US2501696A - Stream turbine - Google Patents

Stream turbine Download PDF

Info

Publication number
US2501696A
US2501696A US766818A US76681847A US2501696A US 2501696 A US2501696 A US 2501696A US 766818 A US766818 A US 766818A US 76681847 A US76681847 A US 76681847A US 2501696 A US2501696 A US 2501696A
Authority
US
United States
Prior art keywords
turbine
water
depth
water level
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US766818A
Inventor
Souczek Ernst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WOLFGANG KMENTT
Original Assignee
WOLFGANG KMENTT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WOLFGANG KMENTT filed Critical WOLFGANG KMENTT
Application granted granted Critical
Publication of US2501696A publication Critical patent/US2501696A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a stream turbine and has for its object to partly dispense with and to partly diminish the expenses for the just mentioned accessories so that energy may be gained from water courses with not too low a current velocity in an economical way.
  • an essential feature of the invention consists in holding the turbine, which hangs on a rope anchored at the bottom of the water course, in
  • the underwater carrier may be provided with at least one underwater carrying surface or wing which is equipped with control devices in a manner similar to airplane wings.
  • a favorable construction may be obtained by arranging the propeller on a streamlined casing which -contains the gears vand the generator and by providing one or more pairs of casings, the propellers of each pair running in opposite direction and the casings being connected with each other by means of an underwater carrier structure.
  • the control devices may consist of a depth guide surface and/or a depth rudder and since with stream turbines the position of height relative to the water surface is essential, it is best to actuate these control devices in response to changes of the water level.
  • the dive movement may be brought labout by depth control means and may lead to a temporary position of rest of the turbine at the bottom of the water course.
  • Fig. 1 is a side elevation and Fig. 2 a front elevation ci the stream turbine anchored to the ground;
  • Fig. 3 is a plan view at a larger scale than Figs. 1 and 2 of the stream turbine;
  • Fig. 4 shows in a side elevation and Fig. 5 in a front view the combination of the lstream turbine with a trouble indicator
  • Fig. 6 is a diagram illustrating one form of the control mechanism of the water power plant and the electric connections therefor.
  • the stream turbine comprises one or more propellers -I each secured to a hub formed by the rear part 2 of a housing 3 of streamlined shape.
  • a transmission gear 4 and a generator 5 are coaxially arranged within the housing.
  • the parts I to 5 just mentioned form together a unit which can be, combined with the underwater structure in any desired of various possible ways.
  • a carrier structure which consists of a rear underwater carrier wing 5 and a front underwater carrier wing 'I and also of a holding rope 8 engaging at 9 the wing 6 or a Vertical guide surface I2.
  • the wing 'I is turnable about :a transverse axis and is thereby adapted to serve as a depth rudder.
  • the propellers may be equipped with guide members in a manner known per se.
  • the carrier structure against which the water flows at a certain velocity is adjustable so that the stream turbine obtains a buoyancy which, in cooperation with the holding rope 8, holds it in the desired position of height.
  • this position of height is determined by the diameter of the propeller which, together with the guide members, if such are provided, must submerge completely.
  • the position of height of the turbine depends on the water level.
  • the automatic adjustment of the turbines to that position of height may, therefore, be brought about by 3 rudder machines D which are arranged within the housing t and actuate the wing l'.
  • the trouble indicator which protects the stream turbine against damages through oating wood, drifting ice, etc., by causing. diving of the turbine
  • the dia.- phragm operates an electric switch which through the auxiliary motor D, tilts the depth rudder 1 causing thereby a diving movement of the turbine.
  • two regulating steps one for smaller immersion. or draft ci the floating object, and the other for greater immersion or draft.
  • the turbine may dive almost down to thebottom of the water course, if this be necessary.
  • 'Ihe switches are arranged in parallelsoth'at it is the buoy in the respective deepest position which determines the amount of actuation of thef depth rudder.
  • the trouble indicator must, ofy course, be arranged so far up stream with respect to the turbineA that the diving movement of the turbine is completed beicre the arrival ofthe onswimming: objects at that turbine.
  • the drawing shows this distance between trouble indicator and turbine much smaller as it actually would be;
  • the arrangement is such as to always adjust the wing' ⁇ 1' so in dependence on the varying water level that the turbine always maintains the same distance from the water surface.
  • the troubley indicator also forinitiating the re-rising of the stream turbine at the end of the action of the oating material.
  • a suitable retarding device may be provided which preventsa. premature rising of the turbine.
  • the trouble indicator and inthey turbine.
  • fteen diierent functional conditions may be distinguished, characterized first by the water level, viz: A middle water, B low water, and C high water; second by different trouble conditions in each of the above cases of water level.
  • l may denote the condition when there is no trouble (normal case), 2 during a minor trouble, 3 immediately after a minor trouble, 4 during a major trouble, and 5 immediately a-fter a major trouble.
  • the combined iniluence of water level and trouble condition determines what may be called the combined functional condition.
  • A4 e. g. is the combined functional condition in the case of middle water during a major trouble whose end phase is shown in Fig. 6 wherein current carrying leads are drawn in full lines, currentless leads in dotted lines;
  • Condition AI is the working condition inthe case of middle' ⁇ water,A no drift wood or the like working upon the trouble indicator (floating rake). ItA can be considered asthel normal case.
  • a sinkingv water level (as shown in the* drawing) an apparatus indicating; the: water level, e. g. a float I8 ⁇ of usualconstruction, imparts, by means of an appropriate transmis.- sion mechanism; a turning' motion in clockwise direction to a slide contact 50 of an. impulse: in: citer C.
  • the slide contact gli'des on slide ring? segments 5l thereby actuating' a steering machine id step. ⁇ by step in' counter-clockwise direction.
  • the steering machine" IS) ⁇ is connected with ⁇ the worm 2D of a worm gearv 2U, 52, whose4 worm wheel 52 carries three segments 53 ofI an impulse inciter 2
  • the current. of the latter ows. through a galvanometer 41, actuating. instead of a. pointer a switch 46, which at normal speed' of the. generator is in position II, so thatthecircuit for the coil El of the locking device 4l is also closed. by switch 46 parallel to switch 56.
  • Condition A2' isA the working condition in the case of middle water during a. minor trouble.
  • the water level is' the'l same as inV the case orv condition AI consequently there isf nol change,
  • the rudder device D tilts the depth rudder 1 by means of the worm gear 55, 22 in the sense of reducing the angle of inclination. This displacement continues until the lever key switch 35 is tilted from position I to position II, whereby the circuit of the steering machine 32 is interrupted.
  • is no interrupted at switch 56, but since it is still held closed by switch 46, the locking pin 42 remains pulled upwards, and the propeller shaft 43 can rotate unobstructedly.
  • Condition A3 is the working condition in the case of middle water immediately after the end of a minor trouble. There is no change, in comparison with the conditions AI and A2, as to the water level and the positions of the impulse inciter 2
  • the winding device of the retarding clock is un-.j coupled, whereas the worm gears 2U, 52 and 33 are running in a direction opposite to that dur-e ⁇ ing the working condition A2.
  • are actuated in opposite direction to that in the case A2.
  • therefore, tilts the rudder, by means of the rud-l der device D and worm gear 55, 22, in the sensey of an increased angle of inclination. This tilting lasts until the lever key switch 35 has returned from position II to position I.
  • the switch is constructed in such a manner that this occurs when the angle of inclination of the rudder 1 has been restored to that of the condition AI.
  • the retarding clock 29 keeps lon running and after a certain time (see A5) when its run comes to an end, it presses the bell crank lever completely back into its initial position, so that the switch arm 56 is again in position I, and as a whole, the condition AI has been restored.
  • Condition A4 is the working condition in the case of middle water and a major trouble.
  • the water level is the same as in the case of condi-vtion Al. Therefore, the positions of the impulse inciter C and the worm gear 2U, 52 with the slide ring segments 53 have not changed, in comparison with condition AI.
  • Drift wood, or the like has pressed one or several buoys deep under water, the water pressure caused thereby pressing downwards the corresponding depth plates, in the drawing: depth plate of buoy'I, against the tension of the depth springs, shifting thereby the corresponding depth switches from the position of rest I over II into the position III.
  • the depth switches in position III short-circuit the armature 41 of the dynamo, which is in the form of a D. C.
  • an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, at least one control surface on said carrier wing structure, and means for changing the angular position of said control surface.
  • a water power plant comprising a stream turbine having at least one pair of propellers
  • each propeller having coordinated thereto a streamlined housing enclosing an electric generator and a gear, elongated holding means connected at one end to said turbine and' anchored at the other end to the bottom of the water course, the propellers of each of said propeller pairs having opposite rotational direction and their coordinated housings being connected with one another by an underwater carrier wing structure adapted to create dynamic buoyancy so as to hold said turbine suspended below the surface of said water course.
  • a water power plant comprising a stream turbine having at least one pair of propellers, each propeller having coordinated thereto a streamlined housing enclosing an electric generator and a gear, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, the propellers of each propeller pair having opposite rotational direction and their coordinated housings being connected with one another by an underwater carrier wing structure adapted to create dynamic buoyancy so as to hold said turbine suspended below the surface of said water course, at least one adjustable control surface on at least one of said carrier Wing structures, and means for changing the angular position of said control surface or surfaces.
  • a water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, and means responsive to changes in the height of the water level operatively connected to said control surface for varying the angular position of said control surface and thereby the position of height of said turbine.
  • a water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, and means adapted Yto operate upon the approach of objects drifting in the water towards the turbine operatively connected to said control surface for varying the position of height of said turbine.
  • a water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at thel other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said tur- 410 bine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, means responsive to changes in the height of the water level operatively connected to said control surface for varying the angular position of said control surface and thereby the position of height of said turbine in response to changes in said water level, and means adapted to operate upon the approach of objects drifting in the water towards the turbine operatively connected to at least one of said control surfaces for varying the position of height of said turbine in response to the approach of such drifting objects.
  • a water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, and means responsive to changes in the height of the water level operatively connected to said control surface for varying the angular position thereof so as to maintain the distance of said turbine from said water level substantially constant in spite of changes in said water level.
  • a water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, means responsive to changes in the height of the water level operatively connected to said control surface for varying the angulaiposition thereof so as A to maintain the distance of said turbine from said water level substantially constant in spite of changes in said water level, and trouble detecting devices arranged ahead of said turbine in the direction of the flow of the water course connected with means for varying the position of height of said turbine upon at least one of said devices being acted upon by objects drifting in the water course so as to submerge said turbine to great enough a depth below the water level to permit said objects free passage over said turbine.
  • a water power plant comprising a stream turbine having at least one propeller, each propeller having coordinated thereto a streamlined housing enclosing an electric generator and a gear, elongated holding means connected at one end to said turbine and at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, means responsive to changes in the height of the water level operatively con nected to said control lsurface for Varying theV angular position of said control surface so as to, maintain the distance of said turbine from said water level substantially constant in spite of changes in said water level, and trouble detecting devicsarransed ahead of said turbine in the :direction of -the now of ⁇ the water course connected with ⁇ means ⁇ for varying the position of 'height of sadlturbine ⁇ upon at least one of said 1devices being acted upon by
  • Vwater power plant ycomprising ⁇ a stream turbine, elongated ⁇ holding means ⁇ connected at one end ,to said turbine and anchored ⁇ at ⁇ the other end itc the bottom of ⁇ the Water course, yan underwater lcarlrier wing structure adapted 'to create dynamic buoyancy connected to said turbinersoqas to yhold the ⁇ latter ⁇ suspended below :the lsuriace of Vsaid water course, said carrier wing structure including atleast one control sur- .face adjustable about .a lhorizontal axis, and means adapted tto be operated upon the approach .of objects drifting in the water towards the turbine operatively connected to said control surface Afor varying the position of height of said turbine in ⁇ response to such approach of such driitingobjects ⁇ together with means 4for controli ling the :displacement ol ⁇ said control surface or ysurfaces to an rextent corresponding to immersioni
  • a water power plant comprising a stream turbine ⁇ having at least one propeller, elongated holding Vmeansconnected :at one end to said turbine vand anchoredat theother end ⁇ to the bottom of the water course, an underwater ⁇ carrier wing structure adapted to ⁇ create dynamic buoyancy connected -to said turbine so as to hold the latter suspended below the surface oi said watercourse, Isaid ⁇ carrier wing ⁇ structure :including at least one control surface adjustable about a horizontal exis, means adapted to be operated upon approach ci objects driftingr in 'the vwater towards the -turbine 4operatively connected to said control surface rior varying the 'positionlol height'oi said turbine in lresponse to ⁇ such approach of such drifting objects, fand means Afor locking said propeller l or l-propellers in substantially horizontal i posi-tion of the propeller blades.
  • ⁇ A water power plant comprising a stream turbine Thaving fat ⁇ least one propeller, elongated holding 1i'neans connected at one end to ⁇ said turbine vand anchored at the ⁇ other end to the bottom of the water course, an underwater carrier wing Astructure -adapted to create dynamicbuoyancy ⁇ connected vto said 'turbine so as to hold the latter .suspended below the surface of said water lcourse, said carrier wing struclaure :including at least one control isurface ad- 'instable about a horizontal axis, means Yadapted to ⁇ be operated upon the approach of objects drifting vrin the water towards the turbine operatively connected to said control surface for varyingathe position foi 'height of Vsaid turbine in re sponsetc ⁇ suchapproach of such ,drifting objects ⁇ togetherwithimeans for .controlling the displace ment fof said control surface or surfaces ⁇ to an extent corresponding to immersion of said 'tur
  • a water power plant comprising a stream turbine,elongatedholdingmeans connected atlone end to said turbine and anchored at the other end tothe bottom of the water course, an underwater carrier wing structure .adapted to create dynamic buoyancy .connected :to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing .structure including at least one control surface adjustable about a horizontal axis, trouble detecting devices arranged ahead of said turbine in the direction ofthe flow kof the watercourse connected with means for Varying the angular position of said devices being acted upon by objects drifting in the water course so as to submerge said turbine to great enough a depth below the Water level to permit free passage of said objects over said turbinaand means for readjusting said control surface to return said turbine to the position assumed .before said lowering.
  • a water power plant comprising a stream turbine, elongated holding means connected .at one end :to said .turbine and anchored ,at the other end to ⁇ the bottom oi the water course, anunderwater carrier wing structure adapted to create dynamic ybuoyancy connected to said turbine so as to hold the latter suspended below the surface of .said water course, said carrier wing structure including at least one control surface adjustable about ,a horizontal axis, trouble detecting devices arranged ahead of said ⁇ turbine in the ⁇ direction oi the dow of the water course connected with means for varying the angular position of said control surface to lower said turbine upon at least one oi said devices being acted upon by objects drifting in the water course Vso as to submerge said turbine to great enough ya depth below the water level rto permit ,free passage of said objects over said turbine, and means for readjusting said control surface ⁇ to return said turbine to the position assumed before said lowering, said readjusting means being operatively connected with said
  • a water power plant comprising a stream turbine having at least one propeller, each propeller having coordinated thereto .
  • a streamlined housing enclosing ,an electric generator and la gear, elongated holding means connected ⁇ at one end to said turbine and anchored at the other end to the .bottom of the water course, an under'A water carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to 4hold the latter suspended below the suroi: said water course, a cable :for leading away the electric current produced .by said ,generator, and flexible pip@ lines for draining ⁇ and Ventilating vof vsaid housing and for the supply of lubricants, said cable and pipe lines ,extending along said elongated holding means .to the bottom of the water course and from there to one of the banks or said water course.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

