US2864698A - Titanium base aluminum-tantalumcolumbium alloys - Google Patents
Titanium base aluminum-tantalumcolumbium alloys Download PDFInfo
- Publication number
- US2864698A US2864698A US592277A US59227756A US2864698A US 2864698 A US2864698 A US 2864698A US 592277 A US592277 A US 592277A US 59227756 A US59227756 A US 59227756A US 2864698 A US2864698 A US 2864698A
- Authority
- US
- United States
- Prior art keywords
- alloys
- titanium
- aluminum
- columbium
- tantalum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- the invention relates to titanium base alloys and more particularly to quaternary titanium base alloys containing aluminum, tantalum and columbium. More particularly the invention relates to a titanium sheet alloy which is Weldable and has a minimum yield strength as annealed of 110,000 p. s. i. with satisfactory ductility.
- Certain prior'aluminum-Vanadium-titanium alloys have favorable high temperature properties and can be fabricated readily but they are not readily Weldable particularly in sheet material. Certain prior aluminum-tintitanium alloys are Weldable and may be formed but are ditlicult to manufacture in sheet form and they do not have the room temperature and high temperature strength below 1000 F. of the aluminum-vanadium-titanium alloys.
- alloys of the present invention have a 10,000 p. s. i. better room temperature yield strength, with this advantage stillmaintained at 1000 F., than prior aluminum-tin-titaniurn alloys. That is to say, alloys of the present invention have a 120,000 p. s. i. minimum yield strength at room temperature and a 67,000 p. s. i. minimum yield strength at 1000 F. with comparable bend and tensile ductility and better impact strength than prior aluminum-tin-titanium alloys.
- the improved alloys of the present invention have weldability comparable to the prior aluminum-tin alloy.
- the improved alloys of the present invention can be forged or rolled and sheet material can be manufactured therefrom .with less difficulty than the considerable difficulty heretofore experienced in rolling titanium alloys which are weldable.
- the alloys of the present invention may be prepared from either commercial titanium or high purity titanium. Where prepared fromcommercial titanium, a typical analysis of the material, in addition to titanium, aluminum, tantalum and columbium, is 0.02% C, 0.01% N 0.10% 0 and 0.005% H However, the invention is not restricted to the use of material having the typical interstitial level indicated, as the level may be of the order of 0.06% C, 0.03% N 0.15% 0 and 0.02% to 0.024% H In other words, presently available sponge having a sponge hardness of 120 BHN is suitable. The sponge hardness may range from BHN to 150 BHN. in examples given below, titanium sponge having a typical interstitial level of BHN was used.
- the titanium is preferably melted by the electric arc process in a Water-cooled copper crucible in an atmosphere such as argon and the alloy elements are added to the melt either by the addition of aluminum and alloys of tantalum and columbium or by the addition of 'an alloy of aluminum, tantalum and columbium.
- the alloys of the present invention comprise from 5% to 9% aluminum, and from 1% to 5% a combination of tantalum and columbium.
- the tantalum and columbium content may be in the ratio of from 2 tantalum to 1 columbium to a ratio of l tantalum to 2 columbium.
- preferred alloys of the present invention may comprise 7% aluminum, and 5% tantalum and columbium or 8% aluminum and 3% tantalum and columbium, preferably in the range of ratios between 1 to 2 or 2 to 1 tantalum and columbium.
- the alloys of the present invention after melting and casting may be processed in the usual manner and forged or rolled to form the desired semi-finished or finished product.
- ingots of the improved quaternary alloys may be forged or bloomed to slab form, hot rolled to sheet bar, and the sheet bar may be rolled to form finished sheets, say, .020 to .090" thick.
- the bend graph of Figure 3 shows good formability for the material over the entire range and with little change over the entire range of from 1% to 5% combined tantalum and columbium.
- the addition of 1% or more combined tantalum and columbium substantially improves the ductility of a titanium aluminum alloy, which is a characteristic very much to be desired, as high aluminum titanium alloys in the range, say, of 6% to 8% aluminum normally are embrittled by the aluminum content thereof.
- the alloys of the present invention are characterized by good formability, good ductility, high strength at room temperature and elevated temperatures, weldability and ease of manufacture.
- An alloy of aluminum tantalum and columbium has a lower melting point than the melting point of either tantalum or columbium alone. This characteristic facilitates melting and alloying of an aluminum-tantalumcolumbium alloy with titanium and in producing a homogeneous product without segregation of tantalum or columbium in the melt. Such segregation, if present, could. embrittle the material. Further the cost of the aluminum-tantalum-columbium alloy used is substantially less than the cost of an equivalent amount of these elements if used in the pure form.
- alloys of the present invention have been described particularly as sheet alloys, the use of the same is not limited to the manufacture of sheet material as the desirable properties can be availed of in other kinds of semi-finished or finished titanium alloy products, such as bars.
- compositions usually are close to the nominal or intended composition but may vary slightly either way from the intended values, depending upon the ability to control the exact amount of alloying additions made. Also where percentages are given, percent by weight is intended.
- the improved quaternary titanium base aluminum-rantalum-columbium alloys surpass the elevated temperature strength of prior 6 Al-4 V alloys at 1000 F. Further, the strength of the improved alloys of the present invention at room temperature may be increased by the addition of larger amounts of aluminum or of: combined tantalum and columbium while the strength at elevated temperatures may be increased by the addition of greater amounts of aluminum.
