US20150369206A1 - Positive boyancy hydraulic power system and method - Google Patents

Positive boyancy hydraulic power system and method Download PDF

Info

Publication number
US20150369206A1
US20150369206A1 US14/740,763 US201514740763A US2015369206A1 US 20150369206 A1 US20150369206 A1 US 20150369206A1 US 201514740763 A US201514740763 A US 201514740763A US 2015369206 A1 US2015369206 A1 US 2015369206A1
Authority
US
United States
Prior art keywords
pump assembly
coupled
tethers
water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/740,763
Other versions
US9890762B2 (en
Inventor
Gregory McManus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/740,763 priority Critical patent/US9890762B2/en
Publication of US20150369206A1 publication Critical patent/US20150369206A1/en
Application granted granted Critical
Publication of US9890762B2 publication Critical patent/US9890762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • F05B2240/9176Wing, kites or buoyant bodies with a turbine attached without flying pattern
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/18Purpose of the control system to control buoyancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • Transforming the energy in water into electricity is considered to be a clean, renewable source of energy, emitting no greenhouse gases when compared to fossil fuels. It has a low operating cost once installed and can be highly automated. An additional benefit is that the power is generally available on demand since the flow of water can be controlled.
  • Dams can block fish passage to spawning grounds or to the ocean, although many plants now have measures in place to help reduce this impact.
  • the diversion of water can impact stream flow, or even cause a river channel to dry out, degrading both aquatic and streamside habitats.
  • Hydroelectric plants can have an impact on water quality by lowering the amount of dissolved oxygen in the water. In the reservoir, sediments and nutrients can be trapped and the lack of water flow can create a situation for undesirable growth and the spread of algae and aquatic weeds.
  • a hydraulic power system and method used in a fluid such as a river or any other body of water having a current can include a hydraulic power system that is tethered to a floor at the bottom of the body of water.
  • the inventive system can include a pump assembly that is coupled to a turbine that uses fluid movement to rotate the turbine and power the pump.
  • a positive buoyancy structure can be tethered to the pump assembly that causes the pump assembly to be positioned above the floor at the bottom of the body of water.
  • the positive buoyancy structure can potentially rise to the surface of the water but also maintain the pump assembly and turbine at a predetermined tethered distance below the surface of the water.
  • the positive buoyancy structure can have a shape and pitch that uses the water velocity to generate lift and help to maintain the pump assembly above the water floor.
  • FIG. 1 illustrates a side view of an embodiment of the hydraulic power system
  • FIGS. 2A and 2B illustrate a side view of an embodiment of a variable buoyancy mechanism
  • FIG. 3 illustrates a turbine pump system, piping and on a closed loop energy generation system
  • FIG. 4 illustrates a turbine pump system, piping and on an open loop energy generation system
  • FIG. 5 illustrates an electrical generator system and on electrical energy generation system
  • FIGS. 6 and 7 illustrate an embodiment of a pump assembly with the turbine on the back end of the pump assembly structure.
  • FIGS. 8 , 9 and 10 illustrate front views of pump assemblies with buoyancy structures
  • FIG. 11 illustrates a top view of an embodiment of the buoyancy structure with wings
  • FIG. 12 illustrates a top view of an embodiment of the pump assembly with wings
  • FIG. 13 illustrates an embodiment of the pump assembly having an integrated positive buoyancy system without the buoyancy structure
  • FIG. 14 illustrates an embodiment of the pump assembly having an integrated positive buoyancy system without the buoyancy structure
  • FIGS. 15 , 16 and 17 illustrate front views of the pump assemblies.
  • the present invention is directed towards a hydraulic power system and method used in a fluid such as a river or any other body of water having a current.
  • the inventive system can include a hydraulic power system that is tethered to a floor at the bottom of the body of water.
  • the inventive system includes a pump assembly that is coupled to a turbine that uses fluid movement to rotate the turbine and power the pump.
  • a positive buoyancy structure can be tethered to the pump assembly that causes the pump assembly to be positioned above the floor at the bottom of the body of water.
  • the positive buoyancy structure can potentially rise to the surface of the water but also maintain the pump assembly and turbine at a predetermined tethered distance below the surface of the water.
  • the positive buoyancy structure can have a shape and pitch that uses the water velocity to generate lift and help to maintain the pump assembly above the water floor.
  • a hydraulic power system 100 that includes a pump assembly 101 with a turbine 103 coupled to a front end of the pump assembly 101 .
  • the turbine 103 can have a plurality of blades 104 that rotate about a first shaft 105 .
  • the first shaft 105 is coupled to a gearing system 107 that can change the rotational velocity of a second shaft 109 mounted between the gearing system 107 and a pump 111 .
  • the gearing system 107 may be placed between the turbine 103 and the pump 111 .
  • the turbine 103 can have a rotational velocity that is proportional to the velocity of the water 113 relative to the turbine 103 .
  • the rotational velocity of the turbine 103 and first shaft 105 can be variable.
