US3024196A - Ferrite with constricted magnetic hysteresis loop - Google Patents

Ferrite with constricted magnetic hysteresis loop Download PDF

Info

Publication number
US3024196A
US3024196A US621889A US62188956A US3024196A US 3024196 A US3024196 A US 3024196A US 621889 A US621889 A US 621889A US 62188956 A US62188956 A US 62188956A US 3024196 A US3024196 A US 3024196A
Authority
US
United States
Prior art keywords
oxide
ferrite
weight
manganese
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US621889A
Inventor
Eckert Oskar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steatit Magnesia AG
Original Assignee
Steatit Magnesia AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steatit Magnesia AG filed Critical Steatit Magnesia AG
Application granted granted Critical
Publication of US3024196A publication Critical patent/US3024196A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2625Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing magnesium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead

Definitions

  • Ferromagnetic metals with constricted hysteresis loops have, as is well known at small field strength within the constriction area, constant permeability, i.e-., permeability independent of the field strength equal to the initial permeability, Very low hysteresis losses and, in general, small residual losses. As indicated in the above-cited literature, such materials may be subjected to thermo-magnetic treatment.
  • thermomagnetic treatment in this connection, is meant the passing thru a thermic cycle during the simultaneous presence of a longitudinal or transverse magnetic field.
  • longitudinal or transverse field is, to be understood as relative to the later measuring field; a longitudinal or transverse field, respectively, means that such field, during the thermomagnetic treatment, is parallel, or respectively vertical, to the later measuring field.
  • these ferromagnetic materials display a substantial alteration of the form of the hysteresis loop, and hence a change of the magnetic properties.
  • the invention teaches the production of such ferrites of the manganese-copper or manganese-magnesium ferritesystems which can be subjected to thermomagnetic treatment of the above type, and which are distinguished from hitherto familiar ferrites by the fact that, under the same manufacturing conditions, they have constricted hysteresis loops.
  • FIG. 1a is a reproduction of a constricted hysteresis loop obtained from the Mn-Cu ferrite, of the invention.
  • FIG. 1b is a reproduction of a hysteresis loop obtained by thermal treatment of the ferrite from which FIG. la was obtained.
  • FIGS. 2a and 2b are hysteresis loops corresponding to FIGS. la and 1b, respectively, but obtained from the Mn-Mg ferrite of the invention.
  • FIG. 3 is a triaxial diagram showing in Weight percent the proportion of copper, manganese and ferric oxides in the Cu-Mn ferrite of the invention.
  • FIG. 4 is a triaxial diagram similar to FIG. 3 for the MgMn ferrite of the invention.
  • ferrites with this characteristic in the MnCu or Mn-l ⁇ ig ferrites must have a composition of at least 50 mol percent Fe O and a small addition of cobalt oxide.
  • the addition of cobalt oxide is suitably determined between 0.1 and 5% by weight, calculated on the total basic batch of the Mn-Cu or Mn-Mg ferrites expressed in metallic oxides.
  • the invention has shown that it is particularly advantageous to choose the cobalt oxide content between 0.35 and 1.5% by weight, calculated on the basic batch.
  • the powdered mixtures thus obtained may, after drying, be given the desired form either immediately by dry pressing, extruding, or similar methods, or it may be desirable, before ceramic forming, to proceed with a calcining firing of the entire mass or only a part thereof, preferably between 750 C. and 1100 C. for the Mn-Cu ferrite or 750 C. to 1250 C. for the MnMg ferrite.
  • the thus treated parts are sintered, depending on the composition, in a suitable way between 1180 C. and 1350 C. for the Mn-Cu ferrite system or 1250 C. and 1400 C. for the Mn-M g ferrite.
  • the cooling takes place slowly, particularly in the temperature range between 700 C. and room temperature.
  • the cooling speed is dependent upon the volume of the fired body. As a criterion, it may be stated that for a ring of about 46 mm. outside diameter, 34 mm. inside diameter, and 10 mm. height, the cooling time from 700 C. to room temperature should take not less than 12 hours. If the rings are cooled rapidly, the eifect of loop constriction does not occur. However, the constriction may be regained even for rings cooled too rapidly, by re-heating them to a temperature of about 700 C and cooling them slowly, as above described.
