US2578925A - Fractionating tower - Google Patents

Fractionating tower Download PDF

Info

Publication number
US2578925A
US2578925A US2412A US241248A US2578925A US 2578925 A US2578925 A US 2578925A US 2412 A US2412 A US 2412A US 241248 A US241248 A US 241248A US 2578925 A US2578925 A US 2578925A
Authority
US
United States
Prior art keywords
column
vapor
vapors
ducts
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US2412A
Inventor
Hyman R Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US2412A priority Critical patent/US2578925A/en
Application granted granted Critical
Publication of US2578925A publication Critical patent/US2578925A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column

Definitions

  • This invention relates to improvements in vaporizing chambers, fractionating columns and the like and more particularly to an arrangement of heat exchangers or condensers for the condensation of overhead vapors therefrom.
  • the principal feature of my invention is the provision of a novel construction of vaporizing chamber and vapor condenser therefor in which the vapors which pass to an upper zone of the chamber may be drawn downwardly within the chamber and removed at a lower point to the condenser for economy of construction and simplification of maintenance.
  • a more specific object of my invention is to provide a fractionating column having internal vapor downcomers so that the heat exchange equipment for overhead vapor condensation can be mounted substantially at grade level and overhead vapor lines may be eliminated.
  • a still further object of the invention is to simplify the construction of vapor ducts in vacuum distillation equipment by placing the duets within the vacuum space so that there is a minor pressure diiference across the ducts.
  • Figure 1 is a substantially central vertical section through a fractionating column adapted for ⁇ vacuum operation
  • Figure 2 is a horizontal cross section taken substantially on the line 2-2 of Figure l;
  • Figure 3 is a horizontal cross section taken substantially along the line 3-3 of Figure l;
  • Figure 4 is a substantially central vertical section of a modified form of vacuum distillation column
  • Figure 5 is a horizontal cross section taken substantially along the line 5 5 of Figure 4;
  • Figure 6 is a partial vertical cross section taken substantially along the line 6-6 of Figure 5;
  • Figure 7 is a vertical cross section of a detail of a further form oi embodiment.
  • the column generally indicated at I0 in Figure 1 is a vacuum distillation column supported by skirt Il.
  • the feed is' introduced to the column through the dual inlets I2 shown in Figures 2 and 3 which enter behind baboards I4 to introduce the charge largely in vapor phase into the bottom of the chamber I6.
  • the vapors are deflected by the lower edge of the baliies i4 to make a complete 180 turn to discharge any liquid therein and this liquid may be removed through line I8.
  • the vapors then pass upwardly through centrifugal separating devices 20, the sides of which may be conveniently provided with tangentially disposed plates 22. These tend to develop a centrifugal path and vortex to the vapors which will throw out any liquid entrained in the vapors.
  • Liquid line 24 carries oif any such liquid.
  • the vapors continuously move upward through the central portion of the column as determined by walls or baffles 26 and the vapors may pass through a bubble deck section or a shower o! liquid passing from the shower tray 28a to tra 28.
  • the shower tray 28a is conveniently supplie with reux liquid of a suitable type through line 30.
  • the column I is provided with a small dome section 32 having a relief valve connection 34.
  • the walls or bales 26 extend almost to this dome section and form vapor ducts or downcomers generally shown at 36. (See Figs. 2 and 3.)
  • the entire vapor load is thereby carried immediately downward between the inner wall or bafes 26 and the outer shell I0 through these downcomers 36 into a plenum chamber 38.
  • the vapors then pass through the one or more internal heat exchanger or condenser groups as 40 and 42 with the condensate being trapped out on bafe 44 and the vapors passing around the baille as through the path 46.
  • the condensate is removed through line 49 which is suitably sealed to prevent by-passing of vapors. This condensate overiiows into the bottom 50.
  • Subcooling of the vapors may be accomplished in condenser 48 with any further condensate also collecting in the bottom of the column at 50.
  • condensate removal line is provided at 63.
  • a vapor path 52 is provided around each side of the heat exchange or condenser group 48 so that the vapors may then be drawn upwardly through a bubble cap section generally designated 54 in which they are subjected to further fractionation or absorption in the presence of a suitable liquid introduced at 56.
  • the absorbed liquid may be removed at 51, cross pipe 62 serving to remove the fiow across the tower.
  • Batlle structure 58 delineates the downwardly moving vapor path from plenum chamber 38 through the heat exchanger groups 4l) and 42 from the upwardly rising vapors passing through the bubble cap section 54. The vapors are then removed by suitable vacuum producing apparatus through line 60. A vapor equalizing pipe 6
  • the provision of the internal vapor ducts 36 is a fundamental feature of my invention in that external vapor lines can be completely eliminated with but a slight increase in the tower diameter.
