US2777085A - Secondary electron suppressor - Google Patents

Secondary electron suppressor Download PDF

Info

Publication number
US2777085A
US2777085A US290628A US29062852A US2777085A US 2777085 A US2777085 A US 2777085A US 290628 A US290628 A US 290628A US 29062852 A US29062852 A US 29062852A US 2777085 A US2777085 A US 2777085A
Authority
US
United States
Prior art keywords
anode
electrons
cathode
resonator
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US290628A
Inventor
Gleason Charles Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US290628A priority Critical patent/US2777085A/en
Application granted granted Critical
Publication of US2777085A publication Critical patent/US2777085A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/02Tubes with a single discharge path
    • H01J21/06Tubes with a single discharge path having electrostatic control means only
    • H01J21/065Devices for short wave tubes

Definitions

  • This invention relates to a secondary electron inhibitor, and while possessing utility with various electron discharge devices, it is intended for and has very marked advantage for use with resnatrons.
  • a resnatron is a beam tetrode cavity resonator electron discharge device intended for very high power continuous output of ultra-high frequency. Feed-back from a resonator maintains oscillation which obtains bunching of beamed electrons by varying the potential between the control grid and cathode.
  • a screen grid or tetrode speeds up the beamed and bunched electrons which therefore have high velocity when striking the anode or collector. High velocity electrons striking a surface cause secondary electrons to break away from surface and absorb energy from the resonant system. The secondary electrons are low velocity and take a reverse path to the primary electrons and are adverse to any useful purpose.
  • the primary object of the present invention is to squelch the secondary electrons.
  • the invention contemplates means for deterring entry of secondary electrons into the resonant system of the device.
  • a further object of the invention is to avoid applying suppressing influence to the secondary electrons which will adversely affect attainment of energy transfer from the primary electrons to the resonant system.
  • Figure l is a sectional elevation of a resnatron embodying my invention.
  • Figure 2 is a cross section on line II-II of Fig. 1;
  • Figure 3 is a somewhat diagrammatic cross section of a modified construe-tion.
  • the general organization provides one hollow body resonator, herein designated cathode resonator 10, coaxially within a second resonator, herein designated anode resonator 11. It is a known fact that the voltage distribution of such resonators is at maximum at the mid cross section, and it is there that greatest power can be derived from a traversing electron beam.
  • the illustrated resnatron therefore provides a cathode 12, comprising a circular series of emitting filaments, coaxially within the resonators substantially midway of their longitudinal dimensions, and shows the cathode resonator correspondingly slotted opposite the cathode filaments, thereby constituting that section of the resonator wall a control grid 13 and affording clear passage for radially directed beams of electrons from the cathode.
  • the mid-section of the inner cylindrical wall 14 of the anode resonator is cut away at its mid-section to also permit passage of the electrons from the cathode.
  • Longitudinal grid strands 15 span the cut-away section of the said wall 14 and are arranged to have registration radially with the strands of the control grid.
  • the circular series of said strands 15 constitutes an accelerator grid.
  • the outer cylindrical wall of the anode resonator 11 provides an anode 1 at the mid-section thereof opposite the cathode so that electrons emitted radially from the cathode and passing between the grid strands will have straight line approach to the anode.
  • the anode may be constructed as an inwardly directed circumferential channel with peripheral wall 17 and inwardly directed flanges 18. Said flanges are shown as flaring somewhat and as integral with a re-entrant section 19 of the resonator wall.
  • the interaction space is the annular region from the accelerator grid 15 radially outward to a cylindrical surface defined by the inner edges of the anode flanges, and it is an essential purpose of the present invention to suppress secondary electrons emitted from the anode so they do not get into this interaction space, but remain in the hollow 20 between said flanges.
  • a magnet 21 is provided with its poles at the outside of and next said flanges 18, the magnet poles being directed toward each other so that the magnetic flux is transverse to the electron beam and at the part of the beam substantially beyond the aforementioned interaction space through which the beam first passes before reaching the imposed magnetic field.
  • the primary electrons in the beam are accelerated by accelerator grid 15 and therefore have high velocity when entering the anode hollow 20 between said flanges.
  • the magnetic field introduced by magnet 21 consequently has little opportunity to affect the high velocity electrons which therefore continue in substantially straight paths to impingement upon the anode.
  • High velocity electrons will dislodge secondary electrons from a surface struck thereby even where the surface is one not intended to be emissive of secondary electrons.
  • any metal capable of functioning as an anode will unavoidably emit some secondary electrons when struck by high velocity primary electrons.
  • the secondary electrons are, however, of low velocity character and therefore, being emitted in a magnetic field, will be deflected or caused to spiral, and in most instances will thereby be influenced to remain in the anode hollow and return to the anode surface.
  • the secondary electrons are squelched and do not get out into the interaction space where they would absorb rather than supply energy to the output system.
  • the resnatron consequently develops a much greater output than prior art constructions not having the magnetic control of the present invention.
  • the magnet may be applied within the reentrant section 19 of the resonator wall, said magnet may be made in two halves with a diametric split 22. Other constructions and arrangements of magnets may be utilized to accomplish the purpose. Furthermore, since the primary electrons are directed as radial beams between the grid strands, the anode may be constructed with individual hollows for each beam and individual magnets for each hollow.
  • FIG. 3 The suggested alternative structure above-mentioned is illustrated in Figure 3 wherein anode 16a is shown with hollows or pockets 20a opposite each filament of cathode 12. Straight line passage for the electron beam is provided as before by placement of the grid strands to the side of such path. Individual magnets 21a are shown for each hollow or pocket 20a.
  • a resnatron having a cathode and coaxial cathode and anode resonators one within the other and having electron beam path openings intermediate of the ends of the resonators, said resonators providing a reaction space in the region of said openings, a hollow anode opposite 3 said openings in opposition to said cathode and on a straight line path of an electron beam emitted from said cathode and directed through said openings, and a magnet beyond said reaction space and next to said hollow anode with the poles of the magnet on a line transverse to the straight line path of the electron beam.

