US3140988A - Electrodeposition of nickel - Google Patents
Electrodeposition of nickel Download PDFInfo
- Publication number
- US3140988A US3140988A US73985A US7398560A US3140988A US 3140988 A US3140988 A US 3140988A US 73985 A US73985 A US 73985A US 7398560 A US7398560 A US 7398560A US 3140988 A US3140988 A US 3140988A
- Authority
- US
- United States
- Prior art keywords
- nickel
- per liter
- bath
- bright
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 84
- 229910052759 nickel Inorganic materials 0.000 title claims description 43
- 238000004070 electrodeposition Methods 0.000 title description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 19
- -1 UNSATURATED GLYCOL ETHER COMPOUND Chemical class 0.000 claims description 19
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 19
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 17
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 11
- 239000003792 electrolyte Substances 0.000 claims description 9
- 239000003929 acidic solution Substances 0.000 claims description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 27
- NJHVMXFNIZTTBV-UHFFFAOYSA-N 2,2,2-tribromoethane-1,1-diol Chemical compound OC(O)C(Br)(Br)Br NJHVMXFNIZTTBV-UHFFFAOYSA-N 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 11
- 229960002327 chloral hydrate Drugs 0.000 description 11
- 150000001299 aldehydes Chemical class 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000013019 agitation Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- KDKYADYSIPSCCQ-UHFFFAOYSA-N ethyl acetylene Natural products CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 4
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- DLDJFQGPPSQZKI-UHFFFAOYSA-N but-2-yne-1,4-diol Chemical compound OCC#CCO DLDJFQGPPSQZKI-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000002932 luster Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 241000080590 Niso Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical group FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 2
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- LDLCZOVUSADOIV-UHFFFAOYSA-N 2-bromoethanol Chemical compound OCCBr LDLCZOVUSADOIV-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- DGSDBJMBHCQYGN-UHFFFAOYSA-M sodium;2-ethylhexyl sulfate Chemical compound [Na+].CCCCC(CC)COS([O-])(=O)=O DGSDBJMBHCQYGN-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
- C25D3/14—Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
- C25D3/16—Acetylenic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
Definitions
- One object of this invention is to produce semi-bright, sulphur-free, fine-grained columnar structured nickel plate of high corrosion resistance to salt solution or spray.
- a second object is the production of fully bright nickel plate.
- chromium plated nickel plate has superior corrosion resistance in marine atmospheres when the underlying nickel is a sulphur-free type, as for example, the nickel plate from a plain Watts type nickel bath.
- the latter plate is too dull, that is its grain size too large when plated in thicknesses of about 25 microns (1 mil) for easy buffing to a high luster, and also too dull to be brightened to full luster by plating bright nickel of approximately 10 to 25 microns over the dull nickel.
- a ductile, fine-grained columnar structured sulphur-free nickel plate that can be consistently obtained of high quality without the need of batch activated carbon treatments of the bath.
- the use in Watts bath of the combination of these aldehydes with the compounds of Table I produce an outstandingly consistent ductile semi-bright sulphur-free nickel plate of columnar structure. It is preferred for obtaining the widest plating range of fine-grained ductile semi-bright plate to use high concentrations of nickel sulfate in the Watts bath, that is, 300 to 400 grams per liter. Actually the nickel sulfate concentrations can approach the saturation values at the temperature of the bath, though this is not practically desirable, as a lowering of the bath temperature will cause crystallization. It is also impractical to use concentrations of nickel sulfate below about 100 grams per liter, because this lowers appreciably the limiting cathode current density. The nickel chloride concentration when used as the sole source of nickel salt may be 100 grams per liter, but the ductility of the plate is not nearly as good as from the Watts bath.
- NiCl -6H O nickel chloride
- the best concentrations of nickel chloride (NiCl -6H O) to use is about 45 to about grams per liter. Higher concentrations of nickel chloride tend to decrease the ductility and also to dull the low current density areas.
- the preferred compounds of Table I are Examples 1 and 2.
