US3107140A - Process for the manufacture of fibers and filaments of linear polyesters having improved properties - Google Patents
Process for the manufacture of fibers and filaments of linear polyesters having improved properties Download PDFInfo
- Publication number
- US3107140A US3107140A US129979A US12997961A US3107140A US 3107140 A US3107140 A US 3107140A US 129979 A US129979 A US 129979A US 12997961 A US12997961 A US 12997961A US 3107140 A US3107140 A US 3107140A
- Authority
- US
- United States
- Prior art keywords
- cable
- filaments
- fibers
- polyethylene terephthalate
- stretching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000835 fiber Substances 0.000 title description 34
- 229920000728 polyester Polymers 0.000 title description 16
- -1 POLYETHYLENE TEREPHTHALATE Polymers 0.000 claims description 44
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 43
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 43
- 238000009987 spinning Methods 0.000 description 32
- 208000012886 Vertigo Diseases 0.000 description 30
- 238000010438 heat treatment Methods 0.000 description 17
- 239000004753 textile Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000000975 dye Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000004744 fabric Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- 230000004520 agglutination Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- HSYLKWSCFRLSKB-UHFFFAOYSA-N 1,5-diamino-4,8-dihydroxyanthracene-9,10-dione Chemical compound O=C1C2=C(N)C=CC(O)=C2C(=O)C2=C1C(O)=CC=C2N HSYLKWSCFRLSKB-UHFFFAOYSA-N 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/22—Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
- D02J1/228—Stretching in two or more steps, with or without intermediate steps
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J13/00—Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
- D02J13/003—Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one stationary surface, e.g. a plate
Definitions
- the present invention relates to the manufacture of iibers or filaments ⁇ of linear aromatic polyesters land more particularly it relates to the lmanufacture of fibers and filaments of linear aromatic polyesters having improved properties.
- the present invention provides ⁇ a process for making fibers and filaments of linear aromatic polyesters which have a good dyeability. Moreover, the present invention provides a process for making fibers and filaments of linear momatic polyesters having a low tendency to pilling.
- Fibers or filaments of linear polyesters possess a number of special advantages but, in addition thereto, they have the ⁇ disadvantage that they are dithcult to dye. Hitherto, the ii-bers or filaments have mostly been dyed with the use of so-called carriers and with the application of especially high temperature. These dyeing methods require special care and need expensive apparatus, particularly when piece goods are to be dyed.
- the present invention is concerned with a process for the manufacture of fibers and filaments of linear polyesters having an improved dyeability.
- a spinning cable or filament of linear polyesters especially of polyethylene terephthalate, or of a mixed polyester, is stretched under cold and/ or heated conditions in one or several stages to a lmultiple of its original length, then allowed to shrink by 8 to 40% at a temperature above 190 C., preferably -at 220 C., and subsequently stretched a second time under cold and/ or heated conditions lby at least 3% and at most up to the breaking limit of the cable or filament.
- a spinning cable of polyethylene terephthalate having for example a total titer of several hundred thousand denier and to stretch said cable in steam, hot water or hot air to a multiple of its original length with the aid of known roller units.
- the degree of stretching can vary within wide limits, depending on the intended application or the desired textile properties of the tiber. Instead of carrying out the stretching in steam or hot air, it can be realized in exceptional cases without the action of heat in the cold.
- the shrinking process which is carried out after the stretching, is preferably performed with the aid of hot air or by conducting the cable over ,a heated surface.
- V The lower temperature limit shall not be lower than '190 C.
- the temperature given is, as in the stretching, the temperature of the heat transferring medium.
- the upper temperature limit in the shrinking process is at most 250 C. for fibers and up to 310 C. for filaments that are treated for a short period of time.
- the admissible shrinkage in the shrinking process is 840%, depending on the properties of the material used for making the fibers (for example the specific viscosity of the polyester) or the chosen stretching conditions. ⁇
- the shrinkage is only 10%, while in the case of a highly viscous material and with a stretching ratio of 114.2. the rfiber can be allowed to shrink by 30%.
