US2999461A - Impact fuze - Google Patents
Impact fuze Download PDFInfo
- Publication number
- US2999461A US2999461A US801226A US80122659A US2999461A US 2999461 A US2999461 A US 2999461A US 801226 A US801226 A US 801226A US 80122659 A US80122659 A US 80122659A US 2999461 A US2999461 A US 2999461A
- Authority
- US
- United States
- Prior art keywords
- pin
- fuze
- slide
- bore
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005474 detonation Methods 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C15/00—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
- F42C15/18—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C1/00—Impact fuzes, i.e. fuzes actuated only by ammunition impact
- F42C1/02—Impact fuzes, i.e. fuzes actuated only by ammunition impact with firing-pin structurally combined with fuze
- F42C1/04—Impact fuzes, i.e. fuzes actuated only by ammunition impact with firing-pin structurally combined with fuze operating by inertia of members on impact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C1/00—Impact fuzes, i.e. fuzes actuated only by ammunition impact
- F42C1/02—Impact fuzes, i.e. fuzes actuated only by ammunition impact with firing-pin structurally combined with fuze
- F42C1/04—Impact fuzes, i.e. fuzes actuated only by ammunition impact with firing-pin structurally combined with fuze operating by inertia of members on impact
- F42C1/06—Impact fuzes, i.e. fuzes actuated only by ammunition impact with firing-pin structurally combined with fuze operating by inertia of members on impact for any direction of impact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C15/00—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
- F42C15/18—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved
- F42C15/184—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved using a slidable carrier
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C15/00—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
- F42C15/24—Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C9/00—Time fuzes; Combined time and percussion or pressure-actuated fuzes; Fuzes for timed self-destruction of ammunition
- F42C9/14—Double fuzes; Multiple fuzes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C9/00—Time fuzes; Combined time and percussion or pressure-actuated fuzes; Fuzes for timed self-destruction of ammunition
- F42C9/14—Double fuzes; Multiple fuzes
- F42C9/142—Double fuzes; Multiple fuzes combined time and percussion fuzes in which the timing is caused by combustion
Definitions
- IMPACT FUZE was* "lll/ Rober APoTHLoZ Mexx HUBER INVENTORS 11ml WMZ Alt 2 Sheets-Sheet 2 IMPACT FUZE R. APOTHELOZ ETAL Sept. 12, 1961 Filed March 25. 1959 Hmx HUBER B INVENTORS TrrMAH-I 2,999,461 IMPACT FUZE Y Robert Apotheloz, Wallisellen, Zurich, and Max Huber, Zurich, Switzerland, assignors to Machine Tool Works Oerlikon, Administration Company, Zurich-Oerlikon, Switzerland, a company of Switzerland Filed Mar. 23, 1959, Ser. No. 801,226 Claims priority, application Switzerland Mar. 28, 1958 3 Claims. (Cl. 102-75) of the kind referred to in which the delayed, action ⁇ device requires but little space.
- an impact fuze for projectiles comprising in combination: a fuze body, a striker pin slidably mounted in a longitudinal bore of the said fuze body, locking bodies in the transport condition of the fuze engaging into an annular groove within the said bore bounded in front by a chamfered surface integral with said fuze body, two inertia sleeves arranged longitudinally slidable in alignment with one another in said bore, the rear one of said two inertia sleeves abutting at its rear end said fuze body, and a spring interposed between said rear inertia sleeve and said striker pin, said two inertia sleeves when-contacting one another securing said locking bodies in their aforesaid transport position and releasing said striker pin.
- said impact fuze comprises in addition: a carrier slide movable transversely ofthe fuze axis from a transport position to a cocked position, a detonator located in a bore of said carrier slide, said bore in the transport position being offset from and in the, cocked position being in alignment with said striker pin, said carrier slide having a groove parallel to the direction of its movement, the forward one of the said two inertia sleeves being capable of engaging into said groove in the forward position of said forward inertia sleeve.
- FIG. l shows the fuze in the transport position in a longitudinal section on the line I-I of FIG. 2,
- FIG. la shows the switch-over pin in the position for FIGS. 6 to l0 show various functional positions of the I delayed action device on a larger scale, namely:
- FIG. 6 the transport position, in section on the line VI-VI of FIG. 2,
- FIG. 10 the position for dud action of thefuze, n'
- FIGS. 9 and 10 being broken off.
