US3054732A - Coated metallic sheet material and method of making the same - Google Patents
Coated metallic sheet material and method of making the same Download PDFInfo
- Publication number
- US3054732A US3054732A US797344A US79734459A US3054732A US 3054732 A US3054732 A US 3054732A US 797344 A US797344 A US 797344A US 79734459 A US79734459 A US 79734459A US 3054732 A US3054732 A US 3054732A
- Authority
- US
- United States
- Prior art keywords
- sheet material
- silicon steel
- solution
- hydroxide
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title description 4
- 238000000576 coating method Methods 0.000 claims description 33
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 19
- 239000011575 calcium Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 13
- -1 SILICATE COMPOUND Chemical class 0.000 claims description 10
- 230000001464 adherent effect Effects 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 9
- 239000011777 magnesium Chemical class 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Chemical class 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical class [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 238000009413 insulation Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 238000000137 annealing Methods 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910019440 Mg(OH) Inorganic materials 0.000 description 4
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 description 3
- 150000004692 metal hydroxides Chemical class 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
- C25D9/10—Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/025—Other inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
- H01F1/14783—Fe-Si based alloys in the form of sheets with insulating coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
Definitions
- the present invention relates to coated metallic sheet materials and to the method of producing the same. More particularly, the invention concerns electrically insulating coatings for magnetic sheet material and to an improved process for applying such coatings.
- magnetic sheet material with which the invention is principally concerned include strip material such as used in wound transformer cores, and cut or punched laminations forming stacked transformer cores and other electrical apparatus.
- a particular magnetic sheet material which may be effectively coated in accordance with the invention is magnetic silicon steel which in 'a conventional composition contains about 3% silicon, 12% manganese, .03% carbon, .01% sulfur, and 01% phosphorus, it being understood, however, that the composition of the magnetic silicon steel used in practicing the present invention need not correspond to the specified values.
- the sheet material In the process of treating the magnetic sheet materials to adapt them for use in transformers or other electrical devices, the sheet material is generally wound in the form of a roll or cut and arranged into a plurality of stacked sheets, and placed in these forms in an annealing furnace for the purpose of developing the magnetic properties of the sheet material.
- the adjacent surfaces of the magnetic sheet material are in contact with each other over comparatively large areas with the result that at the elevated temperatures employed for developing the magnetic qualities of the material, the adjacent laminations or turns of the material tend to stick together unless some means is provided for separating the surfaces during the heat treatment.
- an insulating barrier to be provided between the adjacent laminated sheets of the magnetic material in order to reduce the eddy current losses in the core formed by the sheet material in its use in a transformer, motor or the like.
- Coating compositions used in the past to provide interlaminar insulation for the above purposes have been subject to various drawbacks, including the tendency to rub oil on contact, the lack of uniformity in thickness with resultant poor space factor, the introduction of contaminants such as carbon into the metal being coated, or the lack of adequate insulation qualities after the high temperature annealing treatment.
- the invention in its broad aspects provides a method of producing an insulating coating on the surface of a magnetic silicon steel body which comprises the deposition of an adherent metal hydroxide coating on the surface of the silicon steel body by electrolyzing an aqueous solution of a water soluble metal salt from which insoluble 3,054,732 Patented Sept. 18, 1962 hydroxides are deposited on the silicon steel body forming the cathode.
- the silicon steel body thus coated with a thin adherent metal hydroxide coating is then subjected to elevated temperatures during which the hydroxide deposit is converted to a refractory insulating coating.
- Particularly preferred compounds for forming the insulating coatings are water soluble calcium and magnesium salts, e.g., calcium nitrate or magnesium nitrate, from 0 which the insoluble calcium hydroxide or magnesium hydroxide may be deposited in accordance with the invention.
- the conventional high temperature annealing treatment of silicon steel strip on which the hydroxide coatings are applied as described results in the formation of a silicate film at the interface of the hydroxide deposit and the metal surface due to the reaction between the hydroxide and the silicon in the iron.
- This silicate film which is a glass-like, highly insulating layer, serves in the final assembly of the silicon steel laminations as interlaminar insulation to reduce eddy current losses.
- the remaining hydroxide deposit decomposes to yield the corresponding refractory oxide, e.g., calcium oxide, which separates the strips during pack annealing and thus prevents sticking of the strips to one another.
- Soluble salts of other refractory producing metals may be employed, notably those of aluminum and manganese, as, for example, aluminum nitrate, manganese sulfate and manganese nitrate.