March 28, 1950 E. soUczEK 2,501,696
STREAM TURBINE Filed Aug. 6, 1947 3 Sheets-Sheet 1 IN V EN TOR.
March 28, 1950 E, SOUCZEK 2,501,696
STREAM TURBINE Filed Aug. 6. 1947 3 Sheets-Sheet 2 Fig. 4
his Agent.
/NVEA/ro/P. Ernst SauczE/f E. SOUCZEK STREAM TURBINE I March 28, 1950 Filed Aug. 6, 1947 3 Sheets-Sheet 5 Mumb FP Il Patented Mar. 28, 195
UNITED STATES PATENT OFFICE STREAM TURBINE Application August 6, 1947, Serial No. 766,818 In Austria January 12, 1946 Section 1, Public Law 690, August 8, 1946 Patent expires January 12, 1966 18 Claims. 1
Up to the present, the so-called stream turbines which utilize the current energy .of water courses directly by means of float suspended propellers with guiding means are in rather limited use only for the reason that the initial investments for the iioats anchored in the Water course, the suspension means, the gears between the propeller and a generator which is arranged above water, as well 'as for the protecting rakes are still too high in proportion to the obtainable output.
The invention relates to a stream turbine and has for its object to partly dispense with and to partly diminish the expenses for the just mentioned accessories so that energy may be gained from water courses with not too low a current velocity in an economical way. To achieve this end an essential feature of the invention consists in holding the turbine, which hangs on a rope anchored at the bottom of the water course, in
a floating condition by means of an underwater f carrier connected with the turbine and creating dynamic buoyancy. The underwater carrier may be provided with at least one underwater carrying surface or wing which is equipped with control devices in a manner similar to airplane wings. A favorable construction may be obtained by arranging the propeller on a streamlined casing which -contains the gears vand the generator and by providing one or more pairs of casings, the propellers of each pair running in opposite direction and the casings being connected with each other by means of an underwater carrier structure. The control devices may consist of a depth guide surface and/or a depth rudder and since with stream turbines the position of height relative to the water surface is essential, it is best to actuate these control devices in response to changes of the water level. While already thereby many of the accessories may be dispensed with, also the need for stationary -rakes serving as a protection against objects floating in the water may be eliminated. This can be done by arranging ahead of the stream turbine trouble indicators which, for instance, are secured to buoys and which in response to impulses they receive from objects swimming along cause a dive movement o the turbine so that the latter moves out of the path of these objects. The dive movement may be brought labout by depth control means and may lead to a temporary position of rest of the turbine at the bottom of the water course.
In the drawing which illustrates the invention diagrammatically and by way of example,
Fig. 1 is a side elevation and Fig. 2 a front elevation ci the stream turbine anchored to the ground;
Fig. 3 is a plan view at a larger scale than Figs. 1 and 2 of the stream turbine;
Fig. 4 shows in a side elevation and Fig. 5 in a front view the combination of the lstream turbine with a trouble indicator; and
Fig. 6 is a diagram illustrating one form of the control mechanism of the water power plant and the electric connections therefor.
The stream turbine comprises one or more propellers -I each secured to a hub formed by the rear part 2 of a housing 3 of streamlined shape. A transmission gear 4 and a generator 5 are coaxially arranged within the housing. The parts I to 5 just mentioned form together a unit which can be, combined with the underwater structure in any desired of various possible ways. In the example shown in Fig. 3 there are two such units connected with each other by a carrier structure which consists of a rear underwater carrier wing 5 and a front underwater carrier wing 'I and also of a holding rope 8 engaging at 9 the wing 6 or a Vertical guide surface I2. The wing 'I is turnable about :a transverse axis and is thereby adapted to serve as a depth rudder. Along the holding rope 8 there extend the various pipes and leads I I required for the draining and Ventilating of the housing, for supplying the lubricating oil, for leading away the generated current and also for supplying the electric control impulses. In the middle plane of the carrier structure there is provided the vertical guide surface I2. The direction of the flow of the water is indicated by arrows. The holding rope is attached to a bracket I3 which is anchored in the river bed and from which a conduit I4 accommodating the pipes. and
leads I I extends to the bank of the river. The di- 'l rection'of rotation of the two propellers is opposite` so that the torques are balanced. The propellers may be equipped with guide members in a manner known per se.
The carrier structure against which the water flows at a certain velocity is adjustable so that the stream turbine obtains a buoyancy which, in cooperation with the holding rope 8, holds it in the desired position of height. In general, this position of height is determined by the diameter of the propeller which, together with the guide members, if such are provided, must submerge completely. Thus the position of height of the turbine depends on the water level. The automatic adjustment of the turbines to that position of height may, therefore, be brought about by 3 rudder machines D which are arranged within the housing t and actuate the wing l'.
The trouble indicator, which protects the stream turbine against damages through oating wood, drifting ice, etc., by causing. diving of the turbine may be of any suitable nature, for nstance of mechanical nature and in this case it may consist, e. g., of a series of buoys i (Figs. 4, 5) which are forced under water by the oncoming object and which carry each a pressure meter in the form of a spring diaphragm. The dia.- phragm operates an electric switch which through the auxiliary motor D, tilts the depth rudder 1 causing thereby a diving movement of the turbine. two regulating steps, one for smaller immersion. or draft ci the floating object, and the other for greater immersion or draft. In the latter case the turbine may dive almost down to thebottom of the water course, if this be necessary. 'Ihe switches are arranged in parallelsoth'at it is the buoy in the respective deepest position which determines the amount of actuation of thef depth rudder. The trouble indicator must, ofy course, be arranged so far up stream with respect to the turbineA that the diving movement of the turbine is completed beicre the arrival ofthe onswimming: objects at that turbine. The drawing shows this distance between trouble indicator and turbine much smaller as it actually would be; Preferably the arrangement is such as to always adjust the wing'` 1' so in dependence on the varying water level that the turbine always maintains the same distance from the water surface.
VIn order that the propeller does not suifer damage when thei turbine approaches the bottom" of the water course, means may be pro vided. to block the shaftr of the propeller completely and in a horizontal position for such a deep diving movement. Ii desired a braking action uponthe shaft may precede saidblocking oli the propeller. Such interruptions of the operation of the turbine will be` relatively seldom because iioating material of such* great immersion antov require such' a far-reaching diving of the turbine: will not come up' often.
It is desirable to use the troubley indicator also forinitiating the re-rising of the stream turbine at the end of the action of the oating material. For this purpose asuitable retarding device may be provided which preventsa. premature rising of the turbine.
In order to protect the turbine lying on the bottom ofthe river against rubble or boulders, or other objects traveling on the ground, there may be'provided a stationary small rake IB.
The diving movement of the turbine initiated by; theftrouble indicator, must be accomplished inidentical manner regardless of the water level; it is preferable, therefore, to keep the dive depth of' the iirst of the two above. mentioned. regulating steps (in the case of minor troubles) a1- ways constant in relation to the Water surface. The. dive depth of the second step (in the case of major troubles), however, must obviously always lead to the same distance from the bottom. Fig. 6 shows in detail how to attain this end. It is' an illustrative, schematic drawing presenting the combined operation ofv the control' devices on the' river' bank (in the auxiliary engine house H),
the trouble indicator, and inthey turbine. There arethree sections in the drawing, separated'from each other by dash and dot lines: the top section shows. the equipment of thev turbineY (only hall" of' itl beingl illustrated), the' middle: section shows 't is sufficient for that purpose to providel 4 the control devices on the river bank, and the bottom section shows the control devices of the trouble indicator.
As iar as the action of the depth control device is concerned, fteen diierent functional conditions may be distinguished, characterized first by the water level, viz: A middle water, B low water, and C high water; second by different trouble conditions in each of the above cases of water level. l may denote the condition when there is no trouble (normal case), 2 during a minor trouble, 3 immediately after a minor trouble, 4 during a major trouble, and 5 immediately a-fter a major trouble. The combined iniluence of water level and trouble condition determines what may be called the combined functional condition. A4 e. g. is the combined functional condition in the case of middle water during a major trouble whose end phase is shown in Fig. 6 wherein current carrying leads are drawn in full lines, currentless leads in dotted lines;
In the following' detailed description of one. form` of control mechanism suitable for carrying. the invention into effect only the conditions A I'- AE' will be described since the corresponding B- andC-conditions will then be obvious` Condition AI is the working condition inthe case of middle'` water,A no drift wood or the like working upon the trouble indicator (floating rake). ItA can be considered asthel normal case.
In the case of a sinkingv water level (as shown in the* drawing) an apparatus indicating; the: water level, e. g. a float I8` of usualconstruction, imparts, by means of an appropriate transmis.- sion mechanism; a turning' motion in clockwise direction to a slide contact 50 of an. impulse: in: citer C. The slide contact gli'des on slide ring? segments 5l thereby actuating' a steering machine id step.` by step in' counter-clockwise direction. The steering machine" IS)` is connected with` the worm 2D of a worm gearv 2U, 52, whose4 worm wheel 52 carries three segments 53 ofI an impulse inciter 2| attached. Thus, the rotation: of the steering machine |'9 in counter-clockwisek s direction causes the slide ring segments 53 to` glide along the slide contactvv 54` of` the impulse. inciter2l, and as aresultof the successive actu-V ation of these contacts the rudder device D in the turbine casing is moved step by step in clockiwise direction. Ther rudder device D on its? part, tilts by means of the worm gear 55,V 22 the depth rudder 1 in the sense of a reduced inclinationr to the horizontal plane; A switch 56.` is provided for` closing` thev circuit of the magnet coil 6i of a locking device 4i so that a` locking pin 42 is pulled upwards and the propeller shaft 43` can rotate unobstructedly. The generator` shaft diby means of a spur gea- r 51, 45, drivesa small. alternator 44. The current. of the latter ows. through a galvanometer 41, actuating. instead of a. pointer a switch 46, which at normal speed' of the. generator is in position II, so thatthecircuit for the coil El of the locking device 4l is also closed. by switch 46 parallel to switch 56.
In the case or a rising water level" alll movements of the steering machine take place in cppo'site direction, so that the depth rudder is actuated inthe sense of an increase of inclination angle. In this manner the turbineA maintains always the same distance below the water sur` face', regardless Vci. its level.
Condition A2'isA the working condition in the case of middle water during a. minor trouble. The water level is' the'l same as inV the case orv condition AI consequently there isf nol change,
in comparison with the latter condition, as to the positions of the impulse inciter C andthe worm wheel 52 with the slide ring segments 53. However, drift wood, or the like, caused one or several of the buoys I5 of the trouble indicator to dive under water; thereby, water pressure is originated, pressing depth plates 23 coordinated to the affected buoys, downwards against the tension of depth springs 24, and thus shifting corresponding depth switches 25 fromthe position of rest I to the position II. The depth switches close in position II the circuit of a magnet coil 26, which pulls a switch rod 21 downwards so that a release lever 28 of a retarding clock 294, which in the position of rest is held elevated by a cam 62 of the switch rod, can drop down so as to obstruct the running of the wound clock 29. The same cam tilts a switch v3l] from switch position I to switch position II, and likewise the switch 56 from I to II. This closes the circuit of a steering machine 32, the current flowing through the eld magnet 3l, thereof, causing the rotor o the steering machine 32 to rotate in counter-clockwise direction. The rotor just mentioned is connectedwith the winding device of the retarding clock by means of a clutch which engages said winding device and thus winds the clock 29 if it rotates in a counterclockwise direction, and is uncoupled if it rotates in clockwise direction. At the same Itime the machine 32 turns the slide contact 54 of the impulse inciter 2|, by means of a worm gear 33. A lever key switch 35 is operated by means of another worm gear 34. The slide contact 54 of the impulse inciter 2| glides in its rotating move- :I
ment on the three slide ring segments 53, establishing thereby contact with one of these segments after the other and thus moving the rudder device D step by step in clockwise direction. The rudder device D tilts the depth rudder 1 by means of the worm gear 55, 22 in the sense of reducing the angle of inclination. This displacement continues until the lever key switch 35 is tilted from position I to position II, whereby the circuit of the steering machine 32 is interrupted.
The circuit of the locking device 4| is no interrupted at switch 56, but since it is still held closed by switch 46, the locking pin 42 remains pulled upwards, and the propeller shaft 43 can rotate unobstructedly.
