US2950338A - Plastic insulated electrical line and mounting therefor - Google Patents

Plastic insulated electrical line and mounting therefor Download PDF

Info

Publication number
US2950338A
US2950338A US704470A US70447057A US2950338A US 2950338 A US2950338 A US 2950338A US 704470 A US704470 A US 704470A US 70447057 A US70447057 A US 70447057A US 2950338 A US2950338 A US 2950338A
Authority
US
United States
Prior art keywords
wire
support member
drop
clamp
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US704470A
Inventor
John M Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitney Blake Co
Original Assignee
Whitney Blake Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitney Blake Co filed Critical Whitney Blake Co
Priority to US704470A priority Critical patent/US2950338A/en
Application granted granted Critical
Publication of US2950338A publication Critical patent/US2950338A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/221Longitudinally placed metal wires or tapes

Definitions

  • This invention relates to electrical Wire and mountings therefor and it relates more particularly to telephone dropwire of special design and means for securing it to a stationary object.
  • Telephone drop-wire which is the transmission line leading from the telephone pole to a building, must be strong enough to hold not only its own weight in relatively long spans, but also the additional loads caused by the wind and by ice and snow in northern climates.
  • drop-wire must of course be properly insulated and protected so that there is no interference or interruption in service.
  • telephone drop-wire has usually consisted of copper covered steel conductors or copper alloy conductors, having adequate tensile strength to withstand severe weather conditions.
  • the conductors are insulated with rubber and jacketed with cotton braids, bituminous compositions, waxes or neoprene.
  • the drop-wire When a telephone is installed in a house, the drop-wire is fastened to the pole and to the building by means of clamps which are designed to frictionally engage the outer surface of the jacket, but not to break through it; for this would destroy both the insulating quality and the weather resistance of the cord.
  • clamps In conventional dropwire, it is mandatory that the rubber insulation adhere well to the conductors so that the tension on the conductors can be transferred through the insulation and jacketing materials to the clamp which, as just mentioned, grips only the surface of the drop-wire jacket. If the adhesion between the conductors and the insulation is not firm and if the drop-wire is put under heavy tension, the insulation and jacket will tear and break, exposing the bare conductors.
  • the principal object of the present invention is to render practical a plastic insulated drop-wire which is at least equally as serviceable as the present standard rubber insulated cord, not only from the standpoint of transmission but also from the standpoint of strength, weather resistance and long wear.
  • Another object of the invention is to provide a drop-wire which is more economical to manufacture, yet is of a quality equal to or beter than that of drop-wire presently being used.
  • the present invention comprises providing a drop-wire having at least one wire conductor of a size in cross-section determined by the current carrying capacity required thereof and a support or strength member, as for example a steel wire, of substantially larger diameter than the conductor, both the conductor and support member being embedded in spaced parallel relation to each other in a thermoplastic insulation, such as polyethylene; together with a clamp which is adapted and arranged to bite through the insulation of the wire in a direction substantially perpendicular to the plane defined by the support member and conductor, whereby the jaws of said clamp are brought into direct frictional engagement with the support member but are prevented from coming into contact with the conductor by such engagement with the support member.
  • the clamp thus firmly gripping the drop-wire, is then fastened to the pole or building, as the case may be, so that the weight of the span of drop-wire is carried by the clamp which,
  • plastic insulated drop-wire is its low cost as compared with that of the conventional drop-wire now being used. Savings in cost are effected in production, as well as in the cost of the materials used.
  • plastic insulated dropwire as compared with the conventional type is that it is possible to substitute the thermoplastic material alone for all the materials now used to insulate and protect the conductors in conventional drop-wire, the plastic insulation in the new wire being extruded directly onto the bare conductors and'support member.
  • the separate support or reinforcing member of the present drop-wire may be of smaller diameter, yet have greater tensile strength, than the weight carrying conductors commonly used heretofore. Furthermore, the reduced size of the Wire decreases the load on it due to wind and the formation of ice.
  • An advantage of a drop-wire having a separate support member, as contemplated by the present invention, is that in installations where a ground is not readily available, as for example where plastic water pipe may be used in a building, the support member in the drop-wire may be used as the ground. In that event the support wire will be connected to a suitable ground at the telephone pole.
  • a particularly desirable feature of the present invention is that the line from the pole to the house is supported by direct engagement of the mounting clamps with the support member so that none of the tensile force due to the weight of the wire is transmitted through the jacket or insulation of the Wire. This is accomplished using convenient compression clamps so that installation is no more diflicult than in existing installations.
  • Fig. 1 is a perspective view of a section of a novel plastic insulated drop-wire
  • Fig. 2 is an enlarged cross-section of the wire shown in Fig. 1;
  • Fig. 3 is a perspective view showing the drop-wire and clamp therefor in a typical installation
  • Fig. 4- is a cross-sectional view taken on the line 4-4 of Fig. 3, looking in the direction of the arrows;
  • Fig. 5 is a vertical view taken in longitudinal section on the line 5--5 of Fig. 3, looking in the direction of the arrows;
  • Fig. 6 is a side elevation of another type of clamp.
  • Fig. 7 is an end view of the clamp shown in Fig. 6, looking from left to right, with the drop-wire shown in section.
  • 10 designates the dropwire which is stretched from a telephone pole to the building B to which it is fastened by means of a clamp C having a bail 12 looped over an insulated mounting post 14 on the building. Similar means are provided at the telephone pole for mounting the drop-Wire at that end.
  • the drop-wire 10 passes through clamp C and is led to the telephone box (not shown) through the usual insulators 16 that can be nailed or screwed to the side of the build ing at desired points.
  • dropwire 10 comprises a central support member 18, which may desirably be a diameter galvanized steel wire having a tensile strength on the order of 135,000 lbs. per square inch, capable of meeting the minimum 400 pound tensile load requirements for standard telephone dropwire.
  • a central support member 18 which may desirably be a diameter galvanized steel wire having a tensile strength on the order of 135,000 lbs. per square inch, capable of meeting the minimum 400 pound tensile load requirements for standard telephone dropwire.
  • Two bare soft copper conductors 20 of No. 22 AWG wire are located parallel to and on opposite sides of the support member 18, with the axes of conductors 20 and support member 18 located in a common plane.
  • a thermoplastic insulation 22, such as polyethylene, is extruded around the conductors and support member in a parallel wire plastic extrusion machine. As has already been mentioned hereinbefore, the plastic insulation functions both as an electrical insulator and as the protective covering for the conductors.
  • the diameter of the support member 18 is considerably more than twice the diameter of the conductors 20, so that when the jaws of the clamp C grip the wire with their gripping surfaces parallel to the plane of the support member and conductors, such jaws are forced through the plastic insulation intoengagement with the support member 18, as best shown in Fig. 4, without engaging the conductors nor disturbing the insulation around them.
