US3146410A - Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge - Google Patents

Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge Download PDF

Info

Publication number
US3146410A
US3146410A US80890A US8089061A US3146410A US 3146410 A US3146410 A US 3146410A US 80890 A US80890 A US 80890A US 8089061 A US8089061 A US 8089061A US 3146410 A US3146410 A US 3146410A
Authority
US
United States
Prior art keywords
waveguide
ridge
transition
probe
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US80890A
Inventor
Jesse L Butler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Corp
Original Assignee
Sanders Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanders Associates Inc filed Critical Sanders Associates Inc
Priority to US80890A priority Critical patent/US3146410A/en
Application granted granted Critical
Publication of US3146410A publication Critical patent/US3146410A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • This invention relates to the art of high frequency transmission lines. More particularly, it relates to an improved transition for coupling high frequency energy between a waveguide and a transmission line.
  • the transition utilizes a section of ridged waveguide to achieve extended bandwidth and suppress unwanted modes and, at the same time, provide an in-line arrangement that minimizes the space requirement.
  • Another object of my invention is to provide a transition of the above type in which high order modes of energy propagation are effectively suppressed.
  • a further object of my invention is to provide a transition having the above characteristics that is easy to fabricate.
  • a still further object is to provide a waveguide-transmission line transition having a compact in-line construction.
  • a transition embodying features of my invention combines a ridged waveguide with a transmission line that extends longitudinally into the ridge.
  • One of the transmission line inner conductors projects from within the ridge into the guide, while the other conductor is connected to the metallic waveguide enclosure.
  • An important advantage of this construction is its in-line form.
  • the transverse dimensions of the transition are not greater than that of either the waveguide or the transmission line alone, and, therefore, the space requirement of the transition is at a minimum.
  • the transition is particularly well adapted for use with strip transmission line.
  • FIGURE 1 is a perspective view, partly cut away, of a transition embodying the features of my invention.
  • FIGURE 2 is a longitudinal section taken along the plane 22 of the transition of FIGURE 1.
  • my transition includes a rectangular waveguide generally indicated at 10, disposed in line with a transmission line generally indicated at 12.
  • the waveguide has a pair of wide walls 14 and 16 and a pair of narrow walls 18 and 20, as well as a longitudinal ridge 22 projecting from wall 16 midway between the Walls 18 and 20.
  • Transmission line 12 may be a strip line that com prises a flat, ribbon-like inner conductor 24 disposed symmetrically within an outer conductor system that comprises a pair of parallel ground plane conductors 26 and 28.
  • the inner and outer conductors are spaced apart by insulators 29.
  • the line forms part of the ridge 22. More specifically, the conductor 26 forms part of the upper surface 22a of the ridge 22. While a separate member may be used on this surface, the illustrated arrangement is preferred because it is considerably easier to assemble.
  • the conductor 28 is in contact with the waveguide wall 16.
  • a probe 30, preferably cylindrical, projects from the inner conductor 24 into the waveguide through an aperture 31. The probe is preferably disposed midway between the narrow walls 18 and 20.
  • the coupling phenomenon in the transition is similar to that of other couplers incorporating a probe.
  • the potential gradient along the probe 30 induces a potential difference between the waveguide walls 14 and 16.
  • Current on the probe 30 generates a magnetic field radiating concentrically from it.
  • the magnetic field and the electric field ex tending between the walls 14 and 16 form an electromagnetic Wave within the waveguide 10.
  • a conducting plate 34 terminates the waveguide 10 with a low impedance at roughly a quarter wavelength, at the operating frequency, from the probe 30. Because of the quarter-wavelength spacing, the low impedance of plate 34 appears as a high impedance at the probe.
  • the waveguide 10 extending to the left from the probe presents a relatively low impedance at the probe, assuming a matched condition, and, therefore, substantially all the energy is coupled to the waveguide and propagated to the left therein.
  • the probe 30 presents a reactive impedance component in the waveguide, the magnitude of which varies with the diameter and length of the probe. This may be compensated in a well-known manner by adjusting the position of plate 34 from an exact quarter-wavelength position, to introduce a reactive component which substantially cancels the reactance of the probe.
  • the transition is a reciprocal device, i.e., energy propagation to the right (FIGURE 2) in a TE mode in the waveguide excites a TEM mode propagating to the right in the strip transmission line 12.
  • an improved transition having a compact, in-line construction is achieved.
  • This improved construction is attained with substantially no refleeting discontinuities by enclosing the protruding transmission line Within the waveguide ridge 22.
  • the ridge increases the waveguide cut-off wavelength and increases the frequency range over which only the dominant TE mode will propagate in the waveguide without substantial attenuation.
  • the transition has a broad frequency range and suppresses high order transmission modes without requiring a large or complex structure.
  • Impedance matching between the Waveguide and the trans mission line is further enhanced by the inclined surface 22b, which provides a gradual tapered transition from the rectangular to ridged waveguide.
  • transmission line 12 is described as a strip line, it may also take other forms.
  • transmission line 12 may be a coaxial line having a cylindrical inner conductor and an outer conductor system in the form of a cylindrical tube coaxially enclosing the inner conductor.
  • the waveguide is formed with a longitudinal ridge in the transition.
  • the transmission line is fully recessed within the ridge with the inner conductor extending from the ridge into the waveguide.
  • a waveguide-transmission line transition comprising, in combination, a waveguide having a rectangular cross section, a conducting plate terminating a first end of i said waveguide with a low impedance, a ridge of conducting material protruding from a first wide wall of said waveguide and extending along said wall from said plate, a transmission line having an outer conductor system and an inner conductor in which said outer conductor system comprises two ground plane outer conductors and in which said inner conductor is disposed equi-distantly between said ground plane outer conductors, said line protruding through said plate and being recessed within said ridge and in line therewith, a stud-type probe connected to said inner conductor and projecting from said ridge perpendicular to said first wall, means insulating said probefrom said ridge, said plate being so located with respect to said probe as to present a high impedance at said probe at the operating frequency of said transition, said ridge providing an increase in Waveguide cutofi wavelength while increasing the frequency range over which only a dominant
  • a waveguide-transmission line transition comprising, in combination, a waveguide having first and second Wide walls and a pair of narrow walls, an end on said waveguide, a ridge in said waveguide extending from said end along said first wall, a strip transmission line comprising an inner conductor disposed between first and second ground plane conductors, said first ground plane conductor extending through said end of said waveguide to form a portion of a first surface of said ridge facing said second Wall, means connecting said second ground plane conductor to said waveguide structure, means forming an aperture in said first surface of said ridge, a stub-type probe connected to said inner conductor and extending through said aperture into said Waveguide, said probe being perpendicular to said wide walls, and low impedance means closing said end of said waveguides, said first surface of said ridge being substantially parallel to said first and second walls, said ridge including a sloping second surface adjoining said first surface and extending longitudinally of said waveguide and from said first surface to said first wall, said ridge providing an increase in

