US2717839A - Heat conductive mastic - Google Patents

Heat conductive mastic Download PDF

Info

Publication number
US2717839A
US2717839A US255700A US25570051A US2717839A US 2717839 A US2717839 A US 2717839A US 255700 A US255700 A US 255700A US 25570051 A US25570051 A US 25570051A US 2717839 A US2717839 A US 2717839A
Authority
US
United States
Prior art keywords
oil
mastic
liner
heat conductive
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US255700A
Inventor
Wright Charles
Warren A Hanson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seeger Refrigerator Co
Original Assignee
Seeger Refrigerator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seeger Refrigerator Co filed Critical Seeger Refrigerator Co
Priority to US255700A priority Critical patent/US2717839A/en
Application granted granted Critical
Publication of US2717839A publication Critical patent/US2717839A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used

Definitions

  • the present invention lies in the provision of a novel type of heat conductive mastic which has been found to provide superior thermo-conductivity. As any increase in the thermo-conductivity between the coil and the liner tends to increase the over-all operating efliciency of the freezer, the mastic thus produced tends to make the freezer more eflicient than when other mastic is used.
  • a feature of the present invention lies in the use of a mastic between a refrigerant coil and a surface to be cooled which includes magnesium oxide combined with an oil. This combination provides better thermo-conductivity between the coil and the surface to be cooled than other mastic with which we are familiar, thereby increasing the efliciency of the freezer.
  • Figure l is a sectional view through a portion of a freezer wall showing the manner in which the coil is held in close contact with the walls of the liner.
  • Figure 2 is an enlarged sectional view through a coil and through a portion of the liner showing the manner in which the mastic acts to connect the coil and the heat conductive liner.
  • the freezer A illustrated ings is only partially shown in the accompanying drawand the specific arrangement 2,717,839 Patented Sept. 13, 19 55 ice an outer casing 10 which is shown as having 11 and a bottom panel 12.
  • 11 are ordinarily rectangularly ar-' be cylindrical in form, or any other de-
  • the side wall panels ranged, but may sired shape.
  • the side walls 11 of the outer casing are provided with inturned marginal flanges 19, while the side walls 14 of the liner 13 are provided with outwardly turned flanges 20 which may extend substantially flush with the flanges 19.
  • Suitable means 21 are provided the upper edge of the refrigerator.
  • the cabinet is usually closed by a door be hinged to one of the side Walls of the door 23 includes an outer sheathing 24 and an inner lining panel 25.
  • the outer covering 24 may extend marglnally toward the liner 25 and may terminate in an inwardly extending marginal flange 26 which may be from the liner 25 by a suitable gasket 27.
  • the evaporator coil 29 encircles the side walls 14 of the liner 13 and lies in contact therewith throughout as 15 of the liner as illustrated.
  • the evaporator coil 29 usually comprises an elongated metallic tube which is held in contact with the wall 14 or 15 of the This so as good thermal contact between a relatively the coil and the liner panel. If desired the wall. generally triangular space is filled with mastic 30 to provide a large area of merely on one side 3 Viscosity,
  • Example I 58% by weight magnesium oxide I 42% by weight steam refined cylinder oil of 23-25 degrees A. P. I.
