US2610835A - Plate heat exchanger - Google Patents
Plate heat exchanger Download PDFInfo
- Publication number
- US2610835A US2610835A US771299A US77129947A US2610835A US 2610835 A US2610835 A US 2610835A US 771299 A US771299 A US 771299A US 77129947 A US77129947 A US 77129947A US 2610835 A US2610835 A US 2610835A
- Authority
- US
- United States
- Prior art keywords
- plate
- plates
- openings
- heat exchanger
- slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000733322 Platea Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/08—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
- F28F3/083—Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
Definitions
- the distributing device comprises a rib I5, running right across the channel.
- Fig. 3 shows the plate I2 in which the rib is pressed, and an adjacent plate I6 forming the opposite wall of the channel I4. Together with the plate I6 the said rib I5 forms a throttled slit I1.
- the rib I5 is advantageously of different height at the two ends, so that at the one end IB in front ofA the inlet opening 2 the width of the slit I1 is less than at the opposite end I9.
- the width of the slit at diiferent parts of the rib may be so determined that the greater resistance to the iiow in front of the opening 2 compensates that otherwise greater resistance to which the liquid flowing past I9 is exposed, or in other words a uniform iiowacross the width of the plate may be established.
- a rib 20 which coopcrates with the plate I6 for the formation of a slit. This slit, too, should advantageously be narrower at I8 than at I9.
- the rib 20 may sometimes be omitted.
- Contact lugs in the slit I1 should be avoided, because such lugs together with the highvrate of flow would cause liquidfree spaces behind the lugs.
- Fig. 4 shows another embodiment of the distributing device, according to which both plates I2 and IS are provided with rib-shaped portions
- Fig. 5 illustrates a modification of theembodiment according to Fig. 4.
- the rib I5I functioning like the rib I5 of Fig. 3, is in this case of V shape and provided with slopingvlateral walls, and a corresponding pressed portion 22 is provided in the plate I6. Between the sloping walls the slit I1I is formed.
- the plate I6 is turned 180? relative to the plate I2 in the manner indicated, the slit I1I is still obtained in its unchanged form.
- the ribs I 5I and 22 should form a small angle.
- Fig. 6 shows the embodiment of Fig. 5 but provided with supporting lugs 25 and 2G. However, as the lug 25 is located in the slit or throttle passage I12 it may be omitted and only the lug 25 provided.
- the heat transmitting surface should be plaited or corrugated steplike, that is so thatthe channel formed between two adjacent plates becomes zigzagshaped.
- the plaits or corrugations will then extend right across the plate and will have the character of ribs pressed in the sheet. They will be parallel with the distributing ribs I5 and 20. All the ribs mayhave the same contour.
- lOne such embodiment of the distributing ribs is shown in Fig. 7, where 28 and 29 are the plates having the describedfzig-zag shape.
- Fig. 9 a modification of the plate shown in Fig. 2.
- the plate instead of having a ⁇ rectangular shape, has the shape of a parallelogram with sloping sides. Whereas according to Fig. 2 one plate is a reiiected image of the other plate, the symmetry between the upper plate and the plate below it of Fig. 9 is of another character. It is, however, possible, in the construction of Fig. 9 as well as in the construction of Fig. 2, to obtain the desired paths of flow by turning every second plate of the set 180 around an axis at right angles to the plane of the plate. As may be seen more clearly from Fig. 9 than from Fig.
- the openings 60 and 10 are each enclosed by a packing which separates the portion around the opening from the space M0 on one side of the plate
- the openings and 10 should not com-ry municate with said space but with the corresponding space on the opposite side of the plate 20.
- Fig. l which is a perspective view of part ofa heat exchanger showing an assembly of three plates, the plates are cut away parallel to one edge of the exchanger and at such distance therefrom as to intersect two series openings (say 2 and 3)
- two series openings say 2 and 3
- the distance between the plates should be accurately iixed, since the iiuid layer should be of a predetermined thickness.
- the plates therefore, generally are held in xed relative positions by distance pieces, usually in the form of lugs or ribs on the surfaces of the plates.
- the distance pieces are generally pressed in the material in the form of lugs.
- the cleaning of the plates it has, however, been found diilcult to reach the cavities formed on the rear side of the lugs, because a brush does not penetrate thereinto.
- the lugs have been made oblong, but this measure, too,l has proved unsatisfactory.
