US2813043A - Heat-sensitive copying-paper - Google Patents
Heat-sensitive copying-paper Download PDFInfo
- Publication number
- US2813043A US2813043A US497171A US49717155A US2813043A US 2813043 A US2813043 A US 2813043A US 497171 A US497171 A US 497171A US 49717155 A US49717155 A US 49717155A US 2813043 A US2813043 A US 2813043A
- Authority
- US
- United States
- Prior art keywords
- heat
- paper
- coating
- copying
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 239000000123 paper Substances 0.000 description 27
- 239000010410 layer Substances 0.000 description 17
- 230000005855 radiation Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000000049 pigment Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000011253 protective coating Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- XHQSLVIGPHXVAK-UHFFFAOYSA-K iron(3+);octadecanoate Chemical compound [Fe+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XHQSLVIGPHXVAK-UHFFFAOYSA-K 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- MFEVGQHCNVXMER-UHFFFAOYSA-L 1,3,2$l^{2}-dioxaplumbetan-4-one Chemical compound [Pb+2].[O-]C([O-])=O MFEVGQHCNVXMER-UHFFFAOYSA-L 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 229910000003 Lead carbonate Inorganic materials 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 241001147416 Ursus maritimus Species 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960004011 methenamine Drugs 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000011088 parchment paper Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/42—Intermediate, backcoat, or covering layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/42—Intermediate, backcoat, or covering layers
- B41M5/426—Intermediate, backcoat, or covering layers characterised by inorganic compounds, e.g. metals, metal salts, metal complexes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/42—Intermediate, backcoat, or covering layers
- B41M5/44—Intermediate, backcoat, or covering layers characterised by the macromolecular compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/913—Material designed to be responsive to temperature, light, moisture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/165—Thermal imaging composition
Definitions
- HEAT-SENSITIVE COPYING-PAPER Filed larch 28, 1955 .1- ⁇ i ⁇ /6 s esY///////smq// /Z 7- I N VEN r02 BRYCE L. CLARK 6 I V ATTOP/VEY5 United States Patent Office 2,813,043 Patented Nov. 12, 1957 HEAT-SENSITIVE COPYDIG-PAPER Bryce L. Clark, White Bear Lake, Minn., assignor to Minnesota Mining & Manufacturing Company, St. Paul, Minn, a corporation of Delaware Application March 28, 1955, Serial No. 497,171
- This invention relates to novel duplicator sheet material in the nature of copying-paper useful in preparing copies of printed matter or the like by ther'mographic copyingmethods.
- the copying-method employed involves intensive irradiation of the printed original with radiant energy which is preferentially absorbed and converted to heat energy by the printed or colored areas of the original, and utilization of the heat-pattern thus formed in bringing about a corresponding visible change in a heat-sensitive duplicator sheet material.
- the method is adapted to the reproduction of typewritten or printed material, penciled notes or sketches, pictures, drawings, and other graphic subjectmatter; the significant requirement being the selective absorption and conversion to heat of the intense radiant energy in the areas of the printed surface delineating the subject-matter to be reproduced.
- the present invention provides a heatsensitive copyingpaper in which the chemically reactive heat-sensitive layer is enclosed between a transparent carrier sheet and a visibly opaque outer protective coating.
- a sheet material having high sensitivity in the copying-process while being highly resistant to abrasion and moisture vapor and providing for copies of greatly improved contrast.
- the copying-paper of the present invention is well adapted to the reproduction of printed pages of books, typewritten letters, etc. by back-printing.
- the copying-paper is held with the transparent carrier sheet in heat-conductive contact with the reverse surface of the thin printed original.
- Suitably irradiating the printed surface then causes the formation of a duplicate visible image in the heat-sensitive layer of the copyingpaper, which is viewed through the transparent carrier.
- My novel copying-paper is also well adapted to frontprinting operations.
- the copying-paper is held against the printed surface, with the visibly opaque protective coating in heat-conductive contact therewith, and the radiant energy is applied through the copyingpaper.
- the sheet must permit the passage of the radiant energy employed, without darkening or other deleterious effects. Since the heat evolved at the irradiated printed surface need penetrate only the thin protective coating of the copying-paper rather than the paper or other backing of the graphic original, the front-printing process is particularly well adapted to the reproduction of originals printed on thick paper or on other carriers having poor heat transfer properties.