Landscapes

  • Particle Accelerators (AREA)

Description

Jan. 8, 1957 c. H. GLEASON 2,777,085
SECONDARY ELECTRON SUPPRESSOR Filed May 29, 1952 l I W 'IIIIIIIIIIIIIIl/III)HIIIIII T M v I I a INVENTOR C N. 61.57750 ATTORNEY United States Patent Office 2,777,085 Patented Jan. 8, 1957 SECONDARY ELECTRON SUPPRESSOR Charles Herbert Gleason, Bloomfield, N. L, assignor to Westinghouse Electric Corporation, East Pittsburgh, Pa., a corporation of Pennsylvania Application May 29, 1952, Serial No. 290,628
3 Claims. 01. 313-406) This invention relates to a secondary electron inhibitor, and while possessing utility with various electron discharge devices, it is intended for and has very marked advantage for use with resnatrons.
A resnatron is a beam tetrode cavity resonator electron discharge device intended for very high power continuous output of ultra-high frequency. Feed-back from a resonator maintains oscillation which obtains bunching of beamed electrons by varying the potential between the control grid and cathode. A screen grid or tetrode speeds up the beamed and bunched electrons which therefore have high velocity when striking the anode or collector. High velocity electrons striking a surface cause secondary electrons to break away from surface and absorb energy from the resonant system. The secondary electrons are low velocity and take a reverse path to the primary electrons and are adverse to any useful purpose.
The primary object of the present invention is to squelch the secondary electrons.
Otherwise expressed, the invention contemplates means for deterring entry of secondary electrons into the resonant system of the device.
A further object of the invention is to avoid applying suppressing influence to the secondary electrons which will adversely affect attainment of energy transfer from the primary electrons to the resonant system.
Other objects of the invention will appear to those skilled in the art to which it appertains as the description proceed-s, both by direct recitation thereof and by implication from the context.
Referring to the accompanying drawing, in which like numerals of reference indicate similar parts throughout the several views:
Figure l is a sectional elevation of a resnatron embodying my invention;
Figure 2 is a cross section on line II-II of Fig. 1; and
Figure 3 is a somewhat diagrammatic cross section of a modified construe-tion.
In the specific embodiment of the invention, shown in the drawing in an arbitrarily selected resnatron, the general organization provides one hollow body resonator, herein designated cathode resonator 10, coaxially within a second resonator, herein designated anode resonator 11. It is a known fact that the voltage distribution of such resonators is at maximum at the mid cross section, and it is there that greatest power can be derived from a traversing electron beam. The illustrated resnatron therefore provides a cathode 12, comprising a circular series of emitting filaments, coaxially within the resonators substantially midway of their longitudinal dimensions, and shows the cathode resonator correspondingly slotted opposite the cathode filaments, thereby constituting that section of the resonator wall a control grid 13 and affording clear passage for radially directed beams of electrons from the cathode. The mid-section of the inner cylindrical wall 14 of the anode resonator is cut away at its mid-section to also permit passage of the electrons from the cathode. Longitudinal grid strands 15 span the cut-away section of the said wall 14 and are arranged to have registration radially with the strands of the control grid. The circular series of said strands 15 constitutes an accelerator grid.
The outer cylindrical wall of the anode resonator 11 provides an anode 1 at the mid-section thereof opposite the cathode so that electrons emitted radially from the cathode and passing between the grid strands will have straight line approach to the anode. For convenience in fabrication, the anode may be constructed as an inwardly directed circumferential channel with peripheral wall 17 and inwardly directed flanges 18. Said flanges are shown as flaring somewhat and as integral with a re-entrant section 19 of the resonator wall. The interaction space is the annular region from the accelerator grid 15 radially outward to a cylindrical surface defined by the inner edges of the anode flanges, and it is an essential purpose of the present invention to suppress secondary electrons emitted from the anode so they do not get into this interaction space, but remain in the hollow 20 between said flanges.