- the efficacy of these compounds, which are the reaction products of epichlorohydrin and butyne diol, is surprising in view of the fact that butyne diol itself does not improve the low current density areas when used in conjunction with chloral hydrate, bromal hydrate or formaldehyde or mixtures. It was found, however, that while 0.01 to 0.1 gram per liter of Z-butene, 1,4-dio1 does help to improve the low current density areas it does not do so to the extent accomplished by Examples 1-4 of Table I.
- the lower concentrations of addition agents shown in Table I are suitable to be used with the higher bath temperatures and the more rapid solution agitation.
- Z is a linkage selected from the group of double and triple bonds
- x is a numeral which is 0 when Z is a triple bond and 1 when Z is a double bond
- R is a radical selected from the group consisting of and R is a radical selected from the group consisting of
- the excellent bright covering power was only obtained with allyl sulfonic acid (or Na or Ni salt) and not with other alkene sulfonic acids such as vinyl sulfonic acid or butene sulfonic acids, or with aryl sulfonic acids such as naphthalene or benzene sulfonic acids.
- the usual aryl sulfonic acids or sulfonamides or sulfonimides also may be present, but the excellent bright covering power is obtained only when the allyl sulfonic acid is also present in Watts or bright nickel chloride baths (up to 300 grams/liter of nickel chloride).
- This type bright nickel was excellent to cover the semi-bright nickel with a minimum of adhesion troubles.
- the semibright nickel plate of this invention can be transferred directly to this bright nickel bath to thus form a composite plate of semi-bright sulphur-free nickel and bright nickel without any dulling or adhesion problems because of the excellent compatibility of all the addition agents involved.
- Examples A, B and C set forth below are typical examples of suitable baths and conditions for producing semibright sulphur-free nickel plate, but it is to be understood that any of the other specific compounds from Table I in its indicated concentration could be substituted for the Table I compound enumerated therein.
- ExampleD sets forth suitable conditions and ingredients to form fully bright plate.
- Example B NiSOy 6H O 150-400. NiCl 6H O 30-50. H BO 40-45. pH 3.8-4.5. Temp 5065 C.
- Example D For the electrodeposition of full bright deposits:
- NiSO 6H O 50-400 Grams/liter NiSO 6H O 50-400. NiCl -6H O 250-30.
- H BO 40-45 Any one or more of Examples 1-6 of Table 1, total concentration 0.050.25. Allyl sulfonic acid (Ni or Na salt) 0.3-10.
- the semi-bright plate obtained from Example A can be transferred directly to the fully bright nickel plating bath D, and when the ratio of the semi-bright plate to the full 'bright'plate is from 50% to of the total plate and the thickness of the total plate is 25 microns (1 mil) or more, excellent outdoor corrosion resistance is obtained with the usual 0.01 mil final chromium plate.
- the baths as exemplified by A, B and C can be operated with or Without air agitation.
- Air agitation or cathode rod agitation is preferred.
- air agitation it is often advantageous to use from 0.1 to 1 gram/liter of a non-foaming surface-active agent such as sodium 2-ethyl hexyl sulfate or a mixture of this surface-active agent with a lower concentration of a longer chain surfaceactive agent such as sodium lauryl sulfate.
- a non-foaming surface-active agent such as sodium 2-ethyl hexyl sulfate or a mixture of this surface-active agent with a lower concentration of a longer chain surfaceactive agent such as sodium lauryl sulfate.
- the use of air agitation allows higher current densities to be used.
- n LIP- r the baths may be from 45-70 C. but the preferred temperature range is from about 4863 C.
- the best use for the baths exemplified by A, B and C is where the nickel plated article is destined for outdoor use in a corrosive industrial atmosphere and especially in a marine exposure.
- the nickel plated article is destined for outdoor use in a corrosive industrial atmosphere and especially in a marine exposure.
- the semi-bright sulphur-free nickel can be readily buffed to a high luster, or better yet it can be plated with fully bright nickel plate, eliminating the need of a bufiing operation.
- the semi-bright nickel plate should constitute at least 50% of the total nickel plate, and the total thickness of the composite plate of semibright sulphur-free nickel and bright nickel should be at least 25 microns (1 mil) thick.
- the final chromium plate need be only 0.13 to 0.25 micron (0.005 to 0.01 mil) thick.
