US2920351A - Method of making spring cords - Google Patents
Method of making spring cords Download PDFInfo
- Publication number
- US2920351A US2920351A US681035A US68103557A US2920351A US 2920351 A US2920351 A US 2920351A US 681035 A US681035 A US 681035A US 68103557 A US68103557 A US 68103557A US 2920351 A US2920351 A US 2920351A
- Authority
- US
- United States
- Prior art keywords
- cord
- convolutions
- spring
- mandrel
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 10
- 239000004020 conductor Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/008—Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing extensible conductors or cables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/40—Processes of coiling plastics
Definitions
- This invention relates to a method of making spring cords, and more particularly spring cords of helically coiled form.
- a further object of the invention is to produce a spring cord wherein no axial twist is placed in either the ndividual conductors or the iinal product prior to the reversal of the helical convolutions of the cord, at which time an added twist is given thereto to impart additional appear to be even and compact to assure that the convolutions therein are compact and of equal pitch and diameter.
- Fig. l illustrates a cord after it is Wound initially on a mandrel in a helical coil
- Fig. 2 illustrates an oven in which the helically wound cord of Fig. 1 is subjected to heat treatment
- Fig. 3 illustrates the cord after heat treatment and removal from the mandrel
- p Fig 4 illustrates a spring cord after reversal of the helices of the coil, as it is made currently
- Fig. 5 illustrates a spring cord after reversal and with overtwist imparted thereto
- Fig. 6 illustrates the spring cord of Fig. 5 with the overtwist substantially all removed.
- one type of the improved spring cord consists of a plurality of insulated conductors having an insulating jacket thereover which is wound in helical form on a mandrel but to which is imparted no axial twist, after which it is heat treated on the mandrel in an oven to impart a set thereto.
- the spring cord is then removed flom the mandrel, and the helices of the cord are reversed to impart an opposite pitch thereto and to introduce retractile forces within the cord, but during the reversal coiling operation the convolutions are overtwisted to an extent greater than necessary to form the coils to impart additional forces therein, and thereafter substantially all of the overtwist is removed or unwound from the helically coiled cord.
- a method of forming the type of cord referred to above may include the steps of winding a conducting cord, consisting of a plurality of insulated conductors having an insulating jacket thereon, in a helical shape on a mandrel but to none of which is imparted an axial twist, and thereafter heat treating the cord to set the helical shape therein.
- the cord may be removed from the mandrel and the pitch of the convolutions reversed to form a helical coil and to introduce retractile forces therein.
- an overtwist is imparted to the coils, that is, the cord is twisted to an amount greater than necessary to form a series of coils therein to impart additional forces thereto.
- substantially all of the overtwist is removed, thereby resulting in a finished' product having even-sized convolutions of equal pitch and compact with respect to each other.
- a type of mandrel may consist of a center rod on which is provided a pair of adjustable stops, one of which is usually stationary to permit the mandrel to be inserted in the machine with which it is used.
- the stationary stop is provided with a suitable catch to secure the forward end of the spring cord thereto.
- the ksecond stop is secured to the rod adjacent to the terminal convolution.
- the second stop is also provided with a catch to secure the trailing end of the cord.
- a mandrel of this general type is disclosed more in detail in Patent 2,565,465, issued on August 28, 1951, to W. L. Ames.
- the terminal portions of the cord 11 have not been illustrated in Fig. 1, but it should be understood that they may be plain severed ends or they may be tipped and banded, as shown in Fig. 3.
- i 17 is further provided with bands 20 near tudinally with respect to the supply of cord. It has also been the general practice to rotate the supply of cord on an axis perpendicular to the line of advance of the cord toward the mandrel -to impart an axial twist theretorwhich sets up torsional strains in therco'rd.' After the, complete .helical coil is formed, the second stop is positioned and the trailing portion of the cord secured, as described The individual conductors may or may not have been axially twisted prior to the coiling and axial twisting of the jacketed conductor 11. Y Y
- the jacketed cord such as 11, will-be coiled on a mandrel, such as 12, in a manner similar to that disclosed above, with the exception that no axial twist will be imparted either to the jack'eted cord or to the vindividual insulated conductors therein.
- the cord may be connected to the stationary stop on the mandrel, and theV mandrel then may be rotated and moved longitudinally with respect to the supply of cord to form helical convolutions in the cord about the mandrel, but with no axial y,twist therein.
- the conducting cord 11 After the conducting cord 11 is formed on the mandrel 12, it is placed on a rack 13 which, when filled, is placed within a heat treat oven 14.
- the oven may be heated by any suitable and conventional means, such as electrical coils 16.
- the cord 11 within the oven 14 ⁇ will be heated toa suitable'temperature for a suitabletime in order that the cloiling strains in the insulation are relieved to the amount that thev insulation takes on a permanent set and retains its helical shape.