  • the turbine 103 can be coupled by the first shaft 105 to a gearing system 107 that can increase or decrease a rotational velocity of the second shaft 109 relative to the first shaft 105 .
  • the rotational energy from the turbine 103 can be transmitted through the first shaft 105 , gearing system 107 and second shaft 109 to the pump 111 .
  • the system can include a tether system with a plurality of high strength tether lines 115 coupling the pump assembly 101 to the floor 117 of the body of water 113 .
  • a buoyancy structure 121 can be coupled with tether lines 115 to the top of the pump assembly 101 and the buoyancy structure 121 can help to lift the pump assembly 101 above the floor 117 and prevent the turbine 103 from contacting the floor 117 .
  • the buoyancy structure 121 can also keep the pump assembly 101 below the surface 123 of the water 113 to prevent the top of the turbine 103 from coming out of the water 113 .
  • the buoyancy structure 121 includes a variable buoyancy mechanism 125 , which can alter the upward force applied to the pump assembly 101 .
  • the pump assembly 101 can have a positive buoyance and the buoyancy structure 121 can supplement these positive buoyant forces.
  • the housing of the pump assembly 101 may be made to have a hydrodynamic shape with a rounded front end and a tapered back portion.
  • the forces overcome the drag forces and raise the pump assembly 101 to the proper height within the water 113 can be minimized. Because the hydrodynamic drag does not provide any benefit to the inventive system, this drag should be minimized.
  • the variable buoyancy mechanism 125 can include a compressible volume 127 of gas with an actuator 129 to alter the gas volume 127 .
  • the compressible volume 127 can be a gas cylinder with a piston 131 that is coupled to an actuator 129 , which can be controlled to compress or decompress the gas volume 127 in the cylinder 133 .
  • the cylinder 133 and exposed side of the piston 131 may be exposed to the ambient water pressure so that when the cylinder 133 is deep in the water, the water pressure may tend to further compress the cylinder .
  • the actuator may need to oppose the water pressure by expanding the cylinder volume 127 .
  • the buoyancy structure 121 can control the upward force and the vertical position of the pump assembly 101 .
  • the pump 111 can circulate a fluid such as water through a piping system to an onshore power station 141 .
  • the pump 111 can be a closed loop system as shown where the liquid in the system circulates from the pump 111 through the piping system 143 to the power station 141 and then back through the piping system 143 to the pump 111 .
  • This closed loop system can be preferable because sediment and debris can be removed from the circulating fluid (such as water), which can damage the pump 111 and/or power station 141 .
  • the piping system 143 is a closed loop system with concentric outlet and return paths.
  • the liquid can be pumped on shore to the power station 141 through the center pipe 145 and the liquid may return through the outer piping 147 .
  • the liquid can be pumped on shore to the power station 141 through the outer piping 147 and the inner pipe 145 can be the liquid return.
  • the system can be an open loop system where ambient water is pumped from the pump 111 through the piping system center pipe 145 to the onshore power station 141 and then released back to the body of water 113 through an outlet pipe 149 .
  • the open loop system can be more energy efficient because there is less friction and pressure losses due to the liquid flowing through the piping system center pipe 145 .
  • the water being pumped may need to be filtered through a filter 151 to prevent debris from entering the pump 111 , which can add fluid flow friction and reduce the efficiency of the system.
  • the pump 111 can be used to pressurize a compressible fluid that runs in an open loop as shown in FIG. 3 or closed loop as shown in FIG. 3 to an on shore power system 141 .
  • the pumps can be replaced by other energy producing devices such as electrical power generators 181 , which can convert the rotational energy transmitted from the turbines 103 into electrical power.
  • the generator 181 can produce direct current or alternating electrical current that can be transmitted through electrical conductors 183 away from the generator assembly 191 to an on shore power station 185 .
  • the inventive system can utilize the positive buoyancy and or hydrodynamic lift of the wings to maintain the position of the generator assembly 191 and turbine 103 above the floor 117 .
  • FIG. 6 another embodiment of the pump assembly 201 is illustrated with the turbine on the back end of the pump assembly 201 structure.
  • This configuration can provide hydrodynamic stability to the system because the drag generated by the turbine 103 is now at the rear of the assembly where there is less tendency for the drag forces to push the pump assembly 201 out of alignment with the water flow.
  • Another benefit is that as the drag forces push the pump assembly 201 down stream, the tethers 115 will lie at a more acute angle in relation to the water floor. However these angled tethers 115 will be less like likely to interfere with the turbine 103 rotation.
  • the pump assembly 201 can have a positive buoyance and the buoyancy structure 121 can supplement these positive buoyant forces.
  • the buoyancy structure 121 may float on the surface 123 of the water 113 , which can result in the pump assembly 201 and turbine 103 being lowered close to the sea floor 117 .
  • the pump assembly 201 will rise higher over the sea floor 117 until the tethers 115 are all tights.
  • the turbine 103 will not rise above the water 113 surface level 123 .
  • FIGS. 8 and 9 are front views of FIG. 1 and FIG. 5 respectively.