- Compounds 1 and 2 are made by the acid catalyzed reaction of 2-butyne-l,4-diol with epichlorohydrin.
- the preferred acid catalyst is boron trifluoride (Lewis acid).
- Compounds 3 and 4 are made by the interaction addition of ethylene oxide with 2-butyne-1,4-diol preferably under very mild alkaline conditions such as 0.05% caustic in relation to the weight of butyne diol used.
- compounds 3 and 4 can be made by the interaction of ethylene chlorohydrin or ethylene bromohydrin, with the di-sodium salt of 2-butyne-l,4-diol dissolved in alcohol. The butyne diol is dissolved in the alcohol before the sodium salt is formed.
- Compounds 5 and 6 are prepared in a way similar to compounds 3 and 4 except that propylene oxide is used instead of ethylene oxide.
- a bath for electrodepositing lustrous nickel comprising an aqueous acidic solution of pH range of about 3 to about 5.5 containing an electrolyte selected from the group consisting of nickel sulfate, nickel chloride and a mixture of nickel sulfate and nickel chloride and containing dissolved therein in concentrations of about 0.01 to about 0.15 gram per liter at least one unsaturated glycol ether compound represented by the formula in which Z is a linkage selected from the group consisting of double and triple bonds, x is a numeral which is 0 when Z is a triple bond and 1 when Z is a double bond, R is a radical selected from the group consisting and R is a radical selected from the group consisting of and a halogenated aldehyde selected from the group consisting of chloral hydrate and bromal hydrate in a concen tration of about 0.05 to about 0.3 gram per liter.
- a bath for electrodepositing lustrous nickel comprising an aqueous acidic solution of pH range of about 3 to about 5.5 containing an electrolyte selected from the group consisting of nickel sulfate, nickel chloride and a mixture of nickel sulfate and nickel chloride and containing dissolved therein in concentrations of about 0.01 to about 0.15 gram per liter at least one unsaturated glycol ether compound represented by the formula in which Z is a linkage selected from the group consisting of double and triple bonds, x is a numeral which is 0 when Z is a triple bond and 1 when Z is a double bond, R is a radical selected from the group consisting OH CH3 H, oH, 1HoH,o1, -0,H,0H and oH,t JHoH and R is a radical selected from the group consisting of 0H CH5 -oH,bHoH,o1, -o,H,oH and oHir JHoH and a halogenated aldeh
- a bath in accordance with claim 2 wherein the electrolyte consists of a mixture of nickel sulfate in a concentration of about grams per liter to about saturation, and nickel chloride in a concentration of about 30 to 60 grams per liter, and the temperature range of the bath is from about 45 C. to 70 C.
- a method for electrodepositing lustrous nickel which comprises the step of electrodepositing nickel from an aqueous acidic nickel bath of pH range of about 3 to 5.5 consisting essentially of an electrolyte selected from the group consisting of nickel sulfate, nickel chloride, and a mixture of nickel sulfate and nickel chloride, and containing dissolved therein about 0.01 to about 0.15 gram per liter of an unsaturated glycol ether compound represented by the formula in which Z is a linkage selected from the group consisting of double and triple bonds, x is a numeral which is 0 when Z is a triple bond and 1 when Z is a double bond, R is a radical selected from the group consisting of OH (3H3 -H, -CHzHCHzC1, C2H4OH, and 'CHZHOH and R is a radical selected from the group consisting of and a halogenated aldehyde selected from the group consisting of chloral hydrate and bromal hydrate in a concentration of about 0.05
- a method for electrodepositing lustrous nickel which comprises the step of electrodepositing nickel from an aqueous acidic nickel bath of pH range of about 3 to 5.5 consisting essentially of an electrolyte selected from the group consisting of nickel sulfate, nickel chloride, and a mixture of nickel sulfate and nickel chloride, and containing dissolved therein about 0.01 to about 0. l5 gram per liter of an unsaturated glycol ether compound represented by the formula H, -ornoH-on,c1, o,rt,oH, and -ombnort and R is a radical selected from the group consisting of OH CH1!
