spring (not shown) cooperating therewith.
- the stem 6 of the rivet extends through the contact spring 7 and is riveted over on the other side of the contact spring as shown.
- Both contact parts belonging to a contact structure are advantageously provided with a highmelting metal.
- Such a contact structure can be connected in a circuit regardless of the direction of the current to be controlled while at the same time considerably reducing the so-called finemigration emanating from the contact spring representing the cathode.
- the operative effect of the above described measures may be supported or enhanced by filling the hermetically sealed space, containing the contacts, with a gas at a pressure which is as compared with the atmospheric pressure reduced to such extent that a glow discharge will extend with its cathodic coverage over an area which is considerably larger than the contact area belonging to the contact points, so that the cathode vaporization caused by the glow discharge is preponderantly distributed over areas which do not partake in the contact operation proper.
- the pressure in the hermetically sealed chamber can be reduced with respect to the atmospheric pressure so as to produce a cathodic coverage which involves the contacts to the extent to which they are provided with the highmeltingmetal. There would in such case result a cathodic coverage corresponding to the extent of the contact areas 4 in FIG. 1. It is, however, also possible, by the use of appropriate pressure, to achieve a cathodic coverage extending beyond the highmelting metal. There will result in this case a still lower current density requiring, however, toleration of some residual cathode vaporization at areas which are not provided with highmelting metal. This is however immaterial because the resultant cathode vaporization is of little importance due to the low specific total current loading.
- a contact arrangement comprising two mutually cooperating contact members disposed within a hermetically sealed chamber which contains a protective gas, said contact members having respective engageable contactmaking areas, a thin sheet of a high melting-metal, selected from the class of metals consisting of molybdenum, tantalum and tungsten, applied to the contact-making area of each contact member, each sheet having an area considerably greater than the contact-making area of the associated contact member, the inert gas filling having a pressure which is with respect to the atmospheric pressure reduced so that the cathodic coverage of a glow discharge extends over an area which is considerably greater than the contact-making area occupied by the contacting surfaces of said contact member, each of said thin sheets having an area of a size to accommodate the extended glow discharge, the cathode vaporization caused by the glow discharge being thereby shifted predominately to areas of said highmelting metal sheets which do not form the actual contact-making areas of the contact members.
- a thin sheet of a high melting-metal selected from the class of metals
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Contacts (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES64319A DE1112161B (de) | 1959-08-06 | 1959-08-06 | Kontaktanordnung, die in einem hermetisch abgeschlossenen Raum untergebracht ist |
Publications (1)
Publication Number | Publication Date |
---|---|
US3177328A true US3177328A (en) | 1965-04-06 |
Family
ID=7497093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US44195A Expired - Lifetime US3177328A (en) | 1959-08-06 | 1960-07-20 | Sealed-in contact structure with extended glow discharge surfaces |
Country Status (5)
Country | Link |
---|---|
US (1) | US3177328A (en, 2012) |
CH (1) | CH387739A (en, 2012) |
DE (1) | DE1112161B (en, 2012) |
GB (1) | GB948931A (en, 2012) |
NL (1) | NL254443A (en, 2012) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1089907A (en) * | 1912-03-20 | 1914-03-10 | Gen Electric | Electrical contact. |
US1900256A (en) * | 1932-02-26 | 1933-03-07 | Gen Plate Co | Electrical contact and the manufacture thereof |