Description

Aug. 25, 1964 .1. BUTLER 3,146,410
STRIP LINE T0 RIDGED WAVEGUIDE TRANSITION HAVING A PROBE PROJECTING INTO WAVEGUIDE THROUGH RIDGE Filed Jan. 5, 1961 Jesse L. Butler IN VE N TOR gfif/agm ATTORNEY United States Patent 3,146,410 STRIP LINE T0 RIDGED WAVEGUIDE TRANSI- TION HAVING A PROBE PROJECTING INTO WAVEGUIDE THROUGH RIDGE Jesse L. Butler, Nashua, N.H., assignor to Sanders Associates, Inc, Nashua, NIL, a corporation of Delaware Filed Jan. 5, 1961, Ser. No. 80,890 3 Claims. (Cl. 333-21) This invention relates to the art of high frequency transmission lines. More particularly, it relates to an improved transition for coupling high frequency energy between a waveguide and a transmission line. The transition utilizes a section of ridged waveguide to achieve extended bandwidth and suppress unwanted modes and, at the same time, provide an in-line arrangement that minimizes the space requirement.
It is a principal object of my invention to provide an improved waveguide-transmission line transition operable over a broad frequency band.
Another object of my invention is to provide a transition of the above type in which high order modes of energy propagation are effectively suppressed.
A further object of my invention is to provide a transition having the above characteristics that is easy to fabricate.
A still further object is to provide a waveguide-transmission line transition having a compact in-line construction.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the features of construction, combination of elements and arrangement of parts which will be exemplified in the construction hereinafter set forth, and the scope of the invention Will be indicated in the claims.
In general, a transition embodying features of my invention combines a ridged waveguide with a transmission line that extends longitudinally into the ridge. One of the transmission line inner conductors projects from within the ridge into the guide, while the other conductor is connected to the metallic waveguide enclosure. An important advantage of this construction is its in-line form. The transverse dimensions of the transition are not greater than that of either the waveguide or the transmission line alone, and, therefore, the space requirement of the transition is at a minimum. The transition is particularly well adapted for use with strip transmission line. An additional advantage is the greater bandwidth that is obtained because the waveguide in the transition region is ridged, since this results in a lower waveguide impedance nearer the strip transmission line impedance, and the impedance is more nearly constant with frequency than for ordinary rectangular waveguide. Other advantages of my invention are set forth below.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:
FIGURE 1 is a perspective view, partly cut away, of a transition embodying the features of my invention, and
FIGURE 2 is a longitudinal section taken along the plane 22 of the transition of FIGURE 1.
As seen in the drawings, my transition includes a rectangular waveguide generally indicated at 10, disposed in line with a transmission line generally indicated at 12. The waveguide has a pair of wide walls 14 and 16 and a pair of narrow walls 18 and 20, as well as a longitudinal ridge 22 projecting from wall 16 midway between the Walls 18 and 20.
Transmission line 12 may be a strip line that com prises a flat, ribbon-like inner conductor 24 disposed symmetrically within an outer conductor system that comprises a pair of parallel ground plane conductors 26 and 28. The inner and outer conductors are spaced apart by insulators 29. The line forms part of the ridge 22. More specifically, the conductor 26 forms part of the upper surface 22a of the ridge 22. While a separate member may be used on this surface, the illustrated arrangement is preferred because it is considerably easier to assemble. The conductor 28 is in contact with the waveguide wall 16. A probe 30, preferably cylindrical, projects from the inner conductor 24 into the waveguide through an aperture 31. The probe is preferably disposed midway between the narrow walls 18 and 20.
The coupling phenomenon in the transition is similar to that of other couplers incorporating a probe. Thus, assuming propagation of energy to the left (FIGURE 2) along the transmission line 12, the potential gradient along the probe 30 induces a potential difference between the waveguide walls 14 and 16. Current on the probe 30 generates a magnetic field radiating concentrically from it. The magnetic field and the electric field ex tending between the walls 14 and 16 form an electromagnetic Wave within the waveguide 10.
A conducting plate 34 terminates the waveguide 10 with a low impedance at roughly a quarter wavelength, at the operating frequency, from the probe 30. Because of the quarter-wavelength spacing, the low impedance of plate 34 appears as a high impedance at the probe. The waveguide 10 extending to the left from the probe, however, presents a relatively low impedance at the probe, assuming a matched condition, and, therefore, substantially all the energy is coupled to the waveguide and propagated to the left therein.