  • the upper and lower surfaces of the plastic covering are grooved longitudinally of the wire at 24, 24, thereby weakening the covering 22 at these points.
  • the usual pointed ribs 26, 26 may be provided in the covering next to one of the conductors in order to identify it with respect to the other.
  • the dimension D of the cylindrical body 27 of the jacket around support member 18 may desirably be 0.102 inch, and the dimension D of the cylindrical insulating bodies 28, 28 surrounding the conductors is 0.075
  • the conductors 20 and the support member 18 In order to provide a sufiicient area of solid plastic material between the conductors 20 and the support member 18 so that the conductors will not accidentally separate, the conductors must be properly spaced from the member 18 to ensure sufi'icient overlap of the body portions 27 and 28 of the insulating material surrounding these members.
  • the centers of the conductors 20, in the specific drop-wire shown should be about 0.082 inch from the center of support member 18. This ensures that the conductors and support member will be securely bound together, yet provides V-shaped grooves 29 in the insulation between the conductors and support member at the intersections of the cylindrical body portions.
  • the V-shaped grooves 29 serve two purposes.
  • the V-shaped grooves facilitate severance of the conductors from the support member without uncovering the conductors.
  • the space provided by grooves 29 between the various cylindrical portions of the drop-wire allows the plastic material compressed by the clamp on the upper and lower sides of the support member 18 to flow laterally so that the clamp will bite into the support member without disturbing the insulation surrounding the conductors.
  • FIG. 3, 4 and 5 A desirable form of clamp which may be used in connnection with the invention is shown in Figs. 3, 4 and 5 and comprises a generally tubular metal body 30, which in this instance is rectangular in cross-section.
  • One side of the body 30 is open at 32 throughout its length so that a mid-section of the drop-wire 10 can be fitted within it without necessity of feeding the wire through the clamp from one end.
  • the inturned leg portions 34 adjacent opening 32 form ledges 36 which support a metal plate or lower jaw 38 against which the drop-wire is pressed when the clamp is tightened.
  • An upper jaw 40 extending the length of body 30 and parallel to lower jaw 38, is movable vertically within the body.
  • a pair of tightening screws 42 are threaded through the wall 44 of the clamp body 30 opposite the opening 32 therein, the ends of screws 42 engaging the upper side of jaw 40 for the purpose of forcing the latter down against the drop-wire 10, which is placed flat on the lower jaw 38. While two tightening screws are shown in the drawings, one is usually sufiicient to crush the covering of drop-wire 10 adjacent support member 18, bringing the jaws 38 and 40 into metal-tometal contact with the support member 18 and thereby providing the necessary grip on the line for mounting purposes.
  • the wire-engaging sides of the jaws 38 and 40 may be provided with lateral serrations 46 which bear on the steel support member 18.
  • the clamp may be provided with off-set, laterally extending ribs (not shown) on both the upper and lower jaws which bend the wire 10 as the jaws are tightened and bite into the member 18.
  • the bail 12 which may be formed of Wire, is secured in any suitable manner to the body 30 of the clamp, as shown by way of example, in Fig. 3 where the ends of bail 12 are fastened to opposite sides of the clamp body 30.
  • the wire is fitted throughthe opening 32 in the bottom of the body 30 with the lower jaw 38 removed, the upper jaw 40 being in position against the ends of tightening screws 42, which are retracted so that the clamp may receive the wire.
  • the lower jaw 38 is then slid endwise into place in the clamp under drop-wire and over the inturned legs 34 of the clamp body 30.
  • the tightening screws 42 are then turned down snugly to ensure engagement of the jaws with the support wire 18.
  • Figs. 6 and 7 illustrate use of another form of clamp having upper and lower jaws 50 and 52, respectively.
  • Jaws 50, 52 are joined at their ends by means of links 54 and 56, which may be formed of relatively rigid wire.
  • Link 54 is permanently fastened to both the upper and lower jaws, as for example by passing it lengthwise through passages in the jaws and welding or soldering the ends of the link. This permanently connects jaws 50 and 52 along the back side of the clamp but permits the jaws to swing open and closed with respect to each other.
  • Link 56 passes through a passage in upper jaw 50 adjacent the front side of the clamp and is provided with longer end-reaches 58 which permit the link to pass under the lower jaw 52 into a groove 60 that holds it in place.
  • Link 56 can therefore be pivoted on the upper jaw 50 from the unlocked position shown in broken lines in Fig. 7 to the locking position shown in full lines.
  • Links 54 and 56 are arranged so that in their locked position the distance between the jaws -at the point where they engage the support member 18 of the drop-wire is equal to, or slightly less than the diameter of this member. Consequently, when the jaws are clamped down on the wire 10 by means of a pair of pliers or the like, and the locking link 56 is slipped into position in the groove 60 under the lower jaw, the support member 18 of the drop-wire 10 will be rigidly gripped by the jaws 50, 52 in a manner similar to that of the clamp shown in Figs. 3 to 5. Thus, the clamp jaws bear on the support member 18 in order to hold it firmly, but do not in any way disturb the conductors 20.
  • Auxiliary friction means such as sharp lateral serrations on the faces of the jaws, may also be provided in the clamp shown in Figs. 6 and 7.
  • the face of the jaws may be provided with laterally extending humps 62 and depressions 64, the humps on each jaw being positioned so as to fit into the depressions in the other. Such an arrangement causes the wire to be bent between the jaws when the clamp is applied.
  • An electrical line and mounting therefor comprising, in combination, a support member extending the full length of said line and at least one electrical conductor extending in spaced, parallel relation thereto, said support member and conductor being integrally embedded in a thermoplastic insulating material with their central axes defining a reference plane, said support member being substantially larger in diameter than said conductor, a clamp in engagement with said line for securing same to a stationary object, said clamp having opposed jaws exerting a gripping force on said line in a direction substantially normal to said reference plane, and means compressing said jaws to penetrate through said insulating material adjacent said support member and to be in direct frictional contact with said support member on opposite sides thereof, said jaws being free from contact with said conductor by engagement with said support member.
  • a drop-wire and mounting therefor comprising, in combination, a support member consisting of a steel wire extending through the full length of said drop-wire, a pair of electrical conductors extending in spaced, parallel relation thereto, said support member and conductors being integrally embedded in a thermoplastic insulating material with their central axes lying substantially in the same reference plane, said support member being at least twice as large in diameter as each of said conductors, a clamp in engagement with said drop wire for securing same to a stationary object, said clamp having opposed jaws exerting a gripping force on said drop wire in a direction substantially normal to said reference plane, and means compressing said jaws to penetrate through said insulating material adjacent said support member and to be in direct frictional contact with said support member on opposite sides thereof, said jaws being free from contact with said pair of electrical conductors by engagement with said support member.