- Mixtures of the various salts mentioned above may also be used in preparing the solution to be electrolyzed;
- the concentration of the soluble salt in the aqueous solution is not critical and may vary widely from a very small value, say, 0.1 molar, up to a saturated solution. A satisfactory concentration for most practical purposes has been found to be about 0.8 molar. This Value, of course, will vary depending on the particular salt, the solution temperature, and other factors.
- Example I An 0.8 molar solution of Ca(NO was electrolyzed in an electrolytic bath, using a silicon-iron sheet 5% inches wide x 6 inches long as the cathode and platinum as the anode. In the experiment, 8 volts were applied across the terminals with a current density of amps./ft. the electrolyzing period being for 30-60 seconds. In this and the other examples described herein, the spacing of the electrodes was 3 inches. Using the above procedure, adherent coatings of Ca(OH) ranging in thickness from .05 to .20 mil were obtained on a number of samples of silicon-iron sheets.
- the Franklin insulation values mentioned herein were determined by the standard Franklin test for determining the value of insulation of coatings of the described type, and in this test readings of 1 ampere represent no surface insulation and 0 ampere represent perfect insulation.
- Example 11 A 1.2 molar solution of Mg(NO was electrolyzed, using stainless steel of 18% chromium, 8% nickel, remainder iron as the anode and a silicon-iron sheet as the cathode, the applied voltage being 3.8 volts with a current density of 75 amperes per square foot. The solution was electrolyzed for 50 seconds, and a coating of Mg(OH) of 0.4 mil thickness was deposited on the silicon steel sheet. The Franklin insulation values of several samples after annealing for 8 hours at 1175 C. in
- Example III Silicon-iron sheet material was successfully coated with a mixture of Ca(OH) and Mg(OH) by electrolyzing a number of solutions containing various amounts of Ca(NO and Mg(NO Best results were obtained where the weight ratio of Mg(NO to Ca(NO did not exceed 1 to 10.
- An aqueous solution containing a l to 20 weight ratio of Mg(NO to Ca(NO) was electrolyzed at a current density of 70 amperes per square foot, and a coating mixture of Ca(OH) and Mg(OH) was depositedin a thickness of about 0.3 mil per side after a period of 60 seconds.
- Example V Using a platinum anode and a silicon-iron Sheet as cathode, a saturated solution of MnSO; was electrolyzed for 45 seconds, thereby obtaining a 0.15 mil deposit of white Mn(OH) on the cathode. A current density of 70 amps/ft. was used. Upon drying the coating, it turned black, apparently forming Mn The amount of coating material deposited in a given period depends on such factors as the current density, the concentration of the solution, and the size and spacing of the electrodes. Accordingly, suitable variation of these factors provides a means for readily controlling the coating thickness to obtain the desired results.
- the mechanism of the deposition by the described electrolyzing process apparently involves the discharge of hydrogen ions at the cathode, which results in an increased hydroxyl ion concentration at the surface of the cathode.
- soluble salts of calcium are present in the solution, calcium hydroxide will precipitate on the cathode forming an adherent coating.
- the oxygen is evolved in this reaction at the anode and results from the oxidation of hydroxyl ions at the anode.
- the hydrogen is evolved at the cathode.
- solid Ca(OH) powder may be added if desired to the solution to neutralize the nitric acid. Such addition will serve not only to keep the pH 4 constant but also to keep the concentration of the Ca(NO at its original value.
- inert anodes are preferred for use in the present process, such as platinum, anodes of other materials may be used provided they do not contaminate or otherwise unfavorably afiect the coating deposited on the cathode.
- Aluminum for example, could be satisfactorily employed as anode material in coating Silicon steel for electrical purposes.
- the hydrogen ions are depleted by reaction with the nitrate ions, thus making the solution basic and resulting in the deposition of Mg(OH) on the cathode.
- the mechanism of the present electrolyzing process is not simply the migration (electrophoresis) of charged particles to the cathode for deposition of a coating thereon.
- the subject process involves not only the electrolyzing of the soluble salt but also a subsequent chemical reaction, as indicated above, to provide the necessary conditions for forming and precipitating the insoluble hydroxide and depositing it on the surface of the metal cathode sheet. It appears that the excellent adherence as well as the uniform thickness of the deposited coating is very likely due to the very small particle size of the hydroxy compound as it precipitates out of the solution.