  • the vapor ducts 36 are established by the chordal plates 26 although it will be understood that other appropriate shapes of section could be provided or a central duct could be used within the shell I0.
  • the inner walls 26 of ducts 36 may be of relatively thin material inasmuch as there is no substantial pressure difference between the respective sides of the ducts.
  • the column I0 is particularly suitable for the treatment of cracking stock for the removal of objectionable end materials prior to further cracking.
  • the feed at I2 is from a pipe still, not shown.
  • FIG. 4 A modied form of construction is shown in Figures 4, and 6,
  • the column 10 is provided with a series of internal vapor downpipesl 12 each of which is formed partially integral with the shell wall.
  • the feed is introduced at 14 and the rising vapors pass through downcoming liquid streams on bubble decks or passing between the shower trays generally designated 16. Initially reflux is introduced to these trays through line 18 but as the heavy portions of the feed are condensed, added reux is formed.
  • the vapors pass to the dome section 19 of the column ⁇ as in the prior construction and then pass downwardly through the vapor ducts 12 to the vapor collection sections 80 from which the vapors pass outwardly through lines 8
  • a stripping section generally indicated at 90 may be provided below the point of feed with the heavy liquid removed through the pipe 92 which discharges into the seal 93 and thence discharges into the base 94 of the tower. Stripping steam may be introduced through the line 95.
  • the column 10 as well as the condensers 82 may be mounted directly from the-ground, as by skirt 99, the condensers 82 being at substantially grade level with only such elevation as may be necessary to supply the head for pump 88. It is thus possible to more simply maintain the equipment andit is far less expensive to support it close to the ground and to avoid external vapor lines. Considerable economies can also be effected with corrosive crudes by utilizing light guage alloy plate (12 ga.) for downcomers 12 rather than the customary heavy plate for the external vapor lines.
  • This form of embodiment is particularly applicable to the treatment of lubricating oil stock and, in such case, a medium side cut such as SAE-30 distillate may be removed from trap tray at 96 and an SAE-10 cut with gas oil may be removed as the overhead product from the discharge 91 of pump 88.
  • the heavy residual product which may be utilized for bright stock may be removed from the tower outlet 98.
  • FIG. '1 A still further modified form of construction is partially shown in Figure '1 in which the column
  • the condensers may be provided with an inlet box
  • the residual conduct outlet is shown at
  • the column may be drained at
  • a vacuum distillation column having an intermediate vaporization chamber, means to feed a vaporizable material thereto, a scrubbing section to remove heavy components of the vapors above the vaporization chamber, a vapor dome portion above the scrubbing section, integral vapor removal ducts within the column in open communication with the vapor dome, heat exchange means extending transversely of the column below the inlet to the vaporization chamber.
  • baffles confining the vapors to said heat exchange surface, said baffles being open at their lower end, and internally in communication with the lower ends of the ducts, means to apply a vacuum to the space between the bales and intei-mediate the length of the column whereby vapors will flow from the vaporization chamber through the scrubbing section to the upper part of the column, thence through the internal ducts to and across the heat exchange surface, thence to the lower part of the column and thence along the wall of the column to the point of vvacuum application, a series of bubble decks between the heat exchange enclosure batlles and the column Wall, said bubble decks being in the path of vapors passing from the heat exchange means to the point of vacuum application and means to supply i scrubbing liquid thereto.
  • a vertical vacuum distillation column havlng an intermediate vaporization chamber; means to feeda vaporzable material thereto including gas and liquid separating means within the vaporization chamber; liquid draw off means in the CII bottom portion of the vaporization chamber; Y
  • vapor separating devices including a mountingV deck disposed above said feed means-and comprising the top portion of the vaporization chamber; a scrubbing section above the separating devices to remove heavy components of the vapors from the vaporization chamber; means for removing discharged liquid from said deck; a vaporv dome portion above the scrubbing section; in- ⁇ tegral vapor removal ducts within the column in open communication with the vapor dome; surface heat exchange means extending transversely of the column below the feed means ofthe vaporization chamber; integral bailles confining downowing vapors tosaid heat exchange means and forming with the bottom of the vaporization chamber a plenum chamber in open communin cation with the lower ends of said vapor removal f ducts, the internalv space defined by said con- I'lning bailes being open at its lower end; means to apply a vacuum to the outer space between the confining bailles and the column below said plenum chamber, whereby vapors will flow from the vaporization