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)

Description

J. M TAYLOR PLASTIC INSULAT EILECTRI LINE AND MO UNT THEIREZF Filed Dec. 23, 1957 2 Sheets-Sheet 1 32 fig 4 INVENTOR JOHN M TAY LOR W W Q A Arrow/5 Y5 Aug. 23, 1960 J. M. TAYLOR 2,950,338
PLASTIC INSULATED ELECTRICAL LINE AND MOUNTING THEREFOR Filed Dec. 23, 1957 2 Sheets-Sheet 2 5; X 22 a\\\\ wk? 57/////// i W m.
INVENTOR. g JOHN VI. TAYLOR BWLW/WQ A Arrow/5 Vs United States Patent PLASTIC INSULATED ELECTRICAL LINE AND MOUNTING THEREFOR John M. Taylor, North Haven, Conn., assignor to The Whitney Blake Company, Hamtlen, Conn., a corporation of Connecticut Filed Dec. 23, 1957, Ser. No. 704,470
5 Claims. (Cl. 174-40) This invention relates to electrical Wire and mountings therefor and it relates more particularly to telephone dropwire of special design and means for securing it to a stationary object.
- Telephone drop-wire, which is the transmission line leading from the telephone pole to a building, must be strong enough to hold not only its own weight in relatively long spans, but also the additional loads caused by the wind and by ice and snow in northern climates. In addition drop-wire must of course be properly insulated and protected so that there is no interference or interruption in service. In order to give it suflicient strength, telephone drop-wire has usually consisted of copper covered steel conductors or copper alloy conductors, having adequate tensile strength to withstand severe weather conditions. The conductors are insulated with rubber and jacketed with cotton braids, bituminous compositions, waxes or neoprene. When a telephone is installed in a house, the drop-wire is fastened to the pole and to the building by means of clamps which are designed to frictionally engage the outer surface of the jacket, but not to break through it; for this would destroy both the insulating quality and the weather resistance of the cord. In conventional dropwire, it is mandatory that the rubber insulation adhere well to the conductors so that the tension on the conductors can be transferred through the insulation and jacketing materials to the clamp which, as just mentioned, grips only the surface of the drop-wire jacket. If the adhesion between the conductors and the insulation is not firm and if the drop-wire is put under heavy tension, the insulation and jacket will tear and break, exposing the bare conductors.
For many years it has been considered desirable to use plastic insulation in place of the fabric and rubber coverings heretofore employed in drop-wire. However, mere substitution of a thermoplastic insulating material for the more costly type of insulation now used in drop-wire, has not been feasible due to the fact that the plastic insulation does not adhere to the conductors and, therefore, tears and breaks under the tension placed on it when compression clamps are used to fasten it to the pole or building. For this reason and because it has been necessary to employ compression clamps in order to support the weight of the span of wire, plastic insulation for drop-wire has been totally unsatisfactory. Moreover, since plastic materials suitable for wire insulation will flow under compression at normal temperatures, whereas rubber or neoprene does not, the compression clamps tend to break through the jacket of the plastic covered conductors, destroying the insulation. It has, therefore, been generally felt by those skilled in the art that it would be impractical to use plastic insulation in drop-wire.
The principal object of the present invention is to render practical a plastic insulated drop-wire which is at least equally as serviceable as the present standard rubber insulated cord, not only from the standpoint of transmission but also from the standpoint of strength, weather resistance and long wear. Another object of the invention is to provide a drop-wire which is more economical to manufacture, yet is of a quality equal to or beter than that of drop-wire presently being used.
With these objects in view and some others which will be apparent to those skilled in the art, the present invention comprises providing a drop-wire having at least one wire conductor of a size in cross-section determined by the current carrying capacity required thereof and a support or strength member, as for example a steel wire, of substantially larger diameter than the conductor, both the conductor and support member being embedded in spaced parallel relation to each other in a thermoplastic insulation, such as polyethylene; together with a clamp which is adapted and arranged to bite through the insulation of the wire in a direction substantially perpendicular to the plane defined by the support member and conductor, whereby the jaws of said clamp are brought into direct frictional engagement with the support member but are prevented from coming into contact with the conductor by such engagement with the support member. The clamp, thus firmly gripping the drop-wire, is then fastened to the pole or building, as the case may be, so that the weight of the span of drop-wire is carried by the clamp which,
being in rigid engagement with the support member in the wire, transmits all the tensile forces to that member instead of to the jacket or conductors of the drop-wire.
It will be apparent from the foregoing that, even though the problems involved in developing a commercially satisfactory plastic insulated drop-wire have been considered by those skilled in the art to be virtually insurmountable, the present invention effectively overcomes these problems in a unique manner and makes available the many advantages of plastic insulation for drop-wire.
One of the important advantages of plastic insulated drop-wire is its low cost as compared with that of the conventional drop-wire now being used. Savings in cost are effected in production, as well as in the cost of the materials used.
Another important advantage of plastic insulated dropwire as compared with the conventional type is that it is possible to substitute the thermoplastic material alone for all the materials now used to insulate and protect the conductors in conventional drop-wire, the plastic insulation in the new wire being extruded directly onto the bare conductors and'support member. This permits the overall size of the finished wire to be reduced considerably which, in and of itself, is highly desirable for several reasons. For example, such wire is much less conspicuous when installed between a telephone pole and house, a factor of importance in residential installations more particularly. The smaller size likewise decreases the weight per unit length of wire, so that a considerably greater strength to weight ratio can be attained. This is of course enhanced by the fact that the separate support or reinforcing member of the present drop-wire may be of smaller diameter, yet have greater tensile strength, than the weight carrying conductors commonly used heretofore. Furthermore, the reduced size of the Wire decreases the load on it due to wind and the formation of ice.
