US2712521A - Process of making bismuth resistances - Google Patents
Process of making bismuth resistances Download PDFInfo
- Publication number
- US2712521A US2712521A US228573A US22857351A US2712521A US 2712521 A US2712521 A US 2712521A US 228573 A US228573 A US 228573A US 22857351 A US22857351 A US 22857351A US 2712521 A US2712521 A US 2712521A
- Authority
- US
- United States
- Prior art keywords
- bismuth
- resistances
- cathode
- resistance
- deposit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052797 bismuth Inorganic materials 0.000 title claims description 41
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 21
- 238000004090 dissolution Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 150000001621 bismuth Chemical class 0.000 claims description 2
- 239000002966 varnish Substances 0.000 description 19
- 239000002184 metal Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000001465 metallisation Methods 0.000 description 7
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 229920003319 Araldite® Polymers 0.000 description 3
- 239000013043 chemical agent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000748460 Guardiola Species 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002160 Celluloid Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- MHMUIIBVMBOAON-UHFFFAOYSA-N azane;2,2,2-trichloroacetic acid Chemical compound [NH4+].[O-]C(=O)C(Cl)(Cl)Cl MHMUIIBVMBOAON-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940036348 bismuth carbonate Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- GMZOPRQQINFLPQ-UHFFFAOYSA-H dibismuth;tricarbonate Chemical compound [Bi+3].[Bi+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GMZOPRQQINFLPQ-UHFFFAOYSA-H 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229960004319 trichloroacetic acid Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/075—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
- H01C17/14—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques by chemical deposition
- H01C17/16—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques by chemical deposition using electric current
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N97/00—Electric solid-state thin-film or thick-film devices, not otherwise provided for
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
- Y10T428/31515—As intermediate layer
- Y10T428/31522—Next to metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31688—Next to aldehyde or ketone condensation product
Definitions
- bismuth which gives the highest resistance variations for a given variation of the magnetic field in which this metal is placed.
- bismuth wire resistances were manufactured up to the present time, but their preparation required considerable time and was Xpensive and ditlicult; moreover, the resistances thus obtained were thick and of very low values.
- Very thin resistances may be manufactured by eifecting a metallic deposit on an insulating support by vacuum evaporation. However, this method only gives a deposit whose thickness is about 1 micron. Due to the fact that this thickness is generally too small for the usual applications, it is necessary to repeat the operation several times until a deposit of the desired thickness is obtained, with the result that the cost of the resistance is greatly increased.
- the object of the present invention is a manufacturing process for a bismuth resistance, which avoids the above mentioned inconveniences.
- This process consists in electrolytically depositing a layer of said metal on a conducting support, applying a thin insulating support to this electrolytic deposit and then dissolving, at least partly, the conducting support by means of at least one chemical agent which does not dissolve either the electrolytic deposit or the insulating support.
- the attached drawing shows, schematically and as an example, a resistance obtained according to the process, object of the invention, at various manufacturing stages.
- Fig. l is a side view of a resistance in the course of manufacture.
- Fig. 2 is a sectional View according to Il-ll on Fig. l.
- Figs. 3 to 6 represent sectional views of a resistance at various manufacturing stages.
- Figs. 7 and 8 represent schematically sectional views of two resistances in the course of manufacture, according to two variations of the process, object of the invention.
- Fig. 9 represents a perspective view of a cylindrical resistance.
- Fig. 10 is a sectional view according to X-X on Fig. 9.
- Fig. 1l is a perspective view of a cylindrical resistance with practically no self-induction.'
- Figs. l and 2 represent, schematically, a copper plate 1, on a part of which has been applied a layer 2 of an insulating varnish to prevent the electrolytic deposit. As Fig. 1 shows, this layer is applied in such a Way as to leave free only a sinuous ribbon surface. Bismuth is electrolytically deposited on that plate, the thickness of the deposit being dened by the time of the electrolysis and the current intensity. Consequently, bismuth only settles on the surface which has not been covered with varnish, and thus forms a continuous ribbon 3 strongly adhering to the copper plate 1 (Fig. 3).
- the electrolytically deposited side of plate 1 is covered with one or several layers of a varnish 4 which after its hardening constitutes a thin insulating support (Fig. 5).
- the protecting layer 2 on the back of the copper plate 1 is then removed, and the latter is dissolved by means of a chemical agent or a mixture of chemical agents which do not corrode bismuth or the insulating support.
- a resistance is thus obtained, which is made of a thin bismuth ribbon strongly adhering to an insulating support and terminated at both ends by a copper contact 6.
- one or several layers 5 of insulating varnish may also be applied. In this way, the bismuth ribbon is enclosed between two insulating supports.