- FIG. 3 illustrates a partially finished springcord, de'sig- Ynated generally by the numeral 17, which has beenY removed from the mandrel 12 after heat treatment.
- the cord 17 is formed with individual -insulated conductors 18 which have electrical connect- ⁇ ing -tips 19 secured to the extremity thereof. The cord thefextremities thereof to secure the insulated jacket-at a point near which it ends and from which the conductors 1S extend.
- a reversal of the pitch of the convolutions may be done in various ways.
- One method of reversal of pitch is to engage one'end of the heat treated helical coil and to draw it lthrough the coil helix, which results in a cord having the pitch ofthe lhelices reversed. This method is illustrated in Patent No. 2,271,057, issued to W. T. Barrans on January 27, 1942.
- a cord with rsubstantially all of the overtwist removed is-illustrated by a spring cord designated generally by the numeral 23 in Fig. 6. It may be noted by examining this illustration that the pitch of individual convolutions is theV same, that the convolutions are compact with respect to each other, and that the diameter of all vof the convolutions is substantially the same. Further,
- th'epspring'cord may be made having 3, v4, 5 lor 6 separate insulated conductors therein over which there is a 'commoninsulating jacket.
- the 'spring cords are usually made in lengths of4 l ⁇ ef ⁇ :t,'51/2 ⁇ feet,9 feetor 13 feet.
- the amount of overtwist and removal of overtwistV will depend on the'particular type of spring cord which is being made at any one time. In order to determine the proper amount of overtwist and removal of overtwist, it will be necessary, depending on the type of machine utilized for performing those operations, to adjust it to give the proper number of overtwists and twist removals to provide a cord of maximum etciency and utility.
- the provement which comprises applying tension to the cord to hold the cord extended, and twisting the reversed cord to impart additional convolutions of the reversed direction thereto so that all of the convolutions are reduced in diameter and strains induced in the various components of the cord during the formation and reversal thereof are distributed substantially uniformly throughout the cord, whereby the convolutions remaining in the cord, when the cord is unrestrained, are of substantially uniform pitch, diameter and spacing.
- a spring cord which includes the steps of forming a straight length of a cord having an elastic jacket into a helical form, heat treating the thus-formed cord to set the cord in said helical form and then completely reversing the direction of the convolutions of the helically formed cord to enhance the retractibility thereof, the improvement which comprises applying tension to the cord to hold the cord extended, and twisting the reversed cord in a direction such as to impart additional convolutions ofthe reversed direction thereto so that all of the convolutions are reduced in diameter and strains induced in the various components of the cord during the formation and reversal thereof are distributed substantially uniformly throughout the cord, and then untwisting the cord by an amount suflicient to remove said additional convolutions, whereby the convolutions remaining in the cord when the cord is unrestrained are of substantially uniform pitch, diameter and spacing.
- a spring cord which includes the steps of forming a straight length of a cord having an elastic jacket into a tight helical form on a mandrel of a predetermined uniform diameter, heat treating the thus-formed cord to set the cord in said helical form, removing the helically formed cord from the mandrel and subsequently completely reversing the direction of the convolutions of the helically formed cord to enhance the retractibility thereof, the improvement which comprises applying longitudinal tic jacket and set in a helicallyI coiled form, which method comprises extending the coiled cord longitudinally, gripping the opposite ends of the coiled cord, twistingly rotating one end relative to the other on its own axis and in the same direction as the pitch of the helix while maintaining the coiled cord extended until the direction of all of the coils is reversed and the cord is recoiled in the opposite helical direction, and continuing the rotating step until additional convolutions of the reverse direction are imparted to the recoiled cord so that all of the
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Conductors (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE570721D BE570721A (en)) | 1957-08-29 | ||