- the invention relates to the distance pieces oi' particularly such plates, the heat transmitting surface of which is stepwise undulated or corrugated.
- the distance lugs v were heretofore placedl on plane surfaces between the undulations or-on the sloping surfaces of the undulations.
- the cavity formed on the rear side of the lug has proved to bev accessible only with diiiiculty for brushing and other mechanical cleaning.
- the distance pieces are formed by pressing areas of the bottom of the undulation, not to the full depth of the undulation, but only to a depth which corresponds to the position of the bottom of the undulation of'the adjacent plate. The said areas will thus form a support for the adjacent plate.
- the distance pieces of the'following ⁇ plate may be positioned right over those of the rst plate.
- the distance Apieces are thusalternately displaced, that ls in .5 one nterspace they are positioned at a given place and ⁇ in the next at another place.
- 02 are of substantially similar shape and form a zigzagshaped channel lfor one of the -uids between which heat is to be exchanged. -That portion Iof the plate
- 02 may be looked upon as pressed-up lugs in the. bottom. which however entails that in front of the supporting lug the undulation has a smaller depth. than at other places., or in other wordsthe. undulation is flattened ofi at the place ofthe supporting lug.
- Fig. 11 I have shown a sectional view along the undulations in frontof the supporting lug.
- 02 slowly rises towards the bottom of the undulation in plate
- 02 isI provided with a greater or lesser number ciA such supporting pieces.
- is in turn provided with a number of similar pressed-up portions-
- 05 ⁇ maycontactwith the bottoms of the undulationsY of a. plate not'represented on the drawingy whichis provided with pressed-up areas in front of the areas
- 03 forms a depression
- the depressions cause a reduction of the resistance to the flow owing to the increase of the sectional area of the channels resulting from the depressions in the zigzag channel below. Due to this circumstance a number of paths are formed at the depressions having a smaller resistance of flow than at other places of the undulations. These paths with reduced resistance cause socalled accelerated flow, which implies that those parts of the liquid which happen to move along this path reach the outlet of the zigzag channel quicker than the other parts of the liquid. This in turn results in some parts of the liquid not getting the same high temperature as the bulk of the fluid. Such accelerated flow is therefore a very serious inconvenience. It is true that a too quick ilow may be avoided by reducing the average speed of the fluid, but this entails considerable disadvantages in two respects. Partly, the capacity of the heat exchanger is reduced, and partly, in some cases, the main portion of the fluid is heated or cooled more than is intended and advantageous.
- Fig. 12 I have shown in Fig. 12 how the accelerated flow caused by the impressions may be avoided.
- 02 Below the plate
- 00 is larger than at other parts of the channel.
- 08 of the 'undulation in the plate .l0-1 is so widened that ⁇ a throttling of the zigzag channel resultsV at H0.
- the widened portion form-s a plane surface. ⁇ ofy the shape .shown Fig. 13. :Since the. depressionsy
- a heat exchanger comprising a plurality of plates oi like, contour, eachhaving a face forming with the faces of the adjacent plates, apair of separate flow channels.
- eachv plate being identical to the othersv and having four fluid ow openings therethrough near 4its four corners. packing so arranged on plates carrying thesame that when the plates are assembled communication is afforded, through each chamber formed by 'two :adjacent plates. and between pairs of openings" along the same edge of. the exchanger. saidplates being so assembled. that the. two pairs of communicating openingsiin adiacentchambers are. along; opposite edges: of.
- each chamber providing a passage progressively widening from the edge of the chamber to which said openings are adjacent toward the opposite edge to thereby eifect a substantially equal distribution of the fluid in the part of the chamber beyond the distributing device.
- a heat exchanger comprising a plurality of plates of like contour. each having a face forming with the faces of the adjacent plates, a pair of separate flow channels, each plate being identical to the others and having four fluid flow openings therethrough near its four corners, packing so arranged on plates carrying the same that when the plates are assembled communication is afforded, through each chamber formed by two adjacent plates.
- each plate being so assembled that the two pairs of communicating openings in adjacent chambers are along opposite edges of the exchanger, and ridges extending laterally within each chamber near opposite ends thereof adapted to throttle the flow of fluid from the fluid inlet opening to the main body of the chamber and from the main body of the chamber to the iluid outlet opening, each ridge dening a passage gradually widening toward the edge of the plate remote from said last openings.