- the method of producing electrically insulated magnetic silicon steel sheet material which comprises electrolyzing an aqueous solution consisting essentially of at least one com-pound selected from the group consisting of water soluble salts of calcium, magnesium, manganese, and aluminum, with the silicon steel sheet material be ing arranged as the cathode in said solution, for forming and depositing an adherent coating of the hydroxide of the cation of said compound on said silicon steel sheet material, removing the thus coated silicon steel sheet material-from said solution, and heating said coated sheet material at elevated temperature to react said hydroxide with the silicon in said sheet material for forming a refractory insulating coating comprising a silicate compound on the surfaceof said sheetmaterial;
- the method of producing electrically insulated magnetic silicon steel sheet material which comprises electrolyzing an aqueous solution consisting essentially of at least one compound selected from the group consisting of Water soluble salts of calcium, magnesium, manganese, and aluminum, with the silicon steel sheet material being arranged as the cathode in said solution, for forming and depositing an adherent coating of the hydroxide of the cation of said compound on said silicon steel sheet material, removing the thus coated silicon steel sheet material from said solution, and heating said coated sheet material at about ll75 C. to react said hydroxide with 5 the silicon in said sheet material for forming a refractory insulating coating comprising a silicate compound on the surface of said sheet material.
- Electrically insulated magnetic sheet material comprising a magnetic silicon steel sheet having thereon a thin, tightly adherent coating of the reaction product of the silicon in said sheet material and a water insoluble metal hydroxide deposited on said sheet material by electrolysis of an aqueous solution of at least one compound selected from the group consisting of water soluble salts of calcium, magnesium, manganese, and aluminum, said reaction product comprising a permanent, electrically insulating, refractory layer composed of a silicate com- 6% pound firmly bonded to the surface of the silicon steel sheet material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electrolytic Production Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DENDAT1249049D DE1249049B (enrdf_load_stackoverflow) | 1959-03-05 | ||
US797344A US3054732A (en) | 1959-03-05 | 1959-03-05 | Coated metallic sheet material and method of making the same |
GB5624/60A GB922521A (en) | 1959-03-05 | 1960-02-17 | Improvements in coated metallic sheet material and method of making same |
ES0256100A ES256100A1 (es) | 1959-03-05 | 1960-02-27 | Procedimiento de fabricaciën de material de hoja metalica aislada |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US797344A US3054732A (en) | 1959-03-05 | 1959-03-05 | Coated metallic sheet material and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US3054732A true US3054732A (en) | 1962-09-18 |
Family
ID=25170573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US797344A Expired - Lifetime US3054732A (en) | 1959-03-05 | 1959-03-05 | Coated metallic sheet material and method of making the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US3054732A (enrdf_load_stackoverflow) |
DE (1) | DE1249049B (enrdf_load_stackoverflow) |
ES (1) | ES256100A1 (enrdf_load_stackoverflow) |
GB (1) | GB922521A (enrdf_load_stackoverflow) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3484344A (en) * | 1965-05-10 | 1969-12-16 | Ransburg Electro Coating Corp | Production of electrically resistive coatings by anodic deposition from aqueous monoaluminum phosphate |
US3505185A (en) * | 1967-04-20 | 1970-04-07 | Yardney International Corp | Method of forming an interelectrode separator for an accumulator |
US3523881A (en) * | 1966-09-01 | 1970-08-11 | Gen Electric | Insulating coating and method of making the same |
US4042425A (en) * | 1971-10-11 | 1977-08-16 | Kawasaki Steel Corporation | Process of pretreating cold-rolled steel sheet for annealing |
US4096001A (en) * | 1977-03-07 | 1978-06-20 | General Electric Company | Boron-containing electrical steel having a calcium borate coating and magnesia overcoating, and process therefor |
US4097343A (en) * | 1977-03-07 | 1978-06-27 | General Electric Company | Coated silicon-iron product and process therefor |