Description

'Dt-2C. 18, 1951 I H; R DAVIS 2,578,925
FRACTIONATING TOWER Filed Jan. l5, 1948 2 SHEETS-SHEET l IN VEN TOR.
Dec. 18, 1951 H. R. DAVIS 2,578,925
FRACTIONATING TOWER Filed Jan. 15, 1948 2 SHEETS-SHEET 2 INVENTOR.
159mm mayas T RNEY Patented Dec. 18, 1951 UNITED STATES PATENT fol-FICE FRACTIONATING TGWEB Hyman R. Davis, Jackson Heights, N. Y. Application January 15, 1948, Serial No. 2,412
2 Claims. (Cl. 202-158) This invention relates to improvements in vaporizing chambers, fractionating columns and the like and more particularly to an arrangement of heat exchangers or condensers for the condensation of overhead vapors therefrom.
In ythe continuous fractional distillation of chemical mixtures, as an example, it is common to establish a temperature difference in the fractionating column with a relatively high temperature at the bottom and with a lower temperature at the top so that the lighter boiling vapors will continuously rise through the downcoming liquidy for the desired fractionation. With vacuum distillation, columns become of substantially larger dimensions than with pressure columns and it is frequently necessary to construct columns which are ten feet or more in diameter at their upper part.
With a column of this type the vapors are removed from the uppermost part through one or more vapor lines which are carried over to suitable heat exchangers or condensers which are generally mounted independently at some suitable elevated position. It has been found, however, that the mechanical connection of the heat exchangers or condensers with the upper part of the column is a substantial problem due to the fact that vapor lines may be of the order of 36.
inches or more in diameter and large radius bends are required for the connection. These bends made the entire vapor lines oversize Bourdon tubes so that with dilerences in temperature or pressure, extraordinary stresses are set up in the lines, or on the column or on the heat exchangers or on the supporting equipment. Furthermore, external vapor lines must withstand pressure differences that are substantial and with corrosive vapors, suitable alloy overhead lines become extremely costly.
The principal feature of my invention is the provision of a novel construction of vaporizing chamber and vapor condenser therefor in which the vapors which pass to an upper zone of the chamber may be drawn downwardly within the chamber and removed at a lower point to the condenser for economy of construction and simplification of maintenance.
A more specific object of my invention is to provide a fractionating column having internal vapor downcomers so that the heat exchange equipment for overhead vapor condensation can be mounted substantially at grade level and overhead vapor lines may be eliminated.
, placed in a vaporizing chamber in such a manner as to make it possible to directly connect the condenser equipment at the lower part of the column. A still further object of the invention is to simplify the construction of vapor ducts in vacuum distillation equipment by placing the duets within the vacuum space so that there is a minor pressure diiference across the ducts.
Further objects and advantages will appear from the following description of a preferred form of embodiment of my invention taken in l connection with the attached drawings which are illustrative thereof and in which;
Figure 1 is a substantially central vertical section through a fractionating column adapted for\ vacuum operation;
Figure 2 is a horizontal cross section taken substantially on the line 2-2 of Figure l;
Figure 3 is a horizontal cross section taken substantially along the line 3-3 of Figure l;
Figure 4 is a substantially central vertical section of a modified form of vacuum distillation column;
Figure 5 is a horizontal cross section taken substantially along the line 5 5 of Figure 4;
Figure 6 is a partial vertical cross section taken substantially along the line 6-6 of Figure 5;
Figure 7 is a vertical cross section of a detail of a further form oi embodiment.
In accordance with the preferred form of embodiment of my invention, the column generally indicated at I0 in Figure 1 is a vacuum distillation column supported by skirt Il. The feed is' introduced to the column through the dual inlets I2 shown in Figures 2 and 3 which enter behind baiiles I4 to introduce the charge largely in vapor phase into the bottom of the chamber I6.
The vapors are deflected by the lower edge of the baliies i4 to make a complete 180 turn to discharge any liquid therein and this liquid may be removed through line I8. The vapors then pass upwardly through centrifugal separating devices 20, the sides of which may be conveniently provided with tangentially disposed plates 22. These tend to develop a centrifugal path and vortex to the vapors which will throw out any liquid entrained in the vapors. Liquid line 24 carries oif any such liquid.