An advantage of a drop-wire having a separate support member, as contemplated by the present invention, is that in installations where a ground is not readily available, as for example where plastic water pipe may be used in a building, the support member in the drop-wire may be used as the ground. In that event the support wire will be connected to a suitable ground at the telephone pole.
A particularly desirable feature of the present invention is that the line from the pole to the house is supported by direct engagement of the mounting clamps with the support member so that none of the tensile force due to the weight of the wire is transmitted through the jacket or insulation of the Wire. This is accomplished using convenient compression clamps so that installation is no more diflicult than in existing installations.
A drop-wire and clamp arrangement embodying the invention in its most advantageous form is illustrated in the accompanying drawings, in which Fig. 1 is a perspective view of a section of a novel plastic insulated drop-wire;
Fig. 2 is an enlarged cross-section of the wire shown in Fig. 1;
Fig. 3 is a perspective view showing the drop-wire and clamp therefor in a typical installation;
Fig. 4- is a cross-sectional view taken on the line 4-4 of Fig. 3, looking in the direction of the arrows;
Fig. 5 is a vertical view taken in longitudinal section on the line 5--5 of Fig. 3, looking in the direction of the arrows;
Fig. 6 is a side elevation of another type of clamp; and
Fig. 7 is an end view of the clamp shown in Fig. 6, looking from left to right, with the drop-wire shown in section.
Referring to the drawings, 10 designates the dropwire which is stretched from a telephone pole to the building B to which it is fastened by means of a clamp C having a bail 12 looped over an insulated mounting post 14 on the building. Similar means are provided at the telephone pole for mounting the drop-Wire at that end. The drop-wire 10 passes through clamp C and is led to the telephone box (not shown) through the usual insulators 16 that can be nailed or screwed to the side of the build ing at desired points.
As shown more particularly in Figs. 1 and 2, dropwire 10 comprises a central support member 18, which may desirably be a diameter galvanized steel wire having a tensile strength on the order of 135,000 lbs. per square inch, capable of meeting the minimum 400 pound tensile load requirements for standard telephone dropwire. Two bare soft copper conductors 20 of No. 22 AWG wire are located parallel to and on opposite sides of the support member 18, with the axes of conductors 20 and support member 18 located in a common plane. A thermoplastic insulation 22, such as polyethylene, is extruded around the conductors and support member in a parallel wire plastic extrusion machine. As has already been mentioned hereinbefore, the plastic insulation functions both as an electrical insulator and as the protective covering for the conductors.
In the specific embodiment of the invention shown in the drawings, the diameter of the support member 18 is considerably more than twice the diameter of the conductors 20, so that when the jaws of the clamp C grip the wire with their gripping surfaces parallel to the plane of the support member and conductors, such jaws are forced through the plastic insulation intoengagement with the support member 18, as best shown in Fig. 4, without engaging the conductors nor disturbing the insulation around them. In order to facilitate break through of the plastic covering adjacent the support member by the jaws of the clamp, the upper and lower surfaces of the plastic covering are grooved longitudinally of the wire at 24, 24, thereby weakening the covering 22 at these points. The usual pointed ribs 26, 26 may be provided in the covering next to one of the conductors in order to identify it with respect to the other.
With reference more particularly to Fig. 2, which shows, by way of example, one specific form of dropwire especially useful. in connection with the present invention, the dimension D of the cylindrical body 27 of the jacket around support member 18 may desirably be 0.102 inch, and the dimension D of the cylindrical insulating bodies 28, 28 surrounding the conductors is 0.075
in decimals is about 0.064 inch, it will readily be seen that when the clamp is in full engagement with the support wire 18, as shown in Fig. 4, the plastic insulation surrounding the conductors 20 is under only very light pressure and, therefore, will not be damaged by the clamp. However, pressure of the clamp jaws on the plastic jacket above and below the support member causes the jaws to break through the jacket into firm contact with the member 18.
In order to provide a sufiicient area of solid plastic material between the conductors 20 and the support member 18 so that the conductors will not accidentally separate, the conductors must be properly spaced from the member 18 to ensure sufi'icient overlap of the body portions 27 and 28 of the insulating material surrounding these members. To this end, the centers of the conductors 20, in the specific drop-wire shown, should be about 0.082 inch from the center of support member 18. This ensures that the conductors and support member will be securely bound together, yet provides V-shaped grooves 29 in the insulation between the conductors and support member at the intersections of the cylindrical body portions. The V-shaped grooves 29 serve two purposes. When it is desired to connect the ends of the conductors to their terminals, the V-shaped grooves facilitate severance of the conductors from the support member without uncovering the conductors. Secondly, the space provided by grooves 29 between the various cylindrical portions of the drop-wire allows the plastic material compressed by the clamp on the upper and lower sides of the support member 18 to flow laterally so that the clamp will bite into the support member without disturbing the insulation surrounding the conductors.
A desirable form of clamp which may be used in connnection with the invention is shown in Figs. 3, 4 and 5 and comprises a generally tubular metal body 30, which in this instance is rectangular in cross-section. One side of the body 30 is open at 32 throughout its length so that a mid-section of the drop-wire 10 can be fitted within it without necessity of feeding the wire through the clamp from one end. The inturned leg portions 34 adjacent opening 32 form ledges 36 which support a metal plate or lower jaw 38 against which the drop-wire is pressed when the clamp is tightened. An upper jaw 40, extending the length of body 30 and parallel to lower jaw 38, is movable vertically within the body. A pair of tightening screws 42 are threaded through the wall 44 of the clamp body 30 opposite the opening 32 therein, the ends of screws 42 engaging the upper side of jaw 40 for the purpose of forcing the latter down against the drop-wire 10, which is placed flat on the lower jaw 38. While two tightening screws are shown in the drawings, one is usually sufiicient to crush the covering of drop-wire 10 adjacent support member 18, bringing the jaws 38 and 40 into metal-tometal contact with the support member 18 and thereby providing the necessary grip on the line for mounting purposes.