- Very thin flat resistances less than 0.1 mm. for instance, may be obtained through this process.
- the thickness of the bismuth ribbon may be between 0.005 and 0.2 mm., and its Width less than 0.1 mm., thus making possible the manufacture of resistances of several tenths of thousand ohms, whose shape, for instance, is that of a rectangle 2 cm. wide by 5 cm. long.
- When making a rather thick electrolytic deposit of an almost rectangular shape it is possible to manufacture resistances, the value of which is about 0.1 ohm.
- deposits consisting of bismuth in combination with other metals may be prepared.
- the process is suitable for the manufacture of resistances of any shape, and is particularly adapted to obtain resistances of cylindric shape, as the electrolytic deposit may be made on the outer or inner wall of a conducting cylinder which is afterwards dissolved.
- Fig. 9 shows a completed cylindric resistance.
- Cylinder 4 formed by the varnish, constitutes the support of the resisting ribbon 3.
- the ends of this ribbon are made of copper contacts, formed by the undissolved parts of the copper cylinder which was used as metallic support for the electrolytic deposit
- Fig. 10 is a sectional View according to X-X on Fig. 9 and shows the disposition of one of the copper contacts 6, of the ribbon 3 and support 4 made of polymerizable varnish.
- Fig. 11 represents a cylindric resistance similar to that represented on Fig. 9, but in which the metallic ribbon is disposed in such a way as to form a biilar winding, thus presenting practically no self-induction,
- the electrolyuc deposit is easily obtained when the dissolution potential of the metal forming the conducting plate is lower than that of bismuth. If, on the contrary, that metal had a higher dissolution potential than that of bismuth, the surface on which the deposit mustA be made, should be covered with a metal having a lower dissolution potential than bismuth, as, for instance, copper or silver.
- a variation of this process consists in first depositing the electrolytic layer on a bare metallic'support, then partially removing the deposit by mechanical means (cutter, chisel, tracing machine) or chemical means (for instance, acids) so as to leave on the metallic support only a ribbon of electrolytic deposit of the required shape.
- the electrolytic deposit may easily be removed, partially by means of a lathe, or any other adequate machine or tool, cutting a thread into the deposit so as to give it the shape of a helicoidal ribbon.
- the varnish applied on the electrolytic deposit and which becomes later on the support of that deposit is preferably a basic varnish of polymerizable synthetic resin which is then dried in the open air, the polymerization being done at high temperature.
- the conducting support may also be made with a soluble non-metallic support one part of which at least is metallized.
- This insulating support might be for instance made of Celluloid, cellulose acetate, polystyrene, and the like.
- Metallization may also be obtained through various processes, such as spray* metallization, chemical reduction metallization, vacuum evaporation metallization, cathodic deposit metallization, and the like.
- a housing may be used so that the metallized surface may already have the shape to be given to the electrolytic deposit. Consequentlyit is no longer necessary to varnish the surface on which no electrolytic deposit isfto take place.
- the deposit is covered with a varnish which will later on form the insulating support of the resistance, then the basic non-metallic support is dissolved by means of an appropriate solvent, like acetone, for instance.
- the metallic layer which was used to make the support a conducting one, is then dissolved by means of chemical products attacking neither bismuth nor the varnish constituting the support.
- VThe metallization may'also be made on the entire surface of the insulating support and the desired shape and electrolytic deposit may be vobtained by one of the methods previously indicated, i. e. it is possible to either L apply a protecting varnish on the parts which are not to receive any deposit, or to produce a uniform deposit,
- Fig. 8 is a diagrammatic cross section of such a resistance during its manufacture. On this figure may be seen the non-metallic support 7, the metallic layer 8 allowing the electrolytic deposit of the layer3 on which a layer of polymerizable varnish 4 is applied.
- Fig. 7 shows, as aY comparison, a resistance obtained directly by an electrolytic deposit 3 on a copper plate 1.
- This deposit 3 is covered with a layer of polymerizable varnish 4.
- any kind of metal on which a suitable electrolytic deposit may be made of the metal to form the resistance can be used to metallize the non-conducting support.
- metal on which a suitable electrolytic deposit may be made of the metal to form the resistance can be used to metallize the non-conducting support.
- silver which is deposited by chemical reduction, copper deposited by spraying, and the like can be used to metallize the non-conducting support.
- bismuth it is advantageous to metallize the non-conducting support with bismuth which may be deposited by vacuum evaporation. In this way, it is no longer necessary to dissolve the metal applied on the support, and it is suicient to dissolve the non-metallic support.
- a bath giving a very tine-grained electrolytic deposit.
- a bath enamel for instance, a bath enamel, cellulose, and the like.
