US2654997A - Two-liquid combustion chamber for rocket apparatus - Google Patents

Two-liquid combustion chamber for rocket apparatus Download PDF

Info

Publication number
US2654997A
US2654997A US273132A US27313252A US2654997A US 2654997 A US2654997 A US 2654997A US 273132 A US273132 A US 273132A US 27313252 A US27313252 A US 27313252A US 2654997 A US2654997 A US 2654997A
Authority
US
United States
Prior art keywords
combustion chamber
combustion
chamber
liquid
goddard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US273132A
Inventor
Esther C Goddard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US273132A priority Critical patent/US2654997A/en
Application granted granted Critical
Publication of US2654997A publication Critical patent/US2654997A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/52Injectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S60/00Power plants
    • Y10S60/915Collection of goddard patents

Definitions

  • This invention relates to a combustion chamber as used in rocket apparatu and of the general type in which the combustion gases formed in an enclosed combustion'area by combustion of two different liquids are ejected through an open discharge nozzle.
  • combustion chambers have'very thin metal walls, but the combustion temperatures are commonly very high, and provision is necessary for cooling such thin walls.
  • An enclosing jacket space is also provided about said combustion chamber, and an inert fluid, such as nitrogen, may be supplied to this jacket space under such pressure as to offset the pressures developed in the combustion chamber. Additional localized cooling films may also be provided for any areas which tend to become overheated.
  • Fig. l is a side elevation, partially in section, and disclosing a preferred form of the invention
  • Fig. 2 is a sectional plan view, taken along the line 2-2 in Fig. 1;
  • Fig. 3 is a view similar to Fig. l but showing a modified construction.
  • combustion apparatus is shown involving a combustion chamber C having a thin metal wall W, an open discharge nozzle N, and an outer casing I I! enclosing a jacket space S.
  • a feeding nozzle I2 projects tangentially into the combustion chamber C and is supplied with gasoline or other liquid fuel under pressure through a feed pipe I4.
  • the pipe I I is preferably surrounded by an outer tube I6 spaced from the pipe I4 to enclose an insulating air space.
  • a second feeding nozzle 20 is supplied with liquid oxygen or some other liquid oxidizer under pressure through a feed pipe 22, and the pipe 22 is preferably surrounded by an outer tube 24 enclosing a space which may be filled with liquid oxygen to protect the liquid oxygen in the feed pipe 22 and feeding nozzle 20 from vaporization, which might develop gas-lock.
  • the liquids As the combustion liquids are supplied through the feeding nozzles I2 and 2
  • An inert 'fluid such as nitrogen, may be supplied to the jacket space S through a pipe 30 and under such pressure a will offset the pressures developed by combustion in the combustion chamber C.
  • the pressures on the inner and outer surfaces of the chamber wall W may thus be substantially equalized, so that the thin wall has to resist only a very slight unbalanced pressure.
  • a small bleed opening 32 at the top of the chamber wall W will permit limited circulation of the inert liquid through the jacket space S, but the amount of fluid escaping through the hole 32 will be too small to have any objectionable effect on combustion.
  • the cooler parts of the combustion mixture are kept close to the inner surface of the wall W, the alternate layer of the liquids will facilitate intimate mixing without the violent recoil which occurs on engagement of large masses of the separate liquids, and the gradual advance of the liquids toward the axis of the combustion chamber will rapidly preheat and evaporate any still unmixed and unevaporated combustion liquids. This preheating and evaporation is found to take place very rapidly.
  • the spherical form of the combustion chamber resists distortion and gives maximum volume for a given weight.
  • Fig. 3 may be adopted.
  • the construction in Fig. 3 is essentially the same as that shown in Fig. 1, except for the provision of branch pipes as 6
  • the cooling fihn within the wall W of the combustion chamber C may be built up to additional thickness in areas where the films from the feeding nozzle I2 and 20 might be of less thickness or otherwise inadequate.
  • a combustion chamber of substantially spherical shape and having a thin sheet-metal wall, means to introduce a stream of liquid fuel at one side of said chamber and in a tangential direction and adjacent the side wall of said chamber, and means to introduce a stream of liquid oxidizer at a relatively separated point in said combustion chamber and in the same tangential direction and also adjacent the side wall of said chamber, and said two supply means being in the same plane normal to the combustion chamber axis and substantially at the point of greatest diameter.
  • a combustion chamber of substantially spherical shape and having a thin sheet-metal wall, means to introduce a stream of liquid fuel at one side of said chamber and in a tangential direction and adjacent the side wall of said chamber, and means to introduce a stream of liquid oxidizer at a diametrically opposite point in said combustion chamber and in the same tangential direction and also adjacent the side wall of said chamber, whereby superposed films of liquid fuel and liquid oxidizer are formed, which films produce a combustion mixture and also protect the side wall of said chamber from excessive heat.

