US2855368A - Method of producing a non-vaporizing getter - Google Patents
Method of producing a non-vaporizing getter Download PDFInfo
- Publication number
- US2855368A US2855368A US455752A US45575254A US2855368A US 2855368 A US2855368 A US 2855368A US 455752 A US455752 A US 455752A US 45575254 A US45575254 A US 45575254A US 2855368 A US2855368 A US 2855368A
- Authority
- US
- United States
- Prior art keywords
- vaporizing
- gas
- getter
- sintering
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 17
- 230000008016 vaporization Effects 0.000 title claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 18
- 229910052726 zirconium Inorganic materials 0.000 claims description 17
- 238000005245 sintering Methods 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 8
- 230000001427 coherent effect Effects 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 8
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 7
- 229910052776 Thorium Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- -1 TITANINUM Chemical compound 0.000 claims 1
- 239000002250 absorbent Substances 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 7
- 239000003870 refractory metal Substances 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- 235000010603 pastilles Nutrition 0.000 description 4
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- RBZGEUJLKTVORU-UHFFFAOYSA-N 12014-84-5 Chemical compound [Ce]#[Si] RBZGEUJLKTVORU-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000568 zirconium hydride Inorganic materials 0.000 description 2
- 229910000636 Ce alloy Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical class [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- QSGNKXDSTRDWKA-UHFFFAOYSA-N zirconium dihydride Chemical compound [ZrH2] QSGNKXDSTRDWKA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J7/00—Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
- H01J7/14—Means for obtaining or maintaining the desired pressure within the vessel
- H01J7/18—Means for absorbing or adsorbing gas, e.g. by gettering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/02—Details
- H01J17/22—Means for obtaining or maintaining the desired pressure within the tube
- H01J17/24—Means for absorbing or adsorbing gas, e.g. by gettering
Definitions
- the invention consists of one or more refractory metals capable of forming non-gaseous hydrides, such as zirconium, thorium, titanium, tantalum, niobium and vanadium. Furthermore the invention relates to a getter produced by carrying out this method.
- the gas-absorbing constituent of which entirely or substantially consists of one or more refractory metals capable offorming non-gaseous-hydrides, such as zirconium, thorium, titanium, tantalum, niobium and vanadium the powdered gas-absorbing metal is mixed and compressed with one or more of the following non-vaporizing likewise powdered elements, which may or may not be alloyed with one another, aluminum, silicon, beryllium, cerium, lanthanum and cerium mixed metal, after which the compressed mass is arranged in a discharge tube or vacuum vessel and activated by heating.
- the surface layers on the gas-binding metal are reduced entirely or in part, or the additional element exhibits a chemical or physical interaction with the closing layers such as to enable the subjacent refractory metal to exercise its gas-absorption efiect.
- the heating temperature required is not as high as if the oxide should be caused to diffuse inwards, in which case the refractory metal also sinters to compactn'ess with the result that the free surface is reduced and the gas-absorption effect is again adversely 'afiecte'd.
- this metal powder cannot be degassed without sintering to compactness, as is the case with powdered zirconium, it is possible to mix this metal powder with some other refractory metal powder which may not absorb gas, such as powdered tungsten, in which case sintering to compactness does not occur to the same extent and the "degassed product can readily be worked into powder.
- a further metal which at a high temperature binds the added element, for example nickel, iron or titanium.
- a further metal which at a high temperature binds the added element, for example nickel, iron or titanium.
- the accessibility of the fine grains of the gas-absorbing metal can be improved while due to the liberated reaction heat the activation is accelerated.
- the refractory gas-absorbing metal powder it is also possible to start with the hydride which due to the heating process is already decomposed before the activation temperature is reached. If the refractory metal and the additional metal are capable of forming an alloy, this may contribute in some cases to the gas-absorption efiect. It will be appreciated that, if titanium is used as gas-absorbing metal, the additional metal should not be titanium also.