According to the showing in Figs. 1 and 2, a magnet 21 is provided with its poles at the outside of and next said flanges 18, the magnet poles being directed toward each other so that the magnetic flux is transverse to the electron beam and at the part of the beam substantially beyond the aforementioned interaction space through which the beam first passes before reaching the imposed magnetic field. The primary electrons in the beam are accelerated by accelerator grid 15 and therefore have high velocity when entering the anode hollow 20 between said flanges. The magnetic field introduced by magnet 21 consequently has little opportunity to affect the high velocity electrons which therefore continue in substantially straight paths to impingement upon the anode. High velocity electrons will dislodge secondary electrons from a surface struck thereby even where the surface is one not intended to be emissive of secondary electrons. In other words, any metal capable of functioning as an anode, will unavoidably emit some secondary electrons when struck by high velocity primary electrons. The secondary electrons are, however, of low velocity character and therefore, being emitted in a magnetic field, will be deflected or caused to spiral, and in most instances will thereby be influenced to remain in the anode hollow and return to the anode surface. Thus the secondary electrons are squelched and do not get out into the interaction space where they would absorb rather than supply energy to the output system. The resnatron consequently develops a much greater output than prior art constructions not having the magnetic control of the present invention.
In order that the magnet may be applied within the reentrant section 19 of the resonator wall, said magnet may be made in two halves with a diametric split 22. Other constructions and arrangements of magnets may be utilized to accomplish the purpose. Furthermore, since the primary electrons are directed as radial beams between the grid strands, the anode may be constructed with individual hollows for each beam and individual magnets for each hollow.
The suggested alternative structure above-mentioned is illustrated in Figure 3 wherein anode 16a is shown with hollows or pockets 20a opposite each filament of cathode 12. Straight line passage for the electron beam is provided as before by placement of the grid strands to the side of such path. Individual magnets 21a are shown for each hollow or pocket 20a.
I claim:
1. A resnatron having a cathode and coaxial cathode and anode resonators one within the other and having electron beam path openings intermediate of the ends of the resonators, said resonators providing a reaction space in the region of said openings, a hollow anode opposite 3 said openings in opposition to said cathode and on a straight line path of an electron beam emitted from said cathode and directed through said openings, and a magnet beyond said reaction space and next to said hollow anode with the poles of the magnet on a line transverse to the straight line path of the electron beam.
2. A resnatron in accordance with claim 1, wherein said hollow anode comprises a circumferential channel having a peripheral wall and flanges projecting inwardly toward the axis from said peripheral wall and flaring from each other in approach toward said axis.
3. A resnatron in accordance With claim 1, wherein said hollow anode comprises a circumferential channel having a peripheral wall and flanges projecting inwardly toward the axis from said peripheral wall and flaring 4 from each other in approach toward said axis, and whercin the poles of said magnet conform to and are in close proximity to the outside surfaces of said flanges.
References Cited in the file of this patent UNITED STATES PATENTS 2,298,949 Litton Oct. 13, 1942 2,410,054 Frcrnlin Oct. 29, 1946 2,451,987 Sloan Oct. 17, 1948 2,459,593 Sloan Jan. 18, 1949 2,477,633 Litton Aug. 2, 1949 2,557,700 Sloan June 19, 1951 2,591,997 Backmark Apr. 8, 1952 2,632,866 McArthur Mar. 24, 1953 2,662,980 Schwede Dec. 15, 1953
US290628A 1952-05-29 1952-05-29 Secondary electron suppressor Expired - Lifetime US2777085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US290628A US2777085A (en) 1952-05-29 1952-05-29 Secondary electron suppressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US290628A US2777085A (en) 1952-05-29 1952-05-29 Secondary electron suppressor