- the fuze casing 1 is screwed to the fuze head 2 and carries at its rear end the booster 10.
- a cup 3 xedly connected to the instantaneous central vstriker pin 4l is mounted slidably.
- a spring 5 abuts the fuze head 2 and the cup 3 in such a manner that the latter is always biased outwardly.
- a hood 6 made of plastic material put on the fuze head 2 serves as a seal, and is so resilient thatit resumes its normal shape'even after being deformed.
- the slide 9 has two bores rparallel to the fuze axis, one of which contains a detonator 11 to be pierced by the instantaneous striker pin 4, and the other contains a detonator 13 to be pierced from the rear (FIG. 5). These bores run parallel to the longitudinal direction of the slide and are laterally odset from one another (FIG. 2).
- the axis of a further, blind bore 14 coincides'with rthe fuze axis in the transport position of the slide.
- a groove 9a is machined which ends i over arrested by balls 20, which engage into an annular Y groove 21 of the fuze casing 1 and are retained by a locking pin 18 slidably mounted inthe interior of the lockingsleeve.
- a spring 19 abutting the lockingfsleeve 16 from within biases this locking pin into its locking position.
- the slide 9 is laterally provided with a rack 22 in mesh with a gear pinion 23 inserted in the bearing body Tand in driving connection through the gearing 25 (not illustrated in detail) with an oscillatory body.
- This gearing together with the oscillatory body forms an escapement, which delays the shifting of the slide from its transport position into the cocked position, whereby a certain trajectory safety distance of the fuze is established.
- a detonating train 26 is inserted which reaches from the rear edge of the slide 9 right to the booster 10, and in a.
- a cylindrical rod 34 reaches into the bore 27 from the bottom thereof to which it is tixed. Its forward end is provided with a circumferential annular groove 35, which is bounded in front by a charnfered surface 36.
- An inertia sleeve 37 which is movable in the said bore, is pushed over the rod 34 and rests in the transport position on the foot thereof. Between the shoulder 38 of the bore of said sleeve 37 and the rear end'of the forward striking pin"28 a striker spring 39 is inserted.
- the switch-over pin 31 (FIG. 4), inserted perpendicular to the fuze axis into the fuze body 1 and bearing body 7, may be turned by means of a notch 32 provided on its end face into two different positions marked on the circumference of the fuze casing.
- On the other end of the said switch-over pin 31 the latter is provided with a bore 33 co-axially to its longitudinal axis, into which bore the instantaneous striker pin 4 dips in its transport position.
- the striker pin 4 can pass across the said pin in accordance with FIG. 1.
- the passage for the instantaneous striker pin 4 is, on the other hand, blocked as shown in FIGS. la and 5.
- the slide 9 In the position of the fuze as illustrated in FIG. l the slide 9 is arrested in its transport position by the locking sleeve 16. When firing the projectile, the locking action of the locking sleeve 16 is abolished, and by its rearward movement the latter releases the slide 9.
- the switch-over pin 31 has been turned into the instantaneous detonation position, the slide 9 remains, however, yet secured during the acceleration period of the projectile, since simultaneously with the locking sleeve 16 the instantaneous striker pin 4 moves rearward against the bias of the spring 5, and penetrates across the switch-over pin 31 into the blind bore 14 of the slide 9.
- the air drag has a decelerating effect on it so that the instantaneous striker pin 4 is again biased towards its transport position and releases the slide 9.
- the locking sleeve 16 remains arrested in the redrawn position, in that the locking pin 18 moving forward forces the balls 20 outward, so that the same jam on the annular shoulder 24 of the fuze casing 1.
- the slide 9 slides at a rate corresponding to the trajectory safety distance desired into the cocked position, in which the axis of the detonator 11 coincides with the axis of the instantaneous forward striking pin 4 and of the detonating train 26, while the detonator 13 comes to lie coaxially above the striker pin 28 (FIGS. 3 and 5).
- the striker pin 4 is forced into the detonator 11 which through the detonating train 26 ignites the booster 10, and the latter detonates the proper explosive charge of the projectile (not shown in the drawings).
- the striker spring 39 can move the inertia sleeve 37 rearward so that the balls 40 emerge from the annular groove 35 under the bias of the chamfered surfaces 36 of the rod 34 and enter into the space now forming between the two inertia sleeves 37, 41- (FIG. 8).