- Example II Thorium and cerium silicon (Th and ICeSi) are mixed at a weight ratio of 3:1 and in the manner described hereinbefore worked into a pastille. In this case also, the
- pulverulent metal selected from the group consisting of nickel, iron and titanium to form a coherent mass, mounting said mass within a vessel, and then activating said mass for the first, time While within saidvessel by subjecting it to heat without sintering or vaporizing it.
- Example I V Non-degassed powdered'zirconium is mixed'with pow dered aluminum and powdered nickel at a weight ratio of 3 :1 :2 and the mixture is compressed into apastille, which is mounted as getter in a discharge tube. After heating to 700 C. the aluminum activates the zirconium but also reacts with the nickel 'so that a spongy skeleton of an aluminum-nickel alloy is produced containing activated zirconium grains which are held by the skeleton,
- the nickel may also be added in the form of nickel titanium-Ni Ti, which is not magnetic.
- Example V If in the preceding example degassed powdered zirconium and tungsten are used instead of the non-degassed zirconium, the quantity by weight of the tungsten being one and a half times that of the zirconium, a satisfactory getter is also obtained.
- the mixing ratio ZrW- A1Ni is 3:4:5:1:2. This is also the case if tantalum is used as an alternative to tungsten.
- a method of producing a non-vaporizing getter comprising mixing and compressing without sintering
- pulverulent gas-absorbing thorium and pulverulent cerium-silicon in a weightratio of about 3:1 to form a coherent body mounting saidbody within a discharge tube, and activating said body by subjecting the same to an elevated temperature without sintering or vaporizing it.
- Amethod of producing anon-vaporizing getter comprising mixing and compressing without sintering pulverulent gas-absorbing Zirconium and pulverulent titanium-aluminum to form a, coherent body, mounting said body within a discharge tube, and activating said body by subjecting the same to an elevated temperature without'sinteringor vaporizing it.
- a method of producing a non-vaporizing getter comprising mixing and compressing without sintering pulverulent gas-absorbing zirconium, pulverulent aluminum and pulverulent nickel to form a coherent body, mounting said body within a discharge tube, and activating said body by subjecting thesame to an elevated temperature without sintering or vaporizing it.
Landscapes
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL2855368X | 1953-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2855368A true US2855368A (en) | 1958-10-07 |
Family
ID=19876032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US455752A Expired - Lifetime US2855368A (en) | 1953-09-30 | 1954-09-13 | Method of producing a non-vaporizing getter |
Country Status (2)
Country | Link |
---|---|
US (1) | US2855368A (en)van) |
BE (1) | BE532147A (en)van) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3007816A (en) * | 1958-07-28 | 1961-11-07 | Motorola Inc | Decontamination process |
US3082174A (en) * | 1959-11-17 | 1963-03-19 | North American Phillips Compan | Method of manufacturing a non-evaporating getter and getter made by this method |
US3187885A (en) * | 1961-11-21 | 1965-06-08 | Philips Corp | Getter |
US3203901A (en) * | 1962-02-15 | 1965-08-31 | Porta Paolo Della | Method of manufacturing zirconiumaluminum alloy getters |
US3259490A (en) * | 1963-05-07 | 1966-07-05 | Motorola Inc | Gettering in semiconductor devices |
US3408130A (en) * | 1966-01-08 | 1968-10-29 | Philips Corp | Nonevaporative getter |
