US2879566A - Method of forming round metal filaments - Google Patents
Method of forming round metal filaments Download PDFInfo
- Publication number
- US2879566A US2879566A US565813A US56581356A US2879566A US 2879566 A US2879566 A US 2879566A US 565813 A US565813 A US 565813A US 56581356 A US56581356 A US 56581356A US 2879566 A US2879566 A US 2879566A
- Authority
- US
- United States
- Prior art keywords
- stream
- metal
- molten metal
- velocity
- jet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title description 78
- 239000002184 metal Substances 0.000 title description 78
- 238000000034 method Methods 0.000 title description 23
- 238000001125 extrusion Methods 0.000 description 18
- 239000000835 fiber Substances 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- -1 for example Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- KHOITXIGCFIULA-UHFFFAOYSA-N Alophen Chemical compound C1=CC(OC(=O)C)=CC=C1C(C=1N=CC=CC=1)C1=CC=C(OC(C)=O)C=C1 KHOITXIGCFIULA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/005—Continuous casting of metals, i.e. casting in indefinite lengths of wire
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/19—Inorganic fiber
Definitions
- This invention relates to a method of producing metal fibers and filaments.
- the principal purpose of the present invention is to provide a simple and novel method for the production of round filaments and fibers.
- This method involves extruding a continuous stream of molten metal and directing the stream into contact with a jet air or gas stream.
- an unconfined high velocity or jet gas stream may function as a solid body. It has been discovered that an unconfined high speed column of gas or jet gas stream may be utilized to support a continuous stream of molten metal until the molten metal has solidified.
- the jet stream of gas 1, such as air may be created by a sharp orifice 2 to which the gas is supplied by a suitable blower (not shown).
- the velocity of the gas at the point of discharge from the orifice may be as low as about 85 feet per second.
- the velocity utilized in any particular instance will be dependent more or less upon the density of the metal being converted into fibers or filaments and the degree of attenuation which it is desired to impart to the extruded metal, as will be explained hereinafter.
- the continuous stream of molten metal may be provided by various means, such as an ejector tube 3 mountedin close proximity to the nozzle and provided with a nozzle 4 having an extrusion orifice of the desired size.
- the ejector tube 3 communicates with a source of supply of the molten metal such as a reservoir 5 from which the flow of molten metal into the ejector tube may be regulated by valve 6.
- Pressure is applied to the molten metal so that it may be extruded from the ejector tube in the form of a continuous stream of molten metal 8 as by supplying gas under pressure through connature of product being produced.
- Patented Mar. 31, 1959 duit 7 which communicates with a source of the gas.
- the orifice size, extrusion temperature, velocity and pressure of the molten metal are all factors affecting the size and shape of the filament.
- the orifice was made of glass with an aperture of 1.1.. The metal was heated to a temperature of 100 above the melting point and was ejected at 75 feet per second with 8 pounds of pressure. Satisfactory filaments can be produced according to the present invention under these conditions.
- the metal may be extruded at a velocity of from about 10 feet per second to 100 feet per second depending upon the specific metal, the temperature of the molten metal and the type or
- the specific angle of contact between the molten metal stream and the jet gas stream is not particularly critical although it is preferred to extrude the molten metal at an acute angle with respect to the direction of movement of the air stream.
- the air stream merely supports the molten metal while it solidifies, and carries the solidified metal 9 a short distance before the pull of gravity on the metal overcomes the supporting force of the jet air stream.
- the filament 9 then begins to fall.
- the high velocity stream of air creates air currents in the ambient atmosphere and the filament will be carried by an air current although the filament is gradually settling.
- the filaments formed in accordance with this invention are substantially round.
- the stream of molten metal comes into contact with the high speed jet stream of gas, the molten metal is not disintegrated or atomized.
- the metal in some instances appears to be supported by the jet air stream and in other cases it appears that the metal just enters the top side of the air stream and is carried in this portion of the air stream without penetrating more than about one-fourth of the jet air stream.
- the velocity of the air stream must be increased with an increase in the density of the metal.
- the particular angle of extrusion with respect to the direction of the jet air stream is not critical and satisfactory filaments have been formed by extruding the molten metal stream at with respect to the jet air stream flow.
- the stream of metal immediately adjacent the jet air stream assumes an armate path as it contacts and just breaks through the surface of the jet air stream.