In order to enhance the grip of the clamp on the support member of the wire, various friction increasing devices may be employed. Thus, as indicated in Fig. 5, the wire-engaging sides of the jaws 38 and 40 may be provided with lateral serrations 46 which bear on the steel support member 18. Or, if desired, the clamp may be provided with off-set, laterally extending ribs (not shown) on both the upper and lower jaws which bend the wire 10 as the jaws are tightened and bite into the member 18. The bail 12, which may be formed of Wire, is secured in any suitable manner to the body 30 of the clamp, as shown by way of example, in Fig. 3 where the ends of bail 12 are fastened to opposite sides of the clamp body 30.
In fastening the clamp C to the drop-wire 10, the wire is fitted throughthe opening 32 in the bottom of the body 30 with the lower jaw 38 removed, the upper jaw 40 being in position against the ends of tightening screws 42, which are retracted so that the clamp may receive the wire. The lower jaw 38 is then slid endwise into place in the clamp under drop-wire and over the inturned legs 34 of the clamp body 30. The tightening screws 42 are then turned down snugly to ensure engagement of the jaws with the support wire 18.
Figs. 6 and 7 illustrate use of another form of clamp having upper and lower jaws 50 and 52, respectively. Jaws 50, 52 are joined at their ends by means of links 54 and 56, which may be formed of relatively rigid wire. Link 54 is permanently fastened to both the upper and lower jaws, as for example by passing it lengthwise through passages in the jaws and welding or soldering the ends of the link. This permanently connects jaws 50 and 52 along the back side of the clamp but permits the jaws to swing open and closed with respect to each other. Link 56 passes through a passage in upper jaw 50 adjacent the front side of the clamp and is provided with longer end-reaches 58 which permit the link to pass under the lower jaw 52 into a groove 60 that holds it in place. Link 56 can therefore be pivoted on the upper jaw 50 from the unlocked position shown in broken lines in Fig. 7 to the locking position shown in full lines. Links 54 and 56 are arranged so that in their locked position the distance between the jaws -at the point where they engage the support member 18 of the drop-wire is equal to, or slightly less than the diameter of this member. Consequently, when the jaws are clamped down on the wire 10 by means of a pair of pliers or the like, and the locking link 56 is slipped into position in the groove 60 under the lower jaw, the support member 18 of the drop-wire 10 will be rigidly gripped by the jaws 50, 52 in a manner similar to that of the clamp shown in Figs. 3 to 5. Thus, the clamp jaws bear on the support member 18 in order to hold it firmly, but do not in any way disturb the conductors 20.
Auxiliary friction means, such as sharp lateral serrations on the faces of the jaws, may also be provided in the clamp shown in Figs. 6 and 7. In addition the face of the jaws may be provided with laterally extending humps 62 and depressions 64, the humps on each jaw being positioned so as to fit into the depressions in the other. Such an arrangement causes the wire to be bent between the jaws when the clamp is applied.
Although reference is made throughout the foregoing disclosure to telephone drop-wire more particularly, it will of course be understood that the invention is applicable to other communication lines as well, or to power lines involving similar problems. It is also apparent that various drop-wire designs, other than the one specifically illustrated herein, could be used, so long as the support member is of larger diameter than the conductors and the conductors are positioned within the body of plastic insulation such that the jaws of the mounting clamp may be forced through the insulation into direct contact with the support member without engaging the com ductors.
What is claimed is:
1. An electrical line and mounting therefor, comprising, in combination, a support member extending the full length of said line and at least one electrical conductor extending in spaced, parallel relation thereto, said support member and conductor being integrally embedded in a thermoplastic insulating material with their central axes defining a reference plane, said support member being substantially larger in diameter than said conductor, a clamp in engagement with said line for securing same to a stationary object, said clamp having opposed jaws exerting a gripping force on said line in a direction substantially normal to said reference plane, and means compressing said jaws to penetrate through said insulating material adjacent said support member and to be in direct frictional contact with said support member on opposite sides thereof, said jaws being free from contact with said conductor by engagement with said support member.
2. The combination defined in claim 1, wherein two conductors are provided in said line, each being located substantially in said reference plane and on opposite sides of said support member.
3. The combination defined in claim 1, wherein said support member is at least twice as large in diameter as said conductor.
4. The combination defined in claim 2 wherein the means compressing said jaws is screw means.
5. A drop-wire and mounting therefor comprising, in combination, a support member consisting of a steel wire extending through the full length of said drop-wire, a pair of electrical conductors extending in spaced, parallel relation thereto, said support member and conductors being integrally embedded in a thermoplastic insulating material with their central axes lying substantially in the same reference plane, said support member being at least twice as large in diameter as each of said conductors, a clamp in engagement with said drop wire for securing same to a stationary object, said clamp having opposed jaws exerting a gripping force on said drop wire in a direction substantially normal to said reference plane, and means compressing said jaws to penetrate through said insulating material adjacent said support member and to be in direct frictional contact with said support member on opposite sides thereof, said jaws being free from contact with said pair of electrical conductors by engagement with said support member.
References Cited in the file of this patent UNITED STATES PATENTS 751,739 Lindal Feb. 9, 1904 1,793,140 Steinmayer Feb. 17, 1931 2,399,028 Hermann Apr. 23, 1946 FOREIGN PATENTS 424,995 Italy Dec. 5, 1947
US704470A 1957-12-23 1957-12-23 Plastic insulated electrical line and mounting therefor Expired - Lifetime US2950338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US704470A US2950338A (en) 1957-12-23 1957-12-23 Plastic insulated electrical line and mounting therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US704470A US2950338A (en) 1957-12-23 1957-12-23 Plastic insulated electrical line and mounting therefor