- the cable which has been allowed to shrink in this manner has an especially improved dyeability.
- the fibers obtained practically do not undergo further shrinkage in 'boiling water or in hot air, provided that the air temperature is not higher than the temperature in the shrinking process. If the fibers were thermally treated at the indicated temperature without being allowed to shrink, their dyeability could be immaterially improved only.
- the cable is again stretched under cold and/.or heated conditions.
- the stretching -degree ranges trom 3% up to the breaking limit of the cable.
- fibers or lilanients can be obtained having the desired shrinking values for a definite application.
- the shrinking values of the fibers or filaments on boiling in Water can range from 0 to 20% and on heating in hot air of 200 C. they can range from 2 to 30%.
- polymers having an average molecular weight corresponding to a specific viscosity of 0.78-0.84.
- the specific viscosity is the ratio, reduced by 1, of the viscosity of the solution of the polyester in a mixture of 60 parts of phenol and 40 parts of tetrachloroethane to the viscosity of the solvent, the viscosities being determined by the time a lixed volume needs to flow through an Ubbelohde viscometer.
- fibers land filaments having favorable properties, for example a low tendency to pilling, are made from polyethylene terephthalate of low medium molecular weight.
- fibers of this -kind are more difficult to dye by various dyestuis than fibers of polyethylene terephthalate having the usual medium molecular Weight.
- the final products o'btained may have defects, for example agglutinating individual lfibers and drop-like knots, which imp-air the further Working up of the fibers and iilaments into textile materials.
- a preferred embodiment of the process of the invention ⁇ consists in spinning polyethylene terephthalate having a lvery lour medium molecular weight, corresponding to la specific viscosity below 0.5 in adrnixture with a small proportion of up to 20%, and preferably of polyethylene terephthalate having a normal medium molecular weight and a specific viscosity in the range from 0.78 to 0.84, and treating the fibers and filaments obtained Ias described above.
- the textile properties of the bers and laments are not modified and their dyeability is not impaired, but the spinning process is facilitated and fewer agglutinations and other defects can be observed.
- Polyethylene terephthalate having a very low medium molecular Weight is often obtained in the polycondensation with a non uniform distribution of the molecular Weight, so that when spinning from the melt ⁇ the individual filaments leaving the spinning nozzle have a non -uniform toughness in themselves and against one another whereby filaments of varying thickness as well as knots may be formed.
- This diiculty can be overcome by melting polyethylene terephthalate having a specific viscosity below 0.5, Vprior to spinning the fibers from the melt, in a known ⁇ dev-ice with the exclusion of air, extruding it into a Wire some millimeters thick, cutting the wire into chips and feeding the chips to the -spinning unit.
- the polyethylene terephthalate is homogenized and intimately mixed.
- Either mode of operation namely the admixture of a small proportion of polyethylene terephthalate having a normal medium molecular weight or the homogenization of the polyethylene terephthalate by melting it Yprior ⁇ to the spinning process overcomes the above disadvantages when applied individually or jointly. It is especially advantageous to mix polyethylene terephthalate having a specific viscosity -below 0.5 with a small proportion of up to and preferably 10%, of polyethylene terephthalate having a normal medium molecular weight, i.e.
- the cable of fibers or filaments it is passed over a heated 4surface while being in contact therewith. If the temperature of the surface is too high, the fibers and filaments may adhere to the heated surface. This is favored by the Yfact that the material is under a 'slight tension on account of the shrinkage. The adhering bers soil the heated surface of the heating device and above all, they disturb the further working up of the fibers. vIn general it is, therefore, not recommended to heat the surface at a temperature above 220 C.
- the temperature of the heated surface, the temperature of the fibrous material and the degree of shrinkage can be surprisingly increased when the surface over which the cable of bers or filaments is passed after the iirst stretching to undergo shrinkage is coated with a thin, smooth layer of a material having poor heat-conducting properties.