  • the tethers 115 between the floor 117 and the pump assemblies 101 , 201 can be angled outward and coupled to the outer sides of the pump assemblies 101 , 201 . This configuration can be necessary to counter act the torque forces applied to the pump assemblies 101 , 201 by the turbines 103 . For example, if the turbines 103 rotate clockwise facing the front of the system then the rotational force, which drives the gear system and pump, will create a clockwise torque on the pump assembly. By placing the tethers 115 as wide as possible on the pump assemblies 101 , 201 , the tethers 115 can better resist the torque forces from the turbine 103 .
  • the torque force can be represented by F x R which is the distance from the center shaft. Since the tethers 115 may only resist tension, the torque force may be mostly applied to the tethers 115 coupled to the left side of the pump assemblies 101 , 201 . The torque force may also be applied to the tethers 115 extending between the pump assemblies 101 , 201 and the buoyancy structure 121 . Again, since the tethers 115 may only function in tension, the tethers 115 on the right side of the pump assemblies 101 , 201 may have added tension forces applied due to the torque of the turbine 103 .
  • another method for resisting the torque forces of the turbine 103 can be to attach extensions 161 to the sides of the pump assembly 201 .
  • the extensions extend beyond the outer diameter of the turbine 103 and provide a much longer arm length R to resist the turbine torque.
  • the force F which is an additional tension force on the tethers 115
  • the arm length R may be about 4+ times the width of the pump assembly 201 .
  • Extensions 161 can also be placed on the buoyancy device 121 and can provide additional torque resistance. This configuration can also keep the tethers 115 away from the turbine 103 in the event that the turbine 103 moves into close proximity of the tethers 115 .
  • the extensions can be wings 163 that have elevators 165 or can be positioned to resist the turbine torque. More specifically, as the liquid flows over the wings 163 , the wings 163 can be configured to generate a rotational torque on the pump assembly 201 that resists the turbine 103 torque. For example, the left elevator 165 can be raised and the right elevator 165 can be lowered to produce a counter clockwise torque on the pump assembly 201 . Since tether 115 tension forces can be transmitted from the buoyancy structure 121 , these wings 163 can also be configured to transmit a counter clockwise torque.
  • the wings 163 can provide lift that can supplement the upward buoyant forces of the buoyancy structure 121 and/or the pump assembly 201 .
  • the lift can be produced by the flow of liquid over the wings, which can have an upward pitch.
  • the wing 163 lift can also be generated with the elevators 165 , which can be raised to cause the wings to generate lift and the lift force can be used to put the tethers 115 in tension.
  • the pump assembly 101 can include an integrated positive buoyancy system (as described above with reference to FIGS. 2 and 3 ).
  • the system may include a turbine 103 coupled to the pump assembly 101 that is tethered with tethers 115 to a floor 117 at the bottom of the body of water 113 .
  • the pump assembly 101 does not require the positive buoyancy structure.
  • the inventive system can include a pump assembly 101 that is coupled to a turbine 103 that uses fluid movement to rotate the turbine 103 and power the pump 111 through a gear system 107 .
  • the pump assembly 201 can have positive buoyancy that causes the pump assembly 101 to float above the floor 117 at the bottom of the body of water 113 .
  • the tethers 115 can prevent the pump assembly 101 and turbine 103 from floating to the surface 123 of the water 113 .
  • FIG. 14 illustrates an embodiment of the inventive system with the turbine 103 mounted at the rear end of the pump assembly 201 .
  • FIGS. 15 and 16 illustrate front views of FIGS. 13 and 14 respectively.
  • the tethers 115 can be mounted to the outer side of the pump assemblies 101 , 201 to resist the torque applied to the pump assemblies 101 , 201 from the turbines 103 .
  • FIG. 17 illustrates a front view of an embodiment of the inventive system with extensions 161 coupled to tethers 115 coupled to the water floor 117 .
  • the extensions 161 can be wings 163 with elevators 165 (as shown in FIG. 11 ) that provide a hydrodynamic counter torque force that resists the turbine 103 torque applied to the pump assembly 201 as described above.
  • force transducers 167 can be coupled to one more of the tethers 115 for monitoring the forces applied to the tethers 115 . If excessive force is applied, a warning system can notify the system operators.
  • the forces applied to the tethers 115 can include hydrodynamic drag in the horizontal direction. In an embodiment, the hydrodynamic drag can be reduced by lowering the angle of the turbine blades 104 which can result in lowing the horizontal forces on the tethers 115 .
  • the force transducers 167 can have positive buoyancy or alternatively, buoyancy devices 168 can be coupled to the force transducers 167 . In either configuration, the force transducers 167 will not sink if the devices are accidentally dropped. This configuration can prevent the force transducers 167 from being accidentally lost.
  • the force transducers 167 can first be coupled to the tethers 115 . If the force transducers 167 are dropped, the transducer 167 and the attached tether 115 can come to rest above the sea floor 117 so that it can be easily retrieved.
  • the force transducer 167 has negative buoyancy or is not coupled to a buoyancy device 168 , the force transducer 167 and any connected tether 115 will sink to the sea floor 117 when dropped. It can be difficult to see and retrieve these components if they are resting on the sea floor 117 .