  • Example 11 58% by weight magnesium oxide 7 42% by weight cylinder oilof 23-25 degrees A. P. I. and
  • the proportion of magnesium oxide used in the above cited example may be increased or decreased approximately 1% without greatly affecting the. results and the percentage of oil may also be increased or decreased approximately 1%.
  • oil of the viscosity described above the mastic p'roducedtends to become unduly soft and to run down the walls of the liner if the proportion of oil is increased more than approximately 1%.
  • the proportion of oil is decreased more than approximately 1%, the mastic becomes difficult to mix and to handle with ease.
  • Oil ofthe particular viscosity mentioned provides a better heat transfer than oil of other viscosity in the mixture.
  • the formula of the specific example mentioned may be varied without entirely losing the-' advantage of the combination, the above formula has been found to be advantageous over other proportions.
  • the viscosity of the oil used may be changed and a change in the viscosity of the oil acts to somewhat change the proportion of magnesium oxide which may be usedin the combination.
  • a lighter or less viscous oil the mastic tends to become unduly soft at room' temperatures and an increase in the viscosity tends to make a mastic which is slightly more difficult to mix and handle and does not appear to have as good head conductive properties as the specific oil described.
  • the oil need not be cylinder oil to produce advantageous results, although the particular oil mentioned has been found better than any other type of oil used. Thus the selection of the oil to produce best results appears important, as well as the viscosity thereof.
  • any of the oils set forth in the above presented list are deemed suitable, these listed oils having a gravity range of 20-28 degrees A. P. l. and a viscosity range of 530-220 S. U. secs.
  • other oils ineluding coal tar derivatives and shale oils of the above viscosity range.
  • compound oils cylinder oil, for instance, when compounded with from 57% of tallow adheres more closely to the metallic surfaces constituting the liner 13 and the coils 29.
  • Magnesium oxide appears to have better heat conductive properties in the combination mentioned than other materials of a somewhat similar character and thus is believed specifically advantageous in the combination.
  • magnesium oxide covers arange of from 52-66% with the remainder being oil.
  • 66% magnesium oxide the less viscous oils of the preceding list may be best utilized, as in the following:
  • Example Ill 66% by weight magnesium oxide 34% by Weight heavy motor oil of 20-27 degrees A. P. I. and a viscosity of to S. U. seconds at 210 F.
  • Example I has been found to be superior from 7 an overall characteristic standpoint; i. e. it has been discovered from actual tests that it possesses all the factors necessary to produce a mastic for the particular purpose disclosed.
  • A- heat conductive mastic consisting essentially of 52-66% by weight magnesium oxide and the remainder an oil, primarily mineral, having a viscosity range of from 80-220 Saybolt Universal seconds at 210 F.
  • a heat conductive mastic consisting essentially of substantially 58% by weight magnesium oxide and 42% by weight cylinder oil.
  • A- heat conductive mastic consisting essentially of substantially 58% by weight magnesium oxide and the remainder an oil selected from the class of heavy lubricating'oils' having a viscosity within the range of 80-220 Saybolt Universal seconds at 210 F.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