- a coating of this kind prevents the fibers or filaments 4from adhering to the surface of contact and, furthermore, in such a thin, smooth layer having poor heat-conducting properties a temperature gradient is formed which results in a more uniform heating of the cable of bers than in case the cable contacts directly the metallic heating surface.
- the fiber cable is heated to a higher temperature and more uniformly so that it can then be dyed more intensely and more uniformly and is substantially free from agglutinations.
- the heated surface, over which the filamentsor cable of bers are passed is ycoa-ted with a fabric of endless glass laments or yarns of glass fibers.
- This fabric forms a thin and smooth layer having poor heat conducting properties that withstands the temperatures applied and the friction of the liber cable.
- the medium molecular weight or the polymerization degree of the polyethylene terephthalate used is defined by the specific viscosity D, determined with a 1% solution of the polymer in a mixture of 60 parts of phenol and 40 parts of tetrachloroethane in an Ubbelohde viscometer.
- the specific viscosity is the ratio minus 1 of the viscosity of the solution of the polymer to the viscosity of the solvent.
- FIG- URES 1 and 2 of the drawing The temperatures, rotational speed of the rolls ⁇ and other values set forth on the drawing are taken from Example '4 of the specification.
- the unstretched filament cable is first stretched with steam between rolls wherein the ⁇ second set of rolls rotates at a faster rate of speed than the rst set.
- the cable is then shrunk under heated conditions with the use of the heat barrier assembly shown better in FIGURE 2.
- the set of rolls drawing the cable through the shrinking unit rotates -at a slower rate of speed than the set feeding the cable through the shrinking unit.
- the cable is then stretched a second time under heated conditions with Ithe use of ythe heat barrier unit of FIGURE 2.
- the layer of Fiberglas tissue can be omitted if desired.
- the iinal set of rolls drawing the cable to the second stretching station is rotated at .a faster r.p.m. than the set of rolls feeding the cable to the second stretching station.
- the heat barrier unit of FIGURE 2 is self-explanatory from an examination ot the legends of the gure.
- the cable being treated passes in contact with a Fiberglas layer which overlies a heating block.
- a heat barrier sheet is positioned in spaced-apart relationship above the Fiberglas sheet and the assumed path of the cable.
- EXAMPLE 1 A spinning thread of 180 denier composed of 25 individual -iilaments of polyethylene terephthalate having a specific viscosity ns1, of 0.84 was continuously stretched at 110 C. as usual to 4 times its original length with contact heating, and wound up on a'bobbin. The .thread was then passed, at a rate of 30 meters per minute, into a heating ue having a length ⁇ of 20 cm. and a temperature of 250 C., in which it was allowed to shrink by 30% calculated on Ithe feed rate, by the following conveying means. The thread was fthen stretched continuously in the cold to its original length. Prior to the shrinkage and in the nal state the thread had the following textile properties:
- EXAMPLE 2 A spinning cable was produced ⁇ from the polyethylene terephthalate defined in Example 2 having a total titer of 340,000 denier and a spinning -titer of fthe individual iilaments of 5.1 denier. The cable was treated as described in Example 2. The data and the textile properties of the nal product are given in the Afollowing Table 1.
- EXAMPLE 4 A spinning cable having a total titer of 370,000 denier and a spinning titer 'of the individual filaments of 11.7 denier was made from polyethylene tereph-thalate having a specic viscosity usp of 0.545 and the ycable was treated as described in Example 2. The data and tex-tile properties of the cable are listed in the vfollowing Table 1.
- the above rfable 1 shows that the process of the invention permits the manu-facture of liilamenlts and fibers of polyethylene terephthalate having a consider-ably improved dyestui receptivity, the other textile values remaining the same.