- the pin 2.3 is thereby released, and is thrown forward by the action of the striker spring 39.
- the balls 4,0 are guided; inward by the chamfered rear face 42 of the inertia sleeve 41 into the bore lS29 uof the striker pin 28, so that the same then moves unhampered on a cleared way up to the shoulder of the inertia sleeve 41 and penetrates through the bore 12 into the detonator 13 (FIG. 9).
- the detonator 13 In the cocked position of the slide 9 the detonator 13 is in spatial-communication with the detonator 11 through the groove 7a machined in the bearing body 7, and ignites the detonator 11 by the impinging flame, whereby the explosive charge is detonated in the usual manner.
- a further advantageous feature of the device illustrated for delaying the detonation consists in that, provided the deceleration occurs within the trajectors safety distance, it has the effect of not cooking the fuze, so that the projectile hits as a dud. This is attained by an additional functioning of the device described briefly as follows:
- a delay impact fuze for projectiles comprising a fuze casing having a longitudinally extending bore therein, a slide transversely slidable in said casing, means for moving said slide from a safety position to a ring position, a forward striking pin located in said bore, a detonator which is aligned with said pin when said slide is in firing position, a first inertia sleeve slidably mounted in said bore, a second inertia sleeve also slidably mounted in said bore behind said rst sleeve and normally abutting said rst sleeve, a rod fixed to said casing located within said sleeves having a circumferential ⁇ groove at the upper part thereof, an extension upon said pin having a bore accommodating the top portion of said rod, said extension having recesses extending transversely thereof, balls in said recesses cooperating with said circumferential groove in said rod and with said ⁇ first and said second inertia
- a delay impact, fuze for projectiles comprising a fuze casing having a longitudinally extending bore there ⁇ in, a slide transversely slidable in said casing, means for moving said slide from a safety position toa tiring position, a forward striking pin located in ⁇ said bore, a detonator which is aligned with said pinwhen said slider is in ring position, a Clear inertia sleeve slidably mounted in said bore having an engagement means, a second inertia sleeve also slidably mounted in said bore, means for locking said pin, a striker spring cooperating with said second inertia sleeve and said pin, said second inertia sleeve compressing said striker spring upon impact against said pin and moving said iirst inertia sleeve into abutment with said slide, said striker spring being operative upon deceleration unlocking said locking means by means of said second inertia
- a delay impact fuze for projectiles comprising a fuze casing having a longitudinally extending bore therein, a slide transversely slidable -in said casing, means for moving said slide from a safety position to a ring position, a forward striking pin located in said bore, a detonator which is aligned with said pin when said slide is in tiring position, a rst inertia sleeve slidably mounted in said bore having an engagement means, a second inertia sleeve also slidably mounted in said bore behind said first sleeve and normally abutting said trst sleeve, a rod xed to said casing located within said sleeves having a circumferential groove at the upper part thereof, an extension upon said pin having a bore accommodating the top portion ofy said rod, said'extension having recesses extending transversely thereof, balls in said recesses cooperating with said circumferential groove in said rod and with
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Toys (AREA)
- Air Bags (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH360927T | 1958-03-28 | ||
GB6591/60A GB897113A (en) | 1958-03-28 | 1960-02-25 | Impact fuze |