Condition A3 is the working condition in the case of middle water immediately after the end of a minor trouble. There is no change, in comparison with the conditions AI and A2, as to the water level and the positions of the impulse inciter 2| and the worm gear 20, 52. Drift wood, or the like, has just passed over the trouble indicator, and all buoys are again on the water surface. Consequently, all depth switches are again in the normal position I, so that also the switch rod 21, by means of the recoil spring 36, has been pulled back from the magnet coil 26 into the position of rest. At the same time, the right hand cam 62 of the switch rod 21 has pressed upwardly the release lever 28, so that the retarding clockwhich during the condition A2 has been wound by the steering machine 32- can run during a period of time long enough to let the drift wood swim past the turbine; and at the end of this time the clock has pressed back the switch 30 from position II into position I, and keeps on running. In the example shown Y schematically in the drawing, wherein the switch arms of the switches 30 and 56 form the two isolated parts .of a bell crank lever, the initial position of Al has not yet been fully reached but the bell crank lever 30, 56 has been turned backwards only so much that though the circuit of the motor of the steering machine 32 has been closed, the position I of switch 56 has not yet been reached, since the circuit of the motor of the steering machine 32 is closedv by means of the switch 30 in position II (which has been reached at the end of the working condition A2). The current now flows through the field magnet 31,'F so that the motor of the steering machine 32 rotates-in clockwise direction. Therefore, the winding device of the retarding clock is un-.j coupled, whereas the worm gears 2U, 52 and 33 are running in a direction opposite to that dur-e` ing the working condition A2. Thereby also the switch 35 and the slide contact 54 of the impulse inciter 2| are actuated in opposite direction to that in the case A2. The impulse inciter 2|, therefore, tilts the rudder, by means of the rud-l der device D and worm gear 55, 22, in the sensey of an increased angle of inclination. This tilting lasts until the lever key switch 35 has returned from position II to position I. The switch is constructed in such a manner that this occurs when the angle of inclination of the rudder 1 has been restored to that of the condition AI. In the meantime, the retarding clock 29 keeps lon running and after a certain time (see A5) when its run comes to an end, it presses the bell crank lever completely back into its initial position, so that the switch arm 56 is again in position I, and as a whole, the condition AI has been restored.l
Condition A4 is the working condition in the case of middle water and a major trouble. The water level is the same as in the case of condi-vtion Al. Therefore, the positions of the impulse inciter C and the worm gear 2U, 52 with the slide ring segments 53 have not changed, in comparison with condition AI. Drift wood, or the like, has pressed one or several buoys deep under water, the water pressure caused thereby pressing downwards the corresponding depth plates, in the drawing: depth plate of buoy'I, against the tension of the depth springs, shifting thereby the corresponding depth switches from the position of rest I over II into the position III. The depth switches in position III short-circuit the armature 41 of the dynamo, which is in the form of a D. C. generator, resulting in the braking of the dynamo and, by means of the planet gear 4, also the propeller screw. Furthermore, they close in this position also the circuit of the magnet coil 38, which pulls the switch rod 21 down into its lowest position. This causes, as described above for condition A2, the freeing of the release lever of the retarding clock 29, so that it can drop and obstruct the running of the clock; ,andY
the shifting of the switches 30 and 56 from posiu tion I to position II. Likewise switch 39 is shifted to position II. In the initial phase, the circuit of the steering machine 32 is closed in the same manner as in the case of condition A2. This means: the motor runs in` counter-clockwise direction, thereby winds the retarding clockand actuates the impulse inciter 2| by means of the worm gear 33 and the switch 35 by means of the worm gear 34. The impulse inciter 2| operates the rudder device, which decreases, by means of the worm gear 55, 22, the angle o f inclination of the depth rudder. i This continues until the lever key switch 35 has been shifted from position I to position II. In the meantime, the screw propeller too has slowly come to a standstill, and
end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, at least one control surface on said carrier wing structure, and means for changing the angular position of said control surface.
5. A water power plant comprising a stream turbine having at least one pair of propellers,
each propeller having coordinated thereto a streamlined housing enclosing an electric generator and a gear, elongated holding means connected at one end to said turbine and' anchored at the other end to the bottom of the water course, the propellers of each of said propeller pairs having opposite rotational direction and their coordinated housings being connected with one another by an underwater carrier wing structure adapted to create dynamic buoyancy so as to hold said turbine suspended below the surface of said water course.
6. A water power plant comprising a stream turbine having at least one pair of propellers, each propeller having coordinated thereto a streamlined housing enclosing an electric generator and a gear, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, the propellers of each propeller pair having opposite rotational direction and their coordinated housings being connected with one another by an underwater carrier wing structure adapted to create dynamic buoyancy so as to hold said turbine suspended below the surface of said water course, at least one adjustable control surface on at least one of said carrier Wing structures, and means for changing the angular position of said control surface or surfaces.
7. A water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, and means responsive to changes in the height of the water level operatively connected to said control surface for varying the angular position of said control surface and thereby the position of height of said turbine.
8. A water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, and means adapted Yto operate upon the approach of objects drifting in the water towards the turbine operatively connected to said control surface for varying the position of height of said turbine.
9. A water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at thel other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said tur- 410 bine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, means responsive to changes in the height of the water level operatively connected to said control surface for varying the angular position of said control surface and thereby the position of height of said turbine in response to changes in said water level, and means adapted to operate upon the approach of objects drifting in the water towards the turbine operatively connected to at least one of said control surfaces for varying the position of height of said turbine in response to the approach of such drifting objects.
10. A water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, and means responsive to changes in the height of the water level operatively connected to said control surface for varying the angular position thereof so as to maintain the distance of said turbine from said water level substantially constant in spite of changes in said water level.
11. A water power plant comprising a stream turbine, elongated holding means connected at one end to said turbine and anchored at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, means responsive to changes in the height of the water level operatively connected to said control surface for varying the angulaiposition thereof so as A to maintain the distance of said turbine from said water level substantially constant in spite of changes in said water level, and trouble detecting devices arranged ahead of said turbine in the direction of the flow of the water course connected with means for varying the position of height of said turbine upon at least one of said devices being acted upon by objects drifting in the water course so as to submerge said turbine to great enough a depth below the water level to permit said objects free passage over said turbine.
12. A water power plant comprising a stream turbine having at least one propeller, each propeller having coordinated thereto a streamlined housing enclosing an electric generator and a gear, elongated holding means connected at one end to said turbine and at the other end to the bottom of the water course, an underwater carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing structure including at least one control surface adjustable about a horizontal axis, means responsive to changes in the height of the water level operatively con nected to said control lsurface for Varying theV angular position of said control surface so as to, maintain the distance of said turbine from said water level substantially constant in spite of changes in said water level, and trouble detecting devicsarransed ahead of said turbine in the :direction of -the now of `the water course connected with `means `for varying the position of 'height of sadlturbine `upon at least one of said 1devices being acted upon by objects drifting in the Water course so as to submerge said turbine to ggreat enough .a depth below said water level to permit free passage `ol said objects over said turbine.
13. .4A Vwater power plant ycomprising `a stream turbine, elongated `holding means `connected at one end ,to said turbine and anchored `at `the other end itc the bottom of `the Water course, yan underwater lcarlrier wing structure adapted 'to create dynamic buoyancy connected to said turbinersoqas to yhold the `latter `suspended below :the lsuriace of Vsaid water course, said carrier wing structure including atleast one control sur- .face adjustable about .a lhorizontal axis, and means adapted tto be operated upon the approach .of objects drifting in the water towards the turbine operatively connected to said control surface Afor varying the position of height of said turbine in `response to such approach of such driitingobjects `together with means 4for controli ling the :displacement ol` said control surface or ysurfaces to an rextent corresponding to immersioniof said turbine to one depth below the water level if the approaching object 'has a predetermined draft -or lessand to an vextent corresponding to immersion of the turbine to a larger depth belowuthe water level if the approaching object has-.more lthan ysaid predetermined draft,
14. A water power plant comprising a stream turbine `having at least one propeller, elongated holding Vmeansconnected :at one end to said turbine vand anchoredat theother end `to the bottom of the water course, an underwater `carrier wing structure adapted to `create dynamic buoyancy connected -to said turbine so as to hold the latter suspended below the surface oi said watercourse, Isaid `carrier wing `structure :including at least one control surface adjustable about a horizontal exis, means adapted to be operated upon approach ci objects driftingr in 'the vwater towards the -turbine 4operatively connected to said control surface rior varying the 'positionlol height'oi said turbine in lresponse to `such approach of such drifting objects, fand means Afor locking said propeller l or l-propellers in substantially horizontal i posi-tion of the propeller blades.
15. `A water power plant comprising a stream turbine Thaving fat `least one propeller, elongated holding 1i'neans connected at one end to `said turbine vand anchored at the `other end to the bottom of the water course, an underwater carrier wing Astructure -adapted to create dynamicbuoyancy `connected vto said 'turbine so as to hold the latter .suspended below the surface of said water lcourse, said carrier wing struclaure :including at least one control isurface ad- 'instable about a horizontal axis, means Yadapted to `be operated upon the approach of objects drifting vrin the water towards the turbine operatively connected to said control surface for varyingathe position foi 'height of Vsaid turbine in re sponsetc `suchapproach of such ,drifting objects {togetherwithimeans for .controlling the displace ment fof said control surface or surfaces `to an extent corresponding to immersion of said 'tur- .bine to one depth below the water level if the :appr-caching -lobject has a predetermined draft or yless .and to an extent corresponding to immersion of the turbine to a larger depth below .the water level `if the .approaching object has kill more than said predetermined draft, and means for locking said propeller or propellers in substantially horizontal position of .the propeller blades upon said means for controlling the ,displacement of said control surface or surfaces being actuated for the immersion of the turbine ,to said larger depth. l
16. A water power plant comprising a stream turbine,elongatedholdingmeans connected atlone end to said turbine and anchored at the other end tothe bottom of the water course, an underwater carrier wing structure .adapted to create dynamic buoyancy .connected :to said turbine so as to hold the latter suspended below the surface of said water course, said carrier wing .structure including at least one control surface adjustable about a horizontal axis, trouble detecting devices arranged ahead of said turbine in the direction ofthe flow kof the watercourse connected with means for Varying the angular position of said devices being acted upon by objects drifting in the water course so as to submerge said turbine to great enough a depth below the Water level to permit free passage of said objects over said turbinaand means for readjusting said control surface to return said turbine to the position assumed .before said lowering.
17. A water power plant comprising a stream turbine, elongated holding means connected .at one end :to said .turbine and anchored ,at the other end to `the bottom oi the water course, anunderwater carrier wing structure adapted to create dynamic ybuoyancy connected to said turbine so as to hold the latter suspended below the surface of .said water course, said carrier wing structure including at least one control surface adjustable about ,a horizontal axis, trouble detecting devices arranged ahead of said `turbine in the `direction oi the dow of the water course connected with means for varying the angular position of said control surface to lower said turbine upon at least one oi said devices being acted upon by objects drifting in the water course Vso as to submerge said turbine to great enough ya depth below the water level rto permit ,free passage of said objects over said turbine, and means for readjusting said control surface `to return said turbine to the position assumed before said lowering, said readjusting means being operatively connected with said trouble detecting devices to be initiated for operation thereby and being .c ontrollable by `rotar-ding means for delaying the actionrof said -readjusting means until some time after said drifting objects have passed said trouble detecting devices.
lil. A water power plant comprising a stream turbine having at least one propeller, each propeller having coordinated thereto .a streamlined housing enclosing ,an electric generator and la gear, elongated holding means connected `at one end to said turbine and anchored at the other end to the .bottom of the water course, an under'A water carrier wing structure adapted to create dynamic buoyancy connected to said turbine so as to 4hold the latter suspended below the suroi: said water course, a cable :for leading away the electric current produced .by said ,generator, and flexible pip@ lines for draining `and Ventilating vof vsaid housing and for the supply of lubricants, said cable and pipe lines ,extending along said elongated holding means .to the bottom of the water course and from there to one of the banks or said water course.
ERNST SOUCZEK.
(References on following page) 13 REFERENCES CITED The following references are of yecord in the le of this patent:
UNITED STATES PATENTS Number Name Date 502,624 Holcomb Aug. 1, 1893 867,192 Dawson Sept. 24, 1907 868,798 McLaughlin Oct. 22, 1907 Number Name Date Low Nov. 10, 1908 Corbin Jan. 5, 1915 Au May 3, 1927 Hogg May 8, 1928 FOREIGN PATENTS Country Date France Nov. 11, 1908
US766818A 1946-01-12 1947-08-06 Stream turbine Expired - Lifetime US2501696A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT2501696X 1946-01-12