- EXAMPLE 5 Polyethylene terephthalate having a specific viscosity 115D of 0.46 Iwas spun from the melt and a spinning cable was formed having a total titer of 600,000 denier and a spinning titer (unstretched titer) of the individual laments of 11.7 denier. The ⁇ cable was stretched as described in Example 2, then continuously allowed to shrink while being heated by contact heating, and subsequently stretched again while heated. The cable was then treated With a scrooping agent, crimped and cut. The conveying speeds in the individual stages and the textile properties of the inal product are listed in the following Table 2.
- EXAMPLE 6 A mixture of parts of polyethylene yterephthalate having a speciic viscosity 75p of 0.46 and 10 par-ts of polyethylene terephthalate having a specific viscosity asp of 0.82 was spun from the melt and a spinning cable was Iformed having a total titer of 150,000 denier with a spinning titer of the individual filaments of 11.8 denier. The cable was treated as described in Example 5. The data and textile properties lof the final product are recited in the following Table 2. A comparison with Example 5 reveals that with the dyestuff receptivity the number of spinning defects is iconsiderably lower when the present mixture was used instead ⁇ of a polyethylene terephthalate having a very 10W medium molecular weight.
- EXAMPLE 7 A mixture of 90 parts of polyethylene -terephthalate having a specific viscosity 1751, -of 0.47 and 10 parts of polyethylene terephthalate having a specific viscosity risp lof 0.82 was melted at 260 C. in a melting device with the lexclusion of air and with an extruder a wire having a ldiameter of 3 mm. Was made. This wire -Was cut into 4 mm. long pieces which were fed to a melt spinning apparatus.
- Tlter of spinning cable denier-- 600,000 150, 000 165, 000.
- Spinning titer of individual filaments denier.. 11.7 .S 11.7. Conveying speeds, meters per minute:
- a spinning cable having la total titer of 100,000 denier and a spinning titer (titer of -unstretched individual rilaments) of 11.7 denier Eof polyethylene terephthalate having a specific viscosity '175D of 0.82 was stretched in steam, continuously allowed to shrink while being heated with Contact heating and then stretched again while heated under contact.
- the cable was then treated with a scrooping agent, crimped and cut.
- the contact heating for the shrinkage after the iirst stretching took place on a rn. long vaulted surface which was heated at 245 C. and covered-with a layer of glass silk (7 filaments/cm. in chain and warp, 290 grams per square meter).
- a second heated surface which was likewise heated at 245 C. but did not touch the ber cable was placed ⁇ opposite the iirst one.
- a process for the manufacture of vfilamentous structures of polyethylene terephthalate which have an timproved dyeability which comprises stretching the filamentous structures to a multiple of their original length, shrinking the ilamentous structures by 8 to 40% at a temperature above C.; and then stretching the iilamentous structures -a second time by at least 3% up to at most the breaking ⁇ limit of said filamentous structures.
- a process for the manufacture of filamentous structures of polyethylene terephthalate which have an cimproved dyeabili-ty which comprises stretching -the lilamentous structures under heated conditions to a multiple of their original length, shrinking said structures by 8 fto 40% at'a temperature above 190 C., and stretching them a second time by -at least 3% up to at most the breaking limit ⁇ of said ilamentous structures.