Publications (1)

Publication Number Publication Date
US2950338A true US2950338A (en) 1960-08-23

Family

ID=24829648

Family Applications (1)

Application Number Title Priority Date Filing Date
US704470A Expired - Lifetime US2950338A (en) 1957-12-23 1957-12-23 Plastic insulated electrical line and mounting therefor

Country Status (1)

Country Link
US (1) US2950338A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3033916A (en) * 1958-06-16 1962-05-08 Insul 8 Corp Electrical conductor
US3048649A (en) * 1959-06-08 1962-08-07 Schwitzer Corp Cable motion damper
US3060260A (en) * 1959-07-02 1962-10-23 Insul 8 Corp Electrical conductor
US3158681A (en) * 1960-11-15 1964-11-24 Pirelli Process for the anchorage of armored cables and cable line obtained therefrom
US3317657A (en) * 1959-12-11 1967-05-02 Eisler Paul Flat electric cables
US3333804A (en) * 1965-09-16 1967-08-01 Diamond Expansion Bolt Co Inc Cable clamp
US3697767A (en) * 1970-02-12 1972-10-10 Carrozzeria Pininfarina Soc Pe Electric energy distribution systems
US3720778A (en) * 1972-03-28 1973-03-13 Woertz O Inh H & Woertz O Electric ribbon cable and connector assembly
US4220812A (en) * 1977-06-17 1980-09-02 Lynenwerk Gmbh & Co. Kommanditgesellschaft Electric cable for communication purposes
US4419538A (en) * 1981-11-13 1983-12-06 W. L. Gore & Associates, Inc. Under-carpet coaxial cable
US4467138A (en) * 1983-01-17 1984-08-21 Gk Technologies, Inc. Plural conductor communication wire
US4606595A (en) * 1984-04-25 1986-08-19 Amp Incorporated Premise wiring system and components therefor
US4638117A (en) * 1985-06-14 1987-01-20 Lynenwerk Gmbh & Co. Kommanditgesellschaft Electrical cable for communication purposes
US4761053A (en) * 1985-08-28 1988-08-02 American Telephone And Telegraph Company, At&T Bell Laboratories Communications transmission media
US5155304A (en) * 1990-07-25 1992-10-13 At&T Bell Laboratories Aerial service wire
US5909809A (en) * 1996-06-07 1999-06-08 Merit, Inc. Elastic band holder
US6509526B2 (en) * 2000-07-07 2003-01-21 Servicies Conoumex S.A. Dec.V. Telephone lead-in cable for ordinary voice service and high performance data and video transmission services
US20040206543A1 (en) * 2003-04-16 2004-10-21 Yung-Tsai Chuo Flexible cable arranged in rows
US20050092516A1 (en) * 2003-04-16 2005-05-05 Hiwin Mikrosystem Corp. Flexible cable arranged in rows
US20050126817A1 (en) * 2003-12-11 2005-06-16 Arzate Fermin M. Overhead and underground telephone lead-in cable for voice, data and video transmission services
US20070169956A1 (en) * 2004-05-25 2007-07-26 Christopher Marszalek Security cable, a method for making the same and a method for securing an electronic device
US20070251716A1 (en) * 2003-12-30 2007-11-01 Paolo Veggetti Multipolar Cable for Transmitting Energy and/or Signals, Method and Apparatus for the Production Thereof
US20090148101A1 (en) * 2007-12-11 2009-06-11 Yu Lu Hardened Fiber Optic Connection System with Multiple Configurations
US7572065B2 (en) 2007-01-24 2009-08-11 Adc Telecommunications, Inc. Hardened fiber optic connector
US7591595B2 (en) 2007-01-24 2009-09-22 Adc Telelcommunications, Inc. Hardened fiber optic adapter
US20110030190A1 (en) * 2009-08-06 2011-02-10 3M Innovative Properties Company System and method for providing final drop in a living unit in a building
USRE42522E1 (en) 2003-09-08 2011-07-05 Adc Telecommunications, Inc. Ruggedized fiber optic connection
US20160093416A1 (en) * 2014-09-29 2016-03-31 Hitachi Metals, Ltd. Endoscope woven cable and endoscope cable
US10444443B2 (en) 2013-06-27 2019-10-15 CommScope Connectivity Belgium BVBA Fiber optic cable anchoring device for use with fiber optic connectors and methods of using the same
US20200043636A1 (en) * 2009-12-09 2020-02-06 Holland Electronics, Llc Guarded coaxial cable assembly
USD913959S1 (en) * 2018-10-25 2021-03-23 Craig M Joyce Cable jacket
USD915301S1 (en) * 2019-04-03 2021-04-06 Craig M. Joyce Cable jacket
USD934183S1 (en) 2018-09-20 2021-10-26 Craig M. Joyce Cable jacket
US20240233986A1 (en) * 2009-12-09 2024-07-11 Holland Electronics, Llc Guarded coaxial cable assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US751739A (en) * 1904-02-09 Insulator
US1793140A (en) * 1929-07-20 1931-02-17 Line Material Co Cable clamp
US2399028A (en) * 1941-12-13 1946-04-23 Gen Electric Terminal construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US751739A (en) * 1904-02-09 Insulator
US1793140A (en) * 1929-07-20 1931-02-17 Line Material Co Cable clamp
US2399028A (en) * 1941-12-13 1946-04-23 Gen Electric Terminal construction