Abstract

A hydraulic power system is used in a river, ocean or any other body of water having a current. The method is useful for generating useful electric power from flowing water. The flowing water rotates a turbine and a pump that provides hydraulic power to an electric generator for a clean, renewable energy source. The hydraulic power system tethered to the bottom of a body of water and a positive buoyancy mechanism can be integrated or tethered to the pump assembly. The positive buoyancy can support the pump assembly at a predetermined distance above the sea floor.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 62/015,707, “Positive Boyancy Hydraulic Power System And Method” filed Jun. 23, 2014 which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • Water has long been used as a source of energy. For over a century, water has been used to generate electricity as it flows from higher to lower elevation, rotating hydraulic turbines to create electricity. Current power, although not widely used, can also generate electricity by utilizing the same principle.
  • Transforming the energy in water into electricity is considered to be a clean, renewable source of energy, emitting no greenhouse gases when compared to fossil fuels. It has a low operating cost once installed and can be highly automated. An additional benefit is that the power is generally available on demand since the flow of water can be controlled.
  • Using hydro power also has disadvantages. Dams can block fish passage to spawning grounds or to the ocean, although many plants now have measures in place to help reduce this impact. The diversion of water can impact stream flow, or even cause a river channel to dry out, degrading both aquatic and streamside habitats. Hydroelectric plants can have an impact on water quality by lowering the amount of dissolved oxygen in the water. In the reservoir, sediments and nutrients can be trapped and the lack of water flow can create a situation for undesirable growth and the spread of algae and aquatic weeds.
  • While the use of water to produce electricity is an attractive alternative to fossil fuels, the technology must still overcome obstacles related to space requirements, building costs, environmental impacts, and the displacement of people. Further, possible locations for new hydropower projects are very limited. What is needed is a water powered system that can be used without the use of traditional means such as Hydroelectric plants.
  • SUMMARY OF THE INVENTION
  • In various embodiments, a hydraulic power system and method used in a fluid such as a river or any other body of water having a current. The system can include a hydraulic power system that is tethered to a floor at the bottom of the body of water. The inventive system can include a pump assembly that is coupled to a turbine that uses fluid movement to rotate the turbine and power the pump. A positive buoyancy structure can be tethered to the pump assembly that causes the pump assembly to be positioned above the floor at the bottom of the body of water. The positive buoyancy structure can potentially rise to the surface of the water but also maintain the pump assembly and turbine at a predetermined tethered distance below the surface of the water. The positive buoyancy structure can have a shape and pitch that uses the water velocity to generate lift and help to maintain the pump assembly above the water floor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a side view of an embodiment of the hydraulic power system;
  • FIGS. 2A and 2B illustrate a side view of an embodiment of a variable buoyancy mechanism;
  • FIG. 3 illustrates a turbine pump system, piping and on a closed loop energy generation system;
  • FIG. 4 illustrates a turbine pump system, piping and on an open loop energy generation system;
  • FIG. 5 illustrates an electrical generator system and on electrical energy generation system;
  • FIGS. 6 and 7 illustrate an embodiment of a pump assembly with the turbine on the back end of the pump assembly structure.
  • FIGS. 8, 9 and 10 illustrate front views of pump assemblies with buoyancy structures;
  • FIG. 11 illustrates a top view of an embodiment of the buoyancy structure with wings;
  • FIG. 12 illustrates a top view of an embodiment of the pump assembly with wings;
  • FIG. 13 illustrates an embodiment of the pump assembly having an integrated positive buoyancy system without the buoyancy structure;
  • FIG. 14 illustrates an embodiment of the pump assembly having an integrated positive buoyancy system without the buoyancy structure;
  • FIGS. 15, 16 and 17 illustrate front views of the pump assemblies.
  • DETAILED DESCRIPTION
  • The present invention is directed towards a hydraulic power system and method used in a fluid such as a river or any other body of water having a current. In an embodiment the inventive system can include a hydraulic power system that is tethered to a floor at the bottom of the body of water. The inventive system includes a pump assembly that is coupled to a turbine that uses fluid movement to rotate the turbine and power the pump. A positive buoyancy structure can be tethered to the pump assembly that causes the pump assembly to be positioned above the floor at the bottom of the body of water. The positive buoyancy structure can potentially rise to the surface of the water but also maintain the pump assembly and turbine at a predetermined tethered distance below the surface of the water. In addition to the upward buoyancy force, the positive buoyancy structure can have a shape and pitch that uses the water velocity to generate lift and help to maintain the pump assembly above the water floor.
  • With reference to FIG. 1, a hydraulic power system 100 is illustrated that includes a pump assembly 101 with a turbine 103 coupled to a front end of the pump assembly 101. The turbine 103 can have a plurality of blades 104 that rotate about a first shaft 105. The first shaft 105 is coupled to a gearing system 107 that can change the rotational velocity of a second shaft 109 mounted between the gearing system 107 and a pump 111. In the illustrated embodiment, the gearing system 107 may be placed between the turbine 103 and the pump 111. The turbine 103 can have a rotational velocity that is proportional to the velocity of the water 113 relative to the turbine 103. Thus, the rotational velocity of the turbine 103 and first shaft 105 can be variable. The turbine 103 can be coupled by the first shaft 105 to a gearing system 107 that can increase or decrease a rotational velocity of the second shaft 109 relative to the first shaft 105. The rotational energy from the turbine 103 can be transmitted through the first shaft 105, gearing system 107 and second shaft 109 to the pump 111.