  • the rings are cooled to room temperature in the kiln over a period of approximately 24 hours.
  • the ferrite rings thus obtained are provided with 0.4 mm. copper enameled wire with turns as a primary winding, and, as a secondary winding, a further 200 turns with 0.2 mm. copper enameled wire are applied.
  • the oscillographic photograph of this ferrite, in accordance with the invention, is shown in FIG. 1a, and one can distinctly recognize the constriction of the hysteresis loop.
  • the rings are cooled to room temperature in the kiln over a period of approximately 24 hours.
  • the ferrite rings thus obtained are provided with 100 turns of 0.4 mm. copper enameled wire as a primary winding, and, as a secondary winding, a further 200 turns with 0.2 mm. copper enameled wire are applied.
  • the oscillographic photograph of this ferrite, produced in accordance with the invention, is shown in FIG. 2a, and one can distinctly recognize the constriction of the hysteresis loop.
  • the ferrite toroid from either of the examples with 100 turns as a primary winding is placed in a kiln. While heating to 600 C. and slow cooling for 12 hours to room temperature, a longitudinal magnetic field is maintained by means of the ring winding by 1 ampere direct current, corresponding to a magnetic field strength of about 15 ampere-turns per centimeter. If the hysteresis loop of the ferrite after this thermomagnetic treatment is recorded in the same manner as described above, the result is analogous to that of metals when they are subjected to heat treatment in the longitudinal magnetic field; a complete change of the form of the hysteresis loop, as may be seen in FIGS. 1b and 2b, respectively, takes place. In analogous manner, heat treatment in the transverse magnetic field may be carried out with corresponding effect (see the above cited book by Bozorth).
  • ferrites with distinctly rectangular hysteresis loop may be produced which are of importance to the entire field of electronics and for magnetic amplification for telephone and high-frequency fields;
  • ferrites with thermic cross magnetization ferrites of high quality and a permeability independent of field strength may be produced, which are particularly suitable for the field of telecommunication.
  • a process for preparing cobalt-modified ferrites selected from the class consisting of manganese-copper-iron ferrites and manganese-magnesium-iron ferrites containing at least 50 mol percent and up to 89% by weight of iron oxide in the case of the manganese-copper ferrite and at least 50 mol percent and up to 91% by weight in the case of manganese-magnesium ferrite, said ferrite containing 0.1 to 5% by weight of cobalt oxide, up to 27.5% by weight of manganese oxide calculated as Mn O the remainder of said ferrite composition consisting essentially of a metal oxide selected from the group consisting of copper oxide and magnesium oxide, comprising preparing a powdered composition consisting essentially of ferric oxide, manganese oxide, cobalt oxide and an oxide selected from the group consisting of copper oxide and magnesium oxide in the proportions required to provide at least 50 mol percent of ferric oxide and 0.1 to 5% by weight of cobalt oxide, the remainder being said other specified oxides within the proportion
  • a fired cobalt-modified ferrite body having a constricted hysteresis loop, said ferrite body being susceptible to thermomagnetic treatment to change the hysteresis loop characteristics thereof and having a composition selected from the group consisting of the manganese-copper ferrite system and the manganese-magnesium ferrite system, said ferrite containing from at least 50 mol percent up to 89% by weight of ferric oxide where copper is present-and from at least 50 mol percent up to 91% by weight of ferric oxide where magnesium is present, from 0.1 to 5% by weight of cobalt oxide, up to 27.5% of manganese oxide calculated as Mn O and the remainder of said ferrite consisting essentially of a metal oxide selected from the group consisting of copper oxide and magnesium oxide, said ferrite being made by the process of claim 1.
  • a cobalt-modified ferrite as defined in claim 2 characterized in that the cobalt oxide content is between 0.35 and 1.5% by weight of said composition.