Publications (1)

Publication Number Publication Date
US2501696A true US2501696A (en) 1950-03-28

Family

ID=3690227

Family Applications (1)

Application Number Title Priority Date Filing Date
US766818A Expired - Lifetime US2501696A (en) 1946-01-12 1947-08-06 Stream turbine

Country Status (1)

Country Link
US (1) US2501696A (en)

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163904A (en) * 1976-03-04 1979-08-07 Lawrence Skendrovic Understream turbine plant
US4219303A (en) * 1977-10-27 1980-08-26 Mouton William J Jr Submarine turbine power plant
WO1981000595A1 (en) * 1979-08-22 1981-03-05 Bbc Brown Boveri & Cie Plant for producing electrical power from a watercourse and turbine assembly for such a plant
US4274009A (en) * 1977-11-25 1981-06-16 Parker Sr George Submerged hydroelectric power generation
US4306157A (en) * 1979-06-20 1981-12-15 Wracsaricht Lazar J Underwater slow current turbo generator
US4335319A (en) * 1980-08-27 1982-06-15 Charles B. Cannon Hydro-electric power apparatus utilizing ocean currents
US4383182A (en) * 1975-06-11 1983-05-10 Bowley Wallace W Underwater power generator
US4613279A (en) * 1984-03-22 1986-09-23 Riverside Energy Technology, Inc. Kinetic hydro energy conversion system
US4722665A (en) * 1984-11-07 1988-02-02 Tyson Warren N Turbine
US4737070A (en) * 1985-07-31 1988-04-12 Yamaha Hatsudoki Kabushiki Kaisha Water powered device
US4748808A (en) * 1986-06-27 1988-06-07 Hill Edward D Fluid powered motor-generator apparatus
US4850190A (en) * 1988-05-09 1989-07-25 Pitts Thomas H Submerged ocean current electrical generator and method for hydrogen production
AU587789B2 (en) * 1984-11-07 1989-08-31 Warren Neville Tyson Turbine
WO1991007587A1 (en) * 1989-11-15 1991-05-30 Tibor Kenderi Water current energy converter
DE4125691A1 (en) * 1991-08-02 1993-02-04 Doerpinghaus Ernst H Tidal generator adaptable to available topography - uses generator with propeller tethered to concrete base on sea-bed and always in direction of water flow
US5440176A (en) * 1994-10-18 1995-08-08 Haining Michael L Ocean current power generator
US6091161A (en) * 1998-11-03 2000-07-18 Dehlsen Associates, L.L.C. Method of controlling operating depth of an electricity-generating device having a tethered water current-driven turbine
WO2000077393A1 (en) * 2000-05-26 2000-12-21 Philippe Vauthier Dual hydroturbine unit
US6168373B1 (en) * 1999-04-07 2001-01-02 Philippe Vauthier Dual hydroturbine unit
US6531788B2 (en) * 2001-02-22 2003-03-11 John H. Robson Submersible electrical power generating plant
WO2003056169A1 (en) * 2001-12-27 2003-07-10 Norman Perner Underwater power station
WO2003064860A1 (en) * 2002-01-25 2003-08-07 Rosefsky Jonathan B Ribbon drive power generation for variable flow conditions
US20030193197A1 (en) * 2001-08-09 2003-10-16 Hibbs Bart D. Method of and apparatus for wave energy conversion using a float with excess buoyancy
WO2004022968A1 (en) * 2002-09-04 2004-03-18 Hammerfest Ström As Apparatus with an inclined carrying pillar for anchoring an axial turbine for the production of electric energy from water currents
US20040070210A1 (en) * 2001-02-13 2004-04-15 Harald Johansen Apparatus for production of energy from currents in bodies of water, a foundation, and a method for the installation of the apparatus
US6798080B1 (en) 1999-10-05 2004-09-28 Access Business Group International Hydro-power generation for a water treatment system and method of supplying electricity using a flow of liquid
US20040189010A1 (en) * 2003-03-28 2004-09-30 Tharp John E. Hydro-electric farms
WO2004083629A1 (en) * 2003-03-18 2004-09-30 Soil Machine Dynamics Limited Submerged power generating apparatus
WO2004085845A1 (en) * 2003-03-25 2004-10-07 Marine Current Turbines Limited Submerged water current turbines installed on a deck
US20040219015A1 (en) * 2001-12-07 2004-11-04 Va Tech Hydro Gmbh & Co. Device and method for the generation of electrical energy
WO2005061887A1 (en) * 2003-12-20 2005-07-07 Marine Current Turbines Limited Articulated false bed
US20050285407A1 (en) * 2001-09-17 2005-12-29 Davis Barry V Hydro turbine generator
US20060033338A1 (en) * 2004-05-11 2006-02-16 Wilson Kitchener C Wind flow estimation and tracking using tower dynamics
US20060232072A1 (en) * 2002-09-20 2006-10-19 Manchester Jonathan R Apparatus for generating electrical power from tidal water movement
US20060273594A1 (en) * 2005-06-01 2006-12-07 Gehring Donald H Ocean wave generation
US7215036B1 (en) * 2005-05-19 2007-05-08 Donald Hollis Gehring Current power generator
WO2007100639A2 (en) * 2006-02-28 2007-09-07 Kuehnle Manfred R Submersible turbine apparatus
US20070236020A1 (en) * 2006-04-06 2007-10-11 Ahearn John M System for generation electric power
US7291936B1 (en) * 2006-05-03 2007-11-06 Robson John H Submersible electrical power generating plant
US20070284882A1 (en) * 2006-06-08 2007-12-13 Northern Power Systems, Inc. Water turbine system and method of operation
US20070284884A1 (en) * 2004-09-17 2007-12-13 Clean Current Power Systems Incorporated Flow Enhancement For Underwater Turbine
US20080012345A1 (en) * 2006-06-09 2008-01-17 David Joseph Parker Tethered propgen
US20080018115A1 (en) * 2006-07-20 2008-01-24 Boray Technologies, Inc. Semi-submersible hydroelectric power plant
US20080050993A1 (en) * 2004-11-17 2008-02-28 Overberg Limited Floating Apparatus for Deploying in Marine Current for Gaining Energy
US20080093859A1 (en) * 2006-10-24 2008-04-24 Catlin C S River and tidal power harvester
WO2009004308A2 (en) * 2007-06-30 2009-01-08 John Richard Carew Armstrong Improvements in water turbines
US20090140524A1 (en) * 2007-11-30 2009-06-04 Kejha Joseph B Deployable submarine-hydroelectric generator for sea currents energy harvesting
GB2456786A (en) * 2008-01-23 2009-07-29 Pilot Drilling Control Ltd Turbine cowling
US20090230686A1 (en) * 2007-10-18 2009-09-17 Catlin Christopher S River and tidal power harvester
US20090267347A1 (en) * 2008-04-23 2009-10-29 Abatemarco Michael R Pelatic sustainable energy system
US20090278357A1 (en) * 2006-07-14 2009-11-12 Herbert Williams Tidal flow hydroelectric turbine
US20090284017A1 (en) * 2008-05-19 2009-11-19 Lehoczky Kalman N Internal fluid handling for hydro-generator submerged in water
US20100013231A1 (en) * 2008-07-16 2010-01-21 Bolin William D Water Current Power Generation System
US20100026002A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited hydroelectric turbine
US20100025998A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US20100068037A1 (en) * 2006-07-14 2010-03-18 Openhydro Group Limited Turbines having a debris release chute
EP2199603A1 (en) * 2008-12-19 2010-06-23 OpenHydro IP Limited A method of controlling the output of a hydroelectric turbine generator
US20100156108A1 (en) * 2009-02-09 2010-06-24 Grayhawke Applied Technologies Sytem and method for generating electricity
US20100172698A1 (en) * 2007-04-11 2010-07-08 Openhydro Group Limited System and method for the deployment of a hydroelectric turbine
US20100226798A1 (en) * 2006-01-24 2010-09-09 William Kingston Tidal Energy System
US20100232885A1 (en) * 2007-04-11 2010-09-16 Openhydro Group Limited Method of installing a hydroelectric turbine
US20100230971A1 (en) * 2007-06-05 2010-09-16 Graeme Charles Mackie Mooring System for Tidal Stream and Ocean Current Turbines
US20100232962A1 (en) * 2009-11-09 2010-09-16 Bolin William D Fin-Ring Propreller For a Water Current Power Generation System
US20100295388A1 (en) * 2007-12-12 2010-11-25 Openhydro Group Limited Hydroelectric turbine generator component
US20110018274A1 (en) * 2008-02-05 2011-01-27 Openhydro Group Limited hydroelectric turbine with floating rotor
US20110088253A1 (en) * 2008-04-17 2011-04-21 Openhydro Group Limited turbine installation method
US20110089702A1 (en) * 2010-12-22 2011-04-21 David Boren Fluidkinetic energy converter
US20110095530A1 (en) * 2009-10-26 2011-04-28 Honeywell International Inc. Tethered aquatic device with water power turbine
US20110110770A1 (en) * 2008-04-22 2011-05-12 Openhydro Group Limited Hydroelectric turbine having a magnetic bearing
US20110148118A1 (en) * 2009-12-18 2011-06-23 Hiawatha Energy Inc. Low speed hydro powered electric generating system
WO2011091448A2 (en) * 2010-01-22 2011-07-28 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced
FR2956167A1 (en) * 2010-02-09 2011-08-12 Kerckove Yves Marie Joseph Andre Module for e.g. recovering energy contained in e.g. marine, to work on pelagic surface close to sea bed, has dead man positioning of module at sea or in river such that dead man is positioned in direction of current in predetermined space
WO2011098685A1 (en) * 2010-02-09 2011-08-18 Yves Kerckove Module for recovering energy from marine and fluvial currents
WO2011098686A1 (en) * 2010-02-09 2011-08-18 Yves Kerckove Support unit for a device for recovering energy from marine and fluvial currents
DE102010025070A1 (en) * 2010-06-25 2011-12-29 Smart Utilities Solutions Gmbh Hydraulic power device i.e. hydropower turbine for generating water in e.g. stationary hydroelectric power plant, has ventilation device designed such that gas is exhausted from chamber, and water is sent into chamber by suppression of gas
US20120013128A1 (en) * 2010-07-19 2012-01-19 John Hincks Duke Hydrokinetic turbine for low velocity currents
WO2012025754A1 (en) * 2010-08-27 2012-03-01 Pulse Group Holdings Limited A structure for deployment and recovery of a hydroelectric power generator
US20120074704A1 (en) * 2010-09-27 2012-03-29 Thomas Rooney Single Moored Offshore Horizontal Turbine Train
EP2439402A1 (en) * 2009-06-05 2012-04-11 Energy Whaletailturbine, S.L. Submersible device for the coupling of water wheels or turbines in order to harness energy from flowing water
ITCS20100016A1 (en) * 2010-11-04 2012-05-05 Domenico Coiro MOSSO ELECTRIC GENERATOR FROM MARINE CURRENTS, COMPLETE WITH DIFFUSER AND MANEUVER SYSTEM
US20120211988A1 (en) * 2011-02-23 2012-08-23 Richard Harding Submersible electric power generator system
US20120257955A1 (en) * 2010-09-27 2012-10-11 Thomas Rooney Offshore hydroelectric turbine assembly and method
US8421265B2 (en) * 2009-02-09 2013-04-16 Grayhawke Applied Technologies System and method for generating electricity within a building structure
WO2013066897A2 (en) * 2011-10-31 2013-05-10 Aquantis, Inc. Multi-megawatt ocean current energy extraction device
WO2013079831A1 (en) 2011-09-19 2013-06-06 Sabella Device for recovering energy from sea currents or bodies of flowing water
US8506244B2 (en) 2010-09-29 2013-08-13 George F. MCBRIDE Instream hydro power generator
US20130277980A1 (en) * 2010-11-25 2013-10-24 Kawasaki Jukogyo Kabushiki Kaisha Water flow electricity generating device
US20130313831A1 (en) * 2012-05-23 2013-11-28 Donald H. Gehring Hydroelectricity Generating Unit Capturing Marine Wave Energy and Marine Current Energy
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
US8764391B2 (en) 2009-09-10 2014-07-01 Osirius International Hydrokinetic turbine structure and system
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
US20140328680A1 (en) * 2011-12-09 2014-11-06 Tidalstream Limited Support for water turbine
CN104246211A (en) * 2013-03-05 2014-12-24 株式会社协和工程顾问 Submersible generator
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9000604B2 (en) 2010-04-30 2015-04-07 Clean Current Limited Partnership Unidirectional hydro turbine with enhanced duct, blades and generator
US9041235B1 (en) * 2012-10-18 2015-05-26 Amazon Technologies, Inc. Hydrokinetic power generation system
US20150145259A1 (en) * 2013-11-22 2015-05-28 National Taiwan Ocean University Ocean current power generating apparatus using dual-duct with boundary layer control effect
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
WO2015090414A1 (en) * 2013-12-19 2015-06-25 Bluewater Energy Services B.V. Apparatus for generating power from sea currents
US20150176560A1 (en) * 2013-12-23 2015-06-25 Grover Curtis Harris Bi-rotational generator
US9074577B2 (en) 2013-03-15 2015-07-07 Dehlsen Associates, Llc Wave energy converter system
US20150240778A1 (en) * 2012-10-17 2015-08-27 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
US20150295481A1 (en) * 2013-12-23 2015-10-15 Grover Curtis Harris Bi-Rotational Generator
US20150369206A1 (en) * 2014-06-23 2015-12-24 Gregory McManus Positive boyancy hydraulic power system and method
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
WO2016039290A1 (en) * 2014-09-12 2016-03-17 三菱重工業株式会社 Method for starting ocean current power generation device and start control device
US9473046B2 (en) 2009-09-29 2016-10-18 Openhydro Ip Limited Electrical power conversion system and method
US20160333848A1 (en) * 2013-12-23 2016-11-17 Tidal Generation Limited Water current power generation systems
WO2016185101A1 (en) 2015-05-21 2016-11-24 Helios Gem Device for producing electricity from flows of liquid fluid
US20170009731A1 (en) * 2014-02-07 2017-01-12 Minesto Ab Submersible power plant
US20170030325A1 (en) * 2015-07-30 2017-02-02 Japan System Planning Co., Ltd. Underwater installation-type water-flow power generation system
US9745951B1 (en) * 2016-11-07 2017-08-29 Robert E. Doyle Self-positioning robotic subsea power generation system
US9765647B2 (en) 2010-11-09 2017-09-19 Openhydro Ip Limited Hydroelectric turbine recovery system and a method therefor
US20180106236A1 (en) * 2015-03-18 2018-04-19 Dong In Lee Submersible power generation platform
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator
US20190257281A1 (en) * 2018-02-22 2019-08-22 Ralph Dominic RAINA Bi-directional scalable turbine
US20200088158A1 (en) * 2018-09-11 2020-03-19 Littoral Power Systems, Inc. Hydrokinetic energy device
US10710689B1 (en) * 2008-01-14 2020-07-14 William Dwight Young Power generation method and device
WO2020154395A1 (en) * 2019-01-22 2020-07-30 Gregory Francis Bird Electrical energy generating systems, apparatuses, and methods
US20220260047A1 (en) * 2021-02-16 2022-08-18 Aqua Satellite, Inc. Methods for harnessing wave energy
US11473553B2 (en) 2020-03-25 2022-10-18 Gregory Francis Bird Wave protection and energy generation systems and assemblies
WO2022268986A1 (en) * 2021-06-24 2022-12-29 Minesto Ab Submersible power plant
US20230192265A1 (en) * 2020-05-28 2023-06-22 Airbus Sas Device for generating power, comprising an air-towed vessel towing at least one water current turbine
US12078142B2 (en) 2020-05-08 2024-09-03 Equinox Ocean Turbines B.V. Turbine with secondary rotors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US502624A (en) * 1893-08-01 Electric water-wheel regulator
US867192A (en) * 1906-09-13 1907-09-24 Robert W Gees Floating power plant.
US868798A (en) * 1905-02-20 1907-10-22 Robert Mclaughlin Means for obtaining power from flowing water.
US903592A (en) * 1907-01-03 1908-11-10 Charles J Low Power-generator.
FR393899A (en) * 1908-09-03 1909-01-08 Charles Jonathan Low Device applicable to boats, in order to capture the living force of waves
US1123491A (en) * 1913-05-12 1915-01-05 Elbert A Corbin Power-conversion plant.
US1626715A (en) * 1927-05-03 Current meter
US1669055A (en) * 1926-08-02 1928-05-08 Hogg Francis Signal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US502624A (en) * 1893-08-01 Electric water-wheel regulator
US1626715A (en) * 1927-05-03 Current meter
US868798A (en) * 1905-02-20 1907-10-22 Robert Mclaughlin Means for obtaining power from flowing water.
US867192A (en) * 1906-09-13 1907-09-24 Robert W Gees Floating power plant.
US903592A (en) * 1907-01-03 1908-11-10 Charles J Low Power-generator.
FR393899A (en) * 1908-09-03 1909-01-08 Charles Jonathan Low Device applicable to boats, in order to capture the living force of waves
US1123491A (en) * 1913-05-12 1915-01-05 Elbert A Corbin Power-conversion plant.
US1669055A (en) * 1926-08-02 1928-05-08 Hogg Francis Signal device