US681035A US2920351A (en) | 1957-08-29 | 1957-08-29 | Method of making spring cords |
GB26324/58A GB865493A (en) | 1957-08-29 | 1958-08-15 | Improvements in or relating to spring electrical cords and methods of making them |
DEW23936A DE1125025B (de) | 1957-08-29 | 1958-08-19 | Verfahren zur Herstellung einer dehnbaren elektrischen Leitungsschnur |
JP2367258A JPS3611174B1 (en)) | 1957-08-29 | 1958-08-21 | |
FR1209654D FR1209654A (fr) | 1957-08-29 | 1958-08-25 | Câbles élastiques et leur procédé de fabrication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US681035A US2920351A (en) | 1957-08-29 | 1957-08-29 | Method of making spring cords |
Publications (1)
Publication Number | Publication Date |
---|---|
US2920351A true US2920351A (en) | 1960-01-12 |
Family
ID=24733529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US681035A Expired - Lifetime US2920351A (en) | 1957-08-29 | 1957-08-29 | Method of making spring cords |
Country Status (6)
Country | Link |
---|---|
US (1) | US2920351A (en)) |
JP (1) | JPS3611174B1 (en)) |
BE (1) | BE570721A (en)) |
DE (1) | DE1125025B (en)) |
FR (1) | FR1209654A (en)) |
GB (1) | GB865493A (en)) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3076244A (en) * | 1958-08-20 | 1963-02-05 | Velcro Sa Soulie | Device for connecting two flexible parts |
US3087199A (en) * | 1959-12-23 | 1963-04-30 | Western Electric Co | Method of and apparatus for reversing spring cords |
US3117344A (en) * | 1961-12-15 | 1964-01-14 | Carmer Ind Inc | Mold for making plastic coil with straight leads |
US3128518A (en) * | 1958-08-07 | 1964-04-14 | Wahl Brothers | Zipper |
US3184795A (en) * | 1962-04-20 | 1965-05-25 | Jr Alieyne C Howell | Continuous coil winding apparatus |
US3207827A (en) * | 1961-01-09 | 1965-09-21 | Itek Corp | Method of making helical article |
US3226767A (en) * | 1961-05-16 | 1966-01-04 | Whitney Blake Co | Apparatus for wire coiling |
US4313645A (en) * | 1980-05-13 | 1982-02-02 | Western Electric Company, Inc. | Telephone cord having braided outer jacket |
US4339298A (en) * | 1981-01-29 | 1982-07-13 | Western Electric Company, Inc. | Apparatus for insulating relatively flexible conductors |
USRE31197E (en) * | 1980-05-13 | 1983-04-05 | Western Electric Company, Inc. | Telephone cord having braided outer jacket |
US4425292A (en) | 1981-09-29 | 1984-01-10 | Western Electric Company, Inc. | Hybrid extrusion methods |
US4493747A (en) * | 1982-01-27 | 1985-01-15 | At&T Technologies, Inc. | Method for insulating conductors with a crystalline plastic material |
US4516922A (en) * | 1981-09-29 | 1985-05-14 | At&T Technologies, Inc. | Hybrid apparatus for insulating conductors |
US4551185A (en) * | 1983-02-15 | 1985-11-05 | At&T Technologies, Inc. | Methods of and apparatus for making retractile cords |
US20060032038A1 (en) * | 2004-08-13 | 2006-02-16 | Burkle Marie L | Phosphorescent power conducting device |
USD547143S1 (en) | 2005-12-07 | 2007-07-24 | Black & Decker Inc. | String trimmer |
USD548029S1 (en) | 2005-12-07 | 2007-08-07 | Black & Decker Inc. | String trimmer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1640772B1 (de) * | 1968-03-09 | 1971-03-11 | Kabel Metallwerke Ghh | Verfahren zum kontinuierlichen Herstellen einer dehnbaren,schraubenfoermig gewundenen elektrischen Leitung |
BE758127A (fr) * | 1969-12-23 | 1971-04-01 | Kabel Metallwerke Ghh | Cordon electrique extensible, enroule helicoidalement |
DE2517384C3 (de) * | 1975-04-19 | 1981-08-20 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zum Beschichten der Innenfläche eines Rundhohlleiters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2173096A (en) * | 1937-12-18 | 1939-09-19 | Ralph D Collins | Extensible cord |
US2248149A (en) * | 1939-10-27 | 1941-07-08 | Ralph D Collins | Winding device |
US2271057A (en) * | 1939-05-12 | 1942-01-27 | Western Electric Co | Retractile conductor cord and method of making such a cord |
US2478861A (en) * | 1945-09-06 | 1949-08-09 | Collins | Method of reversing elastic coil structures |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE899961C (de) * | 1937-03-26 | 1953-12-17 | Albert Werner Hollenweger | Verfahren und Vorrichtung zur Herstellung von leitenden dehnbaren Schnueren in Spiralform |
CH279746A (de) * | 1949-12-13 | 1951-12-15 | Werner Hollenweger Albert | Verfahren zur Herstellung dehnbarer elektrischer Leitungsschnüre, welche mindestens zum Teil die Gestalt einer schraubenlinienförmigen Wendel aufweisen. |
US2635292A (en) * | 1950-07-12 | 1953-04-21 | Western Electric Co | Method of removing spirally wound articles |