- a heat exchanger comprising a series of superposed plates of like contour, namely substantially that of a parallelogram; the plates having like openings having like locations therein, namely, near each of the four corners of each plate; each plate being a duplicate of the others, a gasket applied to one face of each plate, said gasket defining a fluid chamber covering the major area of the plate and enclosing the two openings near the same longitudinal edge of the plate at opposite ends thereof but not enclosing the other two openings; other gaskets, applied to the same face of each plate, surrounding the other two openings; the gaskets of one plate having thev same location and arrangement as the gaskets of the other plates; said plates being so assembled that the chamber-defining gasket applied to one plate encloses a pair of openings near one longitudinal edge of the exchanger While the chamber defining gasket applied to an adjacent plate encloses a pair of openings near the opposite longitudinal edge of the exchanger, and identical fluid distributing devices on the several plates.
- the device on each plate forming with the adjacent plate a fluid now passage substantially progressively widening from the edge of the chamber to which the communicating openings are adjacent toward the opposite edge thereof, to thereby effect a substantially equal distribution of the iluid across the chamber in the course of its ow therethrough.
- a heat exchanger comprising a plurality of heat exchanging plates in the shape of a parallelogram and each having four flowv openings, one on each corner of the plate, for conducting the heat exchanging iiuids, the plates consisting exclusively of identical plates each pressed in its entirety from thin sheet metal, gaskets on one face of each plate, said gaskets being identically arranged on the plates and with one gasket of each plate enclosing a pair of openings at one edge of the plate and the major part of the plate surface, said last openings being the inlet and the outlet openings for one fluid, the pair of openings at the opposite edge being the inlet and the outlet opening for the other fluid and being located outside the space enclosed by said gasket, a separate gasket enclosing each of the latter 8 openings, every secondfo'f said plates being revolved, relative to the others, 180 about an axis perpendicular to the face of the plate and passing through the center of said face.
- each plate has a plurality of spaces consisting of deformations of the plate, the deformations being unsymmetrically positioned relative to the center line of the plate, each deformation of one plate being opposite non-deformed portions of the adjacent plates.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE2610835X | 1942-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2610835A true US2610835A (en) | 1952-09-16 |
Family
ID=20426536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US771299A Expired - Lifetime US2610835A (en) | 1942-02-10 | 1947-08-29 | Plate heat exchanger |
Country Status (4)
Country | Link |
---|---|
US (1) | US2610835A (enrdf_load_stackoverflow) |
DE (1) | DE843094C (enrdf_load_stackoverflow) |
FR (1) | FR892866A (enrdf_load_stackoverflow) |
NL (1) | NL60352C (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2787446A (en) * | 1952-03-14 | 1957-04-02 | Rosenblads Patenter Ab | Plate type heat exchanger |
US2952444A (en) * | 1956-03-08 | 1960-09-13 | Rosenblads Patenter Ab | Heat exchangers of the plate type |
US3608629A (en) * | 1969-02-03 | 1971-09-28 | Sub Marine Systems Inc | Flow compensator for exchanger apparatus |
US3965225A (en) * | 1974-03-11 | 1976-06-22 | Baltimore Aircoil Company, Inc. | Spacer-turbulator |
US4002201A (en) * | 1974-05-24 | 1977-01-11 | Borg-Warner Corporation | Multiple fluid stacked plate heat exchanger |
US4249597A (en) * | 1979-05-07 | 1981-02-10 | General Motors Corporation | Plate type heat exchanger |