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383182A (en) * 1975-06-11 1983-05-10 Bowley Wallace W Underwater power generator
US4163904A (en) * 1976-03-04 1979-08-07 Lawrence Skendrovic Understream turbine plant
US4219303A (en) * 1977-10-27 1980-08-26 Mouton William J Jr Submarine turbine power plant
US4274009A (en) * 1977-11-25 1981-06-16 Parker Sr George Submerged hydroelectric power generation
US4306157A (en) * 1979-06-20 1981-12-15 Wracsaricht Lazar J Underwater slow current turbo generator
WO1981000595A1 (en) * 1979-08-22 1981-03-05 Bbc Brown Boveri & Cie Plant for producing electrical power from a watercourse and turbine assembly for such a plant
DE2933907A1 (en) * 1979-08-22 1981-03-12 Hans-Dieter 6100 Darmstadt Kelm PLANT FOR TAKING ELECTRICAL ENERGY FROM FLOWING WATERS AND TURBINE UNIT FOR SUCH A PLANT
US4335319A (en) * 1980-08-27 1982-06-15 Charles B. Cannon Hydro-electric power apparatus utilizing ocean currents
US4613279A (en) * 1984-03-22 1986-09-23 Riverside Energy Technology, Inc. Kinetic hydro energy conversion system
US4722665A (en) * 1984-11-07 1988-02-02 Tyson Warren N Turbine
AU587789B2 (en) * 1984-11-07 1989-08-31 Warren Neville Tyson Turbine
US4737070A (en) * 1985-07-31 1988-04-12 Yamaha Hatsudoki Kabushiki Kaisha Water powered device
US4748808A (en) * 1986-06-27 1988-06-07 Hill Edward D Fluid powered motor-generator apparatus
US4850190A (en) * 1988-05-09 1989-07-25 Pitts Thomas H Submerged ocean current electrical generator and method for hydrogen production
WO1991007587A1 (en) * 1989-11-15 1991-05-30 Tibor Kenderi Water current energy converter
US5281856A (en) * 1989-11-15 1994-01-25 Tibor Kenderi Water current energy converter
DE4125691A1 (en) * 1991-08-02 1993-02-04 Doerpinghaus Ernst H Tidal generator adaptable to available topography - uses generator with propeller tethered to concrete base on sea-bed and always in direction of water flow
US5440176A (en) * 1994-10-18 1995-08-08 Haining Michael L Ocean current power generator
EP0708241A3 (en) * 1994-10-18 2000-08-09 Michael Lynn Haining Ocean current power generator
US6091161A (en) * 1998-11-03 2000-07-18 Dehlsen Associates, L.L.C. Method of controlling operating depth of an electricity-generating device having a tethered water current-driven turbine
JP2002535188A (en) * 1999-01-12 2002-10-22 デールセン アソシエイツ,アイエヌシー. How to control the operating depth of a device
WO2000042318A1 (en) * 1999-01-12 2000-07-20 Dehlsen Associates, Inc. A method of controlling operating depth of a device
US6168373B1 (en) * 1999-04-07 2001-01-02 Philippe Vauthier Dual hydroturbine unit
WO2002027151A1 (en) * 1999-04-07 2002-04-04 Philippe Vauthier Dual hydroturbine unit
US6798080B1 (en) 1999-10-05 2004-09-28 Access Business Group International Hydro-power generation for a water treatment system and method of supplying electricity using a flow of liquid
WO2000077393A1 (en) * 2000-05-26 2000-12-21 Philippe Vauthier Dual hydroturbine unit
US20040070210A1 (en) * 2001-02-13 2004-04-15 Harald Johansen Apparatus for production of energy from currents in bodies of water, a foundation, and a method for the installation of the apparatus
US6531788B2 (en) * 2001-02-22 2003-03-11 John H. Robson Submersible electrical power generating plant
US6756695B2 (en) 2001-08-09 2004-06-29 Aerovironment Inc. Method of and apparatus for wave energy conversion using a float with excess buoyancy
US20030193197A1 (en) * 2001-08-09 2003-10-16 Hibbs Bart D. Method of and apparatus for wave energy conversion using a float with excess buoyancy
US7471009B2 (en) * 2001-09-17 2008-12-30 Clean Current Power Systems Inc. Underwater ducted turbine
US20100007148A1 (en) * 2001-09-17 2010-01-14 Clean Current Power Systems Inc. Underwater ducted turbine
US8022567B2 (en) 2001-09-17 2011-09-20 Clean Current Limited Partnership Underwater ducted turbine
US20090243300A1 (en) * 2001-09-17 2009-10-01 Clean Current Power Systems Inc. Underwater ducted turbine
US20050285407A1 (en) * 2001-09-17 2005-12-29 Davis Barry V Hydro turbine generator
US7372172B2 (en) * 2001-12-07 2008-05-13 Va Tech Hydro Gmbh Device and method for the generation of electrical energy
US20040219015A1 (en) * 2001-12-07 2004-11-04 Va Tech Hydro Gmbh & Co. Device and method for the generation of electrical energy
WO2003056169A1 (en) * 2001-12-27 2003-07-10 Norman Perner Underwater power station
CN1643260B (en) * 2002-01-25 2011-04-20 水力发动机电力公司 Ribbon drive power generation
WO2003064860A1 (en) * 2002-01-25 2003-08-07 Rosefsky Jonathan B Ribbon drive power generation for variable flow conditions
WO2004022968A1 (en) * 2002-09-04 2004-03-18 Hammerfest Ström As Apparatus with an inclined carrying pillar for anchoring an axial turbine for the production of electric energy from water currents
US20060232072A1 (en) * 2002-09-20 2006-10-19 Manchester Jonathan R Apparatus for generating electrical power from tidal water movement
US7339284B2 (en) * 2002-09-20 2008-03-04 Jonathan Ralph Manchester Apparatus for generating electrical power from tidal water movement
WO2004083629A1 (en) * 2003-03-18 2004-09-30 Soil Machine Dynamics Limited Submerged power generating apparatus
AU2004221636B2 (en) * 2003-03-18 2010-04-29 Soil Machine Dynamics Limited Submerged power generating apparatus
US20080284176A1 (en) * 2003-03-25 2008-11-20 Fraenkel Peter L Submerged water current turbines installed on a deck
US20060232075A1 (en) * 2003-03-25 2006-10-19 Marine Current Turbines Limited Submerged Water Current Turbines Installed on a Deck
CN1764781B (en) * 2003-03-25 2010-04-28 船舶通用涡轮有限公司 Support structure for turbine system driven by water current
AU2004223640B2 (en) * 2003-03-25 2010-06-10 Marine Current Turbines Limited Submerged water current turbines installed on a deck
WO2004085845A1 (en) * 2003-03-25 2004-10-07 Marine Current Turbines Limited Submerged water current turbines installed on a deck
US7331762B2 (en) * 2003-03-25 2008-02-19 Marine Current Turbines, Ltd. Submerged water current turbines installed on a deck
US20050285404A1 (en) * 2003-03-28 2005-12-29 Tharp John E Hydro-electric farms
US6995479B2 (en) 2003-03-28 2006-02-07 Tharp John E Hydro-electric farms
US6982498B2 (en) 2003-03-28 2006-01-03 Tharp John E Hydro-electric farms
US7042114B2 (en) 2003-03-28 2006-05-09 Tharp John E Hydro-electric farms
US20040189010A1 (en) * 2003-03-28 2004-09-30 Tharp John E. Hydro-electric farms
US20050285405A1 (en) * 2003-03-28 2005-12-29 Tharp John E Hydro-electric farms
US6998730B2 (en) 2003-03-28 2006-02-14 Tharp John E Hydro-electric farms
CN1894501B (en) * 2003-12-20 2012-02-29 船舶通用涡轮有限公司 Support system
US20080232965A1 (en) * 2003-12-20 2008-09-25 Marine Current Turbines Limited Articulated False Seabed
WO2005061887A1 (en) * 2003-12-20 2005-07-07 Marine Current Turbines Limited Articulated false bed
US8579576B2 (en) 2003-12-20 2013-11-12 Marine Current Turbines Limited Articulated false seabed
AU2004304050B2 (en) * 2003-12-20 2010-04-29 Marine Current Turbines Limited Articulated false bed
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
US20060033338A1 (en) * 2004-05-11 2006-02-16 Wilson Kitchener C Wind flow estimation and tracking using tower dynamics
US7874788B2 (en) 2004-09-17 2011-01-25 Clean Current Limited Partnership Flow enhancement for underwater turbine
US20070284884A1 (en) * 2004-09-17 2007-12-13 Clean Current Power Systems Incorporated Flow Enhancement For Underwater Turbine
US20110115228A1 (en) * 2004-09-17 2011-05-19 Clean Current Limited Partnership Flow enhancement for underwater turbine generator
US7541688B2 (en) * 2004-11-17 2009-06-02 Ocean Flow Energy Limited Floating apparatus for deploying in marine current for gaining energy
US20080050993A1 (en) * 2004-11-17 2008-02-28 Overberg Limited Floating Apparatus for Deploying in Marine Current for Gaining Energy
US20070120371A1 (en) * 2005-05-19 2007-05-31 Gehring Donald H Current power generator
US7215036B1 (en) * 2005-05-19 2007-05-08 Donald Hollis Gehring Current power generator
US7319278B2 (en) * 2005-06-01 2008-01-15 Donald Hollis Gehring Ocean wave generation
US20060273594A1 (en) * 2005-06-01 2006-12-07 Gehring Donald H Ocean wave generation
US20100226798A1 (en) * 2006-01-24 2010-09-09 William Kingston Tidal Energy System
WO2007100639A2 (en) * 2006-02-28 2007-09-07 Kuehnle Manfred R Submersible turbine apparatus
US20070241566A1 (en) * 2006-02-28 2007-10-18 Kuehnle Manfred R Submersible turbine apparatus
WO2007100639A3 (en) * 2006-02-28 2008-02-14 Manfred R Kuehnle Submersible turbine apparatus