- halogenated aldehyde selected from the group consisting of chloral hydrate and bromal hydrate in a concentration of about 0.05 to about 0.3 gram per liter and formaldehyde in a concentration of about 0.02 to about 0.12 gram per liter.
- the electrolyte consists of a mixture of nickel sulfate in a concentration of about 100 grams per liter to about saturation, and nickel chloride in a concentration of about 30 to 60 grams per liter, and the temperature range of the bath is from about 45 C. to 70 C.
- the electrolyte consists of a mixture of nickel sulfate in concentrations of about 150 to 400 grams per liter, and nickel chloride in concentrations of about 30 to 60 grams per liter, and the temperature range of the bath is from about 45 C. to 70 C. and said bath containing dissolved therein about 0.01 to about 0.15 gram per liter of at least one compound represented by the formula where Z is a triple bond.
- a bath in accordance with claim 1 wherein. said unsaturated glycol ether compound is oH HO CH2OEC0H,oCH,c1-I0H2c1 10.
- a method in accordance with claim 5 wherein said unsaturated glycol ether compound is 11.
- a bath in accordance with claim 1 wherein said unsaturated glycol ether compound is 12.
- a method in accordance with claim 5 wherein said unsaturated glycol ether compound is HOCH CECCH OC H OH halogenated aldehyde selected from the group consisting of chloral hydrate and bromal hydrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73985A US3140988A (en) | 1960-03-21 | 1960-12-06 | Electrodeposition of nickel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1617660A | 1960-03-21 | 1960-03-21 | |
US73985A US3140988A (en) | 1960-03-21 | 1960-12-06 | Electrodeposition of nickel |
Publications (1)
Publication Number | Publication Date |
---|---|
US3140988A true US3140988A (en) | 1964-07-14 |
Family
ID=21775795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US73985A Expired - Lifetime US3140988A (en) | 1960-03-21 | 1960-12-06 | Electrodeposition of nickel |
Country Status (6)
Country | Link |
---|---|
US (1) | US3140988A (enrdf_load_stackoverflow) |
DE (1) | DE1264917B (enrdf_load_stackoverflow) |
FR (1) | FR1272436A (enrdf_load_stackoverflow) |
GB (2) | GB970268A (enrdf_load_stackoverflow) |
NL (2) | NL145909B (enrdf_load_stackoverflow) |
SE (1) | SE218870C1 (enrdf_load_stackoverflow) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3414491A (en) * | 1965-10-22 | 1968-12-03 | Kewanee Oil Co | Electrodeposition of nickel |
US3502550A (en) * | 1965-11-01 | 1970-03-24 | M & T Chemicals Inc | Nickel electroplating electrolyte |
FR2037077A1 (enrdf_load_stackoverflow) * | 1969-02-10 | 1970-12-31 | Albright & Wilson | |
FR2128628A1 (enrdf_load_stackoverflow) * | 1971-03-05 | 1972-10-20 | Albright & Wilson | |
US8492899B2 (en) | 2010-10-14 | 2013-07-23 | International Business Machines Corporation | Method to electrodeposit nickel on silicon for forming controllable nickel silicide |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA721964B (en) * | 1971-04-01 | 1972-12-27 | M & T Chemicals Inc | Nickel plating |
US4049509A (en) * | 1972-05-16 | 1977-09-20 | W. Canning & Company Limited | Plating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2026718A (en) * | 1935-03-30 | 1936-01-07 | Weisberg & Greenwald Inc | Electrodeposition of metals |
US2900707A (en) * | 1954-08-06 | 1959-08-25 | Udylite Corp | Metallic protective coating |
FR1231332A (fr) * | 1958-07-22 | 1960-09-28 | Hanson Van Winkle Munning Co | Procédé de production de dépôts électrolytiques de nickel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2849353A (en) * | 1955-02-08 | 1958-08-26 | Hanson Van Winkle Munning Co | Bright nickel plating |
-
0
- NL NL257194D patent/NL257194A/xx unknown
-
1960
- 1960-10-03 GB GB33904/60A patent/GB970268A/en not_active Expired