The probe 30 presents a reactive impedance component in the waveguide, the magnitude of which varies with the diameter and length of the probe. This may be compensated in a well-known manner by adjusting the position of plate 34 from an exact quarter-wavelength position, to introduce a reactive component which substantially cancels the reactance of the probe.
The transition is a reciprocal device, i.e., energy propagation to the right (FIGURE 2) in a TE mode in the waveguide excites a TEM mode propagating to the right in the strip transmission line 12.
By having the transmission line 12 extend into the rectangular waveguide 10, an improved transition having a compact, in-line construction is achieved. This improved construction is attained with substantially no refleeting discontinuities by enclosing the protruding transmission line Within the waveguide ridge 22. The ridge increases the waveguide cut-off wavelength and increases the frequency range over which only the dominant TE mode will propagate in the waveguide without substantial attenuation. Thus, the transition has a broad frequency range and suppresses high order transmission modes without requiring a large or complex structure. Impedance matching between the Waveguide and the trans mission line is further enhanced by the inclined surface 22b, which provides a gradual tapered transition from the rectangular to ridged waveguide.
Although transmission line 12 is described as a strip line, it may also take other forms. For example, it may be a coaxial line having a cylindrical inner conductor and an outer conductor system in the form of a cylindrical tube coaxially enclosing the inner conductor.
Thus, I have described an improved microwave transition for coupling electromagnetic energy between a waveguide and a transmission line, particularly a strip or coaxial line. The waveguide is formed with a longitudinal ridge in the transition. The transmission line is fully recessed within the ridge with the inner conductor extending from the ridge into the waveguide. By combining the advantages of ridged waveguide with this construction, I have provided a transition in which the waveguide and transmission line may be arranged in a compact in-line configuration. Furthermore, the transition has a broad bandwidth, and unwanted transmission modes in the transmission line and in the waveguide are effectively suppressed.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are eificiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all. matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
What is claimed is:
1. A waveguide-transmission line transition comprising, in combination, a waveguide having a rectangular cross section, a conducting plate terminating a first end of i said waveguide with a low impedance, a ridge of conducting material protruding from a first wide wall of said waveguide and extending along said wall from said plate, a transmission line having an outer conductor system and an inner conductor in which said outer conductor system comprises two ground plane outer conductors and in which said inner conductor is disposed equi-distantly between said ground plane outer conductors, said line protruding through said plate and being recessed within said ridge and in line therewith, a stud-type probe connected to said inner conductor and projecting from said ridge perpendicular to said first wall, means insulating said probefrom said ridge, said plate being so located with respect to said probe as to present a high impedance at said probe at the operating frequency of said transition, said ridge providing an increase in Waveguide cutofi wavelength while increasing the frequency range over which only a dominant mode will propagate in said waveguide.
2. A waveguide-transmission line transition comprising, in combination, a waveguide having first and second Wide walls and a pair of narrow walls, an end on said waveguide, a ridge in said waveguide extending from said end along said first wall, a strip transmission line comprising an inner conductor disposed between first and second ground plane conductors, said first ground plane conductor extending through said end of said waveguide to form a portion of a first surface of said ridge facing said second Wall, means connecting said second ground plane conductor to said waveguide structure, means forming an aperture in said first surface of said ridge, a stub-type probe connected to said inner conductor and extending through said aperture into said Waveguide, said probe being perpendicular to said wide walls, and low impedance means closing said end of said waveguides, said first surface of said ridge being substantially parallel to said first and second walls, said ridge including a sloping second surface adjoining said first surface and extending longitudinally of said waveguide and from said first surface to said first wall, said ridge providing an increase in waveguide cutotf wavelength while increasing the frequency range over which only a dominant mode will propagate in said waveguide.
3. The combination defined in claim 2 in which said ridge is located intermediate said pair of narrow walls and has a width less than the width of said waveguide.
References Cited in the file of this patent UNITED STATES PATENTS OTHER REFERENCES Wheeler: Nat. Conv. Rec. I.R.E., 1957, vol. 5, part 1, page 182.