US20070236020A1 (en) * 2006-04-06 2007-10-11 Ahearn John M System for generation electric power
WO2007130479A3 (en) * 2006-05-03 2008-01-03 John H Robson Submersible electrical power generating plant and method
US7291936B1 (en) * 2006-05-03 2007-11-06 Robson John H Submersible electrical power generating plant
US20070257492A1 (en) * 2006-05-03 2007-11-08 Robson John H Submersible electrical power generating plant
WO2007130479A2 (en) * 2006-05-03 2007-11-15 Robson John H Submersible electrical power generating plant and method
US20090167022A1 (en) * 2006-06-08 2009-07-02 Costin Daniel P Water Turbine System and Method of Operation
US20070284882A1 (en) * 2006-06-08 2007-12-13 Northern Power Systems, Inc. Water turbine system and method of operation
US7939957B2 (en) 2006-06-08 2011-05-10 Northern Power Systems, Inc. Water turbine system and method of operation
US20100253078A1 (en) * 2006-06-08 2010-10-07 Northern Power Systems, Inc. Water Turbine System and Method of Operation
US7737570B2 (en) 2006-06-08 2010-06-15 Northern Power Systems, Inc. Water turbine system and method of operation
US7489046B2 (en) * 2006-06-08 2009-02-10 Northern Power Systems, Inc. Water turbine system and method of operation
US7682126B2 (en) * 2006-06-09 2010-03-23 David Joseph Parker Tethered propgen
US20080012345A1 (en) * 2006-06-09 2008-01-17 David Joseph Parker Tethered propgen
US8596964B2 (en) 2006-07-14 2013-12-03 Openhydro Group Limited Turbines having a debris release chute
US8864439B2 (en) 2006-07-14 2014-10-21 Openhydro Ip Limited Tidal flow hydroelectric turbine
US8308422B2 (en) 2006-07-14 2012-11-13 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US20100068037A1 (en) * 2006-07-14 2010-03-18 Openhydro Group Limited Turbines having a debris release chute
US20090278357A1 (en) * 2006-07-14 2009-11-12 Herbert Williams Tidal flow hydroelectric turbine
US20100025998A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US8466595B2 (en) 2006-07-14 2013-06-18 Openhydro Group Limited Hydroelectric turbine
US20100026002A1 (en) * 2006-07-14 2010-02-04 Openhydro Group Limited hydroelectric turbine
US20080018115A1 (en) * 2006-07-20 2008-01-24 Boray Technologies, Inc. Semi-submersible hydroelectric power plant
US20080093859A1 (en) * 2006-10-24 2008-04-24 Catlin C S River and tidal power harvester
US7492054B2 (en) 2006-10-24 2009-02-17 Catlin Christopher S River and tidal power harvester
US9284709B2 (en) 2007-04-11 2016-03-15 Openhydro Group Limited Method of installing a hydroelectric turbine
US20100172698A1 (en) * 2007-04-11 2010-07-08 Openhydro Group Limited System and method for the deployment of a hydroelectric turbine
US20100232885A1 (en) * 2007-04-11 2010-09-16 Openhydro Group Limited Method of installing a hydroelectric turbine
US20100230971A1 (en) * 2007-06-05 2010-09-16 Graeme Charles Mackie Mooring System for Tidal Stream and Ocean Current Turbines
WO2009004308A3 (en) * 2007-06-30 2009-06-25 John Richard Carew Armstrong Improvements in water turbines
WO2009004308A2 (en) * 2007-06-30 2009-01-08 John Richard Carew Armstrong Improvements in water turbines
US8102071B2 (en) 2007-10-18 2012-01-24 Catlin Christopher S River and tidal power harvester
US20090230686A1 (en) * 2007-10-18 2009-09-17 Catlin Christopher S River and tidal power harvester
US20090140524A1 (en) * 2007-11-30 2009-06-04 Kejha Joseph B Deployable submarine-hydroelectric generator for sea currents energy harvesting
US20100295388A1 (en) * 2007-12-12 2010-11-25 Openhydro Group Limited Hydroelectric turbine generator component
US10710689B1 (en) * 2008-01-14 2020-07-14 William Dwight Young Power generation method and device
GB2456786A (en) * 2008-01-23 2009-07-29 Pilot Drilling Control Ltd Turbine cowling
US8754540B2 (en) 2008-02-05 2014-06-17 James Ives Hydroelectric turbine with floating rotor
US20110018274A1 (en) * 2008-02-05 2011-01-27 Openhydro Group Limited hydroelectric turbine with floating rotor
US20110088253A1 (en) * 2008-04-17 2011-04-21 Openhydro Group Limited turbine installation method
US8784005B2 (en) 2008-04-17 2014-07-22 Openhydro Group Limited Turbine installation method
US20110110770A1 (en) * 2008-04-22 2011-05-12 Openhydro Group Limited Hydroelectric turbine having a magnetic bearing
US7994649B2 (en) * 2008-04-23 2011-08-09 Abatemarco Michael R Pelagic sustainable energy system
US20090267347A1 (en) * 2008-04-23 2009-10-29 Abatemarco Michael R Pelatic sustainable energy system
US7936077B2 (en) * 2008-05-19 2011-05-03 Lehoczky Kalman N Internal fluid handling for hydro-generator submerged in water
US20090284017A1 (en) * 2008-05-19 2009-11-19 Lehoczky Kalman N Internal fluid handling for hydro-generator submerged in water
US7851936B2 (en) * 2008-07-16 2010-12-14 Anadarko Petroleum Corporation Water current power generation system
US20100013231A1 (en) * 2008-07-16 2010-01-21 Bolin William D Water Current Power Generation System
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
EP2199603A1 (en) * 2008-12-19 2010-06-23 OpenHydro IP Limited A method of controlling the output of a hydroelectric turbine generator
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US7872366B2 (en) * 2009-02-09 2011-01-18 Gray R O'neal System and method for generating electricity
US8421265B2 (en) * 2009-02-09 2013-04-16 Grayhawke Applied Technologies System and method for generating electricity within a building structure
US7875992B2 (en) * 2009-02-09 2011-01-25 Gray R O'neal System and method for generating electricity
US20100156105A1 (en) * 2009-02-09 2010-06-24 Grayhawke Applied Technologies Sytem and method for generating electricity
US7948109B2 (en) 2009-02-09 2011-05-24 Grayhawke Applied Technologies System and method for generating electricity
US20100156103A1 (en) * 2009-02-09 2010-06-24 Grayhawke Applied Technologies Sytem and method for generating electricity
US20100156108A1 (en) * 2009-02-09 2010-06-24 Grayhawke Applied Technologies Sytem and method for generating electricity
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
EP2439402A1 (en) * 2009-06-05 2012-04-11 Energy Whaletailturbine, S.L. Submersible device for the coupling of water wheels or turbines in order to harness energy from flowing water
CN102459867A (en) * 2009-06-05 2012-05-16 能量鲸尾涡轮公司 Submersible device for the coupling of water wheels or turbines in order to harness energy from flowing water
EP2439402A4 (en) * 2009-06-05 2013-04-10 Energy Whaletailturbine S L Submersible device for the coupling of water wheels or turbines in order to harness energy from flowing water
US8764391B2 (en) 2009-09-10 2014-07-01 Osirius International Hydrokinetic turbine structure and system
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9473046B2 (en) 2009-09-29 2016-10-18 Openhydro Ip Limited Electrical power conversion system and method
US20110095530A1 (en) * 2009-10-26 2011-04-28 Honeywell International Inc. Tethered aquatic device with water power turbine
US20100232962A1 (en) * 2009-11-09 2010-09-16 Bolin William D Fin-Ring Propreller For a Water Current Power Generation System
US8288882B2 (en) 2009-11-09 2012-10-16 Anadarko Petroleum Corporation Fin-ring propeller for a water current power generation system
US20110217174A1 (en) * 2009-11-09 2011-09-08 Bolin William D Fin-Ring Propreller For a Water Current Power Generation System
US20110109090A1 (en) * 2009-11-09 2011-05-12 Bolin William D Fin-Ring Propeller For A Water Current Power Generation System
US20110148118A1 (en) * 2009-12-18 2011-06-23 Hiawatha Energy Inc. Low speed hydro powered electric generating system
WO2011091448A3 (en) * 2010-01-22 2011-11-24 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced
WO2011091448A2 (en) * 2010-01-22 2011-07-28 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced
WO2011098686A1 (en) * 2010-02-09 2011-08-18 Yves Kerckove Support unit for a device for recovering energy from marine and fluvial currents
WO2011098685A1 (en) * 2010-02-09 2011-08-18 Yves Kerckove Module for recovering energy from marine and fluvial currents
FR2956167A1 (en) * 2010-02-09 2011-08-12 Kerckove Yves Marie Joseph Andre Module for e.g. recovering energy contained in e.g. marine, to work on pelagic surface close to sea bed, has dead man positioning of module at sea or in river such that dead man is positioned in direction of current in predetermined space
US9000604B2 (en) 2010-04-30 2015-04-07 Clean Current Limited Partnership Unidirectional hydro turbine with enhanced duct, blades and generator