Description

3,024,196 FERRITE WITH CONSTRICTED MAGNETIC HYSTERESIS LOOP Filed Nov. 13, 1956 O. ECKERT March 6, 1962 2 Sheets-Sheet 1 51. Red.
A 5 AV AVAYAA VAVAYAV VAAAA AAAA Y VAVAYAYAYAVA 1%xx+'+x% iAvAvAvgimxlAvAvA AVYV M A v? v M AVAVAVAYAVAV vvvvv evgvmv 2% INVENTOR.
March 6, 1962 o. ECKERT 3,024,196
FERRITE WITH CONSTRICTED MAGNETIC HYSTERESIS LOOP Filed Nov. 13, 1956 2 Sheets-Sheet 2 0 INVENTOR.
Sties 3,024,196 CQNSTRICTED MAGNETIC Magnesia Aktiengesellschaft,
a corporation of Germany Filed Nov. 13, 1956, Ser. No.
Claims Lauf, Pegnitz, Germany,
621,889 priority, application Germany Nov. 16, 1955 Claims. (Cl. 252-625) Ferromagnetic metals with constricted hysteresis loops (see, for example, Bozorth, Ferromagnetism, by D. Van 'Nostrand Co., Inc., 1951, pages 498 to 499), have, as is well known at small field strength within the constriction area, constant permeability, i.e-., permeability independent of the field strength equal to the initial permeability, Very low hysteresis losses and, in general, small residual losses. As indicated in the above-cited literature, such materials may be subjected to thermo-magnetic treatment. By thermomagnetic treatment, in this connection, is meant the passing thru a thermic cycle during the simultaneous presence of a longitudinal or transverse magnetic field. In this connection, the concept of longitudinal or transverse field is, to be understood as relative to the later measuring field; a longitudinal or transverse field, respectively, means that such field, during the thermomagnetic treatment, is parallel, or respectively vertical, to the later measuring field. Thru this type of treatment, these ferromagnetic materials display a substantial alteration of the form of the hysteresis loop, and hence a change of the magnetic properties.
It has now been found possible to manufacture specific ferrites showing constricted magnetic hysteresis loops which are, consequently, capable of thermomagnetic treatment similarly to metals.
The invention teaches the production of such ferrites of the manganese-copper or manganese-magnesium ferritesystems which can be subjected to thermomagnetic treatment of the above type, and which are distinguished from hitherto familiar ferrites by the fact that, under the same manufacturing conditions, they have constricted hysteresis loops.
In the drawing:
FIG. 1a is a reproduction of a constricted hysteresis loop obtained from the Mn-Cu ferrite, of the invention.
FIG. 1b is a reproduction of a hysteresis loop obtained by thermal treatment of the ferrite from which FIG. la was obtained.
FIGS. 2a and 2b are hysteresis loops corresponding to FIGS. la and 1b, respectively, but obtained from the Mn-Mg ferrite of the invention.
FIG. 3 is a triaxial diagram showing in Weight percent the proportion of copper, manganese and ferric oxides in the Cu-Mn ferrite of the invention.
FIG. 4 is a triaxial diagram similar to FIG. 3 for the MgMn ferrite of the invention.
In accordance with the invention, ferrites with this characteristic in the MnCu or Mn-l\ ig ferrites must have a composition of at least 50 mol percent Fe O and a small addition of cobalt oxide. The addition of cobalt oxide is suitably determined between 0.1 and 5% by weight, calculated on the total basic batch of the Mn-Cu or Mn-Mg ferrites expressed in metallic oxides. The invention has shown that it is particularly advantageous to choose the cobalt oxide content between 0.35 and 1.5% by weight, calculated on the basic batch. The Mn-Cu or Mn-Mg ferrites in question, which react strongly to the addition of cobalt oxide with a constricted loop, cover, in the three-oomponent system Fe O -Mn O -CuO or Fe O -Mn O MgO the area defined in the attached diagrams FIGS. 3 and 4, respectively, by the quadrangle 3,024,,l96 Patented Mar. 6, 1962 connecting points A, B, C, D. The compositions at the corners in percent by weight are:
(a) For the Fe O Mn O CuO System FezOa 1\/Il120a CuO 72. 5 27. 5 0 71. 5 O 28. 5 89 0 ll 89 11 0 '(b) For the Fe O' Mn O MgO System F930: M11 0 3 Mgo The above ferrites may be prepared in the usual way, either by joint or partial precipitation, from corresponding metal salt solutions, or, as is customary in ceramic arts, they may be prepared for further processing by wet milling and mixing of the respective metal oxides. The powdered mixtures thus obtained may, after drying, be given the desired form either immediately by dry pressing, extruding, or similar methods, or it may be desirable, before ceramic forming, to proceed with a calcining firing of the entire mass or only a part thereof, preferably between 750 C. and 1100 C. for the Mn-Cu ferrite or 750 C. to 1250 C. for the MnMg ferrite. The thus treated parts are sintered, depending on the composition, in a suitable way between 1180 C. and 1350 C. for the Mn-Cu ferrite system or 1250 C. and 1400 C. for the Mn-M g ferrite. To produce the constricted hysteresis loop in ferrites in accordance with invention, it is necessary that the cooling takes place slowly, particularly in the temperature range between 700 C. and room temperature. The cooling speed is dependent upon the volume of the fired body. As a criterion, it may be stated that for a ring of about 46 mm. outside diameter, 34 mm. inside diameter, and 10 mm. height, the cooling time from 700 C. to room temperature should take not less than 12 hours. If the rings are cooled rapidly, the eifect of loop constriction does not occur. However, the constriction may be regained even for rings cooled too rapidly, by re-heating them to a temperature of about 700 C and cooling them slowly, as above described.
Examples of the invention follow:
(a) For the Mn--CuOFe O System In a steel ball mill are ground, 400 g. Fe O 50 g. Mn O 50 g. CuO, and 3.25 g. C00. After 6 hours of grinding, the slip is poured through a 4900 mesh screen (4900 meshes per square cm.) into a porcelain dish, and dried. The powder thus obtained is pressed, according to ceramic pressing techniques, into rings having dimensions of 59 mm. outside diameter, 35.8 mm. inside diameter, and 12 mm. height, the amount of pressure applied being about 0.5 to l T./cm. The ferrite pieces thus obtained are sintered in a kiln at 1320 C. for two hours, whereupon the heat is shut oif. The rings are cooled to room temperature in the kiln over a period of approximately 24 hours. The ferrite rings thus obtained are provided with 0.4 mm. copper enameled wire with turns as a primary winding, and, as a secondary winding, a further 200 turns with 0.2 mm. copper enameled wire are applied. The oscillographic photograph of this ferrite, in accordance with the invention, is shown in FIG. 1a, and one can distinctly recognize the constriction of the hysteresis loop.
produced (b) For the MnMgO--Fe O System In a steel ball mill are ground, 400 g. Fe O- 50 g. Mn O 50 g. MgO, and 3.25 C00. After 6 hours of grinding, the slip is poured through a 4900 mesh screen (4900 meshes per square cm.) into a porcelain dish, and dried. The powder thus obtained is pressed, according to ceramic pressing techniques, into rings having dimensions of 59 mm. outside diameter, 35.8 mm. inside diameter, and 12 mm. height, the amount of pressure applied being about 0.5 to 1 T./cm. The ferrite pieces, thus obtained, are sintered in a kiln at 1320 C. for two hours, whereupon the heat is shut off. The rings are cooled to room temperature in the kiln over a period of approximately 24 hours. The ferrite rings thus obtained are provided with 100 turns of 0.4 mm. copper enameled wire as a primary winding, and, as a secondary winding, a further 200 turns with 0.2 mm. copper enameled wire are applied. The oscillographic photograph of this ferrite, produced in accordance with the invention, is shown in FIG. 2a, and one can distinctly recognize the constriction of the hysteresis loop.
The following experiment proves that ferrites produced in accordance with the invention are susceptible to thermomagnetic treatment:
The ferrite toroid from either of the examples with 100 turns as a primary winding, is placed in a kiln. While heating to 600 C. and slow cooling for 12 hours to room temperature, a longitudinal magnetic field is maintained by means of the ring winding by 1 ampere direct current, corresponding to a magnetic field strength of about 15 ampere-turns per centimeter. If the hysteresis loop of the ferrite after this thermomagnetic treatment is recorded in the same manner as described above, the result is analogous to that of metals when they are subjected to heat treatment in the longitudinal magnetic field; a complete change of the form of the hysteresis loop, as may be seen in FIGS. 1b and 2b, respectively, takes place. In analogous manner, heat treatment in the transverse magnetic field may be carried out with corresponding effect (see the above cited book by Bozorth).