  • The system can include a tether system with a plurality of high strength tether lines 115 coupling the pump assembly 101 to the floor 117 of the body of water 113. A buoyancy structure 121 can be coupled with tether lines 115 to the top of the pump assembly 101 and the buoyancy structure 121 can help to lift the pump assembly 101 above the floor 117 and prevent the turbine 103 from contacting the floor 117. The buoyancy structure 121 can also keep the pump assembly 101 below the surface 123 of the water 113 to prevent the top of the turbine 103 from coming out of the water 113. In an embodiment, the buoyancy structure 121 includes a variable buoyancy mechanism 125, which can alter the upward force applied to the pump assembly 101. In calm conditions with lower velocity water, less upward force can be required to keep the pump assembly 101 at the proper vertical position within the water 113. Thus, less buoyant forces from the buoyancy structure 121 are necessary. However, as the water 113 flow increases, the drag forces on the pump assembly 101 will also increase, which will pull the pump assembly 101 downstream. A greater buoyant force can be required to counteract the drag force and pull the pump assembly 101 back to the desired position. In an embodiment, the pump assembly 101 can have a positive buoyance and the buoyancy structure 121 can supplement these positive buoyant forces.
  • In order to minimize the drag forces on the pump assembly 101, the housing of the pump assembly 101 may be made to have a hydrodynamic shape with a rounded front end and a tapered back portion. By having a smooth hydrodynamic shape, the forces overcome the drag forces and raise the pump assembly 101 to the proper height within the water 113 can be minimized. Because the hydrodynamic drag does not provide any benefit to the inventive system, this drag should be minimized.
  • With reference to FIGS. 2A and 2B, in an embodiment, the variable buoyancy mechanism 125 can include a compressible volume 127 of gas with an actuator 129 to alter the gas volume 127. When the volume 127 is allowed to expand as shown in FIG. 2A, the buoyancy force will increase and when the volume 127 is compressed as shown in FIG. 2B, the buoyancy force will decrease. In an embodiment, the compressible volume 127 can be a gas cylinder with a piston 131 that is coupled to an actuator 129, which can be controlled to compress or decompress the gas volume 127 in the cylinder 133. The cylinder 133 and exposed side of the piston 131 may be exposed to the ambient water pressure so that when the cylinder 133 is deep in the water, the water pressure may tend to further compress the cylinder . Thus, the actuator may need to oppose the water pressure by expanding the cylinder volume 127. With reference to FIG. 1, by controlling the buoyancy, the buoyancy structure 121 can control the upward force and the vertical position of the pump assembly 101.
  • With reference to FIG. 3, a more detailed illustration of the hydraulic power system 101 is shown. The pump 111 can circulate a fluid such as water through a piping system to an onshore power station 141. The pump 111 can be a closed loop system as shown where the liquid in the system circulates from the pump 111 through the piping system 143 to the power station 141 and then back through the piping system 143 to the pump 111. This closed loop system can be preferable because sediment and debris can be removed from the circulating fluid (such as water), which can damage the pump 111 and/or power station 141. In this illustration, the piping system 143 is a closed loop system with concentric outlet and return paths. The liquid can be pumped on shore to the power station 141 through the center pipe 145 and the liquid may return through the outer piping 147. Alternatively, the liquid can be pumped on shore to the power station 141 through the outer piping 147 and the inner pipe 145 can be the liquid return.
  • In an alternative embodiment with reference to FIG. 4, the system can be an open loop system where ambient water is pumped from the pump 111 through the piping system center pipe 145 to the onshore power station 141 and then released back to the body of water 113 through an outlet pipe 149. The open loop system can be more energy efficient because there is less friction and pressure losses due to the liquid flowing through the piping system center pipe 145. However, the water being pumped may need to be filtered through a filter 151 to prevent debris from entering the pump 111, which can add fluid flow friction and reduce the efficiency of the system. In other embodiments the pump 111 can be used to pressurize a compressible fluid that runs in an open loop as shown in FIG. 3 or closed loop as shown in FIG. 3 to an on shore power system 141.
  • In yet other embodiments, the pumps can be replaced by other energy producing devices such as electrical power generators 181, which can convert the rotational energy transmitted from the turbines 103 into electrical power. In this embodiment, the generator 181 can produce direct current or alternating electrical current that can be transmitted through electrical conductors 183 away from the generator assembly 191 to an on shore power station 185. In each of these alternative embodiments, the inventive system can utilize the positive buoyancy and or hydrodynamic lift of the wings to maintain the position of the generator assembly 191 and turbine 103 above the floor 117.
  • With reference to FIG. 6, another embodiment of the pump assembly 201 is illustrated with the turbine on the back end of the pump assembly 201 structure. This configuration can provide hydrodynamic stability to the system because the drag generated by the turbine 103 is now at the rear of the assembly where there is less tendency for the drag forces to push the pump assembly 201 out of alignment with the water flow. Another benefit is that as the drag forces push the pump assembly 201 down stream, the tethers 115 will lie at a more acute angle in relation to the water floor. However these angled tethers 115 will be less like likely to interfere with the turbine 103 rotation. In an embodiment, the pump assembly 201 can have a positive buoyance and the buoyancy structure 121 can supplement these positive buoyant forces.
  • With reference to FIG. 7, if the water level 123 decreases in the body of water 113, the buoyancy structure 121 may float on the surface 123 of the water 113, which can result in the pump assembly 201 and turbine 103 being lowered close to the sea floor 117. When the water lever 123 rises, the pump assembly 201 will rise higher over the sea floor 117 until the tethers 115 are all tights. However, the turbine 103 will not rise above the water 113 surface level 123.