The vapors continuously move upward through the central portion of the column as determined by walls or baffles 26 and the vapors may pass through a bubble deck section or a shower o! liquid passing from the shower tray 28a to tra 28. The shower tray 28a is conveniently supplie with reux liquid of a suitable type through line 30.
The column I is provided with a small dome section 32 having a relief valve connection 34. The walls or bales 26 extend almost to this dome section and form vapor ducts or downcomers generally shown at 36. (See Figs. 2 and 3.)
The entire vapor load is thereby carried immediately downward between the inner wall or bafes 26 and the outer shell I0 through these downcomers 36 into a plenum chamber 38. The vapors then pass through the one or more internal heat exchanger or condenser groups as 40 and 42 with the condensate being trapped out on bafe 44 and the vapors passing around the baille as through the path 46. The condensate is removed through line 49 which is suitably sealed to prevent by-passing of vapors. This condensate overiiows into the bottom 50.
Subcooling of the vapors may be accomplished in condenser 48 with any further condensate also collecting in the bottom of the column at 50. A
condensate removal line is provided at 63.
A vapor path 52 is provided around each side of the heat exchange or condenser group 48 so that the vapors may then be drawn upwardly through a bubble cap section generally designated 54 in which they are subjected to further fractionation or absorption in the presence of a suitable liquid introduced at 56. The absorbed liquid may be removed at 51, cross pipe 62 serving to remove the fiow across the tower.
Batlle structure 58 delineates the downwardly moving vapor path from plenum chamber 38 through the heat exchanger groups 4l) and 42 from the upwardly rising vapors passing through the bubble cap section 54. The vapors are then removed by suitable vacuum producing apparatus through line 60. A vapor equalizing pipe 6| is used between opposite sides of the column I0.
The provision of the internal vapor ducts 36 is a fundamental feature of my invention in that external vapor lines can be completely eliminated with but a slight increase in the tower diameter. As more particularly shown in Figure 2, the vapor ducts 36 are established by the chordal plates 26 although it will be understood that other appropriate shapes of section could be provided or a central duct could be used within the shell I0. The inner walls 26 of ducts 36 may be of relatively thin material inasmuch as there is no substantial pressure difference between the respective sides of the ducts.
In this form of embodiment, the column I0 is particularly suitable for the treatment of cracking stock for the removal of objectionable end materials prior to further cracking. In such case, the feed at I2 is from a pipe still, not shown.
A modied form of construction is shown in Figures 4, and 6, In this case, the column 10 is provided with a series of internal vapor downpipesl 12 each of which is formed partially integral with the shell wall. The feed is introduced at 14 and the rising vapors pass through downcoming liquid streams on bubble decks or passing between the shower trays generally designated 16. Initially reflux is introduced to these trays through line 18 but as the heavy portions of the feed are condensed, added reux is formed.
The vapors pass to the dome section 19 of the column `as in the prior construction and then pass downwardly through the vapor ducts 12 to the vapor collection sections 80 from which the vapors pass outwardly through lines 8| and 4 through the condensers 82. Vacuum is applied through lines 84 and the condensate is removed through lines 86 by pump 88.
If desired, a stripping section generally indicated at 90 may be provided below the point of feed with the heavy liquid removed through the pipe 92 which discharges into the seal 93 and thence discharges into the base 94 of the tower. Stripping steam may be introduced through the line 95.
As in the prior case, it will be apparent that the column 10 as well as the condensers 82 may be mounted directly from the-ground, as by skirt 99, the condensers 82 being at substantially grade level with only such elevation as may be necessary to supply the head for pump 88. It is thus possible to more simply maintain the equipment andit is far less expensive to support it close to the ground and to avoid external vapor lines. Considerable economies can also be effected with corrosive crudes by utilizing light guage alloy plate (12 ga.) for downcomers 12 rather than the customary heavy plate for the external vapor lines.