Description

Oct. 13, 1953 R GODDARD 2,654,997
TWO-LIQUID COMBUSTION CHAMBER FOR ROCKET APPARATUS Filed Feb. 23, 1952 INVENTOR. ROBERT. H GODDARD, DECD E HER economogxecumm KW, J k I Patented Oct. 13, 1953 TWO-LIQUID COMBUSTION CHAMBER FOR 'ROCKET APPARATUS Robert H. Goddard, deceased, :late'o'f Annapolis,
Md., by Esther C. Goddard, executrix, -Worcester,*Mass.
Application February 23, 1952, Serial No.27 3,132
3 Claims. 1
This invention relates to a combustion chamber as used in rocket apparatu and of the general type in which the combustion gases formed in an enclosed combustion'area by combustion of two different liquids are ejected through an open discharge nozzle.
In order to save weight, it is desirable that such combustion chambers have'very thin metal walls, but the combustion temperatures are commonly very high, and provision is necessary for cooling such thin walls.
It is the general object of this invention to introduce combustion liquids to such a combustion chamber in such manner that the thin metal wall of the chamber Will be protected by superposed films of combustion liquids covering the inner surface thereof.
An enclosing jacket space is also provided about said combustion chamber, and an inert fluid, such as nitrogen, may be supplied to this jacket space under such pressure as to offset the pressures developed in the combustion chamber. Additional localized cooling films may also be provided for any areas which tend to become overheated.
The invention further relates to arrangements and combinations of parts which will be hereinafter described and more particularly pointed out in the appended claims.
Preferred forms of the invention are shown in the drawing, in which Fig. l is a side elevation, partially in section, and disclosing a preferred form of the invention;
Fig. 2 is a sectional plan view, taken along the line 2-2 in Fig. 1; and
Fig. 3 is a view similar to Fig. l but showing a modified construction.
Referring to Figs. 1 and 2, combustion apparatus is shown involving a combustion chamber C having a thin metal wall W, an open discharge nozzle N, and an outer casing I I! enclosing a jacket space S.
A feeding nozzle I2 projects tangentially into the combustion chamber C and is supplied with gasoline or other liquid fuel under pressure through a feed pipe I4. The pipe I I is preferably surrounded by an outer tube I6 spaced from the pipe I4 to enclose an insulating air space.
A second feeding nozzle 20 is supplied with liquid oxygen or some other liquid oxidizer under pressure through a feed pipe 22, and the pipe 22 is preferably surrounded by an outer tube 24 enclosing a space which may be filled with liquid oxygen to protect the liquid oxygen in the feed pipe 22 and feeding nozzle 20 from vaporization, which might develop gas-lock.
As the combustion liquids are supplied through the feeding nozzles I2 and 2|] under substantial pressure and in tangential directions, the liquids will be dispersed in more'or less distinct and superposed liquid films, which films will cover the inner surface of the combustion chamber wall W and will thus protect the thinchamber' wall from the high combustion temperatures.
An inert 'fluid, such as nitrogen, may be supplied to the jacket space S through a pipe 30 and under such pressure a will offset the pressures developed by combustion in the combustion chamber C. The pressures on the inner and outer surfaces of the chamber wall W may thus be substantially equalized, so that the thin wall has to resist only a very slight unbalanced pressure.
A small bleed opening 32 at the top of the chamber wall W will permit limited circulation of the inert liquid through the jacket space S, but the amount of fluid escaping through the hole 32 will be too small to have any objectionable effect on combustion.