- the metal stream and filament are carried on or in the upper portion of the jet air stream for a distance of not over about three inches before the filament appears to deviate from a straight line.
- Fibers ofv a substantially circular cross-section may be prepared from non-refractory metals which do not oxidize readily in air at the temperatures required for extrusion. Satisfactory filaments and fibers of this type, for example, may be prepared from such metals as tin, lead, zinc and the like by extruding the molten metal at temperatures of from about 1 C. to about 50 C. above their melting points and at pressures sufficient to extrude the metal continuously at the rate of from about 50 feet per second to about 100 feet per second into a jet air stream having a velocity at the outlet of the jet of from about 85 feet per second to about 100 feet per second.
- the metal is either carried on the surface of the jet air stream or just in the jet air stream beneath the surface while it is being transformed from a liquid to a solid condition
- the metal of each stream, while it is molten and immediately after it is solidified, remains at its respective position in or on the jet air stream and will not come into contact with other molten metal streams or solidified filaments until after the filaments leave the jet air stream and are cooled to a point below that at which the metal or metals weld together.
- this invention is not limited to the production of filamentary bodies (fibers and filaments) of these metals but is applicable to other non-refractory metals such as, for example, iron and other ferrous metals, copper, aluminum, cadimum, bismuth, indium, magnesium and their alloys as well as other metals and alloys which do not readily oxidize in their molten conditions.
- the method of producing fibers and filaments which comprises establishing an unconfined jet gas stream, extrading a continuous stream of molten metal and directing the stream of molten metal into at least partial contact with the jet gas stream, the metal stream in a molten state penetrating not more than about one-fourth of the jet stream.
- the method of producing fibers and filaments which comprises establishing an unconfined jet gas stream, extruding a continuous stream of molten metal, directing the stream of molten metal into at least partial contact with the jet gas stream at such an angle that the metal stream in a molten state does not penetrate more than about one-fourth of the jet stream and carrying the stream of molten metal with the gas stream until the molten metal has been solidified.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Continuous Casting (AREA)
- Manufacture And Refinement Of Metals (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL101583D NL101583C (en)van) | 1956-02-16 | ||
US565813A US2879566A (en) | 1956-02-16 | 1956-02-16 | Method of forming round metal filaments |
GB37608/56A GB814490A (en) | 1956-02-16 | 1956-12-10 | Method of forming metal fibers and filaments |
FR1168246D FR1168246A (fr) | 1956-02-16 | 1956-12-21 | Procédés de fabrication de fibres et de filaments métalliques |
DEM32952A DE1114987B (de) | 1956-02-16 | 1957-01-18 | Verfahren zum Giessen von Metallfasern und -faeden |
CH341133D CH341133A (fr) | 1956-02-16 | 1957-01-19 | Procédé de fabrication d'un filament métallique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US565813A US2879566A (en) | 1956-02-16 | 1956-02-16 | Method of forming round metal filaments |
Publications (1)
Publication Number | Publication Date |
---|---|
US2879566A true US2879566A (en) | 1959-03-31 |
Family
ID=24260204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US565813A Expired - Lifetime US2879566A (en) | 1956-02-16 | 1956-02-16 | Method of forming round metal filaments |
Country Status (6)
Country | Link |
---|---|
US (1) | US2879566A (en)van) |
CH (1) | CH341133A (en)van) |
DE (1) | DE1114987B (en)van) |
FR (1) | FR1168246A (en)van) |
GB (1) | GB814490A (en)van) |