- 1960-10-03 GB GB21312/64A patent/GB970269A/en not_active Expired
- 1960-11-02 DE DEU7552A patent/DE1264917B/de active Pending
- 1960-11-02 FR FR842790A patent/FR1272436A/fr not_active Expired
- 1960-11-03 SE SE1059660A patent/SE218870C1/sv unknown
- 1960-12-06 US US73985A patent/US3140988A/en not_active Expired - Lifetime
-
1970
- 1970-11-13 NL NL707016694A patent/NL145909B/xx not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2026718A (en) * | 1935-03-30 | 1936-01-07 | Weisberg & Greenwald Inc | Electrodeposition of metals |
US2900707A (en) * | 1954-08-06 | 1959-08-25 | Udylite Corp | Metallic protective coating |
FR1231332A (fr) * | 1958-07-22 | 1960-09-28 | Hanson Van Winkle Munning Co | Procédé de production de dépôts électrolytiques de nickel |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3414491A (en) * | 1965-10-22 | 1968-12-03 | Kewanee Oil Co | Electrodeposition of nickel |
US3502550A (en) * | 1965-11-01 | 1970-03-24 | M & T Chemicals Inc | Nickel electroplating electrolyte |
FR2037077A1 (enrdf_load_stackoverflow) * | 1969-02-10 | 1970-12-31 | Albright & Wilson | |
FR2128628A1 (enrdf_load_stackoverflow) * | 1971-03-05 | 1972-10-20 | Albright & Wilson | |
US8492899B2 (en) | 2010-10-14 | 2013-07-23 | International Business Machines Corporation | Method to electrodeposit nickel on silicon for forming controllable nickel silicide |
Also Published As
Publication number | Publication date |
---|---|
GB970268A (en) | 1964-09-16 |
SE218870C1 (enrdf_load_stackoverflow) | 1968-02-13 |
GB970269A (en) | 1964-09-16 |
NL145909B (nl) | 1975-05-15 |
DE1264917B (de) | 1968-03-28 |
FR1272436A (fr) | 1961-09-22 |
NL257194A (enrdf_load_stackoverflow) | |
NL7016694A (en) | 1971-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1051818A (en) | Bath and method for the electrodeposition of bright nickel-iron deposits | |
DE1007592B (de) | Bad zur Herstellung von galvanischen Metallueberzuegen | |
US3140988A (en) | Electrodeposition of nickel | |
US3471271A (en) | Electrodeposition of a micro-cracked corrosion resistant nickel-chromium plate | |
US2686756A (en) | Chromium plating | |
US2882208A (en) | Electrodeposition of nickel | |
GB2106543A (en) | Composite electroplated article and process | |
US3528894A (en) | Method of electrodepositing corrosion resistant coating | |
US2678910A (en) | Electroplating of nickel | |
US2389181A (en) | Electrodeposition of metals | |
US2750337A (en) | Electroplating of chromium | |
US3719568A (en) | Nickel electroplating composition and process | |
US3220940A (en) | Electrodeposition of nickel | |
US2795540A (en) | Electrodeposition of nickel | |
CA1045578A (en) | Method and bath for the electrodeposition of nickel | |
US3047939A (en) | Composite electroplate | |
US3804727A (en) | Electrodeposition of nickel | |
US2986500A (en) | Electrodeposition of bright nickel | |
US3506548A (en) | Electrodeposition of nickel | |
US2648628A (en) | Electroplating of nickel | |
US3697392A (en) | Electrodeposition of nickel | |
US3075898A (en) | Electrodeposition of nickel | |
US3248310A (en) | Bright plating of chromium | |
US3711384A (en) | Electrodeposition of nickel | |
US3474010A (en) | Method of electroplating corrosion resistant coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HOOKER CHEMICALS & PLASTICS CORP., A CORP. OF NY., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:003830/0912 Effective date: 19810120 |
|
AS | Assignment |
Owner name: HOOKER CHEMICALS & PLASTICS CORP. Free format text: MERGER;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:004075/0885 Effective date: 19801222 |
|
AS | Assignment |
Owner name: OCCIDENTAL CHEMICAL CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICAS & PLASTICS CORP.;REEL/FRAME:004126/0054 Effective date: 19820330 |