- the insulating support which is to'adhere to the electrolytic deposit, it is obvious that it may be made of any material whatsoever, as for instance, mica, porcelain, However, it is advantageous to choose it among the synthetic plastic materials, such as vinyl, phenolic, acrylic resins, silicone resins, resins based on urea, resins based on styrene, and the like.
- the bath has a temperature of 40 C. and the time of electrolysis is lS'minutes for a current density of 2 amp/dm. 2.
- the piece is then rinsed, the protecting varnish removed, and the bismuth surface covered with a layer of Araldite varnish.
- Araldite varnish designates an epoxy resin sold in commerce.
- the varnish solvent is evaporated at C. and the polymerization of the Araldite takes place in an oven heated at a temperature of 180 C. during 30 minutes.
- the dissolution of the copper plate takes an hour at a temperature of 35 C.
- a method of preparing mechanically stable thin bis muth resistances comprising the steps of passing an electric current through an electrolytic cell containing a solution of a bismuth salt and a cathode having at least partially a metallic conducting surface, said surface being of a metal having a lower dissolution potential than bismuth, removing the cathode from the cell after a bismuth,
- containing layer of a thickness not exceeding ,2 mm. has been deposited on said metallic cathode surface, coating said layer with a polymerizable resin, curing said resin, and dissolving the metal of the cathode to such an extent as to allow of separating therefrom the bismuth containing layer and the insulating coating as an integral selfsustaining structure, thereby obtaining a bismuth resistance of substantially uniform thickness carried by an insulating support.
- a method as defined in claim 1 comprising the step of nally applying to the bismuth surface of the obtained resin-bismuth structure an insulating coating so as to obtain a bismuth resistance sandwiched between two supporting insulating layers.
- a method of preparing mechanically stable thin bismuth resistances comprising the steps of providing an electrolytic cell including a cathode having a conducting surface conforming to the shape of the resistance to be obtained and an electrolyte containing about 40 g./1 of bismuth carbonate, about g./l of 60% perchloric acid, and a protecting colloid, said conducting surface consisting of a metal having a lower dissolution potential than bismuth, passing at a temperature of about 40. C. an electric current through said cell, removing the cathode from the cell after a bismuth layer of a thickness not exceeding 0.2 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Electrolytic Production Of Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH295509T | 1950-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2712521A true US2712521A (en) | 1955-07-05 |
Family
ID=4488904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US228573A Expired - Lifetime US2712521A (en) | 1950-07-13 | 1951-05-28 | Process of making bismuth resistances |
Country Status (6)
Country | Link |
---|---|
US (1) | US2712521A (en)) |
BE (1) | BE504430A (en)) |
CH (1) | CH295509A (en)) |
DE (1) | DE910185C (en)) |
FR (1) | FR1046649A (en)) |
LU (1) | LU30852A1 (en)) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3139392A (en) * | 1959-08-10 | 1964-06-30 | Norman B Mears | Method of forming precision articles |
US3245864A (en) * | 1955-04-01 | 1966-04-12 | Shanok Abraham | Composite molding strip |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2344940A1 (fr) * | 1976-03-18 | 1977-10-14 | Electro Resistance | Procede pour la fabrication de resistances electriques a partir d'une feuille metallique fixee sur un support isolant et dispositif s'y rapportant |
DE2701373C2 (de) * | 1977-01-14 | 1982-12-23 | Dr. Johannes Heidenhain Gmbh, 8225 Traunreut | Verfahren zum Herstellen einer Widerstandsschicht von Metallschichtzündmitteln |
DE3035717C2 (de) * | 1980-09-22 | 1983-08-25 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur serienmäßigen Herstellung von Folienwiderständen oder Netzwerken von Folienwiderständen |
DE3631058A1 (de) * | 1986-09-12 | 1988-03-24 | Preh Elektro Feinmechanik | Verfahren zur herstellung von leit- und/oder widerstandsbahnen an einem substrat und nach diesem verfahren hergestelltes potentiometer |
DE19732380B4 (de) * | 1997-07-25 | 2005-04-14 | Conti Temic Microelectronic Gmbh | Anzündelement für pyrotechnische Wirkmassen mit einer Dämmschicht |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1352934A (en) * | 1919-10-17 | 1920-09-14 | Elek Sk Varmeteknik As | Electric-heating body |