- lamentous structures are prepared from a mixture of polyethylene terephthalate having a speciiic viscosity of less than 0.5, and up -to 20% Weight polyethylene terephthalate having a specific viscosity of between 0.78 and 0.84.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEF0031875 | 1960-08-13 | ||
DE1961F0033256 DE1270216C2 (de) | 1960-08-13 | 1961-02-22 | Verfahren zur herstellung von faeden aus linearen polyestern |
DEF0033348 | 1961-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3107140A true US3107140A (en) | 1963-10-15 |
Family
ID=27210182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US129979A Expired - Lifetime US3107140A (en) | 1960-08-13 | 1961-08-08 | Process for the manufacture of fibers and filaments of linear polyesters having improved properties |
Country Status (9)
Country | Link |
---|---|
US (1) | US3107140A (xx) |
AT (1) | AT229480B (xx) |
BE (1) | BE607203A (xx) |
CH (1) | CH393623A (xx) |
DE (3) | DE1248855C2 (xx) |
ES (1) | ES269574A1 (xx) |
FR (1) | FR1297521A (xx) |
GB (1) | GB991642A (xx) |
NL (3) | NL140298C (xx) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3422492A (en) * | 1965-02-23 | 1969-01-21 | Heplon Inc | Apparatus for stretching and crimping fibers |
US3443009A (en) * | 1964-08-17 | 1969-05-06 | American Cyanamid Co | Process for relaxing filamentary material |
US3761558A (en) * | 1971-06-08 | 1973-09-25 | J Hnatek | Vee belt manufacture |
US4639347A (en) * | 1983-05-04 | 1987-01-27 | E. I. Du Pont De Nemours And Company | Process of making crimped, annealed polyester filaments |
US4704329A (en) * | 1984-03-16 | 1987-11-03 | E. I. Du Pont De Nemours And Company | Annealed polyester filaments and a process for making them |
US5076773A (en) * | 1987-04-06 | 1991-12-31 | Filteco S.P.A. | Apparatus for producing thermoplastic yarns |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2318887C3 (de) * | 1973-04-14 | 1982-11-11 | Akzo Gmbh, 5600 Wuppertal | Verfahren zur Herstellung von Polyesterfäden durch Schrumpfbehandlung heißverstreckter Fäden in zwei Stufen |
GB2101522B (en) * | 1981-01-26 | 1984-05-31 | Showa Denko Kk | Producing high tenacity monofilaments |
CA1292602C (en) * | 1986-10-24 | 1991-12-03 | Hugo Specker | Process for producing a smooth polyester yarn and polyester yarn produced by said process |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2556295A (en) * | 1947-07-23 | 1951-06-12 | Du Pont | Process of drawing formed structures of synthetic linear polyesters |
CA586729A (en) * | 1959-11-10 | E. Jones Robert | Drawing textiles | |
US2948583A (en) * | 1958-03-04 | 1960-08-09 | Du Pont | Process for producing shaped oriented polyester articles having a metallic luster |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2253176A (en) * | 1938-08-09 | 1941-08-19 | Du Pont | Method and apparatus for production of structures |
FR962278A (xx) * | 1946-05-25 | 1950-06-07 | ||
DE943191C (de) * | 1950-02-08 | 1956-05-17 | Phrix Werke Ag | Verfahren und Vorrichtung zum kontinuierlichen, stufenweisen Verstrecken endloser Faeden aus organischen Hochpolymeren |
-
1960
- 1960-08-13 DE DE19601248855 patent/DE1248855C2/de not_active Expired
-
1961
- 1961-02-22 DE DE1961F0033256 patent/DE1270216C2/de not_active Expired
- 1961-03-04 DE DE19611435451 patent/DE1435451A1/de active Pending
- 1961-08-04 ES ES269574D patent/ES269574A1/es not_active Expired
- 1961-08-08 US US129979A patent/US3107140A/en not_active Expired - Lifetime
- 1961-08-11 NL NL268157A patent/NL140298C/xx active
- 1961-08-11 CH CH945461A patent/CH393623A/de unknown
- 1961-08-11 FR FR870722A patent/FR1297521A/fr not_active Expired
- 1961-08-11 AT AT623961A patent/AT229480B/de active
- 1961-08-14 GB GB29333/61A patent/GB991642A/en not_active Expired