- the front-printing process is i lustrated schematically in the accompanying drawing, showing in perspective a portion of a sheet of copying-paper 10 in isolated heatconductive contact with the printed surface of the printed original 12 having radiation-absorptive printed areas 13 on a substantially less radiation-absorptive background surface 14.
- the copying-paper consists of a thin transparent carrier sheet 15, a visibly heat-sensitive chemically reactive layer 16, and a visibly opaque surface layer 17.
- the copying-paper is held in heat-conductive pressurecontact with the surface of the original.
- the copyingpaper transmits the radiation from source 13 to the surface of the original.
- Radiation falling on the unprinted and non-absorptive area 14 is diffused, reflected or transmitted unchanged, Whereas radiation falling on the printed areas 13 is absorbed and converted to heat energy.
- the heat evolved flows through the interface to the heatsensitive layer 16 where it makes possible a chemical reaction between the chemically reactive components of such layer, resulting in the formation of the visible reproduction 1) of the original printed character 13, here indicated to be the letter M.
- the reproduction is visible through the transparent carrier layer 15 and exhibits a high degree of contrast against the visibly opaque background layer 17.
- the thin transparent carrier sheet is commercially available map overlay tracing paper, a transparent substantially non-porous lightly calendered paper having a basis Weight of 25 lbs. per ream (24 x 36/500).
- Other equivalent paper or film backings e. g., flax tissue, cellophane, or parchment paper are useful but somewhat less desirable because of curling or other problems.
- the paper is first coated with a smooth uniform layer of a fluid dispersion, in a binder solution, of interreactive chemical components in particulate form.
- the amount of dispersion applied is sufiicient to provide a dried residue of approximately 0.07 lb. per sq. yd.
- the coating is dried at normal room temperature.
- the dispersion is prepared in accordance with the disclosure provided in Example 1 of Miller et al. Patent No.
- 2,663,657 contains approximately parts by Weight of ferric stearate, 35 parts of alcohol-insoluble precipitate of hexa methylenetetramine and pyrogallic acid, and 30 parts of polyvinyl butyral, together With 4 parts of oxalic acid if desired, in an amount of alcohol sufiicient to provide a coatable mixture.
- the reactive components will react together at room temperature in the presence of a mutual solvent, such as benzol, capable of permitting ionization of the components, but do not react in the solid form either in the dispersion or in the dried coating. However, on heating the coating to or somewhat above the melting temperature of one of the componentsin this case the ferric stearatea reaction occurs, resulting in a visible change as already indicated.
- a further coating is next applied over the heat-sensitive layer, in this case of a heavily pigmented solution of a soluble binder.
- the composition contains 11.90% titanium dioxide pigment (Titanox A), 7.35% ethyl cellulose binder, and 80.75% acetone.
- the weight of the dry residue is approximately 0.085 lb. per sq. yd., which is suflicient to provide the desired visual opacity while still permitting transmission of the high intensity radiation employed in copying.
- the coated sheet material is placed in contact with the printed surface of a typewritten or printed page which is then briefly and intensively irradiated as indicated in the drawing.
- Useful irradiation is obtained with a 3000- watt tubular lamp having a coiled tungsten filament 10 inches in length; a still more effective source employs a General Electric T3 lamp having a coiled line filament within a inch diameter quartz tube and operated at 280 volts.
- the 10-inch filament draws 1350 watts and provides a color temperature of about 2800 K.
- the radiation is concentrated on a narrow line by a suitable reflector and the line moves across the area to be treated in order to provide the required brief intense radiation.
- the intensity of irradiation is sufficient to cause charring of the sheet if maintained for more than about one second on the same area.
- a visible change may also be produced in the copyingpaper prepared as just described by pressing heated metal type or similar source of heat against the sheet. By this means it may be determined that the visible change occurs at temperatures above approximately 80 (3., which corresponds reasonably closely to the melting temperature of the ferric stearate employed. Compounds and compositions are also useful which are activated at other temperatures within the approximate range of 601ZG C. At much lower activation temperatures the sheet is not sufficiently stable on storage, since storage temperatures may at times approach such temperatures. At much higher temperatures softening of the binder, or degradation of the paper backing or of the original, may be experienced; furthermore the attainment of such unduly elevated temperatures by readily available means is difficult.