US3525009A (en) * | 1968-02-05 | 1970-08-18 | Tokyo Shibaura Electric Co | Low pressure mercury vapour discharge lamp including an alloy type getter coating |
US3584253A (en) * | 1968-04-01 | 1971-06-08 | Siemens Ag | Getter structure for electrical discharge and method of making the same |
DE2340102A1 (de) * | 1972-08-10 | 1974-02-21 | Getters Spa | Gettervorrichtung und -material |
DE2361532A1 (de) * | 1972-12-14 | 1974-06-27 | Getters Spa | Gettervorrichtung und verfahren zu deren herstellung |
US4297082A (en) * | 1979-11-21 | 1981-10-27 | Hughes Aircraft Company | Vacuum gettering arrangement |
US4382646A (en) * | 1980-11-13 | 1983-05-10 | Radcal Corporation | Method for removing gases caused by out-gassing in a vacuum vessel |
DE3235681A1 (de) * | 1981-11-02 | 1983-05-11 | Maja Feodos'evna Bojarina | Nichtverdampfbarer getter |
US4428856A (en) | 1982-09-30 | 1984-01-31 | Boyarina Maya F | Non-evaporable getter |
US6139390A (en) * | 1996-12-12 | 2000-10-31 | Candescent Technologies Corporation | Local energy activation of getter typically in environment below room pressure |
US6194830B1 (en) | 1996-12-12 | 2001-02-27 | Candescent Technologies Corporation | Multi-compartment getter-containing flat-panel device |
US20030122485A1 (en) * | 2001-12-28 | 2003-07-03 | Fujitsu Limited | Gas discharge tube |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1663561A (en) * | 1927-03-03 | 1928-03-27 | Westinghouse Lamp Co | Electron-discharge device |
US1958967A (en) * | 1931-10-22 | 1934-05-15 | Allg Elek Tatz Ges | Electron discharge tube and method of making same |
US2018965A (en) * | 1933-11-10 | 1935-10-29 | Kemet Lab Co Inc | Clean-up agent |
US2362468A (en) * | 1941-09-27 | 1944-11-14 | Fansteel Metallurgical Corp | Getter |
US2368060A (en) * | 1942-01-01 | 1945-01-23 | Bell Telephone Labor Inc | Coating of electron discharge device parts |
US2444158A (en) * | 1944-07-31 | 1948-06-29 | Fansteel Metallurgical Corp | Thermionic device and getter elements therefor |
US2449786A (en) * | 1943-03-05 | 1948-09-21 | Westinghouse Electric Corp | Getter |
-
0
- BE BE532147D patent/BE532147A/xx unknown
-
1954
- 1954-09-13 US US455752A patent/US2855368A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1663561A (en) * | 1927-03-03 | 1928-03-27 | Westinghouse Lamp Co | Electron-discharge device |
US1958967A (en) * | 1931-10-22 | 1934-05-15 | Allg Elek Tatz Ges | Electron discharge tube and method of making same |
US2018965A (en) * | 1933-11-10 | 1935-10-29 | Kemet Lab Co Inc | Clean-up agent |
US2362468A (en) * | 1941-09-27 | 1944-11-14 | Fansteel Metallurgical Corp | Getter |
US2368060A (en) * | 1942-01-01 | 1945-01-23 | Bell Telephone Labor Inc | Coating of electron discharge device parts |
US2449786A (en) * | 1943-03-05 | 1948-09-21 | Westinghouse Electric Corp | Getter |
US2444158A (en) * | 1944-07-31 | 1948-06-29 | Fansteel Metallurgical Corp | Thermionic device and getter elements therefor |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3007816A (en) * | 1958-07-28 | 1961-11-07 | Motorola Inc | Decontamination process |
US3082174A (en) * | 1959-11-17 | 1963-03-19 | North American Phillips Compan | Method of manufacturing a non-evaporating getter and getter made by this method |
US3187885A (en) * | 1961-11-21 | 1965-06-08 | Philips Corp | Getter |
US3203901A (en) * | 1962-02-15 | 1965-08-31 | Porta Paolo Della | Method of manufacturing zirconiumaluminum alloy getters |
US3259490A (en) * | 1963-05-07 | 1966-07-05 | Motorola Inc | Gettering in semiconductor devices |
US3408130A (en) * | 1966-01-08 | 1968-10-29 | Philips Corp | Nonevaporative getter |