With this very simple construction, the cooler parts of the combustion mixture are kept close to the inner surface of the wall W, the alternate layer of the liquids will facilitate intimate mixing without the violent recoil which occurs on engagement of large masses of the separate liquids, and the gradual advance of the liquids toward the axis of the combustion chamber will rapidly preheat and evaporate any still unmixed and unevaporated combustion liquids. This preheating and evaporation is found to take place very rapidly. The spherical form of the combustion chamber resists distortion and gives maximum volume for a given weight.
If it is found in operation that certain portions of the combustion chamber still tend to overheat, the construction shown in Fig. 3 may be adopted. The construction in Fig. 3 is essentially the same as that shown in Fig. 1, except for the provision of branch pipes as 6|] and BI connecting the gasoline feed pipe I4 to additional tangential feed nozzles 62 and 63 in the upper and lower portions of the combustion chamber C, and branch pipes Ill and H which similarly connect the oxygen feed pipe 22 with additional tangential nozzles I2 and 13 disposed in the planes of the nozzles 62 and 63 respectively.
In this way, the cooling fihn within the wall W of the combustion chamber C may be built up to additional thickness in areas where the films from the feeding nozzle I2 and 20 might be of less thickness or otherwise inadequate.
The construction herein described is of very simple and reliable construction and is found to be well adapted for its intended purposes.
Having thus described the invention and the advantages thereof, it will be understood that the invention is not to be limited to the details herein disclosed, otherwise than as set forth in the claims, but what is claimed is:
1. In rocket apparatus, a combustion chamber of substantially spherical shape and having a thin sheet-metal wall, means to introduce a stream of liquid fuel at one side of said chamber and in a tangential direction and adjacent the side wall of said chamber, and means to introduce a stream of liquid oxidizer at a relatively separated point in said combustion chamber and in the same tangential direction and also adjacent the side wall of said chamber, and said two supply means being in the same plane normal to the combustion chamber axis and substantially at the point of greatest diameter.
2. The combination in rocket apparatus as set forth in claim 1, in which additional streams OI liquid fuel and liquid oxidizer are supplied tangentially to said chamber and in planes at each side of the main supply plane but spaced therefrom.
3. In rocket apparatus, a combustion chamber of substantially spherical shape and having a thin sheet-metal wall, means to introduce a stream of liquid fuel at one side of said chamber and in a tangential direction and adjacent the side wall of said chamber, and means to introduce a stream of liquid oxidizer at a diametrically opposite point in said combustion chamber and in the same tangential direction and also adjacent the side wall of said chamber, whereby superposed films of liquid fuel and liquid oxidizer are formed, which films produce a combustion mixture and also protect the side wall of said chamber from excessive heat.
ESTHER. C. GODDARD, Ewecutria: of the last will and testament of Robert H. Goddard, deceased.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 1,827,246 Lorenzen Oct. 13, 1931 2,097,255 Saka Oct. 26, 1937 2,482,262 Goddard Sept. 20, 1949 2,520,751 Zucrow Aug. 29, 1950 2,526,219 Goddard Oct. 17, 1950 2,526,222 Goddard Oct. 17, 1950 2,544,419 Goddard Mar. 6, 1951
US273132A 1952-02-23 1952-02-23 Two-liquid combustion chamber for rocket apparatus Expired - Lifetime US2654997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US273132A US2654997A (en) 1952-02-23 1952-02-23 Two-liquid combustion chamber for rocket apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US273132A US2654997A (en) 1952-02-23 1952-02-23 Two-liquid combustion chamber for rocket apparatus