The technical progress obtained with such ferrites in accordance with the invention, may be seen in the following: with thermic longitudinal magnetization, for example, ferrites with distinctly rectangular hysteresis loop may be produced which are of importance to the entire field of electronics and for magnetic amplification for telephone and high-frequency fields; with thermic cross magnetization, ferrites of high quality and a permeability independent of field strength may be produced, which are particularly suitable for the field of telecommunication.
I claim:
1. A process for preparing cobalt-modified ferrites selected from the class consisting of manganese-copper-iron ferrites and manganese-magnesium-iron ferrites containing at least 50 mol percent and up to 89% by weight of iron oxide in the case of the manganese-copper ferrite and at least 50 mol percent and up to 91% by weight in the case of manganese-magnesium ferrite, said ferrite containing 0.1 to 5% by weight of cobalt oxide, up to 27.5% by weight of manganese oxide calculated as Mn O the remainder of said ferrite composition consisting essentially of a metal oxide selected from the group consisting of copper oxide and magnesium oxide, comprising preparing a powdered composition consisting essentially of ferric oxide, manganese oxide, cobalt oxide and an oxide selected from the group consisting of copper oxide and magnesium oxide in the proportions required to provide at least 50 mol percent of ferric oxide and 0.1 to 5% by weight of cobalt oxide, the remainder being said other specified oxides within the proportion specified, molding said powder composition, firing the molded body at about 1180 C. to about 1350 C. and thereafter slowly cooling the fired body from 700 C. down to room temperature over a period of at least about 12 hours to provide a ferrite body having a constricted hysteresis loop.
2. A fired cobalt-modified ferrite body having a constricted hysteresis loop, said ferrite body being susceptible to thermomagnetic treatment to change the hysteresis loop characteristics thereof and having a composition selected from the group consisting of the manganese-copper ferrite system and the manganese-magnesium ferrite system, said ferrite containing from at least 50 mol percent up to 89% by weight of ferric oxide where copper is present-and from at least 50 mol percent up to 91% by weight of ferric oxide where magnesium is present, from 0.1 to 5% by weight of cobalt oxide, up to 27.5% of manganese oxide calculated as Mn O and the remainder of said ferrite consisting essentially of a metal oxide selected from the group consisting of copper oxide and magnesium oxide, said ferrite being made by the process of claim 1.
3. A cobalt-modified ferrite as defined in claim 2 characterized in that the cobalt oxide content is between 0.35 and 1.5% by weight of said composition.
4. A cobalt-modified ferrite as defined in claim 3, in which the ferrite is of the manganese oxide-copper oxideiron oxide system and in which the proportions of said components come within area A-BCD of FIG. 3 of the drawing, the corners of this area defining the following compositions:
A=72.5% Fe O 0% CuO, 27.5% Mn O by Weight, B=71.5% Fe O 28.5% CuO, 0% Mn O by weight, C=89.0% Fe O 11.0% CuO, 0% Mn O by weight, D=89.0%, Fe Og, 0% CuO, 11% Mn O by weight.
5. A cobalt-modified ferrite as defined in claim 3, in which the ferrite is of the iron oxide-manganese oxidemangnesium oxide system and in which said components come within area A--B-CD of FIG. 4 of the drawing, the corners of this area being as follows:
A=72.5% Fe O 27.5% Mn O 0% MgO, by weight, B=81% Fe O 0% Mn O 19% MgO, by weight, C=9l% Fe O 0% Mn O 9% MgO, by weight,
I e/203, Mnzo3,
References Cited in the file of this patent UNITED STATES PATENTS 2,549,089 Hegyi Apr. 17, 1951 2,565,861 Leverenz et al Aug. 28, 1951 2,656,319 Berge Oct. 20, 1953 2,723,239 Harvey Nov. 8, 1955 2,736,708 Crowley Feb. 28, 1956 2,818,387 Beck et al. Dec. 31, 1957 2,886,530 Greger May 12, 1959 FOREIGN PATENTS 645,056 Great Britain Oct. 25, 1950 735,375 Great Britain Aug. 17, 1955 201,851 Australia Apr. 7, 1955 202,839 Australia June 23, 1955 1,088,019 France Sept. 1, 1954 1,125,577 France July 16, 1956 1,129,275 France Sept. 3, 1956 OTHER REFERENCES I. Institute of Electrical Engineers, Japan, November 1937, pp. 4, 5, 7; October 1939, p. 571; June 1939, pp. 276, 279, 281.
Weil: Comptes Rendus, vol. 234, pp. 1351, 1352 (1952).
Bozorth et al.: Physical Reviews, September 15, 1955, pp. 1792, 1793.
Gorter: Proceedings IRE, December 1955, p. 1961.
Proceedings of the I.R.E., vol. 44, No. 10 (Ferrites Issue), October 1956, pp. 1300, 1301, 1304, 1305, 1306.
Ferromagnetisrn, Bozorth, D. Van Nostrand, 1951, pp. 498, 499.
RCA Review, September 1950, page 345.