US4320073A (en) * | 1980-11-14 | 1982-03-16 | The Marley Company | Film fill sheets for water cooling tower having integral spacer structure |
US4324658A (en) * | 1977-06-10 | 1982-04-13 | Esmond William G | Transfer device having a thin wall plate |
US4390481A (en) * | 1980-06-04 | 1983-06-28 | Aktiebolag Carl Munters | Apparatus for spraying trickler plates with cooling water |
US5212004A (en) * | 1990-07-17 | 1993-05-18 | Hoechst Aktiengesellschaft | Ceramic board utilized for the construction of heat exchanger plates |
WO1997039301A1 (en) * | 1996-04-16 | 1997-10-23 | Alfa Laval Ab | A plate heat exchanger |
WO2002053998A1 (en) * | 2001-01-04 | 2002-07-11 | Alfa Laval Corporate Ab | Heat transfer plate, plate pack and plate heat exchanger |
US6702005B1 (en) * | 1993-02-19 | 2004-03-09 | Alfa Laval Corporate Ab | Plate heat exchanger |
DE102023112071A1 (de) * | 2023-05-09 | 2024-11-14 | Schaeffler Technologies AG & Co. KG | Wärmetauscher |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1153390B (de) * | 1959-03-26 | 1963-08-29 | Kyffhaeuserhuette Artern Veb M | Waermeaustauschplatten fuer einen Stapelplattenwaermetauscher mit einer Wellung von gleichfoermiger Wellenlaenge |
SE320678B (enrdf_load_stackoverflow) * | 1968-03-12 | 1970-02-16 | Alfa Laval Ab |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE63757C (de) * | MASCHINENFABRIK GREVENBROICH, AKTIEN-GESELLSCHAFT, in Grevenbroich | Kammerapparat für Condensations-, Heiz- oder Kühlzwecke | ||
DE216789C (enrdf_load_stackoverflow) * | ||||
US448521A (en) * | 1891-03-17 | hoener | ||
GB396696A (en) * | 1932-01-30 | 1933-07-31 | Reginald Luther Munday | Improvements in plate apparatus for exchanging heat between fluids |
US1992097A (en) * | 1933-04-04 | 1935-02-19 | Seligman Richard | Surface heat exchange apparatus for fluids |
GB494009A (en) * | 1937-04-19 | 1938-10-19 | Richard Seligman | Improvements in or relating to methods of and means for operating plate heat exchange apparatus |
FR838905A (fr) * | 1938-06-04 | 1939-03-20 | Bergedorfer Eisenwerk Ag | Perfectionnements aux réchauffeurs à plaques |
DE692730C (de) * | 1936-02-18 | 1940-06-26 | Holstein & Kappert Maschf | Waermeaustauscher, welcher aus benachbarten, an den Stellen der ausgepressten Sicken Hohlraeume bildenden Kanalplatten und Abdeckplatten besteht |
US2281754A (en) * | 1937-01-27 | 1942-05-05 | Cherry Burreil Corp | Heat exchanger |
US2428880A (en) * | 1942-09-26 | 1947-10-14 | Arco Welding & Machine Works I | Pasteurizing apparatus |
-
1943
- 1943-03-20 DE DEA1712D patent/DE843094C/de not_active Expired
- 1943-03-26 FR FR892866D patent/FR892866A/fr not_active Expired
- 1943-04-03 NL NL110669A patent/NL60352C/xx active
-
1947
- 1947-08-29 US US771299A patent/US2610835A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE63757C (de) * | MASCHINENFABRIK GREVENBROICH, AKTIEN-GESELLSCHAFT, in Grevenbroich | Kammerapparat für Condensations-, Heiz- oder Kühlzwecke | ||
DE216789C (enrdf_load_stackoverflow) * | ||||
US448521A (en) * | 1891-03-17 | hoener | ||
GB396696A (en) * | 1932-01-30 | 1933-07-31 | Reginald Luther Munday | Improvements in plate apparatus for exchanging heat between fluids |
US1992097A (en) * | 1933-04-04 | 1935-02-19 | Seligman Richard | Surface heat exchange apparatus for fluids |
DE692730C (de) * | 1936-02-18 | 1940-06-26 | Holstein & Kappert Maschf | Waermeaustauscher, welcher aus benachbarten, an den Stellen der ausgepressten Sicken Hohlraeume bildenden Kanalplatten und Abdeckplatten besteht |
US2281754A (en) * | 1937-01-27 | 1942-05-05 | Cherry Burreil Corp | Heat exchanger |
GB494009A (en) * | 1937-04-19 | 1938-10-19 | Richard Seligman | Improvements in or relating to methods of and means for operating plate heat exchange apparatus |
FR838905A (fr) * | 1938-06-04 | 1939-03-20 | Bergedorfer Eisenwerk Ag | Perfectionnements aux réchauffeurs à plaques |