US4116730A (en) * | 1977-03-07 | 1978-09-26 | General Electric Company | Silicon-iron production and composition and process therefor |
FR2383244A1 (fr) * | 1977-03-07 | 1978-10-06 | Gen Electric | Procede de fabrication de toles en alliage fer-silicium a cristaux orientes |
US4160681A (en) * | 1977-12-27 | 1979-07-10 | Allegheny Ludlum Industries, Inc. | Silicon steel and processing therefore |
US4160705A (en) * | 1978-04-24 | 1979-07-10 | General Electric Company | Silicon-iron production and composition and process therefor |
US4160708A (en) * | 1978-04-24 | 1979-07-10 | General Electric Company | Coated silicon-iron product and process therefor using calcium formate |
US4160706A (en) * | 1978-04-24 | 1979-07-10 | General Electric Company | Coated silicon-iron product and process therefor using magnesium formate and metaborate |
US4171994A (en) * | 1975-02-13 | 1979-10-23 | Allegheny Ludlum Industries, Inc. | Use of nitrogen-bearing base coatings in the manufacture of high permeability silicon steel |
US4173502A (en) * | 1976-12-09 | 1979-11-06 | General Electric Company | Method of producing silicon-iron sheet material with boron addition, and product |
US4177091A (en) * | 1978-08-16 | 1979-12-04 | General Electric Company | Method of producing silicon-iron sheet material, and product |
DE2921812A1 (de) * | 1978-05-30 | 1979-12-06 | Allegheny Ludlum Ind Inc | Verfahren zum herstellen von kornorientierten elektroblechen mit hoher permeabilitaet |
US4186038A (en) * | 1976-04-15 | 1980-01-29 | General Electric Company | Method of producing silicon-iron sheet material with boron addition, and product |
EP0036726A1 (en) * | 1980-03-24 | 1981-09-30 | Allegheny Ludlum Steel Corporation | Method of producing silicon-iron sheet material with annealing atmospheres of nitrogen and hydrogen |
US4367100A (en) * | 1979-10-15 | 1983-01-04 | Allegheny Ludlum Steel Corporation | Silicon steel and processing therefore |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1197757A (en) * | 1981-02-06 | 1985-12-10 | Allegheny Ludlum Corporation | Method for coating silicon steel |
CA1194386A (en) * | 1982-07-19 | 1985-10-01 | Robert F. Miller | Method for producing cube-on-edge oriented silicon steel |
FR2711575B1 (fr) * | 1993-10-25 | 1996-01-12 | Toulouse Inst Nat Polytech | Procédé de fabrication d'un revêtement réfractaire sur un substrat métallique. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE264534C (enrdf_load_stackoverflow) * | ||||
US571531A (en) * | 1896-11-17 | Rudolf langhans | ||
US2394047A (en) * | 1941-07-24 | 1946-02-05 | Westinghouse Electric Corp | Process of coating ferrous silicon magnetic material |
US2534234A (en) * | 1948-02-20 | 1950-12-19 | George C Cox | Electrocoating method |
DE914337C (de) * | 1949-03-20 | 1954-07-01 | Dr Richard Springer | Verfahren zur Kathodischen Erzeugung hydroxydischer, oxydischer und karbonatischer Schutzschichten auf Metallen |
-
0
- DE DENDAT1249049D patent/DE1249049B/de active Pending
-
1959
- 1959-03-05 US US797344A patent/US3054732A/en not_active Expired - Lifetime
-
1960
- 1960-02-17 GB GB5624/60A patent/GB922521A/en not_active Expired
- 1960-02-27 ES ES0256100A patent/ES256100A1/es not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE264534C (enrdf_load_stackoverflow) * | ||||
US571531A (en) * | 1896-11-17 | Rudolf langhans | ||
US2394047A (en) * | 1941-07-24 | 1946-02-05 | Westinghouse Electric Corp | Process of coating ferrous silicon magnetic material |
US2534234A (en) * | 1948-02-20 | 1950-12-19 | George C Cox | Electrocoating method |
DE914337C (de) * | 1949-03-20 | 1954-07-01 | Dr Richard Springer | Verfahren zur Kathodischen Erzeugung hydroxydischer, oxydischer und karbonatischer Schutzschichten auf Metallen |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3484344A (en) * | 1965-05-10 | 1969-12-16 | Ransburg Electro Coating Corp | Production of electrically resistive coatings by anodic deposition from aqueous monoaluminum phosphate |
US3523881A (en) * | 1966-09-01 | 1970-08-11 | Gen Electric | Insulating coating and method of making the same |
US3505185A (en) * | 1967-04-20 | 1970-04-07 | Yardney International Corp | Method of forming an interelectrode separator for an accumulator |
US4042425A (en) * | 1971-10-11 | 1977-08-16 | Kawasaki Steel Corporation | Process of pretreating cold-rolled steel sheet for annealing |
US4171994A (en) * | 1975-02-13 | 1979-10-23 | Allegheny Ludlum Industries, Inc. | Use of nitrogen-bearing base coatings in the manufacture of high permeability silicon steel |