  • FIGS. 8 and 9 are front views of FIG. 1 and FIG. 5 respectively. The tethers 115 between the floor 117 and the pump assemblies 101, 201 can be angled outward and coupled to the outer sides of the pump assemblies 101, 201. This configuration can be necessary to counter act the torque forces applied to the pump assemblies 101, 201 by the turbines 103. For example, if the turbines 103 rotate clockwise facing the front of the system then the rotational force, which drives the gear system and pump, will create a clockwise torque on the pump assembly. By placing the tethers 115 as wide as possible on the pump assemblies 101, 201, the tethers 115 can better resist the torque forces from the turbine 103. The torque force can be represented by F x R which is the distance from the center shaft. Since the tethers 115 may only resist tension, the torque force may be mostly applied to the tethers 115 coupled to the left side of the pump assemblies 101, 201. The torque force may also be applied to the tethers 115 extending between the pump assemblies 101, 201 and the buoyancy structure 121. Again, since the tethers 115 may only function in tension, the tethers 115 on the right side of the pump assemblies 101, 201 may have added tension forces applied due to the torque of the turbine 103.
  • With reference to FIG. 10, another method for resisting the torque forces of the turbine 103 can be to attach extensions 161 to the sides of the pump assembly 201. In this illustration, the extensions extend beyond the outer diameter of the turbine 103 and provide a much longer arm length R to resist the turbine torque.
  • Thus the force F, which is an additional tension force on the tethers 115, can be proportionally lower. In this example, the arm length R may be about 4+ times the width of the pump assembly 201. Extensions 161 can also be placed on the buoyancy device 121 and can provide additional torque resistance. This configuration can also keep the tethers 115 away from the turbine 103 in the event that the turbine 103 moves into close proximity of the tethers 115.
  • With reference to FIG. 11 a top view of an embodiment of a buoyancy structure 121 is illustrated and with reference to FIG. 12 a top view of an embodiment of a pump assembly 201 is illustrated. In these illustrated embodiments, the extensions can be wings 163 that have elevators 165 or can be positioned to resist the turbine torque. More specifically, as the liquid flows over the wings 163, the wings 163 can be configured to generate a rotational torque on the pump assembly 201 that resists the turbine 103 torque. For example, the left elevator 165 can be raised and the right elevator 165 can be lowered to produce a counter clockwise torque on the pump assembly 201. Since tether 115 tension forces can be transmitted from the buoyancy structure 121, these wings 163 can also be configured to transmit a counter clockwise torque.
  • In another embodiment, the wings 163 can provide lift that can supplement the upward buoyant forces of the buoyancy structure 121 and/or the pump assembly 201. The lift can be produced by the flow of liquid over the wings, which can have an upward pitch. The wing 163 lift can also be generated with the elevators 165, which can be raised to cause the wings to generate lift and the lift force can be used to put the tethers 115 in tension.
  • In another embodiment with reference to FIG. 13, the pump assembly 101 can include an integrated positive buoyancy system (as described above with reference to FIGS. 2 and 3). Thus, the system may include a turbine 103 coupled to the pump assembly 101 that is tethered with tethers 115 to a floor 117 at the bottom of the body of water 113. In this embodiment, the pump assembly 101 does not require the positive buoyancy structure. The inventive system can include a pump assembly 101 that is coupled to a turbine 103 that uses fluid movement to rotate the turbine 103 and power the pump 111 through a gear system 107. The pump assembly 201 can have positive buoyancy that causes the pump assembly 101 to float above the floor 117 at the bottom of the body of water 113. The tethers 115 can prevent the pump assembly 101 and turbine 103 from floating to the surface 123 of the water 113. FIG. 14 illustrates an embodiment of the inventive system with the turbine 103 mounted at the rear end of the pump assembly 201.
  • FIGS. 15 and 16 illustrate front views of FIGS. 13 and 14 respectively. Again, the tethers 115 can be mounted to the outer side of the pump assemblies 101, 201 to resist the torque applied to the pump assemblies 101, 201 from the turbines 103.
  • FIG. 17 illustrates a front view of an embodiment of the inventive system with extensions 161 coupled to tethers 115 coupled to the water floor 117. The extensions 161 can be wings 163 with elevators 165 (as shown in FIG. 11) that provide a hydrodynamic counter torque force that resists the turbine 103 torque applied to the pump assembly 201 as described above.
  • In an embodiment, force transducers 167 can be coupled to one more of the tethers 115 for monitoring the forces applied to the tethers 115. If excessive force is applied, a warning system can notify the system operators. The forces applied to the tethers 115 can include hydrodynamic drag in the horizontal direction. In an embodiment, the hydrodynamic drag can be reduced by lowering the angle of the turbine blades 104 which can result in lowing the horizontal forces on the tethers 115.
  • In an embodiment, the force transducers 167 can have positive buoyancy or alternatively, buoyancy devices 168 can be coupled to the force transducers 167. In either configuration, the force transducers 167 will not sink if the devices are accidentally dropped. This configuration can prevent the force transducers 167 from being accidentally lost. During the assembly process, the force transducers 167 can first be coupled to the tethers 115. If the force transducers 167 are dropped, the transducer 167 and the attached tether 115 can come to rest above the sea floor 117 so that it can be easily retrieved. In contrast, if the force transducer 167 has negative buoyancy or is not coupled to a buoyancy device 168, the force transducer 167 and any connected tether 115 will sink to the sea floor 117 when dropped. It can be difficult to see and retrieve these components if they are resting on the sea floor 117.
  • While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (20)