Claims (1)

1. A PROCESS FOR PREPARING COBALT-MODIFIED FERRITES SELECTED FROM THE CLASS CONSISTING OF MANGANESE-COPPER-IRON FERRITES AND MANGANESE-MAGNESIUM-IRON FERRITES CONTAINING AT LEAST 50 MOL PERCENT AND UP TO 89% BY WEIGHT IN THE IRON OXIDE IN THE CASE OF THE MAGNANESE-COPPER FERRITE AND AT LEAST 50 MOL PERCENT AND UP TO 91% BY WEIGHT IN THE CASE OF MANAGNESE-MAGNESIUM FERRITE, SAID FERRITE CONTAIN ING 0.1 TO 5% BY WEIGHT OF COBALT OXIDE, UP TO 27.5% BY WEIGHT OF MANGANESE OXIDE CALCULATED AS MN2O3, THE REMAINDER OF SAID FERRITE COMPOSITION CONSISTING ESSENTIALLY OF A METAL OXIDE SELECTED FROM THE GROUP CONSISTING OF COPPER OXIDE AND MAGNESIUM OXIDE,COMPRISING PREPARING A POWDERED COMPOSITION CONSISTING ESSENTIALLY OF FERRIC OXIDE, MANGANESE OXIDE, COBALT OXIDE AND AN OXIDE SELECTED FROM THE GROUP CONSISTING OF COPPER OXIDE AND MAGNESIUM OXIDE IN THE PROPORTON SPECIFIED, MOLDING SAID POWDER MOL PERCENT OF FERRIC OXIDE AND 0.1 TO 5% BY WEIGHT OF COBALT OXIDE, THE REMAINDER BEING SAID OTHER SPECIFIED OXIDES WITHIN THE PROPORTION SPECIFIED, MOLDING SAID POWDER COMPOSITION, FIRING THE MOLDED BODY AT ABOUT 1180*C. TO ABOUT 1350*C. AND THEREAFTER SLOWLY COOLING THE FIRED BODY FROM 700*C. DOWN TO ROOM TEMPERATURE OVER A PERIOD OF AT LEAST ABOUT 12 HOURS TO PROVIDE A FERRITE BODY HAVING A CONSTRICTED HYDTERESIS LOOP.
US621889A 1955-11-16 1956-11-13 Ferrite with constricted magnetic hysteresis loop Expired - Lifetime US3024196A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEST010547 1955-11-16
DEST010546 1955-11-16

Publications (1)

Publication Number Publication Date
US3024196A true US3024196A (en) 1962-03-06

Family

ID=32736963

Family Applications (2)

Application Number Title Priority Date Filing Date
US621889A Expired - Lifetime US3024196A (en) 1955-11-16 1956-11-13 Ferrite with constricted magnetic hysteresis loop
US622481A Expired - Lifetime US2989478A (en) 1955-11-16 1956-11-15 Ferrite with constricted magnetic hysteresis loop

Family Applications After (1)

Application Number Title Priority Date Filing Date
US622481A Expired - Lifetime US2989478A (en) 1955-11-16 1956-11-15 Ferrite with constricted magnetic hysteresis loop

Country Status (4)

Country Link
US (2) US3024196A (en)
FR (1) FR1163967A (en)
GB (1) GB849218A (en)
NL (1) NL113731C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797594B1 (en) * 2013-09-20 2017-10-24 U.S. Department Of Energy Tri-metallic ferrite oxygen carriers for chemical looping combustion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197334A (en) * 1962-11-06 1965-07-27 Jr William L Wade Method of coating a substrate with magnetic ferrite film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB645056A (en) * 1944-05-30 1950-10-25 Philips Nv Improved process of manufacturing magnetic material
US2549089A (en) * 1948-12-15 1951-04-17 Rca Corp Mixed ferrite compositions, including lithium ferrite
US2565861A (en) * 1947-09-26 1951-08-28 Rca Corp Magnetic materials
US2656319A (en) * 1949-01-03 1953-10-20 Aladdin Ind Inc Magnetic core composition and method of producing the same
FR1088019A (en) * 1952-10-31 1955-03-02 Rca Corp Magnetic materials
GB735375A (en) * 1952-02-07 1955-08-17 Steatite Res Corp Ferromagnetic ceramic materials with hysteresis loops of rectangular shape
US2723239A (en) * 1952-09-29 1955-11-08 Rca Corp Ferrospinel compositions
US2736708A (en) * 1951-06-08 1956-02-28 Henry L Crowley & Company Inc Magnetic compositions
FR1125577A (en) * 1955-05-03 1956-11-02 Lignes Telegraph Telephon Ferromagnetic materials with rectangular hysteresis cycle
FR1129275A (en) * 1955-07-28 1957-01-17 Lignes Telegraph Telephon Permanent magnets
US2818387A (en) * 1954-10-28 1957-12-31 Philips Corp Square loop ferromagnetic material
US2886530A (en) * 1955-07-19 1959-05-12 Greger Herbert Hans Process of manufacturing ceramic ferrites