- the alloys of the present invention accordingly provide quaternary titanium alloys which are easier to make than other weldable alloys, which have high temperature properties and ease of fabricability of one known prior titanium alloy, along with the formability and weldability of another known titanium alloy, which combination of properties heretofore was not obtainable in any known titanium alloy.
- a weld-able titanium base alloy consisting of 5% to 9% aluminum, 33% to 3.33% tantalum, 33% to 3.33%
- a weldable titanium base alloy consisting of 5% to 9% aluminum, 1% to 5% combined tantalum and columbium in the range of ratios between 1 to 2 and 2 to 1 tantalum and columbium and the balance titanium with incidental impurities.
- a weldable titanium base alloy consisting of 7% aluminum, 1.7% tantalum, 3.4% columbium, the balance titanium with incidental impurities; and said alloy 10 having as-annealed, a yield strength of 124,400 p. s. i. and elongation of 12.7%.
- a weldable titanium base alloy consisting of 7% aluminum, 1% tantalum, 2% columbium, the balance titanium with incidental impurities; and said alloy having as-annealed, a yield strength of 110,000 p. s. i. and elongation of 15.7%.
- a weldable titanium base alloy consisting of 7% aluminum, .3% tantalum, .7% columbium, the balance titanium with incidental impurities; and said alloy having as-annealed, a yield strength of 100,800 p. s. i. and elongation of 18.1%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Heat Treatment Of Steel (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US592277A US2864698A (en) | 1956-06-19 | 1956-06-19 | Titanium base aluminum-tantalumcolumbium alloys |
DEM34474A DE1135670B (de) | 1956-06-19 | 1957-06-14 | Verwendung von verguetbaren Ti-Al-V-Fe-Legierungen als Werkstoff zur Herstellung von Blechen und anderen Walzwerkserzeugnissen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US592277A US2864698A (en) | 1956-06-19 | 1956-06-19 | Titanium base aluminum-tantalumcolumbium alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US2864698A true US2864698A (en) | 1958-12-16 |
Family
ID=24370037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US592277A Expired - Lifetime US2864698A (en) | 1956-06-19 | 1956-06-19 | Titanium base aluminum-tantalumcolumbium alloys |
Country Status (2)
Country | Link |
---|---|
US (1) | US2864698A (de) |
DE (1) | DE1135670B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3370946A (en) * | 1965-09-21 | 1968-02-27 | Reactive Metals Inc | Titanium alloy |
CN113293325A (zh) * | 2021-05-27 | 2021-08-24 | 西北有色金属研究院 | 一种高强Ti185合金的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2754204A (en) * | 1954-12-31 | 1956-07-10 | Rem Cru Titanium Inc | Titanium base alloys |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1094616A (de) * | 1955-05-23 |
-
1956
- 1956-06-19 US US592277A patent/US2864698A/en not_active Expired - Lifetime
-
1957
- 1957-06-14 DE DEM34474A patent/DE1135670B/de active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2754204A (en) * | 1954-12-31 | 1956-07-10 | Rem Cru Titanium Inc | Titanium base alloys |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3370946A (en) * | 1965-09-21 | 1968-02-27 | Reactive Metals Inc | Titanium alloy |
CN113293325A (zh) * | 2021-05-27 | 2021-08-24 | 西北有色金属研究院 | 一种高强Ti185合金的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE1135670B (de) | 1962-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2819959A (en) | Titanium base vanadium-iron-aluminum alloys | |
US5462712A (en) | High strength Al-Cu-Li-Zn-Mg alloys | |
US3615378A (en) | Metastable beta titanium-base alloy | |
US4772342A (en) | Wrought Al/Cu/Mg-type aluminum alloy of high strength in the temperature range between 0 and 250 degrees C. | |
US4043807A (en) | Alloy steels | |
US2892706A (en) | Titanium base alloys | |
US4093474A (en) | Method for preparing aluminum alloys possessing improved resistance weldability | |
US4062704A (en) | Aluminum alloys possessing improved resistance weldability | |
JPH0440418B2 (de) | ||
JPS63171862A (ja) | TiA1基耐熱合金の製造方法 | |
US3514284A (en) | Age hardenable nickel-iron alloy for cryogenic service | |
US2985530A (en) | Metallurgy | |
US3297437A (en) | Copper base alloys containing manganese and aluminium | |
US2864698A (en) | Titanium base aluminum-tantalumcolumbium alloys | |
EP0476043B1 (de) | Legierung auf der basis von nickel-aluminium für konstruktive anwendung bei hoher temperatur | |
US2880089A (en) | Titanium base alloys | |
JPH02173234A (ja) | 超塑性加工性に優れたチタン合金 | |
US3343951A (en) | Titanium base alloy | |
US2864697A (en) | Titanium-vanadium-aluminum alloys | |
US3595645A (en) | Heat treatable beta titanium base alloy and processing thereof | |
US3243290A (en) | Tantalum base alloy | |
US3249429A (en) | Tantalum brazing alloy | |
US2675309A (en) | Titanium base alloys with aluminum and manganese | |
US2864699A (en) | Titanium base alpha aluminumcolumbium-tantalum alloy | |
US3061427A (en) | Alloy of titanium |