What is claimed is:
1. A power generator comprising:
a pump assembly comprising a pump and a turbine coupled to a shaft that actuates the pump; and
a first plurality of tethers that are coupled to the pump assembly and the fixed point in a body of water.
2. The power generator of claim 1 further comprising:
extensions that extend horizontally out ward from the pump assembly wherein the first plurality of tethers are coupled to the extensions.
3. The power generator of claim 1 further comprising:
wings that extend horizontally out ward from the pump assembly wherein the wings provide a torsional force on the pump assembly and the first plurality of tethers are coupled to the wings.
4. The power generator of claim 1 further comprising:
an inlet that provides water to the pump; and
an outlet pipe that contains pressurized water from the pump.
5. The power generator of claim 3 wherein the inlet and the output pipe are coupled to a power station and are part of a closed loop system.
6. The power generator of claim 3 wherein the output pipe is coupled to a power station and are part of an open loop system.
7. The power generator of claim 1 further comprising:
a buoyancy mechanism that provides a positive buoyancy force within the body of water; and
a second plurality of tethers that are coupled to the pump assembly and the buoyancy mechanism wherein tension in the second plurality of tethers supports the pump assembly.
8. The power generator of claim 7 further comprising:
extensions that extend horizontally out ward from the pump assembly wherein the first plurality of tethers are coupled to the extensions.
9. The power generator of claim 7 further comprising:
wings that extend horizontally out ward from the pump assembly wherein the wings provide a torsional force on the pump assembly and the first plurality of tethers are coupled to the wings.
10. The power generator of claim 7 further comprising:
an inlet that provides water to the pump; and
an outlet pipe that contains pressurized water from the pump.
11. The power generator of claim 10 wherein the inlet and the output pipe are coupled to a power station and are part of a closed loop system.
12. The power generator of claim 10 wherein the output pipe is coupled to a power station and are part of an open loop system.
13. A power generator comprising:
a generator assembly comprising an electric generator and a turbine coupled to a shaft that actuates the electric generator; and
a first plurality of tethers that are coupled to the pump assembly and the fixed point in a body of water.
14. The power generator of claim 13 further comprising:
extensions that extend horizontally out ward from the generator assembly wherein the first plurality of tethers are coupled to the extensions.
15. The power generator of claim 13 further comprising:
wings that extend horizontally out ward from the generator assembly wherein the wings provide a torsional force on the pump assembly and the first plurality of tethers are coupled to the wings.
16. The power generator of claim 13 wherein the electric generator is electrically coupled to a power station.
17. The power generator of claim 13 further comprising:
a buoyancy mechanism that provides a positive buoyancy force within the body of water; and
a second plurality of tethers that are coupled to the pump assembly and the buoyancy mechanism wherein tension in the second plurality of tethers supports the pump assembly.
18. The power generator of claim 13 further comprising:
extensions that extend horizontally out ward from the pump assembly wherein the first plurality of tethers are coupled to the extensions.
19. The power generator of claim 13 further comprising:
wings that extend horizontally out ward from the buoyancy mechanism wherein the wings provide a torsional force on the pump assembly and the first plurality of tethers are coupled to the wings.
20. The power generator of claim 13 wherein the electric generator is electrically coupled to a power station.
US14/740,763 2014-06-23 2015-06-16 Positive boyancy hydraulic power system and method Active US9890762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/740,763 US9890762B2 (en) 2014-06-23 2015-06-16 Positive boyancy hydraulic power system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462015707P 2014-06-23 2014-06-23
US14/740,763 US9890762B2 (en) 2014-06-23 2015-06-16 Positive boyancy hydraulic power system and method