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB730703A (en) * 1952-07-31 1955-05-25 Centre Nat Rech Scient Magnetic materials and methods of manufacturing such materials
DE1017521B (en) * 1953-11-27 1957-10-10 Steatit Magnesia Ag Process for the production of ferromagnetic, ceramic bodies with high quality at high frequency

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB645056A (en) * 1944-05-30 1950-10-25 Philips Nv Improved process of manufacturing magnetic material
US2565861A (en) * 1947-09-26 1951-08-28 Rca Corp Magnetic materials
US2549089A (en) * 1948-12-15 1951-04-17 Rca Corp Mixed ferrite compositions, including lithium ferrite
US2656319A (en) * 1949-01-03 1953-10-20 Aladdin Ind Inc Magnetic core composition and method of producing the same
US2736708A (en) * 1951-06-08 1956-02-28 Henry L Crowley & Company Inc Magnetic compositions
GB735375A (en) * 1952-02-07 1955-08-17 Steatite Res Corp Ferromagnetic ceramic materials with hysteresis loops of rectangular shape
US2723239A (en) * 1952-09-29 1955-11-08 Rca Corp Ferrospinel compositions
FR1088019A (en) * 1952-10-31 1955-03-02 Rca Corp Magnetic materials
US2818387A (en) * 1954-10-28 1957-12-31 Philips Corp Square loop ferromagnetic material
FR1125577A (en) * 1955-05-03 1956-11-02 Lignes Telegraph Telephon Ferromagnetic materials with rectangular hysteresis cycle
US2886530A (en) * 1955-07-19 1959-05-12 Greger Herbert Hans Process of manufacturing ceramic ferrites
FR1129275A (en) * 1955-07-28 1957-01-17 Lignes Telegraph Telephon Permanent magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797594B1 (en) * 2013-09-20 2017-10-24 U.S. Department Of Energy Tri-metallic ferrite oxygen carriers for chemical looping combustion

Also Published As

Publication number Publication date
US2989478A (en) 1961-06-20
NL113731C (en) 1967-07-17
FR1163967A (en) 1958-10-03
GB849218A (en) 1960-09-21

Similar Documents

Publication Publication Date Title
US2762777A (en) Permanent magnet and method of making the same
NO121631B (en)
US2929787A (en) Ferrite with constricted magnetic hysteresis loop
US2818387A (en) Square loop ferromagnetic material
US3024196A (en) Ferrite with constricted magnetic hysteresis loop
US3002930A (en) Process of making a ferromagnetic body
US3036007A (en) Process for the manufacture of nickel zinc ferrites
US3038860A (en) Lithium nickel ferrites
US2989476A (en) Ferrite with constricted magnetic hysteresis loop
US2977312A (en) Ferromagnetic material
US2989479A (en) Ferrite with constricted magnetic hysteresis loop
US2958664A (en) Making manganese-zinc ferrites
US2989474A (en) Ferrite with constricted magnetic hysteresis loop
US3375195A (en) Electromechanical transducer employing piezomagnetic manganese ferrous ferrite
US3036008A (en) Permanent magnet ferrite
US3036009A (en) Ferromagnetic, ceramic body with high quality at high frequency
US2950251A (en) Magnetic materials having rectangular hysteresis characteristics
US2927897A (en) Ferromagnetic material
US3039966A (en) Square loop ferromagnetic material
US3032503A (en) Composition of magnetic core material and method of producing same
US3009880A (en) Method for preparing nickel-zinc ferrites
US3065181A (en) Inductor materials
US3085980A (en) Ferromagnetic material
US3709822A (en) Method of manufacturing magnet cores and magnet cores manufactured by the same
US3072576A (en) Ferrites having rectangular hysteresis loops and method for manufacture of same