NL (1) | NL101583C (en)van) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3216076A (en) * | 1962-04-30 | 1965-11-09 | Clevite Corp | Extruding fibers having oxide skins |
US3218681A (en) * | 1961-04-10 | 1965-11-23 | Du Pont | Magnetic levitation support of running lengths |
US3461943A (en) * | 1966-10-17 | 1969-08-19 | United Aircraft Corp | Process for making filamentary materials |
US3476172A (en) * | 1966-02-08 | 1969-11-04 | Impact Casting Co Inc | Methods of die casting materials of relatively high melting temperatures |
US3645657A (en) * | 1969-07-02 | 1972-02-29 | Monsanto Co | Method and apparatus for improved extrusion of essentially inviscid jets |
US3720741A (en) * | 1969-10-03 | 1973-03-13 | Monsanto Co | Melt spinning process |
US3845805A (en) * | 1972-11-14 | 1974-11-05 | Allied Chem | Liquid quenching of free jet spun metal filaments |
US3861452A (en) * | 1971-05-10 | 1975-01-21 | Establissements Michelin Raiso | Manufacture of thin, continuous steel wires |
US3904381A (en) * | 1972-12-29 | 1975-09-09 | Monsanto Co | Cast metal wire of reduced porosity |
US4318440A (en) * | 1979-08-01 | 1982-03-09 | Compagnie Generale Des Etablissements Michelin | Process and installation for the manufacture of a metal wire from a jet of molten metal |
US4392072A (en) * | 1978-09-13 | 1983-07-05 | General Electric Company | Dynamoelectric machine stator having articulated amorphous metal components |
US4614221A (en) * | 1981-09-29 | 1986-09-30 | Unitika Ltd. | Method of manufacturing thin metal wire |
US5118270A (en) * | 1990-08-21 | 1992-06-02 | Automatik Apparate-Maschinenbau Gmbh | Device for cooling and granulating molten strands |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3844879C3 (de) * | 1987-12-28 | 1999-06-24 | Tanaka Electronics Ind | Supraleitervorrichtung mit einem Kontaktierdraht |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE46293C (de) * | SOCIETE HARMEL FRERES in Val de Bois bei Bazancourt, Marne, Frankreich | Wollfärbemaschine | ||
US279346A (en) * | 1883-06-12 | Bertjaxp | ||
US745786A (en) * | 1902-08-18 | 1903-12-01 | Albert L Cole | Machine for fibering metals. |
US1092934A (en) * | 1912-04-20 | 1914-04-14 | United Aluminum Ingot Company | Process for making extruded articles of metal or other material. |
US1592140A (en) * | 1924-08-22 | 1926-07-13 | Peake | Wire-spinning machine |
US2489242A (en) * | 1944-04-27 | 1949-11-22 | Owens Corning Fiberglass Corp | Method and apparatus for making fine glass fibers |
US2639490A (en) * | 1948-08-12 | 1953-05-26 | Joseph B Brennan | Formation of metal strip under controlled pressures |
US2717416A (en) * | 1951-03-07 | 1955-09-13 | Owens Corning Fiberglass Corp | Method and apparatus for producing fibers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR878023A (fr) * | 1939-01-24 | 1943-01-08 | Kohle Und Eisenforschung Gmbh | Procédé de coulée continue de pièces |
CH231742A (de) * | 1941-10-29 | 1944-04-15 | Thyssen Huette Ag | Vorrichtung zum ununterbrochenen Giessen von Strängen aus Stahl unter Benutzung eines Kühlbades. |
FR52095E (fr) * | 1942-03-30 | 1943-08-13 | Kohle Und Eisenforschung Gmbh | Procédé de coulée continue de pièces |
-
0
- NL NL101583D patent/NL101583C/xx active
-
1956
- 1956-02-16 US US565813A patent/US2879566A/en not_active Expired - Lifetime
- 1956-12-10 GB GB37608/56A patent/GB814490A/en not_active Expired
- 1956-12-21 FR FR1168246D patent/FR1168246A/fr not_active Expired
-
1957
- 1957-01-18 DE DEM32952A patent/DE1114987B/de active Pending
- 1957-01-19 CH CH341133D patent/CH341133A/fr unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE46293C (de) * | SOCIETE HARMEL FRERES in Val de Bois bei Bazancourt, Marne, Frankreich | Wollfärbemaschine | ||
US279346A (en) * | 1883-06-12 | Bertjaxp | ||
US745786A (en) * | 1902-08-18 | 1903-12-01 | Albert L Cole | Machine for fibering metals. |
US1092934A (en) * | 1912-04-20 | 1914-04-14 | United Aluminum Ingot Company | Process for making extruded articles of metal or other material. |
US1592140A (en) * | 1924-08-22 | 1926-07-13 | Peake | Wire-spinning machine |