Sept. 13, 1955 c. WRIGHT ET AL HEAT CONDUCTIVE MASTIC Filed NOV. 9, 1951 will: if v .Hamww/ JNVE/VTOR.
ATTORNEY United States Patent Ofi i 2,717,839 IEAT CONDUCTIVE MASTIC Charles Wright and Warren A. Hanson, St. Paul, Minn, assignors to Seeger Refrigerator Company, St. Paul,
Inn.
Application November 9, 1951, Serial No. 255,760 4 Claims. (Cl. 106285) or attached thereto. in certain types of such freezers, metal coils are mechanically attached to the metallic liners of the cabinet and held in close contact with the sides and sometimes the bottoms thereof. Contact between the coils and the liner acts to conduct heat from the liner to the refrigerant within the coil. As the refrigerator coils are usually circular in cross section they can actually contact the surface of the liner only along a single line of contact. In order to increase the heat transfer from the liner to the coil, a beading of heat conductive mastic applied between the coil and the liner transfers heat through the mastic as well as through the actual line of contact between the coil and the liner. This mastic also serves as a heat transfer medium between the liner and the coil at points where the coil is slightly spaced from the liner, it being understood that it is diflicult to hold the coil in contact with the liner throughout its entire length.
The present invention lies in the provision of a novel type of heat conductive mastic which has been found to provide superior thermo-conductivity. As any increase in the thermo-conductivity between the coil and the liner tends to increase the over-all operating efliciency of the freezer, the mastic thus produced tends to make the freezer more eflicient than when other mastic is used.
A feature of the present invention lies in the use of a mastic between a refrigerant coil and a surface to be cooled which includes magnesium oxide combined with an oil. This combination provides better thermo-conductivity between the coil and the surface to be cooled than other mastic with which we are familiar, thereby increasing the efliciency of the freezer.
These and other objects and novel features of our in-v vention will be more clearly and fully set forth in the following specification and claims.
In the drawings forming a part of our specification:
Figure l is a sectional view through a portion of a freezer wall showing the manner in which the coil is held in close contact with the walls of the liner.
Figure 2 is an enlarged sectional view through a coil and through a portion of the liner showing the manner in which the mastic acts to connect the coil and the heat conductive liner.
The freezer A illustrated ings is only partially shown in the accompanying drawand the specific arrangement 2,717,839 Patented Sept. 13, 19 55 ice an outer casing 10 which is shown as having 11 and a bottom panel 12. 11 are ordinarily rectangularly ar-' be cylindrical in form, or any other de- The side wall panels ranged, but may sired shape.
walls 14 and the casing side walls 11. In the specific arrangement illustrated the side walls 11 of the outer casing are provided with inturned marginal flanges 19, while the side walls 14 of the liner 13 are provided with outwardly turned flanges 20 which may extend substantially flush with the flanges 19. Suitable means 21 are provided the upper edge of the refrigerator.
The cabinet is usually closed by a door be hinged to one of the side Walls of the door 23 includes an outer sheathing 24 and an inner lining panel 25. The outer covering 24 may extend marglnally toward the liner 25 and may terminate in an inwardly extending marginal flange 26 which may be from the liner 25 by a suitable gasket 27.
23 which may cabinet. The
which our mastic may be used.
The evaporator coil 29 encircles the side walls 14 of the liner 13 and lies in contact therewith throughout as 15 of the liner as illustrated.
As best shown in Figure 2 of the drawings the evaporator coil 29 usually comprises an elongated metallic tube which is held in contact with the wall 14 or 15 of the This so as good thermal contact between a relatively the coil and the liner panel. If desired the wall. generally triangular space is filled with mastic 30 to provide a large area of merely on one side 3 Viscosity,
Saybolt Degrees Name of Oil Universal Seconds 210 F. 4 Motor, heavy -27 80-155 Aircraft engine, heavy 1 23-25 100-145 Transmission Oil, heaviest 20-22' 200-220 Cylinder oils:
Light mineral 25-28 135-165 Heavy mineral 20-26 175-220 Light compoundetL 25-28 95-110 Heavy compounded 20-26 175-220 As a specific example of the mastic which we have found tobest suit the overall purposes of the present invention, we may cite the following:
Example I 58% by weight magnesium oxide I 42% by weight steam refined cylinder oil of 23-25 degrees A. P. I.
A second composition that is quite similar to Example I is presented below:
Example 11 58% by weight magnesium oxide 7 42% by weight cylinder oilof 23-25 degrees A. P. I. and
approximately 200 S; U. secs.