US2200443A (en) * | 1938-11-29 | 1940-05-14 | Westinghouse Electric & Mfg Co | Discharge lamp circuit |
US2321910A (en) * | 1941-10-23 | 1943-06-15 | Westinghouse Electric & Mfg Co | Time delay glow switch |
US2323702A (en) * | 1940-08-02 | 1943-07-06 | Westinghouse Electric & Mfg Co | Voltage responsive switch |
US2506414A (en) * | 1947-12-05 | 1950-05-02 | Bell Telephone Labor Inc | Sealed wire contact device |
US2625622A (en) * | 1950-05-25 | 1953-01-13 | Westinghouse Electric Corp | Lamp starter |
US3007855A (en) * | 1958-12-29 | 1961-11-07 | Bell Telephone Labor Inc | Rhodium plating |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE407725C (de) * | 1923-08-30 | 1925-01-02 | Franz Joseph Koch | Vakuumunterbrecher |
DE705358C (de) * | 1936-10-24 | 1941-04-25 | Siemens & Halske Akt Ges | Vakuumschalter |
DE966816C (de) * | 1950-03-04 | 1957-09-12 | Siemens Ag | Verfahren zur Herstellung von Federkontakten mit plattiertem Kontaktniet fuer elektrische Apparate |
-
0
- NL NL254443D patent/NL254443A/xx unknown
-
1959
- 1959-08-06 DE DES64319A patent/DE1112161B/de active Pending
-
1960
- 1960-07-20 US US44195A patent/US3177328A/en not_active Expired - Lifetime
- 1960-07-28 GB GB26278/60A patent/GB948931A/en not_active Expired
- 1960-08-02 CH CH876260A patent/CH387739A/de unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1089907A (en) * | 1912-03-20 | 1914-03-10 | Gen Electric | Electrical contact. |
US1900256A (en) * | 1932-02-26 | 1933-03-07 | Gen Plate Co | Electrical contact and the manufacture thereof |
US2200443A (en) * | 1938-11-29 | 1940-05-14 | Westinghouse Electric & Mfg Co | Discharge lamp circuit |
US2323702A (en) * | 1940-08-02 | 1943-07-06 | Westinghouse Electric & Mfg Co | Voltage responsive switch |
US2321910A (en) * | 1941-10-23 | 1943-06-15 | Westinghouse Electric & Mfg Co | Time delay glow switch |
US2506414A (en) * | 1947-12-05 | 1950-05-02 | Bell Telephone Labor Inc | Sealed wire contact device |
US2625622A (en) * | 1950-05-25 | 1953-01-13 | Westinghouse Electric Corp | Lamp starter |
US3007855A (en) * | 1958-12-29 | 1961-11-07 | Bell Telephone Labor Inc | Rhodium plating |
Also Published As
Publication number | Publication date |
---|---|
NL254443A (en, 2012) | |
GB948931A (en) | 1964-02-05 |
DE1112161B (de) | 1961-08-03 |
CH387739A (de) | 1965-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3016436A (en) | Vacuum circuit interrupters | |
US3465192A (en) | Triggerable arc discharge devices and trigger assemblies therefor | |
US2331398A (en) | Electronic discharge device | |
US3683138A (en) | Vacuum switch contact | |
US3140373A (en) | Arc ionizable beryllium electrodes for vacuum arc devices | |
US3465205A (en) | Vacuum gap devices with metal ionizable species evolving trigger assemblies | |
US3014110A (en) | Alternating current vacuum circuit interrupter | |
US3369142A (en) | Device for generating a strong electronic beam from a plasma emitting cathode | |
US3230410A (en) | Arc discharge device with triggering electrode | |
US3177328A (en) | Sealed-in contact structure with extended glow discharge surfaces | |
US3450922A (en) | Triggerable vacuum gap having offset trigger | |
US3328545A (en) | Electrical device having sealed envelope and electrodes containing an absorbed gas | |
US3093767A (en) | Gas generating switching tube | |
US3303376A (en) | Triggered vacuum gap device employing gas evolving electrodes | |
US4760223A (en) | Vacuum circuit interrupter | |
US1790152A (en) | Electrical discharge apparatus | |
US3290542A (en) | Triggered vacuum discharge device | |
US3394281A (en) | Triggered vacuum gap device having field emitting trigger assembly | |
US2422659A (en) | Spark gap discharge device | |
US3509405A (en) | Coaxial vacuum gap devices including doubly reentrant electrode assemblies | |
US3102968A (en) | Vacuum spark gap device having composite electrodes | |
US4130782A (en) | High voltage d-c vacuum interrupter device with magnetic control of interrupter impedance | |
US3331988A (en) | Triggered vacuum gap device with rare earth trigger electrode gas storage means and titanium reservoir | |
US3227912A (en) | Semi-indirectly heated electron tube cathode | |
US2917649A (en) | Ignitron |