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3033916A (en) * 1958-06-16 1962-05-08 Insul 8 Corp Electrical conductor
US3048649A (en) * 1959-06-08 1962-08-07 Schwitzer Corp Cable motion damper
US3060260A (en) * 1959-07-02 1962-10-23 Insul 8 Corp Electrical conductor
US3317657A (en) * 1959-12-11 1967-05-02 Eisler Paul Flat electric cables
US3158681A (en) * 1960-11-15 1964-11-24 Pirelli Process for the anchorage of armored cables and cable line obtained therefrom
US3333804A (en) * 1965-09-16 1967-08-01 Diamond Expansion Bolt Co Inc Cable clamp
US3697767A (en) * 1970-02-12 1972-10-10 Carrozzeria Pininfarina Soc Pe Electric energy distribution systems
US3720778A (en) * 1972-03-28 1973-03-13 Woertz O Inh H & Woertz O Electric ribbon cable and connector assembly
US4220812A (en) * 1977-06-17 1980-09-02 Lynenwerk Gmbh & Co. Kommanditgesellschaft Electric cable for communication purposes
US4419538A (en) * 1981-11-13 1983-12-06 W. L. Gore & Associates, Inc. Under-carpet coaxial cable
US4467138A (en) * 1983-01-17 1984-08-21 Gk Technologies, Inc. Plural conductor communication wire
US4606595A (en) * 1984-04-25 1986-08-19 Amp Incorporated Premise wiring system and components therefor
US4638117A (en) * 1985-06-14 1987-01-20 Lynenwerk Gmbh & Co. Kommanditgesellschaft Electrical cable for communication purposes
US4761053A (en) * 1985-08-28 1988-08-02 American Telephone And Telegraph Company, At&T Bell Laboratories Communications transmission media
US5155304A (en) * 1990-07-25 1992-10-13 At&T Bell Laboratories Aerial service wire
US5909809A (en) * 1996-06-07 1999-06-08 Merit, Inc. Elastic band holder
US6509526B2 (en) * 2000-07-07 2003-01-21 Servicies Conoumex S.A. Dec.V. Telephone lead-in cable for ordinary voice service and high performance data and video transmission services
US20040206543A1 (en) * 2003-04-16 2004-10-21 Yung-Tsai Chuo Flexible cable arranged in rows
US20050092516A1 (en) * 2003-04-16 2005-05-05 Hiwin Mikrosystem Corp. Flexible cable arranged in rows
USRE42522E1 (en) 2003-09-08 2011-07-05 Adc Telecommunications, Inc. Ruggedized fiber optic connection
US20050126817A1 (en) * 2003-12-11 2005-06-16 Arzate Fermin M. Overhead and underground telephone lead-in cable for voice, data and video transmission services
CN1947205B (en) * 2003-12-30 2012-07-04 普雷斯曼电缆及系统能源有限公司 Multipolar cable for transmitting energy and/or signals, method and apparatus for production thereof
US20070251716A1 (en) * 2003-12-30 2007-11-01 Paolo Veggetti Multipolar Cable for Transmitting Energy and/or Signals, Method and Apparatus for the Production Thereof
AU2003298982B2 (en) * 2003-12-30 2010-04-22 Prysmian Cavi E Sistemi Energia S.R.L. Multipolar cable for transmitting energy and/or signals, method and apparatus for the production thereof
US7642462B2 (en) * 2003-12-30 2010-01-05 Prysmian Cavi E Sistemi Energia Multipolar cable for transmitting energy and/or signals, method and apparatus for the production thereof
US7592548B2 (en) * 2004-05-25 2009-09-22 Sennco Solutions, Inc Security cable, a method for making the same and a method for securing an electronic device
US20070169956A1 (en) * 2004-05-25 2007-07-26 Christopher Marszalek Security cable, a method for making the same and a method for securing an electronic device
US7591595B2 (en) 2007-01-24 2009-09-22 Adc Telelcommunications, Inc. Hardened fiber optic adapter
US7572065B2 (en) 2007-01-24 2009-08-11 Adc Telecommunications, Inc. Hardened fiber optic connector
US12111502B2 (en) 2007-01-24 2024-10-08 Commscope Technologies Llc Hardened fiber optic connector
US11409057B2 (en) 2007-01-24 2022-08-09 Commscope Technologies Llc Hardened fiber optic connector
US10877224B2 (en) 2007-01-24 2020-12-29 Commscope Technologies Llc Fiber optic adapter
US9664862B2 (en) 2007-01-24 2017-05-30 Commscope Technologies Llc Hardened fiber optic connector
US8770862B2 (en) 2007-01-24 2014-07-08 Adc Telecommunications, Inc. Hardened fiber optic connector