US4186038A (en) * | 1976-04-15 | 1980-01-29 | General Electric Company | Method of producing silicon-iron sheet material with boron addition, and product |
US4173502A (en) * | 1976-12-09 | 1979-11-06 | General Electric Company | Method of producing silicon-iron sheet material with boron addition, and product |
US4096001A (en) * | 1977-03-07 | 1978-06-20 | General Electric Company | Boron-containing electrical steel having a calcium borate coating and magnesia overcoating, and process therefor |
US4097343A (en) * | 1977-03-07 | 1978-06-27 | General Electric Company | Coated silicon-iron product and process therefor |
US4116730A (en) * | 1977-03-07 | 1978-09-26 | General Electric Company | Silicon-iron production and composition and process therefor |
FR2383244A1 (fr) * | 1977-03-07 | 1978-10-06 | Gen Electric | Procede de fabrication de toles en alliage fer-silicium a cristaux orientes |
US4160681A (en) * | 1977-12-27 | 1979-07-10 | Allegheny Ludlum Industries, Inc. | Silicon steel and processing therefore |
US4160708A (en) * | 1978-04-24 | 1979-07-10 | General Electric Company | Coated silicon-iron product and process therefor using calcium formate |
US4160706A (en) * | 1978-04-24 | 1979-07-10 | General Electric Company | Coated silicon-iron product and process therefor using magnesium formate and metaborate |
US4160705A (en) * | 1978-04-24 | 1979-07-10 | General Electric Company | Silicon-iron production and composition and process therefor |
DE2921812A1 (de) * | 1978-05-30 | 1979-12-06 | Allegheny Ludlum Ind Inc | Verfahren zum herstellen von kornorientierten elektroblechen mit hoher permeabilitaet |
US4177091A (en) * | 1978-08-16 | 1979-12-04 | General Electric Company | Method of producing silicon-iron sheet material, and product |
US4367100A (en) * | 1979-10-15 | 1983-01-04 | Allegheny Ludlum Steel Corporation | Silicon steel and processing therefore |
EP0036726A1 (en) * | 1980-03-24 | 1981-09-30 | Allegheny Ludlum Steel Corporation | Method of producing silicon-iron sheet material with annealing atmospheres of nitrogen and hydrogen |
US4338144A (en) * | 1980-03-24 | 1982-07-06 | General Electric Company | Method of producing silicon-iron sheet material with annealing atmospheres of nitrogen and hydrogen |
Also Published As
Publication number | Publication date |
---|---|
DE1249049B (enrdf_load_stackoverflow) | |
ES256100A1 (es) | 1960-05-01 |
GB922521A (en) | 1963-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3054732A (en) | Coated metallic sheet material and method of making the same | |
US3562011A (en) | Insulating coating comprising an aqueous mixture of the reaction product of chromium nitrate and sodium chromate,phosphoric acid and colloidal silica and method of making the same | |
Lorking et al. | The corrosion of aluminium | |
US3293158A (en) | Anodic spark reaction processes and articles | |
US3720549A (en) | Insulating coating and method of making the same | |
US2650975A (en) | Electrically insulated conductor and production thereof | |
US3627594A (en) | Method of forming electric insulating films on oriented silicon steel | |
US2161636A (en) | Method of protectively coating aluminum or aluminum alloys | |
DE2443531A1 (de) | Verfahren zur beschichtung von stahlblech und dafuer geeignetes mittel | |
US3265600A (en) | Method of coating silicon steel in conjunction with box annealing thereof preparatory to die punching | |
US4116730A (en) | Silicon-iron production and composition and process therefor | |
US2492095A (en) | Production of silicon steel sheet stock having high surface resistivity and resistance to adhesion | |
US2182567A (en) | Production of metal powders | |
US3523881A (en) | Insulating coating and method of making the same | |
US3466234A (en) | Electrolytic formation of films of fe2o3 | |
US1787139A (en) | Process of forming iron foils | |
GB1578911A (en) | Silicon-iron sheet production involving electrocoating | |
US3334030A (en) | Production of electrolytic tinplate | |
US3208922A (en) | Galvanic process for coating iron alloys with magnesium hydroxide | |
HU182582B (en) | Process for preparing electromagnetic steel with texture | |
US4160705A (en) | Silicon-iron production and composition and process therefor | |
US3141798A (en) | Anodization of aluminum in a solution of calcium hydroxide | |
US4097343A (en) | Coated silicon-iron product and process therefor | |
KR820000675B1 (ko) | 규소철판의 피복 방법 | |
US2759886A (en) | Process of treating steel |