US2489242A (en) * | 1944-04-27 | 1949-11-22 | Owens Corning Fiberglass Corp | Method and apparatus for making fine glass fibers |
US2639490A (en) * | 1948-08-12 | 1953-05-26 | Joseph B Brennan | Formation of metal strip under controlled pressures |
US2717416A (en) * | 1951-03-07 | 1955-09-13 | Owens Corning Fiberglass Corp | Method and apparatus for producing fibers |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218681A (en) * | 1961-04-10 | 1965-11-23 | Du Pont | Magnetic levitation support of running lengths |
US3216076A (en) * | 1962-04-30 | 1965-11-09 | Clevite Corp | Extruding fibers having oxide skins |
US3476172A (en) * | 1966-02-08 | 1969-11-04 | Impact Casting Co Inc | Methods of die casting materials of relatively high melting temperatures |
US3461943A (en) * | 1966-10-17 | 1969-08-19 | United Aircraft Corp | Process for making filamentary materials |
US3645657A (en) * | 1969-07-02 | 1972-02-29 | Monsanto Co | Method and apparatus for improved extrusion of essentially inviscid jets |
US3720741A (en) * | 1969-10-03 | 1973-03-13 | Monsanto Co | Melt spinning process |
US3861452A (en) * | 1971-05-10 | 1975-01-21 | Establissements Michelin Raiso | Manufacture of thin, continuous steel wires |
US3845805A (en) * | 1972-11-14 | 1974-11-05 | Allied Chem | Liquid quenching of free jet spun metal filaments |
US3904381A (en) * | 1972-12-29 | 1975-09-09 | Monsanto Co | Cast metal wire of reduced porosity |
US4392072A (en) * | 1978-09-13 | 1983-07-05 | General Electric Company | Dynamoelectric machine stator having articulated amorphous metal components |
US4318440A (en) * | 1979-08-01 | 1982-03-09 | Compagnie Generale Des Etablissements Michelin | Process and installation for the manufacture of a metal wire from a jet of molten metal |
US4614221A (en) * | 1981-09-29 | 1986-09-30 | Unitika Ltd. | Method of manufacturing thin metal wire |
US5118270A (en) * | 1990-08-21 | 1992-06-02 | Automatik Apparate-Maschinenbau Gmbh | Device for cooling and granulating molten strands |
Also Published As
Publication number | Publication date |
---|---|
FR1168246A (fr) | 1958-12-05 |
CH341133A (fr) | 1959-09-30 |
GB814490A (en) | 1959-06-03 |
DE1114987B (de) | 1961-10-12 |
NL101583C (en)van) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2879566A (en) | Method of forming round metal filaments | |
US3357808A (en) | Method of preparing fibers from a viscous melt | |
US4619597A (en) | Apparatus for melt atomization with a concave melt nozzle for gas deflection | |
US2900708A (en) | Apparatus for producing alloy and bimetallic filaments | |
US5015438A (en) | Extrusion of metals | |
US4801412A (en) | Method for melt atomization with reduced flow gas | |
US3719733A (en) | Method for producing spherical particles having a narrow size distribution | |
US3771929A (en) | Means for continuously cooling powder produced by granulating a molten material | |
US4474604A (en) | Method of producing high-grade metal or alloy powder | |
US20040124270A1 (en) | Method and apparatus for atomising liquid media | |
US3812901A (en) | Method of producing continuous filaments using a rotating heat-extracting member | |
JPS5942586B2 (ja) | 金属の連続ストリップ製造装置 | |
NO124072B (en)van) | ||
US2907082A (en) | Production of continuous filaments of high vapor pressure metals | |
JPS6061144A (ja) | 溶融金属から金属ストリップを製造する方法 | |
US4818279A (en) | Method and device for the granulation of a molten material | |
US5015439A (en) | Extrusion of metals | |
US3645657A (en) | Method and apparatus for improved extrusion of essentially inviscid jets | |
US4971133A (en) | Method to reduce porosity in a spray cast deposit | |
US2156316A (en) | Apparatus for making fibrous materials | |
JP2703378B2 (ja) | 液体を好ましくは溶融物を微小噴霧化するための方法及び装置 | |
US3246982A (en) | Method of making a solid length of aluminous metal | |
US3141767A (en) | Steel casting process and apparatus | |
US3995679A (en) | Continuous casting apparatus, and a method of casting | |
EP0149027A2 (de) | Verfahren und Vorrichtung zur Herstellung von kugelförmigen metallischen Partikeln |