Publications (1)
Publication Number | Publication Date |
---|---|
US2999461A true US2999461A (en) | 1961-09-12 |
Family
ID=32394650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US801226A Expired - Lifetime US2999461A (en) | 1958-03-28 | 1959-03-23 | Impact fuze |
Country Status (6)
Country | Link |
---|---|
US (1) | US2999461A (ja) |
CH (1) | CH360927A (ja) |
DE (1) | DE1120940B (ja) |
FR (1) | FR1221429A (ja) |
GB (1) | GB897113A (ja) |
NL (4) | NL108363C (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3115094A (en) * | 1961-02-24 | 1963-12-24 | Mefina Sa | Fuze for projectile |
US3319567A (en) * | 1964-05-27 | 1967-05-16 | Industrial Holding Ets | Projectile fuse |
US3410215A (en) * | 1966-06-21 | 1968-11-12 | Oerlikon Buehrle Holding Ag | Impact fuse for projectiles |
US3732825A (en) * | 1970-06-26 | 1973-05-15 | Oerlikon Buehrle Ag | Impact fuze for a spin stabilized projectile |
US3788229A (en) * | 1971-09-10 | 1974-01-29 | Mefina Sa | Fuse for non-gyratory missiles |
US4007689A (en) * | 1975-06-27 | 1977-02-15 | Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag | Blocking mechanism for an impact fuze |
US4144816A (en) * | 1976-04-06 | 1979-03-20 | Mefina S.A. | Missile security mechanism |
US4421031A (en) * | 1981-05-01 | 1983-12-20 | Pocal Industries, Inc. | Percussion fuse for training projectiles |
EP0155449A1 (de) * | 1984-03-08 | 1985-09-25 | Werkzeugmaschinenfabrik Oerlikon-Bührle AG | Aufschlagzünder für Geschosse |
US4782757A (en) * | 1987-09-11 | 1988-11-08 | Carter Research And Development Technological Systems Incorporated | Fuse assembly for military projectile |
WO1996035095A1 (de) * | 1995-05-05 | 1996-11-07 | Dixi S.A. | Sicherheitseinrichtung für einen aufschlagzünder |
US6463855B2 (en) * | 2000-01-05 | 2002-10-15 | Junghans Feinwerktechnik Gmbh & Co. Kg | Fuse device for a mortar shell |
US9146088B1 (en) | 2012-04-12 | 2015-09-29 | The Boeing Company | High shock survivable fuze |
CN116104443A (zh) * | 2021-11-11 | 2023-05-12 | 中国石油天然气集团有限公司 | 可控电动投杆释放装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH623408A5 (ja) * | 1977-10-20 | 1981-05-29 | Oerlikon Buehrle Ag | |
IT1135535B (it) * | 1980-03-27 | 1986-08-27 | Sarmac Sa | Spoletta di fondello,in particolare per granata da fucile |
DE3367673D1 (en) * | 1982-12-10 | 1987-01-02 | Oerlikon Buehrle Ag | Percussion fuze |
DE3524080C2 (de) * | 1985-07-05 | 1996-07-18 | Rheinmetall Ind Gmbh | Zünder für einen Gefechtskopf mit einem durch Formschluß gesicherten Schlagstück |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1545139A (en) * | 1923-04-06 | 1925-07-07 | Bethlehem Steel Corp | Fuse |
US2651993A (en) * | 1950-01-03 | 1953-09-15 | Berzof Harold | Delay arming fuze |
US2685253A (en) * | 1949-11-24 | 1954-08-03 | Mach Tool Works Oerlikon | Fuze for rocket projectiles |
US2831431A (en) * | 1949-12-01 | 1958-04-22 | William F Stevenson | Point detonating delay action fuse |
US2872868A (en) * | 1955-07-11 | 1959-02-10 | Jr William J Donahue | Missile nose fuze |
US2882825A (en) * | 1956-04-11 | 1959-04-21 | Losfeld Andre | Instantaneous and time-lag percussion fuse for gun and small-arm projectile |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR599412A (fr) * | 1924-06-09 | 1926-01-12 | Fusée à répulsion | |
FR691375A (fr) * | 1929-02-19 | 1930-10-21 | Anciens Ets Skoda | Sécurité pour fusées |
BE413369A (ja) * | 1935-01-24 |
-
0
- NL NL236971D patent/NL236971A/xx unknown
-
1958
- 1958-03-28 CH CH360927D patent/CH360927A/de unknown
- 1958-05-13 DE DEV14376A patent/DE1120940B/de active Pending
-
1959
- 1959-03-10 NL NL236971A patent/NL108363C/xx active
- 1959-03-23 US US801226A patent/US2999461A/en not_active Expired - Lifetime
- 1959-03-27 FR FR790561A patent/FR1221429A/fr not_active Expired
-
1960
- 1960-02-25 GB GB6591/60A patent/GB897113A/en not_active Expired
-
1963
- 1963-10-11 NL NL108636A patent/NL299179A/xx unknown
-
1968