US3525009A (en) * | 1968-02-05 | 1970-08-18 | Tokyo Shibaura Electric Co | Low pressure mercury vapour discharge lamp including an alloy type getter coating |
US3584253A (en) * | 1968-04-01 | 1971-06-08 | Siemens Ag | Getter structure for electrical discharge and method of making the same |
DE2340102A1 (de) * | 1972-08-10 | 1974-02-21 | Getters Spa | Gettervorrichtung und -material |
US3926832A (en) * | 1972-08-10 | 1975-12-16 | Getters Spa | Gettering structure |
DE2361532A1 (de) * | 1972-12-14 | 1974-06-27 | Getters Spa | Gettervorrichtung und verfahren zu deren herstellung |
US4297082A (en) * | 1979-11-21 | 1981-10-27 | Hughes Aircraft Company | Vacuum gettering arrangement |
US4382646A (en) * | 1980-11-13 | 1983-05-10 | Radcal Corporation | Method for removing gases caused by out-gassing in a vacuum vessel |
DE3235681A1 (de) * | 1981-11-02 | 1983-05-11 | Maja Feodos'evna Bojarina | Nichtverdampfbarer getter |
US4428856A (en) | 1982-09-30 | 1984-01-31 | Boyarina Maya F | Non-evaporable getter |
US6139390A (en) * | 1996-12-12 | 2000-10-31 | Candescent Technologies Corporation | Local energy activation of getter typically in environment below room pressure |
US6194830B1 (en) | 1996-12-12 | 2001-02-27 | Candescent Technologies Corporation | Multi-compartment getter-containing flat-panel device |
US20030122485A1 (en) * | 2001-12-28 | 2003-07-03 | Fujitsu Limited | Gas discharge tube |
US7049748B2 (en) * | 2001-12-28 | 2006-05-23 | Fujitsu Limited | Display device employing gas discharge tubes arranged in parallel between front and rear substrates to comprise a display screen, each tube having a light emitting section as part of the display screen and a cleaning section connected to the light emitting section but displaced from the display screen |
Also Published As
Publication number | Publication date |
---|---|
BE532147A (en)van) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2855368A (en) | Method of producing a non-vaporizing getter | |
US3203901A (en) | Method of manufacturing zirconiumaluminum alloy getters | |
RU2147386C1 (ru) | Композиция из веществ для низкотемпературного инициирования процесса активирования газопоглощающих веществ и содержащие ее газопоглощающие средства | |
JP2785119B2 (ja) | 高多孔質非蒸発性ゲッター材料とその製造方法 | |
US2380997A (en) | Contact masses | |
US3584253A (en) | Getter structure for electrical discharge and method of making the same | |
US1958967A (en) | Electron discharge tube and method of making same | |
US1728941A (en) | Production of rare metals | |
JP2014520207A (ja) | 水素蓄蔵のためのニッケル合金及びそこからのエネルギーの発生 | |
RU2388839C2 (ru) | Неиспаряющиеся газопоглотительные сплавы для сорбции водорода | |
GB755804A (en) | Improvements in or relating to methods of producing getters | |
US3116146A (en) | Method for sintering tungsten powder | |
US1893296A (en) | Preparation of metal phosphides | |
US3275564A (en) | Process of fabrication of sintered compounds based on uranium and plutonium | |
JPH0215619B2 (en)van) | ||
US3385644A (en) | Process for filling with mercury discharge tubes and for absorbing residual noxious gases | |
US3408130A (en) | Nonevaporative getter | |
US2029144A (en) | Electric discharge device or vacuum tube | |
US3766082A (en) | Sintering of compacts of un,(u,pu)n, and pun | |
US2952535A (en) | Sintering metal oxides | |
US3401296A (en) | Mercury vapor generating means for discharge tubes | |
US3082174A (en) | Method of manufacturing a non-evaporating getter and getter made by this method | |
US3236631A (en) | Process for the manufacture of ductile metals in a finely-divided form | |
US3105290A (en) | Cathode for electron discharge device | |
US3600334A (en) | Thoriated cathodes and method for making the same |