US2799813A - Magnetic electron lens - Google Patents
Magnetic electron lens Download PDFInfo
- Publication number
- US2799813A US2799813A US492542A US49254255A US2799813A US 2799813 A US2799813 A US 2799813A US 492542 A US492542 A US 492542A US 49254255 A US49254255 A US 49254255A US 2799813 A US2799813 A US 2799813A
- Authority
- US
- United States
- Prior art keywords
- rings
- magnetic
- electron lens
- lens
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0273—Magnetic circuits with PM for magnetic field generation
- H01F7/0278—Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/58—Arrangements for focusing or reflecting ray or beam
- H01J29/64—Magnetic lenses
- H01J29/68—Magnetic lenses using permanent magnets only
Definitions
- the invention relates to a magnetic electron lens comprising two opposite circular rings of permanent magnetic material.
- a known embodiment of such electron lenses has the rings arranged such that their direction of magnetisation extends radially or else axially relative to the axis of the rings.
- the first-mentioned method of magnetisation has the disadvantage that the stray field on the axis beyond the magnets is larger than with the last-mentioned method of magnetisation, though it has the advantage that a smaller quantity of magnetic material is re quired to obtain the same lens intensity.
- the invention has for its object to provide an electron lens in which the magnet rings are magnetized in a manner such that even a smaller quantity of magnetic material is required. It is characterized in that the inner cylindrical surface of one ring constitutes a pole surface having south magnetism and that of the other ring constitutes a pole surface having north magnetism, whereas the two surfaces of the rings facing one another constitute the pole surfaces of opposite magnetism.
- Fig. 1 shows a magnetic electron lens according to the invention
- Fig. 2 shows graphs to explain Fig. 1;
- Fig. 3 shows a variant of the embodiment shown in Fig. 1;
- Fig. 4 shows a polarisation device for the magnets shown in Fig. 1;
- Fig. 5 shows a magnetic electron lens comprising means to compensate the temperature dependence of the lens intensity
- Fig. 6 shows, in cross-section, a modification of the device illustrated in Fig. 5.
- Fig. 1 shows a magnetic electron lens comprising two opposite circular rings 1 and 2 of permanent magnetic material, for example a ceramic ferromagnetic material composed of iron oxide and an oxide of barium, strontium or lead and having a hexagonal crystal structure, which may for example be applied around the neck of a cathode-ray tube.
- permanent magnetic material for example a ceramic ferromagnetic material composed of iron oxide and an oxide of barium, strontium or lead and having a hexagonal crystal structure, which may for example be applied around the neck of a cathode-ray tube.
- the rings in this case have a magnetisation I, wherein the inner cylindrical surface 3 of the ring 1 constitutes a pole surface having south magnetism, the inner cylindrical surface 4 of the ring 2, on the contrary, constitutes a pole surface having north magnetism, whereas the two opposite surfaces 5 and 6 of the rings 1 and 2 respectively constitute pole surfaces of opposite magnetism, i. e., northand south-magnetism respectively.
- the curves illustrate the magnitude of the magnetic field strength H, measured along the optical axis 7 of the lens illustrated in Fig. l with two different values (0 and 8 millimeters) of the distance 1 between the two rings 1 and 2, the curves r relating to the case in which the rings are magnetized radially in accordance with the known embodiment, whereas the curves s relate to the case in which they are magnetized in accordance with the invention.
- the said economy in material is found to be of particular importance, if the axial thickness d differs little from the radial thickness h of the rings; their ratio lies preferably between the values 2/3 and 3/2, in which case at least 20% of the permanent magnet material may be economized. Moreover, it is found that the material in the proximity of the corners or edges 9 and 1t), remote from the pole surfaces 3, 5 and 5, 6 respectively, contributes to a smaller extent to the field H on the axis 7 than the further material. Fig. 3 shows therefore an embodiment, wherein these corners are bevelled, which provides a further economy of material of another 20%.