- 1968-08-15 NL NL299179D patent/NL125793C/xx active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1545139A (en) * | 1923-04-06 | 1925-07-07 | Bethlehem Steel Corp | Fuse |
US2685253A (en) * | 1949-11-24 | 1954-08-03 | Mach Tool Works Oerlikon | Fuze for rocket projectiles |
US2831431A (en) * | 1949-12-01 | 1958-04-22 | William F Stevenson | Point detonating delay action fuse |
US2651993A (en) * | 1950-01-03 | 1953-09-15 | Berzof Harold | Delay arming fuze |
US2872868A (en) * | 1955-07-11 | 1959-02-10 | Jr William J Donahue | Missile nose fuze |
US2882825A (en) * | 1956-04-11 | 1959-04-21 | Losfeld Andre | Instantaneous and time-lag percussion fuse for gun and small-arm projectile |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3115094A (en) * | 1961-02-24 | 1963-12-24 | Mefina Sa | Fuze for projectile |
US3319567A (en) * | 1964-05-27 | 1967-05-16 | Industrial Holding Ets | Projectile fuse |
US3410215A (en) * | 1966-06-21 | 1968-11-12 | Oerlikon Buehrle Holding Ag | Impact fuse for projectiles |
US3732825A (en) * | 1970-06-26 | 1973-05-15 | Oerlikon Buehrle Ag | Impact fuze for a spin stabilized projectile |
US3788229A (en) * | 1971-09-10 | 1974-01-29 | Mefina Sa | Fuse for non-gyratory missiles |
US4007689A (en) * | 1975-06-27 | 1977-02-15 | Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag | Blocking mechanism for an impact fuze |
US4144816A (en) * | 1976-04-06 | 1979-03-20 | Mefina S.A. | Missile security mechanism |
US4421031A (en) * | 1981-05-01 | 1983-12-20 | Pocal Industries, Inc. | Percussion fuse for training projectiles |
EP0155449A1 (de) * | 1984-03-08 | 1985-09-25 | Werkzeugmaschinenfabrik Oerlikon-Bührle AG | Aufschlagzünder für Geschosse |
US4782757A (en) * | 1987-09-11 | 1988-11-08 | Carter Research And Development Technological Systems Incorporated | Fuse assembly for military projectile |
WO1996035095A1 (de) * | 1995-05-05 | 1996-11-07 | Dixi S.A. | Sicherheitseinrichtung für einen aufschlagzünder |
US6463855B2 (en) * | 2000-01-05 | 2002-10-15 | Junghans Feinwerktechnik Gmbh & Co. Kg | Fuse device for a mortar shell |
US9146088B1 (en) | 2012-04-12 | 2015-09-29 | The Boeing Company | High shock survivable fuze |
CN116104443A (zh) * | 2021-11-11 | 2023-05-12 | 中国石油天然气集团有限公司 | 可控电动投杆释放装置 |
Also Published As
Publication number | Publication date |
---|---|
GB897113A (en) | 1962-05-23 |
NL125793C (ja) | 1969-01-15 |
NL299179A (ja) | 1965-08-10 |
CH360927A (de) | 1962-03-15 |
NL236971A (ja) | |
DE1120940B (de) | 1961-12-28 |
NL108363C (ja) | 1964-05-15 |
FR1221429A (fr) | 1960-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2999461A (en) | Impact fuze | |
US3313236A (en) | Multiple function fuzes | |
US2701527A (en) | Selective delayed-action fuze | |
US2697400A (en) | Projectile with shaped charge and point initiating fuze | |
US3576165A (en) | Safety projectile percussion primer | |
US3724385A (en) | Fuze having a pneumatic and inertia arming system | |
US3118379A (en) | Fuze for a gyratory projectile | |
GB1218884A (en) | Hand-grenade and land mine | |
US2619905A (en) | Impact fuse for rocket projectiles | |
US3277785A (en) | Firing mechanism for explosive devices and the like | |
US3049828A (en) | Toy gun with dummy bullet using deformable vegetable matter | |
US3115094A (en) | Fuze for projectile | |
US1944780A (en) | Percussion fuse of high sensitivity | |
US3710716A (en) | Ram pressure standoff extension and safe/arm mechanism for self-arming munitions | |
US3033115A (en) | Nose fuzes of the percussion type including a self-destruction device | |
US3375786A (en) | Mechanical percussion fuze for rockets | |
US2777392A (en) | Striker mechanism for a fuse | |
US2772635A (en) | Rifle grenade | |
US3417701A (en) | Detonating fuse for bombs and the like | |
US3289589A (en) | Caliber .50 spotting bullets | |
US2345618A (en) | Fuse | |
US3788229A (en) | Fuse for non-gyratory missiles | |
US3611941A (en) | Igniting device | |
US4320706A (en) | Percussion head fuse for an explosive projectile | |
US1352544A (en) | Percussion-fuse for projectiles |