Claims (1)

1. A WAVEGUIDE-TRANSMISSION LINE TRANSITION COMPRISING, IN COMBINATION, A WAVEGUIDE HAVING A RECTANGULAR CROSS SECTION, A CONDUCTING PLATE TERMINATING A FIRST END OF SAID WAVEGUIDE WITH A LOW IMPEDANCE, A RIDGE OF CONDUCTING MATERIAL PROTRUDING FROM A FIRST WIDE WALL OF SAID WAVEGUIDE AND EXTENDING ALONG SAID WALL FROM SAID PLATE, A TRANSMISSION LINE HAVING AN OUTER CONDUCTOR SYSTEM AND AN INNER CONDUCTOR IN WHICH SAID OUTER CONDUCTOR SYSTEM COMPRISES TWO GROUND PLANE OUTER CONDUCTORS AND IN WHICH SAID INNER CONDUCTOR IS DISPOSED EQUI-DISTANTLY BETWEEN SAID GROUND PLANE OUTER CONDUCTORS, SAID LINE PROTRUDING THROUGH SAID PLATE AND BEING RECESSED WITHIN SAID RIDGE AND IN LINE THEREWITH, A STUD-TYPE PROBE CONNECTED TO SAID INNER CONDUCTOR AND PROJECTING FROM SAID RIDGE PERPENDICULAR TO SAID FIRST WALL, MEANS INSULATING SAID PROBE FROM SAID RIDGE, SAID PLATE BEING SO LOCATED WITH RESPECT TO SAID PROBE AS TO PRESENT A HIGH IMPEDANCE AT SAID PROBE AT THE OPERATING FREQUENCY OF SAID TRANSITION, SAID RIDGE PROVIDING AN INCREASE IN WAVEGUIDE CUTOFF WAVELENGTH WHILE INCREASING THE FREQUENCY RANGE OVER WHICH ONLY A DOMINANT MODE WILL PROPAGATE IN SAID WAVEGUIDE.
US80890A 1961-01-05 1961-01-05 Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge Expired - Lifetime US3146410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US80890A US3146410A (en) 1961-01-05 1961-01-05 Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80890A US3146410A (en) 1961-01-05 1961-01-05 Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge

Publications (1)

Publication Number Publication Date
US3146410A true US3146410A (en) 1964-08-25

Family

ID=22160290

Family Applications (1)

Application Number Title Priority Date Filing Date
US80890A Expired - Lifetime US3146410A (en) 1961-01-05 1961-01-05 Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge

Country Status (1)

Country Link
US (1) US3146410A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188583A (en) * 1961-10-12 1965-06-08 Raytheon Co Parallel plate line transition section between a coaxial line and a ridged waveguide
US3265995A (en) * 1964-03-18 1966-08-09 Bell Telephone Labor Inc Transmission line to waveguide junction
US3478282A (en) * 1965-04-15 1969-11-11 Cossor Ltd A C Couplings between waveguides and coaxial lines
US3483489A (en) * 1968-01-31 1969-12-09 Bell Telephone Labor Inc End launch stripline-waveguide transducer
JPS5198044U (en) * 1975-02-03 1976-08-06
US4144506A (en) * 1977-09-23 1979-03-13 Litton Systems, Inc. Coaxial line to double ridge waveguide transition
US4190735A (en) * 1978-03-08 1980-02-26 Rca Corporation Semiconductor device package
WO1984003394A1 (en) * 1983-02-23 1984-08-30 Hughes Aircraft Co Coaxial line to waveguide adapter
WO2001020273A1 (en) * 1999-09-15 2001-03-22 Endress + Hauser Gmbh + Co. Kg Device for determining the fill level of a filling substance in a container
WO2015040192A1 (en) 2013-09-19 2015-03-26 Institut Mines Telecom / Telecom Bretagne Junction device between a printed transmission line and a dielectric waveguide
EP3506416A4 (en) * 2016-08-26 2020-04-08 Fujikura Ltd. Transmission line
EP3506417A4 (en) * 2016-08-26 2020-04-15 Fujikura Ltd. Transmission line
CN114175395A (en) * 2019-07-23 2022-03-11 维宁尔美国公司 Transition waveguide structure and related sensor assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433011A (en) * 1943-04-08 1947-12-23 Sperry Gyroscope Co Inc Ultra high frequency energy coupling
US2633493A (en) * 1946-04-02 1953-03-31 Seymour B Cohn Broad-band wave guide-to-coaxial line junction
US2659054A (en) * 1946-04-09 1953-11-10 Alford Andrew Transformer for connecting a wave guide to a coaxial line
CH307826A (en) * 1951-05-31 1955-06-15 Standard Telephone & Radio Sa Ultra-shortwave transmission installation.
US2825876A (en) * 1954-01-14 1958-03-04 Itt Radio frequency transducers
GB821150A (en) * 1956-09-12 1959-09-30 Marconi Wireless Telegraph Co Improvements in or relating to waveguide-to-coaxial line transformers
US2981904A (en) * 1959-01-06 1961-04-25 Hughes Aircraft Co Microwave transition device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433011A (en) * 1943-04-08 1947-12-23 Sperry Gyroscope Co Inc Ultra high frequency energy coupling
US2633493A (en) * 1946-04-02 1953-03-31 Seymour B Cohn Broad-band wave guide-to-coaxial line junction
US2659054A (en) * 1946-04-09 1953-11-10 Alford Andrew Transformer for connecting a wave guide to a coaxial line
CH307826A (en) * 1951-05-31 1955-06-15 Standard Telephone & Radio Sa Ultra-shortwave transmission installation.
US2825876A (en) * 1954-01-14 1958-03-04 Itt Radio frequency transducers
GB821150A (en) * 1956-09-12 1959-09-30 Marconi Wireless Telegraph Co Improvements in or relating to waveguide-to-coaxial line transformers
US2981904A (en) * 1959-01-06 1961-04-25 Hughes Aircraft Co Microwave transition device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188583A (en) * 1961-10-12 1965-06-08 Raytheon Co Parallel plate line transition section between a coaxial line and a ridged waveguide
US3265995A (en) * 1964-03-18 1966-08-09 Bell Telephone Labor Inc Transmission line to waveguide junction
US3478282A (en) * 1965-04-15 1969-11-11 Cossor Ltd A C Couplings between waveguides and coaxial lines
US3483489A (en) * 1968-01-31 1969-12-09 Bell Telephone Labor Inc End launch stripline-waveguide transducer
JPS5198044U (en) * 1975-02-03 1976-08-06
JPS5638802Y2 (en) * 1975-02-03 1981-09-10
US4144506A (en) * 1977-09-23 1979-03-13 Litton Systems, Inc. Coaxial line to double ridge waveguide transition
US4190735A (en) * 1978-03-08 1980-02-26 Rca Corporation Semiconductor device package
WO1984003394A1 (en) * 1983-02-23 1984-08-30 Hughes Aircraft Co Coaxial line to waveguide adapter
WO2001020273A1 (en) * 1999-09-15 2001-03-22 Endress + Hauser Gmbh + Co. Kg Device for determining the fill level of a filling substance in a container
US6614391B1 (en) 1999-09-15 2003-09-02 Endress + Hauser Gmbh + Co. Kg Device for determining the fill level of a filling substance in a container
WO2015040192A1 (en) 2013-09-19 2015-03-26 Institut Mines Telecom / Telecom Bretagne Junction device between a printed transmission line and a dielectric waveguide
US9941568B2 (en) 2013-09-19 2018-04-10 Institut Mines Telecom/Telecom Bretagne Transition device between a printed transmission line and a dielectric waveguide, where a cavity that increases in width and height is formed in the waveguide
EP3506416A4 (en) * 2016-08-26 2020-04-08 Fujikura Ltd. Transmission line
EP3506417A4 (en) * 2016-08-26 2020-04-15 Fujikura Ltd. Transmission line
US10992015B2 (en) 2016-08-26 2021-04-27 Fujikura Ltd. Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide
US11011814B2 (en) 2016-08-26 2021-05-18 Fujikura Ltd. Coupling comprising a conductive wire embedded in a post-wall waveguide and extending into a hollow tube waveguide
CN114175395A (en) * 2019-07-23 2022-03-11 维宁尔美国公司 Transition waveguide structure and related sensor assembly