US1892755A (en) * | 1929-05-25 | 1933-01-03 | Lorenz C Ag | Method of making electrical condensers |
US1974763A (en) * | 1934-09-25 | Process fob the production of boll- | ||
US2133685A (en) * | 1935-03-11 | 1938-10-18 | Frank R Coughlin | Method of removing metallic plating from a carrier band |
US2328626A (en) * | 1939-08-19 | 1943-09-07 | Union Switch & Signal Co | Manufacture of electrical rectifiers |
US2441960A (en) * | 1943-02-02 | 1948-05-25 | Eisler Paul | Manufacture of electric circuit components |
US2501322A (en) * | 1946-11-07 | 1950-03-21 | Westinghouse Electric Corp | Moisture-resistant lightning arrester valve block |
US2521894A (en) * | 1950-02-08 | 1950-09-12 | Robert J S Brown | Low inductance resistor |
US2564677A (en) * | 1947-09-15 | 1951-08-21 | Corning Glass Works | Electrically conducting coating on glass and other ceramic bodies |
-
1950
- 1950-07-13 CH CH295509D patent/CH295509A/fr unknown
-
1951
- 1951-05-28 US US228573A patent/US2712521A/en not_active Expired - Lifetime
- 1951-06-30 DE DEV3517A patent/DE910185C/de not_active Expired
- 1951-07-03 BE BE504430D patent/BE504430A/xx unknown
- 1951-07-03 LU LU30852D patent/LU30852A1/xx unknown
- 1951-07-04 FR FR1046649D patent/FR1046649A/fr not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1974763A (en) * | 1934-09-25 | Process fob the production of boll- | ||
US1352934A (en) * | 1919-10-17 | 1920-09-14 | Elek Sk Varmeteknik As | Electric-heating body |
US1892755A (en) * | 1929-05-25 | 1933-01-03 | Lorenz C Ag | Method of making electrical condensers |
US2133685A (en) * | 1935-03-11 | 1938-10-18 | Frank R Coughlin | Method of removing metallic plating from a carrier band |
US2328626A (en) * | 1939-08-19 | 1943-09-07 | Union Switch & Signal Co | Manufacture of electrical rectifiers |
US2441960A (en) * | 1943-02-02 | 1948-05-25 | Eisler Paul | Manufacture of electric circuit components |
US2501322A (en) * | 1946-11-07 | 1950-03-21 | Westinghouse Electric Corp | Moisture-resistant lightning arrester valve block |
US2564677A (en) * | 1947-09-15 | 1951-08-21 | Corning Glass Works | Electrically conducting coating on glass and other ceramic bodies |
US2521894A (en) * | 1950-02-08 | 1950-09-12 | Robert J S Brown | Low inductance resistor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3245864A (en) * | 1955-04-01 | 1966-04-12 | Shanok Abraham | Composite molding strip |
US3139392A (en) * | 1959-08-10 | 1964-06-30 | Norman B Mears | Method of forming precision articles |
Also Published As
Publication number | Publication date |
---|---|
CH295509A (fr) | 1953-12-31 |
BE504430A (en)) | 1952-11-07 |
FR1046649A (fr) | 1953-12-08 |
LU30852A1 (en)) | 1952-03-19 |
DE910185C (de) | 1954-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1338186C (en) | Circuit board material and electroplating bath for the production thereof | |
US2897409A (en) | Plating process | |
US3898369A (en) | Metal coated heat-recoverable articles | |
US3269861A (en) | Method for electroless copper plating | |
US3099608A (en) | Method of electroplating on a dielectric base | |
DE3016132C2 (de) | Verfahren zur Herstellung von gegen Hitzeschockeinwirkung widerstandsfähigen gedruckten Schaltungen | |
US3523824A (en) | Metallization of plastic materials | |
US5689227A (en) | Circuit board material with barrier layer | |
US2712521A (en) | Process of making bismuth resistances | |
US2834723A (en) | Method of electroplating printed circuits | |
US3522085A (en) | Article and method for making resistors in printed circuit board | |
US2793178A (en) | Method of providing insulator with multiplicity of conducting elements | |
EP0615257B1 (en) | Method of manufactoring a laminated structure of a metal layer on a conductive polymer layer | |
DE2725096C2 (de) | Verfahren zur Vorbehandlung der Oberfläche eines dielektrischen Materials für das stromlose Aufbringen von Metallschichten | |
US3143484A (en) | Method of making plated circuit boards | |
US3194681A (en) | Process for plating through holes in a dielectric material | |
US3306830A (en) | Printed circuit boards and their fabrication | |
US3409466A (en) | Process for electrolessly plating lead on copper | |
GB1013673A (en) | Improvements in or relating to electroplating processes | |
US3859176A (en) | Method for making thin film tungsten-thorium alloy | |
GB1207444A (en) | Method of manufacturing printed circuits having metallised holes | |
US3272727A (en) | Process for electroplating magnetic alloy onto a platinized chromium substrate | |
US3392053A (en) | Memory fabrication method | |
US3457634A (en) | Method for fabricating memory apparatus | |
GB705606A (en) | Improvements in or relating to a manufacturing process of an electric metal resistance |