- Tungsten filament radiation sources produce radiant energy which is largely in the infra-red range. Equally effective results, in terms of the ultimate copy, may be obtained with radiation containing very little or no infra red, such as the radiation from known monochromatic light sources or obtained by selective absorption of portions of broad bands of irradiation. Visible light is particularly effective since its use permits the copying of originals which normally are non-absorptive of infra-red. However, the required high intensity of irradiation is ordinarily more readily obtainable from sources producing a considerable proportion of infra-red. Furthermore most books, letters, and other documents of which copies are desired are ordinarily printed with inks employing infra-red-absorptive pigments such as lampblack. Hence the radiation employed with my novel heat-sensitive copying-paper will ordinarily be rich in infra-red and the copying-paper will therefore be required primarily to be capable of transmitting such radiation without visible change in the copying-paper itself.
- the high pigment loading in the protective surface coating of the foregoing example permitsthe passage of the infra-red radiation and at least a substantial portion of the visible radiation.
- the radiation-absorptive areas of the original are strongly heated by the radiation passing through the copying-paper.
- the copying-paper remains unchanged when irradiated by itself. Nevertheless the coating appears highly opaque, and forms an intense white background for the deeply colored copy 4 obtained in the heat-sensitive layer during the copying process.
- the completed copy is quite similar in ap pearance to a typewritten original on letter-paper, rather than resembling the semi-transparent products obtained in the absence of the opacifying layer.
- a chemically reactive heat-sensitive layer was used which was converted from a faint tan to an intense blue color when reacted, and this layer was covered with a visibly opaque outer protective layer having an intense red color produced by the incorporation of India Red Toner pigment.
- pigments which have been found useful are zinc oxide, zinc sulfide, antimony trioxide, lead carbonate. Extenders such as barium sulfate, barium carbonate, calcium carbonate and magnesium carbonate may be added. Other opacifying agents may be substituted which are effective in providing a visually opaque but radiationtransmitting outer layer. Likewise other binders may be substituted for the ethyl cellulose. Polyvinyl butyral is typical. The binder mixture should obviously contain no solvent or reactant which might penetrate the chemically reactive. heat-sensitive layer and activate the chemical reaction producing the visible change. After the outer layer is applied, the chemically reactive heat-sensitive layer is protected both physically against abrasion and chemically against activation by solvents.
- a stable, moisture-resistant, heat-sensitive copyingpaper capable of providing high-contrast copies of graphic subject-matter by thermographic copying processes as herein described, consisting of a thin, transparent, flexible backing, an intermediate chemically reactive, visibly heatsensitive coating, the chemical reaction occurring within said coating on heating said sheet being responsible for the visible change, and a visibly opaque protective surface coating providing strong contrast for visible copy produced in said intermediate coating.
- a stable, moisture-resistant, heat-sensitive copyingpaper capable of providing high-contrast copies of graphic subject-matter by thermographic processes as herein described, consisting of a thin, transparent, flexible paper backing, an intermediate visibly heat-sensitive coating which is chemically reactive to form a visibly differently colored reaction product on heating the copying-paper, and a visibly oqaque, infra-red-transmissive, protective surface coating comprising a binder and a pigment having a color different from the color of said colored reaction product, said surface coating providing strong contrast for visible copy produced in said intermediate coating.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Heat Sensitive Colour Forming Recording (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Laminated Bodies (AREA)