DE102010025070A1 (en) * 2010-06-25 2011-12-29 Smart Utilities Solutions Gmbh Hydraulic power device i.e. hydropower turbine for generating water in e.g. stationary hydroelectric power plant, has ventilation device designed such that gas is exhausted from chamber, and water is sent into chamber by suppression of gas
US8421260B2 (en) * 2010-07-19 2013-04-16 John Hincks Duke Hydrokinetic turbine for low velocity currents
US20120013128A1 (en) * 2010-07-19 2012-01-19 John Hincks Duke Hydrokinetic turbine for low velocity currents
WO2012025754A1 (en) * 2010-08-27 2012-03-01 Pulse Group Holdings Limited A structure for deployment and recovery of a hydroelectric power generator
US20120074704A1 (en) * 2010-09-27 2012-03-29 Thomas Rooney Single Moored Offshore Horizontal Turbine Train
US8558403B2 (en) * 2010-09-27 2013-10-15 Thomas Rooney Single moored offshore horizontal turbine train
US8653682B2 (en) * 2010-09-27 2014-02-18 Thomas Rooney Offshore hydroelectric turbine assembly and method
US20120257955A1 (en) * 2010-09-27 2012-10-11 Thomas Rooney Offshore hydroelectric turbine assembly and method
US8506244B2 (en) 2010-09-29 2013-08-13 George F. MCBRIDE Instream hydro power generator
ITCS20100016A1 (en) * 2010-11-04 2012-05-05 Domenico Coiro MOSSO ELECTRIC GENERATOR FROM MARINE CURRENTS, COMPLETE WITH DIFFUSER AND MANEUVER SYSTEM
US9765647B2 (en) 2010-11-09 2017-09-19 Openhydro Ip Limited Hydroelectric turbine recovery system and a method therefor
US8736096B2 (en) * 2010-11-25 2014-05-27 Kawasaki Jukogyo Kabushiki Kaisha Water flow electricity generating device
US20130277980A1 (en) * 2010-11-25 2013-10-24 Kawasaki Jukogyo Kabushiki Kaisha Water flow electricity generating device
US20110089702A1 (en) * 2010-12-22 2011-04-21 David Boren Fluidkinetic energy converter
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
US20120211988A1 (en) * 2011-02-23 2012-08-23 Richard Harding Submersible electric power generator system
WO2013079831A1 (en) 2011-09-19 2013-06-06 Sabella Device for recovering energy from sea currents or bodies of flowing water
US9080548B2 (en) 2011-10-31 2015-07-14 Aquantis, Inc. Method of controlling depth of a buoyant submersible apparatus in a fluid flow
WO2013066897A2 (en) * 2011-10-31 2013-05-10 Aquantis, Inc. Multi-megawatt ocean current energy extraction device
WO2013066897A3 (en) * 2011-10-31 2013-07-11 Aquantis, Inc. Multi-megawatt ocean current energy extraction device
US8766466B2 (en) * 2011-10-31 2014-07-01 Aquantis, Inc. Submerged electricity generation plane with marine current-driven rotors
CN103930669A (en) * 2011-10-31 2014-07-16 阿卡蒂斯有限公司 Multi-megawatt ocean current energy extraction device
US20140328680A1 (en) * 2011-12-09 2014-11-06 Tidalstream Limited Support for water turbine
US8956103B2 (en) * 2012-05-23 2015-02-17 Donald H. Gehring Hydroelectricity generating unit capturing marine wave energy and marine current energy
US20130313831A1 (en) * 2012-05-23 2013-11-28 Donald H. Gehring Hydroelectricity Generating Unit Capturing Marine Wave Energy and Marine Current Energy
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator
US20150240778A1 (en) * 2012-10-17 2015-08-27 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
US9506450B2 (en) * 2012-10-17 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
US9041235B1 (en) * 2012-10-18 2015-05-26 Amazon Technologies, Inc. Hydrokinetic power generation system
EP2896822B1 (en) * 2013-03-05 2017-09-06 Kyowa Engineering Consultants Co., Ltd. Submersible generator
US20150361949A1 (en) * 2013-03-05 2015-12-17 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
US9506449B2 (en) * 2013-03-05 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
CN104246211A (en) * 2013-03-05 2014-12-24 株式会社协和工程顾问 Submersible generator
US9074577B2 (en) 2013-03-15 2015-07-07 Dehlsen Associates, Llc Wave energy converter system
US9488155B2 (en) * 2013-11-22 2016-11-08 National Taiwan Ocean University Ocean current power generating apparatus using dual-duct with boundary layer control effect
US20150145259A1 (en) * 2013-11-22 2015-05-28 National Taiwan Ocean University Ocean current power generating apparatus using dual-duct with boundary layer control effect
TWI573935B (en) * 2013-11-22 2017-03-11 國立臺灣海洋大學 Ocean current power generating apparatus using dual-duct with boundary layer control effect
WO2015090414A1 (en) * 2013-12-19 2015-06-25 Bluewater Energy Services B.V. Apparatus for generating power from sea currents
GB2534825A (en) * 2013-12-19 2016-08-03 Bluewater Energy Services Bv Apparatus for generating power from sea currents
US9334847B2 (en) * 2013-12-23 2016-05-10 Grover Curtis Harris Bi-rotational generator
US10767620B2 (en) * 2013-12-23 2020-09-08 Ge Energy (Uk) Limited Water current power generation systems
US20160333848A1 (en) * 2013-12-23 2016-11-17 Tidal Generation Limited Water current power generation systems
US9531246B2 (en) * 2013-12-23 2016-12-27 Grover Curtis Harris Bi-rotational generator
US20150176560A1 (en) * 2013-12-23 2015-06-25 Grover Curtis Harris Bi-rotational generator
US20150295481A1 (en) * 2013-12-23 2015-10-15 Grover Curtis Harris Bi-Rotational Generator
US9745950B2 (en) * 2014-02-07 2017-08-29 Minesto Ab Submersible power plant
US20170009731A1 (en) * 2014-02-07 2017-01-12 Minesto Ab Submersible power plant
US9890762B2 (en) * 2014-06-23 2018-02-13 Gregory McManus Positive boyancy hydraulic power system and method
US20150369206A1 (en) * 2014-06-23 2015-12-24 Gregory McManus Positive boyancy hydraulic power system and method
CN106687685B (en) * 2014-09-12 2019-02-05 三菱重工业株式会社 The starting method of power generation device from sea current and start-control device
US10465648B2 (en) * 2014-09-12 2019-11-05 Mitsubishi Heavy Industries, Ltd. Method of actuating an ocean current electric power generator and an actuation control apparatus
US20170260962A1 (en) * 2014-09-12 2017-09-14 Mitsubishi Heavy Industries, Ltd. Method of actuating ocean current electric power generator and actuation control apparatus
GB2544692B (en) * 2014-09-12 2020-06-03 Mitsubishi Heavy Ind Ltd Method of actuating ocean current electric power generator and actuation control apparatus
GB2544692A (en) * 2014-09-12 2017-05-24 Mitsubishi Heavy Ind Ltd Method for starting ocean current power generation device and start control device
CN106687685A (en) * 2014-09-12 2017-05-17 三菱重工业株式会社 Method for starting ocean current power generation device and start control device
JP2016061154A (en) * 2014-09-12 2016-04-25 三菱重工業株式会社 Start-up method of ocean current power generation device and start-up control device
WO2016039290A1 (en) * 2014-09-12 2016-03-17 三菱重工業株式会社 Method for starting ocean current power generation device and start control device
US20180106236A1 (en) * 2015-03-18 2018-04-19 Dong In Lee Submersible power generation platform
WO2016185101A1 (en) 2015-05-21 2016-11-24 Helios Gem Device for producing electricity from flows of liquid fluid
US10087908B2 (en) * 2015-07-30 2018-10-02 Japan System Planning Co., Ltd. Underwater installation-type water-flow power generation system
US20170030325A1 (en) * 2015-07-30 2017-02-02 Japan System Planning Co., Ltd. Underwater installation-type water-flow power generation system
US9745951B1 (en) * 2016-11-07 2017-08-29 Robert E. Doyle Self-positioning robotic subsea power generation system
US20190257281A1 (en) * 2018-02-22 2019-08-22 Ralph Dominic RAINA Bi-directional scalable turbine
US20200088158A1 (en) * 2018-09-11 2020-03-19 Littoral Power Systems, Inc. Hydrokinetic energy device
US11371481B2 (en) * 2018-09-11 2022-06-28 Littoral Power Systems, Inc. Hydrokinetic energy device
WO2020154395A1 (en) * 2019-01-22 2020-07-30 Gregory Francis Bird Electrical energy generating systems, apparatuses, and methods
US11118560B2 (en) 2019-01-22 2021-09-14 Gregory Francis Bird Electrical energy generating systems, apparatuses, and methods
US11473553B2 (en) 2020-03-25 2022-10-18 Gregory Francis Bird Wave protection and energy generation systems and assemblies
US12078142B2 (en) 2020-05-08 2024-09-03 Equinox Ocean Turbines B.V. Turbine with secondary rotors
US20230192265A1 (en) * 2020-05-28 2023-06-22 Airbus Sas Device for generating power, comprising an air-towed vessel towing at least one water current turbine
US20220260047A1 (en) * 2021-02-16 2022-08-18 Aqua Satellite, Inc. Methods for harnessing wave energy
US11933261B2 (en) * 2021-02-16 2024-03-19 Aqua Satellite, Inc. Methods for harnessing wave energy
WO2022268986A1 (en) * 2021-06-24 2022-12-29 Minesto Ab Submersible power plant