Publications (1)

Publication Number Publication Date
US2777085A true US2777085A (en) 1957-01-08

Family

ID=23116876

Family Applications (1)

Application Number Title Priority Date Filing Date
US290628A Expired - Lifetime US2777085A (en) 1952-05-29 1952-05-29 Secondary electron suppressor

Country Status (1)

Country Link
US (1) US2777085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890375A (en) * 1954-11-18 1959-06-09 English Electric Valve Co Ltd Collector electrodes for klystron tubes
US2899604A (en) * 1956-03-28 1959-08-11 Magnetrons

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298949A (en) * 1940-04-20 1942-10-13 Int Standard Electric Corp Radial form ultra-high frequency tube
US2410054A (en) * 1940-08-02 1946-10-29 Standard Telephones Cables Ltd Electron discharge apparatus
US2451987A (en) * 1944-03-17 1948-10-19 Westinghouse Electric Corp Electronic tube for ultra high frequencies
US2459593A (en) * 1944-03-17 1949-01-18 Westinghouse Electric Corp Feed-back system for electronic tubes comprising hollow body resonators
US2477633A (en) * 1945-11-01 1949-08-02 Charles V Litton Protective means for electron discharge devices
US2557700A (en) * 1948-11-30 1951-06-19 David H Sloan Resnatron anode with cooling means
US2591997A (en) * 1948-10-29 1952-04-08 Ericsson Telefon Ab L M Electron tube device
US2632866A (en) * 1949-12-31 1953-03-24 Gen Electric Velocity modulation electron discharge device
US2662980A (en) * 1950-07-25 1953-12-15 Otto G Schwede Rotatron-electrical transducer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298949A (en) * 1940-04-20 1942-10-13 Int Standard Electric Corp Radial form ultra-high frequency tube
US2410054A (en) * 1940-08-02 1946-10-29 Standard Telephones Cables Ltd Electron discharge apparatus
US2451987A (en) * 1944-03-17 1948-10-19 Westinghouse Electric Corp Electronic tube for ultra high frequencies
US2459593A (en) * 1944-03-17 1949-01-18 Westinghouse Electric Corp Feed-back system for electronic tubes comprising hollow body resonators
US2477633A (en) * 1945-11-01 1949-08-02 Charles V Litton Protective means for electron discharge devices
US2591997A (en) * 1948-10-29 1952-04-08 Ericsson Telefon Ab L M Electron tube device
US2557700A (en) * 1948-11-30 1951-06-19 David H Sloan Resnatron anode with cooling means
US2632866A (en) * 1949-12-31 1953-03-24 Gen Electric Velocity modulation electron discharge device
US2662980A (en) * 1950-07-25 1953-12-15 Otto G Schwede Rotatron-electrical transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890375A (en) * 1954-11-18 1959-06-09 English Electric Valve Co Ltd Collector electrodes for klystron tubes
US2899604A (en) * 1956-03-28 1959-08-11 Magnetrons

Similar Documents

Publication Publication Date Title
US2680209A (en) High-frequency apparatus
GB578655A (en) Improvements in or relating to high frequency electron discharge systems
US2402983A (en) Electronic discharge tube
GB1215020A (en) High power beam tube employing a fly-trap beam collector
GB1482053A (en) Electron collector having means for trapping secondary electrons in a linear beam microwave tube
US2777085A (en) Secondary electron suppressor
GB974962A (en) Improvements in or relating to electron discharge tubes having electron guns
US2417551A (en) Electron discharge device and associated circuit
US2647220A (en) Electron tube structure for the production of annular beams of electrons
US2754448A (en) Velocity modulation tube of the kind comprising a drift space
US2151766A (en) Magnetron
GB675176A (en) Improvements in and relating to electronic devices of the magnetron type
US2998544A (en) Magnetron cathode
US2492313A (en) Magnetron
GB654585A (en) Improvements in and relating to ultra high frequency electric discharge devices of the magnetron type
US2464801A (en) Velocity-modulated electrondischarge device
US3179839A (en) Klystron collector with inner serrated surface for reducing electron return
US2653259A (en) Electron discharge device anode
US3214632A (en) Low noise electron gun
US2445404A (en) Electron discharge device and associated circuit
US2928986A (en) Directional output magnetron system
GB549795A (en) Improvements in or relating to electron velocity modulation discharge tubes
US2463372A (en) Cathode structure for magnetrons
US3171054A (en) Coupled coaxial cavity travelingwave tube
US3054018A (en) Traveling wave amplifier tube