This form of embodiment is particularly applicable to the treatment of lubricating oil stock and, in such case, a medium side cut such as SAE-30 distillate may be removed from trap tray at 96 and an SAE-10 cut with gas oil may be removed as the overhead product from the discharge 91 of pump 88. The heavy residual product which may be utilized for bright stock may be removed from the tower outlet 98.
A still further modified form of construction is partially shown in Figure '1 in which the column ||0 is provided with the vapor ducts ||2 as in the prior case but they extend to the base of the column, the chamber I|4 serving as a plenum chamber to which the external condensers I6 are attached. In this case, the condensers may be provided with an inlet box ||8 for 'direct connection to the base chamber I I4. The residual conduct outlet is shown at |20 and the light material is removed at |22 from the bottom of the condensers. The column may be drained at |24 and steam may be introduced at |25 to the stripping section.
While I have shown and described a preferred form of embodiment of my invention, I am aware that modifications may be made thereto and I therefore de sire a broad interpretation of my invention within the scope and spirit of the description herein and of the claims appended hereinafter.
I claim:
1. A vacuum distillation column having an intermediate vaporization chamber, means to feed a vaporizable material thereto, a scrubbing section to remove heavy components of the vapors above the vaporization chamber, a vapor dome portion above the scrubbing section, integral vapor removal ducts within the column in open communication with the vapor dome, heat exchange means extending transversely of the column below the inlet to the vaporization chamber. integral baiiles confining the vapors to said heat exchange surface, said baffles being open at their lower end, and internally in communication with the lower ends of the ducts, means to apply a vacuum to the space between the bales and intei-mediate the length of the column whereby vapors will flow from the vaporization chamber through the scrubbing section to the upper part of the column, thence through the internal ducts to and across the heat exchange surface, thence to the lower part of the column and thence along the wall of the column to the point of vvacuum application, a series of bubble decks between the heat exchange enclosure batlles and the column Wall, said bubble decks being in the path of vapors passing from the heat exchange means to the point of vacuum application and means to supply i scrubbing liquid thereto.
2. A vertical vacuum distillation column havlng an intermediate vaporization chamber; means to feeda vaporzable material thereto including gas and liquid separating means within the vaporization chamber; liquid draw off means in the CII bottom portion of the vaporization chamber; Y
vapor separating devices including a mountingV deck disposed above said feed means-and comprising the top portion of the vaporization chamber; a scrubbing section above the separating devices to remove heavy components of the vapors from the vaporization chamber; means for removing discharged liquid from said deck; a vaporv dome portion above the scrubbing section; in-` tegral vapor removal ducts within the column in open communication with the vapor dome; surface heat exchange means extending transversely of the column below the feed means ofthe vaporization chamber; integral bailles confining downowing vapors tosaid heat exchange means and forming with the bottom of the vaporization chamber a plenum chamber in open communin cation with the lower ends of said vapor removal f ducts, the internalv space defined by said con- I'lning bailes being open at its lower end; means to apply a vacuum to the outer space between the confining bailles and the column below said plenum chamber, whereby vapors will flow from the vaporization chamber through the vapor separating devices and the scrubbing section to the upper vapor dome of the column. thence through the integral ducts to said plenum chamber and across the heat exchange means to the to the lower part of the column, and thence out of the conning bailies and along the wall of the column to the point of vacuum application; and a liquid removal conduit communicating with the column below the lower end of the confining bailles.
HYMAN R. DAVIS.
REFERENCES CITED The following references are of record inthe
US2412A 1948-01-15 1948-01-15 Fractionating tower Expired - Lifetime US2578925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US2412A US2578925A (en) 1948-01-15 1948-01-15 Fractionating tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2412A US2578925A (en) 1948-01-15 1948-01-15 Fractionating tower