The proportion of magnesium oxide used in the above cited example may be increased or decreased approximately 1% without greatly affecting the. results and the percentage of oil may also be increased or decreased approximately 1%. With oil of the viscosity described above the mastic p'roducedtends to become unduly soft and to run down the walls of the liner if the proportion of oil is increased more than approximately 1%. Similarly if the proportion of oil is decreased more than approximately 1%, the mastic becomes difficult to mix and to handle with ease. Oil ofthe particular viscosity mentioned provides a better heat transfer than oil of other viscosity in the mixture. Thus while the formula of the specific example mentioned may be varied without entirely losing the-' advantage of the combination, the above formula has been found to be advantageous over other proportions.
The viscosity of the oil used may be changed and a change in the viscosity of the oil acts to somewhat change the proportion of magnesium oxide which may be usedin the combination. However, if a lighter or less viscous oil is used the mastic tends to become unduly soft at room' temperatures and an increase in the viscosity tends to make a mastic which is slightly more difficult to mix and handle and does not appear to have as good head conductive properties as the specific oil described. Similarly the oil need not be cylinder oil to produce advantageous results, although the particular oil mentioned has been found better than any other type of oil used. Thus the selection of the oil to produce best results appears important, as well as the viscosity thereof.
With reference to the particular type of oil, any of the oils set forth in the above presented list are deemed suitable, these listed oils having a gravity range of 20-28 degrees A. P. l. and a viscosity range of 530-220 S. U. secs. Actually, it is possible to employ other oils than those obtained from petroleum, such other oils ineluding coal tar derivatives and shale oils of the above viscosity range. Still further, it is sometimes of advantage to compound oils; cylinder oil, for instance, when compounded with from 57% of tallow adheres more closely to the metallic surfaces constituting the liner 13 and the coils 29. However, in general, compounding is practiced principally in order to meet viscosity specifications and therefore can be used to whatever extent is necessary to prevent the oil from running down the panel walls. A number of compounding substances are available, and it is believed that their respective characteristies are sufiiciently well known for their proper use by those familiar with the oil refining art.
Magnesium oxide appears to have better heat conductive properties in the combination mentioned than other materials of a somewhat similar character and thus is believed specifically advantageous in the combination.
While the 58 to 42 percent ratio of magnesium oxide to oil is preferred, this ratio may be varied so that the magnesium oxide covers arange of from 52-66% with the remainder being oil. When 66% magnesium oxide is used, the less viscous oils of the preceding list may be best utilized, as in the following:
Example Ill 66% by weight magnesium oxide 34% by Weight heavy motor oil of 20-27 degrees A. P. I. and a viscosity of to S. U. seconds at 210 F.
As before stated, the important thing is to produce a mastic of magnesium oxide and oil having a puttylike texture that will not permit the oil contained therein to separate out and run from the mastic at room temperatures. Of the examples presented, Example I has been found to be superior from 7 an overall characteristic standpoint; i. e. it has been discovered from actual tests that it possesses all the factors necessary to produce a mastic for the particular purpose disclosed.
In accordance with the. patent statutes, we have described the principles: of construction and operation of our heat conductive mastic, and while we have endeavored to set forth the best embodiment thereof, we desire to have it understood that obvious changes may be made within the scope of the following claims without departing from the spirit of our invention.
We claim:
1 A- heat conductive mastic consisting essentially of 52-66% by weight magnesium oxide and the remainder an oil, primarily mineral, having a viscosity range of from 80-220 Saybolt Universal seconds at 210 F.
2. A heat conductive mastic consisting essentially of substantially 58% by weight magnesium oxide and 42% by weight cylinder oil.
3-. The composition described in claim 2 in which the cylinder oil has a gravity of from 23 to 25 degrees A. P. l.
4. A- heat conductive mastic consisting essentially of substantially 58% by weight magnesium oxide and the remainder an oil selected from the class of heavy lubricating'oils' having a viscosity within the range of 80-220 Saybolt Universal seconds at 210 F.
References Cited in the file of this patent UNITED STATES PATENTS