- 1961-08-14 BE BE607203D patent/BE607203A/xx unknown
-
1969
- 1969-06-30 NL NL696910001A patent/NL145610B/xx unknown
- 1969-06-30 NL NL6910002A patent/NL6910002A/xx unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA586729A (en) * | 1959-11-10 | E. Jones Robert | Drawing textiles | |
US2556295A (en) * | 1947-07-23 | 1951-06-12 | Du Pont | Process of drawing formed structures of synthetic linear polyesters |
US2948583A (en) * | 1958-03-04 | 1960-08-09 | Du Pont | Process for producing shaped oriented polyester articles having a metallic luster |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3443009A (en) * | 1964-08-17 | 1969-05-06 | American Cyanamid Co | Process for relaxing filamentary material |
US3422492A (en) * | 1965-02-23 | 1969-01-21 | Heplon Inc | Apparatus for stretching and crimping fibers |
US3761558A (en) * | 1971-06-08 | 1973-09-25 | J Hnatek | Vee belt manufacture |
US4639347A (en) * | 1983-05-04 | 1987-01-27 | E. I. Du Pont De Nemours And Company | Process of making crimped, annealed polyester filaments |
US4704329A (en) * | 1984-03-16 | 1987-11-03 | E. I. Du Pont De Nemours And Company | Annealed polyester filaments and a process for making them |
US5076773A (en) * | 1987-04-06 | 1991-12-31 | Filteco S.P.A. | Apparatus for producing thermoplastic yarns |
Also Published As
Publication number | Publication date |
---|---|
NL140298C (xx) | 1974-04-16 |
BE607203A (xx) | 1962-02-14 |
AT229480B (de) | 1963-09-25 |
ES269574A1 (es) | 1962-04-16 |
NL6910002A (xx) | 1969-10-27 |
CH393623A (de) | 1965-06-15 |
NL268157A (xx) | 1964-03-10 |
DE1270216B (de) | 1975-08-07 |
FR1297521A (fr) | 1962-06-29 |
GB991642A (en) | 1965-05-12 |
NL6910001A (xx) | 1969-10-27 |
DE1435451B2 (xx) | 1970-10-29 |
DE1248855C2 (de) | 1973-10-18 |
DE1248855B (xx) | |
DE1270216C2 (de) | 1975-08-07 |
NL145610B (nl) | 1975-04-15 |
DE1435451A1 (de) | 1968-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4059950A (en) | Multifilament yarn having novel configuration and a method for producing the same | |
US3361859A (en) | Melt-spinning process | |
US3408277A (en) | Process and apparatus for producing high-bulk synthetic yarns | |
JPS6114244B2 (xx) | ||
US3107140A (en) | Process for the manufacture of fibers and filaments of linear polyesters having improved properties | |
DE69420747T2 (de) | Endlosfilamente, faden und kabel | |
US4113821A (en) | Process for preparing high strength polyamide and polyester filamentary yarn | |
US4242862A (en) | Multifilament yarn having novel configuration and a method for producing the same | |
US3185613A (en) | Nodular synthetic organic filaments | |
US6723265B1 (en) | Method for producing polyester-based combined filament yarn | |
DE60121628T2 (de) | Verfahren zur herstellung von garn aus gemischten polyesterfasern | |
EP0207489A2 (en) | Highly-shrinkable polyester fiber, process for preparation thereof, blended polyester yarn and process for preparation thereof | |
CN113215669A (zh) | 热塑性聚氨酯纤维及其制作方法 | |
EP0140559B1 (en) | Improved high speed process for forming fully drawn polyester yarn | |
US3468996A (en) | Process for producing composite polyester yarn that bulks at elevated temperatures | |
KR100316618B1 (ko) | 폴리에스테르계이수축혼섬사의제조방법 | |
JPH0335412B2 (xx) | ||
US5741587A (en) | High filament count fine filament polyester yarns | |
US3329755A (en) | Process of treating polycarbonate fibrous structures | |
US3595953A (en) | Process for producing polyester fibers and having high and constant shrinkage | |
JP2731345B2 (ja) | 異染混繊糸およびその製造方法 | |
KR100752449B1 (ko) | 폴리아미드계 이수축혼섬사의 제조방법 및 그 제조물 | |
JP3418265B2 (ja) | カチオンミックス調太細繊維の製造方法 | |
US4418032A (en) | Process for drawing tows of filaments in water | |
JPH02277836A (ja) | ポリエーテルケトンから成る縫製糸 |