Similar Documents

Publication Publication Date Title
US2501696A (en) Stream turbine
US4313059A (en) Sea current energy system
US4335319A (en) Hydro-electric power apparatus utilizing ocean currents
Masuda An experience of wave power generator through tests and improvement
JP5189647B2 (en) Multipoint mooring and stabilization system and control method for submersible turbines using flow
AU2010100255A4 (en) Run-of-river hydroelectric power generation apparatus
US20090212562A1 (en) Method and apparatus for tidal power generation
NO324938B1 (en) Offshore power plant
US20180347538A1 (en) Hydroelectricity Generating Unit Capturing Marine Current Energy
WO2005057006A1 (en) Water turbine capable of being lifted out of the water
US3392696A (en) Ship
US2420360A (en) Motor governor
CN208325583U (en) A kind of remote-controlled vehicle deployment device suitable for a wide range of current speed
US2629450A (en) Wind motor with radially pivoted blades
GB730060A (en) Improvements in wind power plants
US1993549A (en) Automatic steering system for dirigible craft
US1761797A (en) Method of and means for controlling prime-mover dynamo plants
US328418A (en) Current-motor for dynamo-electric machines
KR20110028722A (en) Power station using ocean currents
US1947602A (en) Governor
CN202250577U (en) Fully automatic sea water power generation device
JPS5862381A (en) Hydraulic power generator with floating lower driving water-wheel
JP2019018713A (en) Underwater float-type device
JP2012241702A (en) Underwater power generating device
US2321024A (en) Propeller control system