Claims (1)

1. A HEAT CONDUCTIVE MASTIC CONSISTING ESSENTIALLY OF 52-66% BY WEIGHT MAGNESIUM OXIDE AND A REMAINDER OF OIL, PRIMARILY MINERAL, HAVING A VISCOSITY RANGE OF FROM 80-220 SAYBOLT UNIVERSAL SECONDS AT 210* F.
US255700A 1951-11-09 1951-11-09 Heat conductive mastic Expired - Lifetime US2717839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US255700A US2717839A (en) 1951-11-09 1951-11-09 Heat conductive mastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US255700A US2717839A (en) 1951-11-09 1951-11-09 Heat conductive mastic

Publications (1)

Publication Number Publication Date
US2717839A true US2717839A (en) 1955-09-13

Family

ID=22969517

Family Applications (1)

Application Number Title Priority Date Filing Date
US255700A Expired - Lifetime US2717839A (en) 1951-11-09 1951-11-09 Heat conductive mastic

Country Status (1)

Country Link
US (1) US2717839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932352A (en) * 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US3075040A (en) * 1957-07-26 1963-01-22 Siemens Ag Method for improving the electric strength and flash-over or glowdischarge resistance of olefine polymers
US3405066A (en) * 1965-01-22 1968-10-08 Union Carbide Corp High thermal conductivity fluid dielectric

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1283546A (en) * 1917-01-19 1918-11-05 Hans M Olson Process for making waterproof cement and product.
US1619534A (en) * 1923-10-13 1927-03-01 Olson Hans Martinus Oxychloride cement and method of making same
US1920926A (en) * 1930-11-06 1933-08-01 Drug Products Co Inc Mineral oil emulsion
US2111414A (en) * 1936-12-04 1938-03-15 Gen Electric Electrical insulating composition
US2321522A (en) * 1939-06-05 1943-06-08 Sands Ernest Magnesium cement article and method of making the same
US2418795A (en) * 1943-07-09 1947-04-08 Skolnik Max Hardenable plastic composition
US2550452A (en) * 1945-03-07 1951-04-24 Gen Electric Compound dielectric materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1283546A (en) * 1917-01-19 1918-11-05 Hans M Olson Process for making waterproof cement and product.
US1619534A (en) * 1923-10-13 1927-03-01 Olson Hans Martinus Oxychloride cement and method of making same
US1920926A (en) * 1930-11-06 1933-08-01 Drug Products Co Inc Mineral oil emulsion
US2111414A (en) * 1936-12-04 1938-03-15 Gen Electric Electrical insulating composition
US2321522A (en) * 1939-06-05 1943-06-08 Sands Ernest Magnesium cement article and method of making the same
US2418795A (en) * 1943-07-09 1947-04-08 Skolnik Max Hardenable plastic composition
US2550452A (en) * 1945-03-07 1951-04-24 Gen Electric Compound dielectric materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932352A (en) * 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US3075040A (en) * 1957-07-26 1963-01-22 Siemens Ag Method for improving the electric strength and flash-over or glowdischarge resistance of olefine polymers
US3405066A (en) * 1965-01-22 1968-10-08 Union Carbide Corp High thermal conductivity fluid dielectric

Similar Documents

Publication Publication Date Title
US2717839A (en) Heat conductive mastic
US2257969A (en) Lubricant
DE60018005T2 (en) LUBRICANTS FOR STEAM COMPRESSION REFRIGERATOR WITH HYDROCARBON COOLANT
US2239841A (en) Lubricating oil and lubrication therewith
US2293445A (en) Lubricant with high temperature stability
US2351657A (en) Lubricant
US1819759A (en) Cylinder for internal combustion engines
US2373733A (en) Steam cylinder lubricants
US2291442A (en) Upper cylinder lubricant
US1924211A (en) Cylinder oil
US2075769A (en) Seal for refrigerating apparatus
US2274617A (en) Lubricating oil composition
US2261864A (en) Halogenated extreme pressure lubricant
US2306354A (en) Lubricating oil
US2355993A (en) Low temperature lubricants
US1942636A (en) Lubricating oil
US2057212A (en) Process for stabilizing mineral oils
US1796857A (en) Lubricant
US1804124A (en) Lubricating compound
US2397702A (en) Agent for mineral oils and mineral oil composition containing the same
US2227908A (en) Lubricating oil and lubrication therewith
US2103927A (en) Nongumming motor fuel
US2391311A (en) Lubricating composition
US2033543A (en) Lubricating oils
JP2976157B2 (en) Composition for working fluid of refrigerator