- Color Printing (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL205707D NL205707A (enrdf_load_stackoverflow) | 1955-03-28 | ||
BE546394D BE546394A (enrdf_load_stackoverflow) | 1955-03-28 | ||
US497171A US2813043A (en) | 1955-03-28 | 1955-03-28 | Heat-sensitive copying-paper |
CH344087D CH344087A (de) | 1955-03-28 | 1955-07-30 | Feuchtigkeitsfestes, gegen Abrieb beständiges wärmeempfindliches Kopierpapier |
DEM27866A DE1149730B (de) | 1955-03-28 | 1955-08-02 | Waermeempfindliches Kopierpapier |
FR1134534D FR1134534A (fr) | 1955-03-28 | 1955-08-02 | Papier copiant sensible à la chaleur |
GB36714/55A GB829001A (en) | 1955-03-28 | 1955-12-21 | Heat-sensitive copying sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US497171A US2813043A (en) | 1955-03-28 | 1955-03-28 | Heat-sensitive copying-paper |
Publications (1)
Publication Number | Publication Date |
---|---|
US2813043A true US2813043A (en) | 1957-11-12 |
Family
ID=23975746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US497171A Expired - Lifetime US2813043A (en) | 1955-03-28 | 1955-03-28 | Heat-sensitive copying-paper |
Country Status (7)
Country | Link |
---|---|
US (1) | US2813043A (enrdf_load_stackoverflow) |
BE (1) | BE546394A (enrdf_load_stackoverflow) |
CH (1) | CH344087A (enrdf_load_stackoverflow) |
DE (1) | DE1149730B (enrdf_load_stackoverflow) |
FR (1) | FR1134534A (enrdf_load_stackoverflow) |
GB (1) | GB829001A (enrdf_load_stackoverflow) |
NL (1) | NL205707A (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2967784A (en) * | 1958-05-02 | 1961-01-10 | Columbia Ribbon Carbon Mfg | Thermographic copying paper |
US3089952A (en) * | 1960-01-21 | 1963-05-14 | Minnesota Mining & Mfg | Method and means for thermographic reproduction |
US3097297A (en) * | 1958-07-15 | 1963-07-09 | Heat sensitive coating | |
US3103881A (en) * | 1958-10-20 | 1963-09-17 | Minnesota Mining & Mfg | Method of copying |
US3121791A (en) * | 1960-06-21 | 1964-02-18 | Robert B Russell | Thermotransfer copy process wherein a heat sink is positioned within the composite |
US3131080A (en) * | 1960-11-09 | 1964-04-28 | Robert B Russell | Thermographic transfer sheet comprising selective radiation filtering means |
US3159488A (en) * | 1959-09-28 | 1964-12-01 | Keuffel & Essen Company | Stable photographic material and method of making same |
US3240613A (en) * | 1962-08-23 | 1966-03-15 | Itek Corp | Data processing media |
US4405862A (en) * | 1976-10-22 | 1983-09-20 | Thomson-Brandt | Thermosensitive data-carrier designed for the recording of information and a method of recording information on such a data-carrier |
US4446467A (en) * | 1979-08-03 | 1984-05-01 | Dai Nippon Printing Co., Ltd. | Heat-sensitive recording sheet, and a method and device for fixing a recorded information thereon |
WO1989000109A3 (en) * | 1987-07-06 | 1989-02-09 | Ncr Co | Thermal printing method and system |
US5006863A (en) * | 1987-07-06 | 1991-04-09 | Ncr Corporation | Multiple copy thermal imaging |
US5151595A (en) * | 1990-10-16 | 1992-09-29 | Simon Marketing, Inc. | Imaging device and method for developing, duplicating and printing graphic media |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271176A (en) * | 1962-11-21 | 1966-09-06 | American Cyanamid Co | Composition of matter composed of a cyanoethylated cellulosic material and an inorganic photochromic material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663657A (en) * | 1952-05-15 | 1953-12-22 | Minnesota Mining & Mfg | Heat-sensitive copying paper |
US2710263A (en) * | 1951-02-02 | 1955-06-07 | Minnesota Mining & Mfg | Heat-sensitive copying-paper |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA552750A (en) * | 1947-05-10 | 1958-02-04 | Minnesota Mining And Manufacturing Company | Heat-sensitive copying-paper |
-
0
- NL NL205707D patent/NL205707A/xx unknown
- BE BE546394D patent/BE546394A/xx unknown
-
1955
- 1955-03-28 US US497171A patent/US2813043A/en not_active Expired - Lifetime
- 1955-07-30 CH CH344087D patent/CH344087A/de unknown
- 1955-08-02 DE DEM27866A patent/DE1149730B/de active Pending
- 1955-08-02 FR FR1134534D patent/FR1134534A/fr not_active Expired