Publications (1)

Publication Number Publication Date
US2654997A true US2654997A (en) 1953-10-13

Family

ID=23042670

Family Applications (1)

Application Number Title Priority Date Filing Date
US273132A Expired - Lifetime US2654997A (en) 1952-02-23 1952-02-23 Two-liquid combustion chamber for rocket apparatus

Country Status (1)

Country Link
US (1) US2654997A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847826A (en) * 1952-09-10 1958-08-19 Ca Nat Research Council Pulsating torch igniter
DE1131947B (en) * 1959-03-28 1962-06-20 Maschf Augsburg Nuernberg Ag Combustion process for gas turbine combustion chambers and equipment for carrying out the process
US3059429A (en) * 1958-03-25 1962-10-23 Sunstrand Corp Reaction chamber
DE1159695B (en) * 1960-12-02 1963-12-19 United Aircraft Corp Propellant control system for a liquid rocket
US3158997A (en) * 1962-05-15 1964-12-01 United Aircraft Corp Tribrid rocket combustion chamber
DE1195092B (en) * 1960-12-07 1965-06-16 United Aircraft Corp Device for regulating the propellant supply in a liquid rocket
DE1626070B1 (en) * 1967-11-20 1970-12-03 Messerschmitt Boelkow Blohm Rocket-type gas generator
US3640072A (en) * 1968-07-20 1972-02-08 Lutz Tilo Kayser Rocket engine
US20040177603A1 (en) * 2003-03-12 2004-09-16 Aerojet-General Corporation Expander cycle rocket engine with staged combustion and heat exchange
DE19616838B4 (en) * 1995-04-27 2010-06-10 Société Nationale d'Etude et de Construction de Moteurs d'Aviation Combustion chamber with sweat cooling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1827246A (en) * 1927-06-07 1931-10-13 Bendix Aviat Corp Gas turbine
US2097255A (en) * 1937-10-26 Method of and apparatus fob burn
US2482262A (en) * 1948-01-02 1949-09-20 Esther C Goddard Steam production in jacketed combustion chambers
US2520751A (en) * 1944-02-19 1950-08-29 Aerojet Engineering Corp Reaction motor with fluid cooling means
US2526222A (en) * 1948-01-02 1950-10-17 Daniel And Florence Guggenheim Cooling and feeding means for rocket type combustion chambers
US2526219A (en) * 1947-05-07 1950-10-17 Daniel And Florence Guggenheim Steam production from cooling liquid in combustion chambers
US2544419A (en) * 1947-03-22 1951-03-06 Daniel And Florence Guggenheim Combustion chamber with wide-angle discharge for use in propulsion apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097255A (en) * 1937-10-26 Method of and apparatus fob burn
US1827246A (en) * 1927-06-07 1931-10-13 Bendix Aviat Corp Gas turbine
US2520751A (en) * 1944-02-19 1950-08-29 Aerojet Engineering Corp Reaction motor with fluid cooling means
US2544419A (en) * 1947-03-22 1951-03-06 Daniel And Florence Guggenheim Combustion chamber with wide-angle discharge for use in propulsion apparatus
US2526219A (en) * 1947-05-07 1950-10-17 Daniel And Florence Guggenheim Steam production from cooling liquid in combustion chambers
US2482262A (en) * 1948-01-02 1949-09-20 Esther C Goddard Steam production in jacketed combustion chambers
US2526222A (en) * 1948-01-02 1950-10-17 Daniel And Florence Guggenheim Cooling and feeding means for rocket type combustion chambers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847826A (en) * 1952-09-10 1958-08-19 Ca Nat Research Council Pulsating torch igniter
US3059429A (en) * 1958-03-25 1962-10-23 Sunstrand Corp Reaction chamber
DE1131947B (en) * 1959-03-28 1962-06-20 Maschf Augsburg Nuernberg Ag Combustion process for gas turbine combustion chambers and equipment for carrying out the process
DE1159695B (en) * 1960-12-02 1963-12-19 United Aircraft Corp Propellant control system for a liquid rocket
DE1195092B (en) * 1960-12-07 1965-06-16 United Aircraft Corp Device for regulating the propellant supply in a liquid rocket
US3158997A (en) * 1962-05-15 1964-12-01 United Aircraft Corp Tribrid rocket combustion chamber
DE1626070B1 (en) * 1967-11-20 1970-12-03 Messerschmitt Boelkow Blohm Rocket-type gas generator
US3640072A (en) * 1968-07-20 1972-02-08 Lutz Tilo Kayser Rocket engine
DE19616838B4 (en) * 1995-04-27 2010-06-10 Société Nationale d'Etude et de Construction de Moteurs d'Aviation Combustion chamber with sweat cooling
US20040177603A1 (en) * 2003-03-12 2004-09-16 Aerojet-General Corporation Expander cycle rocket engine with staged combustion and heat exchange
US6832471B2 (en) * 2003-03-12 2004-12-21 Aerojet-General Corporation Expander cycle rocket engine with staged combustion and heat exchange

Similar Documents

Publication Publication Date Title
US2523656A (en) Combustion apparatus comprising successive combustion chambers
US2667740A (en) Means for supplying and cooling rocket type combustion chambers
US2770097A (en) Cooling systems for engines that utilize heat
US2654997A (en) Two-liquid combustion chamber for rocket apparatus
US2183313A (en) Combustion chamber for aircraft
US2749706A (en) Mechanism for cooling a combustion chamber in propulsion apparatus and for feeding combustion liquids thereto
US2217649A (en) Combustion chamber for rocket apparatus
US3122883A (en) Heat resistant wall structure for rocket motor nozzles and the like
US2405785A (en) Combustion chamber
US2711630A (en) Rockets
US2930184A (en) Method and apparatus for hydrazine decomposition
US2510572A (en) Mixing partition for combustion chambers
US2551112A (en) Premixing combustion chamber
US2706887A (en) Liquid propellant rocket motor
US2526222A (en) Cooling and feeding means for rocket type combustion chambers
US3157026A (en) Composite nozzle structure
US2612750A (en) Rotatable combustion chamber
US2532709A (en) Liquid cooled baffles between mixing and combustion chambers
US2487435A (en) Fuel and water feeding and steam discharge arrangement for combustion chambers
US3137998A (en) Cooled rocket nozzle
US2397658A (en) Combustion apparatus
US2962221A (en) Rocket nozzle construction with cooling means
US2496710A (en) Fuel controlling apparatus for longitudinally movable combustion chambers
US2733570A (en) macpherson
US2408112A (en) Rocket motor cooling system