- Fig. 4 shows a polarisation device for producing the magnetisation I of Fig. 1. It comprises two co-axial magnet coils 13 and 14, between which the magnet 1 to be polarized is arranged and which, for example by inverting the sense of winding and/or by a different choice of the number of turns, produce rotational-symmetrical fields of different values in the space between the two coils, of which the resultant Hp lies obliquely to the axis 7 of the coils, and which resultant produces, consequently, the desired magnetisation I in the magnet 1.
- the lens intensity of the electron lenses shown in Figs. 1 and 3 is found to drop, in general, with temperature, since the field produced by the magnet rings 1 and 2 drops, as a rule, with increasing temperature.
- This drop in lens intensity may be compensated, according to Fig. 5, by means of a spring 17, which keeps the rings 1 and 2 spaced apart and of which the rigidity has a prescribed value, which is chosen such that the magnets 1 and 2 are spaced apart by a desired, predetermined distance, dependent upon the lens intensity desired along the axis.
- the spring 17 is adjusted to provide an expansion force tending to separate the magnets 1 and 2, to offset the magnetic attractive forces tending to bring the magnets 1 and 2 together.
- a spring 22 is arranged, preferably, as a push spring or a tensile spring, between the magnet ring 1 and a member 21 at some distance from the fixed magnet ring 2', this member 21 being stationary.
- the magnet 1 is mounted on a support 20, which is axially displaceable.
- the position of the magnet 1' which determines the lens intensity, depends on the force imparted by the spring 22 and the strength of the attractive magnetic force be tween the magnets 1' and 2.
- the said compensation method may even be carried out, if the rings 1 and 2 are magnetized in a radial direction, i. e. in general, if the rings 1 and 2 attract one another.
- a magnetic electron lens comprising a pair of substantially fiat, coaxial, adjacent, annular, permanent magnet members, each of said annular members having a given thickness in an axial direction and a given thickness in a radial direction between its inner and outersurfaces, one of said members being magnetized obliquely forming a south pole on its inner surface and a north pole on the substantially flat surface thereof facing said other member, the other member being magnetized obliquely forming a north pole on its inner surface and a south pole on the substantially fiat surface thereof facing said one member, said pair of members cooperating to produce a magnetic field substantially along the axis thereof.
- a magnetic electron lens as claimed in claim 1 wherein the edges of the annular members remote from their facing surfaces and their axis are bevelled.
- a magnetic electron lens comprising a pair of substantially flat, coaxial, spaced, annular, permanent magnet members, said magnet members being magnetized to produce opposite polarity poles on facing surfaces thereof thereby producing attractive forces therebetween, said members producing magnetic fields whose magnitude is temperature dependent, and resilient means for maintaining said members spaced apart, said resilient means producing an expansion force at least partly counteracting the attractive forces between the magnets.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Optical Recording Or Reproduction (AREA)
- Magnetic Treatment Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL766857X | 1954-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2799813A true US2799813A (en) | 1957-07-16 |
Family
ID=19827648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US492542A Expired - Lifetime US2799813A (en) | 1954-03-05 | 1955-03-07 | Magnetic electron lens |
Country Status (5)
Country | Link |
---|---|
US (1) | US2799813A (en, 2012) |
DE (1) | DE1035812B (en, 2012) |
FR (1) | FR1120026A (en, 2012) |
GB (1) | GB766857A (en, 2012) |
NL (1) | NL87140C (en, 2012) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2849636A (en) * | 1952-01-04 | 1958-08-26 | Philips Corp | Magnetic electron lens |