-
0
- BE BE570721D patent/BE570721A/xx unknown
-
1957
- 1957-08-29 US US681035A patent/US2920351A/en not_active Expired - Lifetime
-
1958
- 1958-08-15 GB GB26324/58A patent/GB865493A/en not_active Expired
- 1958-08-19 DE DEW23936A patent/DE1125025B/de active Pending
- 1958-08-21 JP JP2367258A patent/JPS3611174B1/ja active Pending
- 1958-08-25 FR FR1209654D patent/FR1209654A/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2173096A (en) * | 1937-12-18 | 1939-09-19 | Ralph D Collins | Extensible cord |
US2271057A (en) * | 1939-05-12 | 1942-01-27 | Western Electric Co | Retractile conductor cord and method of making such a cord |
US2248149A (en) * | 1939-10-27 | 1941-07-08 | Ralph D Collins | Winding device |
US2478861A (en) * | 1945-09-06 | 1949-08-09 | Collins | Method of reversing elastic coil structures |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3128518A (en) * | 1958-08-07 | 1964-04-14 | Wahl Brothers | Zipper |
US3076244A (en) * | 1958-08-20 | 1963-02-05 | Velcro Sa Soulie | Device for connecting two flexible parts |
US3087199A (en) * | 1959-12-23 | 1963-04-30 | Western Electric Co | Method of and apparatus for reversing spring cords |
US3207827A (en) * | 1961-01-09 | 1965-09-21 | Itek Corp | Method of making helical article |
US3226767A (en) * | 1961-05-16 | 1966-01-04 | Whitney Blake Co | Apparatus for wire coiling |
US3117344A (en) * | 1961-12-15 | 1964-01-14 | Carmer Ind Inc | Mold for making plastic coil with straight leads |
US3184795A (en) * | 1962-04-20 | 1965-05-25 | Jr Alieyne C Howell | Continuous coil winding apparatus |
USRE31197E (en) * | 1980-05-13 | 1983-04-05 | Western Electric Company, Inc. | Telephone cord having braided outer jacket |
US4313645A (en) * | 1980-05-13 | 1982-02-02 | Western Electric Company, Inc. | Telephone cord having braided outer jacket |
US4339298A (en) * | 1981-01-29 | 1982-07-13 | Western Electric Company, Inc. | Apparatus for insulating relatively flexible conductors |
US4425292A (en) | 1981-09-29 | 1984-01-10 | Western Electric Company, Inc. | Hybrid extrusion methods |
US4516922A (en) * | 1981-09-29 | 1985-05-14 | At&T Technologies, Inc. | Hybrid apparatus for insulating conductors |
US4493747A (en) * | 1982-01-27 | 1985-01-15 | At&T Technologies, Inc. | Method for insulating conductors with a crystalline plastic material |
US4551185A (en) * | 1983-02-15 | 1985-11-05 | At&T Technologies, Inc. | Methods of and apparatus for making retractile cords |
US20060032038A1 (en) * | 2004-08-13 | 2006-02-16 | Burkle Marie L | Phosphorescent power conducting device |
WO2006020804A3 (en) * | 2004-08-13 | 2006-05-18 | Autac Inc | A method of making a phosphorescent power conducting device |
USD547143S1 (en) | 2005-12-07 | 2007-07-24 | Black & Decker Inc. | String trimmer |
USD548029S1 (en) | 2005-12-07 | 2007-08-07 | Black & Decker Inc. | String trimmer |
Also Published As
Publication number | Publication date |
---|---|
BE570721A (en)) | |
JPS3611174B1 (en)) | 1961-07-21 |
GB865493A (en) | 1961-04-19 |
FR1209654A (fr) | 1960-03-03 |
DE1125025B (de) | 1962-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2920351A (en) | Method of making spring cords | |
US4473716A (en) | Compacted fine wire cable and method for producing same | |
US5182537A (en) | Transformer with twisted conductors | |
US3037068A (en) | Retractile tinsel cordage | |
US1970702A (en) | Flexible shafting and method of making same | |
US2452431A (en) | Production of vulcanizable elastic coil cables having reversingly coiled portions | |
DE1640233A1 (de) | Elektrisches Kabel und Verfahren zu dessen Herstellung | |
US2413715A (en) | Retractile cord | |
US2387099A (en) | Method of forming electromagnetic cores | |
US3318994A (en) | Retractile cord and method of making | |
US3271508A (en) | Communication cable | |
US4375012A (en) | Tapered retractile cords | |
US2271057A (en) | Retractile conductor cord and method of making such a cord | |
US2219182A (en) | Core winding arrangement | |
US3525208A (en) | Appliance for linear body | |
CN112466656A (zh) | 一种包含半匝结构的连续式绕组绕制方法 | |
US2697867A (en) | Electric cable | |
CN214672003U (zh) | 一种双工位自动铜线绞线机 | |
US2066201A (en) | Metal shielded wire | |
US2452433A (en) | Method and apparatus for making elastic coil cables with longitudinal ends | |
US3103453A (en) | Method of manufacturing aluminum | |
US1895400A (en) | Insulated conductor and method of making the same | |
US2827510A (en) | Electric cables for transformer leads and the like | |
JPH0231695Y2 (en)) | ||
CN201122467Y (zh) | 减少扇形绝缘线芯成缆废线的装置 |