Publications (1)

Publication Number Publication Date
US2578925A true US2578925A (en) 1951-12-18

Family

ID=21700627

Family Applications (1)

Application Number Title Priority Date Filing Date
US2412A Expired - Lifetime US2578925A (en) 1948-01-15 1948-01-15 Fractionating tower

Country Status (1)

Country Link
US (1) US2578925A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662850A (en) * 1950-09-07 1953-12-15 Lummus Co Condensing system for distillation column
DE1039033B (en) * 1952-03-25 1958-09-18 Exxon Research Engineering Co Fractionating column
US3334027A (en) * 1963-12-26 1967-08-01 Aqua Chem Inc Separation of entrained liquid droplets from vapors
US3477915A (en) * 1966-03-28 1969-11-11 Universal Oil Prod Co Fractionation column system operating with multiple level internal reboilers
US3492795A (en) * 1965-08-06 1970-02-03 Lummus Co Separation of vapor fraction and liquid fraction from vapor-liquid mixture
US3632334A (en) * 1968-02-19 1972-01-04 Metaux D Overpelt Lommel Et De Refining of impure metals

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1232269A (en) * 1913-10-10 1917-07-03 John S Forbes Method of and apparatus for distilling and evaporating.
US1361910A (en) * 1919-03-28 1920-12-14 Brownferrier Company Evaporator and condenser
US1553748A (en) * 1920-02-21 1925-09-15 Charles H Caspar Process and apparatus for dealcoholization of beverages and other liquids
US1919599A (en) * 1929-10-17 1933-07-25 Standard Oil Dev Co Method for removing entrained liquid from gases and vapors
US1987097A (en) * 1932-07-13 1935-01-08 Lummus Co Column
US2121218A (en) * 1934-03-31 1938-06-21 Alco Products Inc Condensing method and apparatus
US2202008A (en) * 1936-06-11 1940-05-28 Colgate Palmolive Peet Co Distillation of fatty acids
US2376923A (en) * 1941-12-31 1945-05-29 Lummus Co Hydrocarbon fractionation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1232269A (en) * 1913-10-10 1917-07-03 John S Forbes Method of and apparatus for distilling and evaporating.
US1361910A (en) * 1919-03-28 1920-12-14 Brownferrier Company Evaporator and condenser
US1553748A (en) * 1920-02-21 1925-09-15 Charles H Caspar Process and apparatus for dealcoholization of beverages and other liquids
US1919599A (en) * 1929-10-17 1933-07-25 Standard Oil Dev Co Method for removing entrained liquid from gases and vapors
US1987097A (en) * 1932-07-13 1935-01-08 Lummus Co Column
US2121218A (en) * 1934-03-31 1938-06-21 Alco Products Inc Condensing method and apparatus
US2202008A (en) * 1936-06-11 1940-05-28 Colgate Palmolive Peet Co Distillation of fatty acids
US2376923A (en) * 1941-12-31 1945-05-29 Lummus Co Hydrocarbon fractionation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662850A (en) * 1950-09-07 1953-12-15 Lummus Co Condensing system for distillation column
DE1039033B (en) * 1952-03-25 1958-09-18 Exxon Research Engineering Co Fractionating column
US3334027A (en) * 1963-12-26 1967-08-01 Aqua Chem Inc Separation of entrained liquid droplets from vapors
US3492795A (en) * 1965-08-06 1970-02-03 Lummus Co Separation of vapor fraction and liquid fraction from vapor-liquid mixture
US3477915A (en) * 1966-03-28 1969-11-11 Universal Oil Prod Co Fractionation column system operating with multiple level internal reboilers
US3632334A (en) * 1968-02-19 1972-01-04 Metaux D Overpelt Lommel Et De Refining of impure metals

Similar Documents

Publication Publication Date Title
US1741519A (en) Dephlegmator or fractionating column
GB1021569A (en) Flash evaporators
US2658863A (en) Process and apparatus for increasing vacuum tower production
US2091349A (en) Fractional distillation
US2713023A (en) Fractionating method and apparatus
US2578925A (en) Fractionating tower
US2112335A (en) Apparatus for treating hydrocarbon fluids
US1919599A (en) Method for removing entrained liquid from gases and vapors
US5034103A (en) Distillation column with a draw-off device
US2341281A (en) Method of and apparatus for condensing vapors
US1620163A (en) Process of and apparatus for refining petroleum
US2725343A (en) Vapor-liquid contact apparatus
US1748508A (en) Method of fractionation
US1850930A (en) Apparatus for hydrocarbon oil conversion
US1811627A (en) Fractionating column
US2406375A (en) Fractionating column
US3498886A (en) Flash distillation partitioned tower
US1918608A (en) Apparatus for condensing hydrocarbons
US2208573A (en) Process and apparatus for fractional distillation
US1559701A (en) Method of distilling oil
US2253925A (en) Method and apparatus for rectification, absorption, and gas scrubbing
US1744134A (en) Apparatus for vapor fractionation
GB740764A (en) Improvements in fractionating towers for the vacuum distillation of heavy hydrocarbon oils
US2121218A (en) Condensing method and apparatus
US1951497A (en) Oil distillation