Similar Documents

Publication Publication Date Title
US3146410A (en) Strip line to ridged waveguide transition having a probe projecting into waveguide through ridge
US3205462A (en) Low-loss waveguide for propagation of h10 wave
US3265995A (en) Transmission line to waveguide junction
US4651115A (en) Waveguide-to-microstrip transition
US2812501A (en) Transmission line
US2595078A (en) Dielectric wave guide
US2691731A (en) Feed horn
US6577207B2 (en) Dual-band electromagnetic coupler
GB575534A (en) Improvements in or relating to antennas for ultra high frequency electromagnetic waves
US3327250A (en) Multi-mode broad-band selective coupler
US3315182A (en) Directional coupler having directivity improving means situated near end of couplingregion
US3721921A (en) Waveguide directional coupler
US3390356A (en) Tem mode coupler having an exponentially varying coefficient of coupling
US10615474B2 (en) Apparatuses and methods for mode suppression in rectangular waveguide
US2924797A (en) Finline coupler
US2433074A (en) High-frequency coupling device
GB761780A (en) Microwave transducers for coupling microwave energy between waveguides
GB1356260A (en) Tunable microwave filters
US3089103A (en) Radio frequency power splitter
US2530064A (en) Bent coaxial transmission line
US3284725A (en) Microwave coupler for combining two orthogonally polarized waves utilizing a ridge-like impedance matching member
US3188583A (en) Parallel plate line transition section between a coaxial line and a ridged waveguide
US4558290A (en) Compact broadband rectangular to coaxial waveguide junction
US2630492A (en) High-frequency phase shifting apparatus
GB1245788A (en) Improvements in or relating to electromagnetic waveguide circulators