US7744286B2 (en) 2007-12-11 2010-06-29 Adc Telecommunications, Inc. Hardened fiber optic connection system with multiple configurations
US7744288B2 (en) 2007-12-11 2010-06-29 Adc Telecommunications, Inc. Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US7959361B2 (en) 2007-12-11 2011-06-14 Adc Telecommunications, Inc. Hardened fiber optic connection system
US8414196B2 (en) 2007-12-11 2013-04-09 Adc Telecommunications, Inc. Optical fiber connection system with locking member
US7942590B2 (en) 2007-12-11 2011-05-17 Adc Telecommunications, Inc. Hardened fiber optic connector and cable assembly with multiple configurations
US20090148101A1 (en) * 2007-12-11 2009-06-11 Yu Lu Hardened Fiber Optic Connection System with Multiple Configurations
US11867950B2 (en) 2007-12-11 2024-01-09 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US8202008B2 (en) 2007-12-11 2012-06-19 Adc Telecommunications, Inc. Hardened fiber optic connection system with multiple configurations
US9482829B2 (en) 2007-12-11 2016-11-01 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US11275220B2 (en) 2007-12-11 2022-03-15 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US10101538B2 (en) 2007-12-11 2018-10-16 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US7762726B2 (en) 2007-12-11 2010-07-27 Adc Telecommunications, Inc. Hardened fiber optic connection system
US10746939B2 (en) 2007-12-11 2020-08-18 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US20110030190A1 (en) * 2009-08-06 2011-02-10 3M Innovative Properties Company System and method for providing final drop in a living unit in a building
US9343886B2 (en) 2009-08-06 2016-05-17 3M Innovative Properties Company System and method for providing final drop in a living unit in a building
US9343885B2 (en) 2009-08-06 2016-05-17 3M Innovative Properties Company System and method for providing final drop in a living unit in a building
US20200043636A1 (en) * 2009-12-09 2020-02-06 Holland Electronics, Llc Guarded coaxial cable assembly
US11810690B2 (en) * 2009-12-09 2023-11-07 Holland Electronics, Llc Guarded coaxial cable assembly
US20240233986A1 (en) * 2009-12-09 2024-07-11 Holland Electronics, Llc Guarded coaxial cable assembly
US10444443B2 (en) 2013-06-27 2019-10-15 CommScope Connectivity Belgium BVBA Fiber optic cable anchoring device for use with fiber optic connectors and methods of using the same
US12117658B2 (en) 2013-06-27 2024-10-15 CommScope Connectivity Belgium BVBA Fiber optic cable anchoring device for use with fiber optic connectors and methods of using the same
US20160093416A1 (en) * 2014-09-29 2016-03-31 Hitachi Metals, Ltd. Endoscope woven cable and endoscope cable
USD934183S1 (en) 2018-09-20 2021-10-26 Craig M. Joyce Cable jacket
USD913959S1 (en) * 2018-10-25 2021-03-23 Craig M Joyce Cable jacket
USD915301S1 (en) * 2019-04-03 2021-04-06 Craig M. Joyce Cable jacket

Similar Documents

Publication Publication Date Title
US2950338A (en) Plastic insulated electrical line and mounting therefor
US3858848A (en) Fish tape
US5539961A (en) Spring-loaded wedge dead end
US3761865A (en) Safety device for cables supporting electrical wires
US2497820A (en) Cable clamp
KR101963733B1 (en) A hinge cover type cable clamp
US2309971A (en) Drop wire support
US3668613A (en) Electrical connector
US3042353A (en) Cable clamp
US2466083A (en) Wire holding device
US2348100A (en) Splicing device for electrical conductors
US1832138A (en) Drop suspension
US2934594A (en) Spreaders for conductor wires
US2504360A (en) Clamp means
US2887524A (en) Midspan connection
JP2007104788A (en) Overhead line
US2907812A (en) Mid-span tap clamp
US3144500A (en) Terminal clamp for messengrer cable
NO147324B (en) RELAXING CLIPS FOR ISOLATED AIR CONDITIONS.
US2315082A (en) Cable clamp
US2191258A (en) T connector
US2870237A (en) Multiple conductor service cable insulator
US2596022A (en) Combination hanger and clamp for supporting electrical conductors
RU2232455C1 (en) Compression-type strain clamp
US2107594A (en) Pole bracket and insulator