US2888634A (en) * | 1957-07-09 | 1959-05-26 | Du Mont Allen B Lab Inc | Electric circuit |
US2943219A (en) * | 1955-09-19 | 1960-06-28 | Philco Corp | Beam positioning apparatus for cathode ray tubes |
US4647887A (en) * | 1984-12-24 | 1987-03-03 | The United States Of America As Represented By The Secretary Of The Army | Lightweight cladding for magnetic circuits |
US5014028A (en) * | 1990-04-25 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Army | Triangular section permanent magnetic structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7812540A (nl) * | 1978-12-27 | 1980-07-01 | Philips Nv | Kathodestraalbuis. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2157182A (en) * | 1935-12-31 | 1939-05-09 | Rca Corp | Cathode ray deflecting device |
US2339087A (en) * | 1939-06-30 | 1944-01-11 | Milwaukee Gas Specialty Co | Thermostatic control device |
US2525919A (en) * | 1948-07-01 | 1950-10-17 | Hazeltine Research Inc | Centering arrangement for cathode-ray tubes |
-
0
- NL NL87140D patent/NL87140C/xx active
-
1955
- 1955-03-02 DE DEN10284A patent/DE1035812B/de active Pending
- 1955-03-02 GB GB6177/55A patent/GB766857A/en not_active Expired
- 1955-03-03 FR FR1120026D patent/FR1120026A/fr not_active Expired
- 1955-03-07 US US492542A patent/US2799813A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2157182A (en) * | 1935-12-31 | 1939-05-09 | Rca Corp | Cathode ray deflecting device |
US2339087A (en) * | 1939-06-30 | 1944-01-11 | Milwaukee Gas Specialty Co | Thermostatic control device |
US2525919A (en) * | 1948-07-01 | 1950-10-17 | Hazeltine Research Inc | Centering arrangement for cathode-ray tubes |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2849636A (en) * | 1952-01-04 | 1958-08-26 | Philips Corp | Magnetic electron lens |
US2943219A (en) * | 1955-09-19 | 1960-06-28 | Philco Corp | Beam positioning apparatus for cathode ray tubes |
US2888634A (en) * | 1957-07-09 | 1959-05-26 | Du Mont Allen B Lab Inc | Electric circuit |
US4647887A (en) * | 1984-12-24 | 1987-03-03 | The United States Of America As Represented By The Secretary Of The Army | Lightweight cladding for magnetic circuits |
US5014028A (en) * | 1990-04-25 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Army | Triangular section permanent magnetic structure |
Also Published As
Publication number | Publication date |
---|---|
GB766857A (en) | 1957-01-23 |
FR1120026A (fr) | 1956-06-28 |
DE1035812B (de) | 1958-08-07 |
NL87140C (en, 2012) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2895092A (en) | Magnetic circuit | |
US2503173A (en) | Permanent magnetic electron lens system | |
US2513929A (en) | Beam centering device for cathode-ray tubes | |
US3067366A (en) | Magnet system having little stray | |
GB1514095A (en) | Electron beam apparatus | |
GB1009753A (en) | Magnetic suspension for a rotor shaft | |
US2799813A (en) | Magnetic electron lens | |
GB708134A (en) | Improvements in or relating to magnetic bodies comprising a highly-permeable part and a thin permanent magnet | |
US2854607A (en) | Magnetic device | |
GB1258453A (en, 2012) | ||
GB934661A (en) | Improvements in and relating to cathode ray tubes | |
US2849636A (en) | Magnetic electron lens | |
US2795717A (en) | Cathode ray beam centering apparatus | |
GB927025A (en) | Improvements in protective shrouds for television picture-tube deflection coil systems | |
GB545414A (en) | Electron beam deflecting yoke | |
US2864021A (en) | Color kinescope adjunct | |
US3633138A (en) | Temperature-compensated permanent magnet | |
US2914675A (en) | Element for correcting electron-optical systems | |
US3356879A (en) | Beam positioning device for varying the effective origin of cathode-ray tube electron beam | |
JP4139767B2 (ja) | 永久磁石対向型磁気回路 | |
GB1210210A (en) | Electron beam apparatus | |
US2822528A (en) | Premagnetized inductive device | |
US2569327A (en) | Electron beam bender | |
US2418432A (en) | Magnetic electron lens system | |
US3230415A (en) | Electromagnetic focussing device for cathode ray tubes |