US2428880A (en) * | 1942-09-26 | 1947-10-14 | Arco Welding & Machine Works I | Pasteurizing apparatus |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2787446A (en) * | 1952-03-14 | 1957-04-02 | Rosenblads Patenter Ab | Plate type heat exchanger |
US2952444A (en) * | 1956-03-08 | 1960-09-13 | Rosenblads Patenter Ab | Heat exchangers of the plate type |
US3608629A (en) * | 1969-02-03 | 1971-09-28 | Sub Marine Systems Inc | Flow compensator for exchanger apparatus |
US3965225A (en) * | 1974-03-11 | 1976-06-22 | Baltimore Aircoil Company, Inc. | Spacer-turbulator |
US4002201A (en) * | 1974-05-24 | 1977-01-11 | Borg-Warner Corporation | Multiple fluid stacked plate heat exchanger |
US4081025A (en) * | 1974-05-24 | 1978-03-28 | Borg-Warner Corporation | Multiple fluid stacked plate heat exchanger |
US4324658A (en) * | 1977-06-10 | 1982-04-13 | Esmond William G | Transfer device having a thin wall plate |
US4249597A (en) * | 1979-05-07 | 1981-02-10 | General Motors Corporation | Plate type heat exchanger |
US4390481A (en) * | 1980-06-04 | 1983-06-28 | Aktiebolag Carl Munters | Apparatus for spraying trickler plates with cooling water |
US4320073A (en) * | 1980-11-14 | 1982-03-16 | The Marley Company | Film fill sheets for water cooling tower having integral spacer structure |
US5212004A (en) * | 1990-07-17 | 1993-05-18 | Hoechst Aktiengesellschaft | Ceramic board utilized for the construction of heat exchanger plates |
US6702005B1 (en) * | 1993-02-19 | 2004-03-09 | Alfa Laval Corporate Ab | Plate heat exchanger |
US20040168793A1 (en) * | 1993-02-19 | 2004-09-02 | Ralf Blomgren | Plate heat exchanger |
US6926076B2 (en) | 1993-02-19 | 2005-08-09 | Alfa Laval Corporation Ab | Plate heat exchanger |
WO1997039301A1 (en) * | 1996-04-16 | 1997-10-23 | Alfa Laval Ab | A plate heat exchanger |
US6016865A (en) * | 1996-04-16 | 2000-01-25 | Alfa Laval Ab | Plate heat exchanger |
WO2002053998A1 (en) * | 2001-01-04 | 2002-07-11 | Alfa Laval Corporate Ab | Heat transfer plate, plate pack and plate heat exchanger |
US20040069473A1 (en) * | 2001-01-04 | 2004-04-15 | Ralf Blomgren | Heat transfer plate plate pack and plate heat exchanger |
US7168483B2 (en) | 2001-01-04 | 2007-01-30 | Alfa Laval Corporate Ab | Heat transfer plate, plate pack and plate heat exchanger |
CN1299091C (zh) * | 2001-01-04 | 2007-02-07 | 阿尔法·拉瓦尔股份公司 | 传热板、板组件和板式热交换器 |
DE102023112071A1 (de) * | 2023-05-09 | 2024-11-14 | Schaeffler Technologies AG & Co. KG | Wärmetauscher |
Also Published As
Publication number | Publication date |
---|---|
FR892866A (fr) | 1944-05-23 |
DE843094C (de) | 1952-07-03 |
NL60352C (enrdf_load_stackoverflow) | 1947-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2610835A (en) | Plate heat exchanger | |
US3661203A (en) | Plates for directing the flow of fluids | |
US2596642A (en) | Heat exchanger | |
US2321110A (en) | Heat exchanger | |
JP2753298B2 (ja) | プレート式熱交換器 | |
US3805889A (en) | Plate type heat exchanger | |
US3590917A (en) | Plate-type heat exchanger | |
US2281754A (en) | Heat exchanger | |
US2939686A (en) | Double port heat exchanger plate | |
US3521707A (en) | Heat exchangers | |
US2616671A (en) | Plate heat exchanger | |
US4307779A (en) | Plate heat exchanger | |
US3731737A (en) | Plate heat exchanger | |
US2846198A (en) | Heat exchangers | |
WO1983001998A1 (en) | Heat exchanger plate | |
US3792730A (en) | Plate heat exchanger | |
US3216494A (en) | Heat exchanger plate | |
US3211219A (en) | Flexible plate heat exchangers with variable spacing | |
US4893673A (en) | Entry port inserts for internally manifolded stacked, finned-plate heat exchanger | |
US2314966A (en) | Plate heat exchanger | |
EP3640577B1 (en) | Heat exchanger comprising plates with strenghened diagonal area | |
US2428880A (en) | Pasteurizing apparatus | |
TW202001176A (zh) | 利用毛細結構與凸點來構成液汽通道的均溫板 | |
CA1048013A (en) | Plate-type heat exchanger | |
TWM562956U (zh) | 內凸紋構成流道之均溫板 |