- 1955-12-21 GB GB36714/55A patent/GB829001A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2710263A (en) * | 1951-02-02 | 1955-06-07 | Minnesota Mining & Mfg | Heat-sensitive copying-paper |
US2663657A (en) * | 1952-05-15 | 1953-12-22 | Minnesota Mining & Mfg | Heat-sensitive copying paper |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2967784A (en) * | 1958-05-02 | 1961-01-10 | Columbia Ribbon Carbon Mfg | Thermographic copying paper |
US3097297A (en) * | 1958-07-15 | 1963-07-09 | Heat sensitive coating | |
US3103881A (en) * | 1958-10-20 | 1963-09-17 | Minnesota Mining & Mfg | Method of copying |
US3159488A (en) * | 1959-09-28 | 1964-12-01 | Keuffel & Essen Company | Stable photographic material and method of making same |
US3089952A (en) * | 1960-01-21 | 1963-05-14 | Minnesota Mining & Mfg | Method and means for thermographic reproduction |
US3121791A (en) * | 1960-06-21 | 1964-02-18 | Robert B Russell | Thermotransfer copy process wherein a heat sink is positioned within the composite |
US3131080A (en) * | 1960-11-09 | 1964-04-28 | Robert B Russell | Thermographic transfer sheet comprising selective radiation filtering means |
US3240613A (en) * | 1962-08-23 | 1966-03-15 | Itek Corp | Data processing media |
US4405862A (en) * | 1976-10-22 | 1983-09-20 | Thomson-Brandt | Thermosensitive data-carrier designed for the recording of information and a method of recording information on such a data-carrier |
US4446467A (en) * | 1979-08-03 | 1984-05-01 | Dai Nippon Printing Co., Ltd. | Heat-sensitive recording sheet, and a method and device for fixing a recorded information thereon |
WO1989000109A3 (en) * | 1987-07-06 | 1989-02-09 | Ncr Co | Thermal printing method and system |
US5006863A (en) * | 1987-07-06 | 1991-04-09 | Ncr Corporation | Multiple copy thermal imaging |
US5151595A (en) * | 1990-10-16 | 1992-09-29 | Simon Marketing, Inc. | Imaging device and method for developing, duplicating and printing graphic media |
US5311017A (en) * | 1990-10-16 | 1994-05-10 | Simon Marketing, Inc. | Imaging device and method for developing, duplicating and printing graphic media |
US5321263A (en) * | 1990-10-16 | 1994-06-14 | Simon Marketing, Inc. | Recording target |
US5334836A (en) * | 1990-10-16 | 1994-08-02 | Simon Marketing, Inc. | Imaging device having a passive compliant card scanner and a validation sensor |
US5414262A (en) * | 1990-10-16 | 1995-05-09 | Filo; Andrew S. | Imaging device and method for developing, duplicating and printing graphic media |
Also Published As
Publication number | Publication date |
---|---|
CH344087A (de) | 1960-01-31 |
FR1134534A (fr) | 1957-04-12 |
GB829001A (en) | 1960-02-24 |
NL205707A (enrdf_load_stackoverflow) | |
DE1149730B (de) | 1963-06-06 |
BE546394A (enrdf_load_stackoverflow) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2813043A (en) | Heat-sensitive copying-paper | |
US2663657A (en) | Heat-sensitive copying paper | |
US2995466A (en) | Heat-sensitive copy-sheet | |
US3094620A (en) | Copy-sheet and method | |
US2663656A (en) | Heat-sensitive copying paper | |
US2710263A (en) | Heat-sensitive copying-paper | |
US3094417A (en) | Heat sensitive copy sheet, process of making and using | |
US2740896A (en) | Method of using heat sensitive copying paper | |
US3107174A (en) | Heat sensitive copy sheet and method of making | |
US2844733A (en) | Reflex thermoprinting | |
US2954311A (en) | Method for copying indicia by particle transfer | |
US2880110A (en) | Heat-sensitive copying-paper | |
US2919349A (en) | Shadow thermoprinting | |
US2916395A (en) | Heat-sensitive copy-paper | |
US2668126A (en) | Heat-sensitive copying-paper | |
US3795532A (en) | Wide latitude copy sheet | |
US2663655A (en) | Heat-sensitive copying paper | |
US3157526A (en) | Thermo-sensitive copy sheet and method of making | |
US3155513A (en) | Heat sensitive sheet material and method of making | |
US2950987A (en) | Thermally-sensitive recording elements | |
US3120611A (en) | Method and apparatus for the negative reproduction of masters on a copy bearer utilizing a heat absorbing layer | |
US3682684A (en) | Wide latitude heat-sensitive copy-sheet and method of making | |
US3129109A (en) | Heat-sensitive copy-sheet | |
US3103881A (en) | Method of copying | |
US2936247A (en) | Transfer sheets for forming thermosensitive copies |