Publications (2)

Publication Number Publication Date
US20150369206A1 true US20150369206A1 (en) 2015-12-24
US9890762B2 US9890762B2 (en) 2018-02-13

Family

ID=54869247

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/740,763 Active US9890762B2 (en) 2014-06-23 2015-06-16 Positive boyancy hydraulic power system and method

Country Status (1)

Country Link
US (1) US9890762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268986A1 (en) * 2021-06-24 2022-12-29 Minesto Ab Submersible power plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI608165B (en) * 2017-04-05 2017-12-11 國立台灣大學 Ocean current power generator

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2501696A (en) * 1946-01-12 1950-03-28 Wolfgang Kmentt Stream turbine
US4383182A (en) * 1975-06-11 1983-05-10 Bowley Wallace W Underwater power generator
US6091161A (en) * 1998-11-03 2000-07-18 Dehlsen Associates, L.L.C. Method of controlling operating depth of an electricity-generating device having a tethered water current-driven turbine
WO2003056169A1 (en) * 2001-12-27 2003-07-10 Norman Perner Underwater power station
US6756695B2 (en) * 2001-08-09 2004-06-29 Aerovironment Inc. Method of and apparatus for wave energy conversion using a float with excess buoyancy
US20070231072A1 (en) * 2006-01-04 2007-10-04 Jennings Clifford A Submersible tethered platform for undersea electrical power generation
US7291936B1 (en) * 2006-05-03 2007-11-06 Robson John H Submersible electrical power generating plant
US7471006B2 (en) * 2005-09-12 2008-12-30 Gulfstream Technologies, Inc. Apparatus and method for generating electric power from a subsurface water current
US20090091135A1 (en) * 2005-09-12 2009-04-09 Gulfstream Technologies, Inc. Apparatus and method for generating electric power from a sub-surface water current
US7541688B2 (en) * 2004-11-17 2009-06-02 Ocean Flow Energy Limited Floating apparatus for deploying in marine current for gaining energy
US7682126B2 (en) * 2006-06-09 2010-03-23 David Joseph Parker Tethered propgen
EP2216543A1 (en) * 2007-11-12 2010-08-11 Nova Laboratory Co., Ltd. Water flow power generation equipment
US20100276935A1 (en) * 2007-09-20 2010-11-04 Dehlsen Associates, L.L.C. Renewable energy fluid pump to fluid-based energy generation
US20100327583A1 (en) * 2009-06-30 2010-12-30 Hunt Turner Pitch, roll and drag stabilization of a tethered hydrokinetic device
US20130106105A1 (en) * 2011-10-31 2013-05-02 Aquantis, Inc. Multi-Megawatt Ocean Current Energy Extraction Device
US20140083090A1 (en) * 2012-09-25 2014-03-27 Magnus PAULANDER Sea-wave power generation plant

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2501696A (en) * 1946-01-12 1950-03-28 Wolfgang Kmentt Stream turbine
US4383182A (en) * 1975-06-11 1983-05-10 Bowley Wallace W Underwater power generator
US6091161A (en) * 1998-11-03 2000-07-18 Dehlsen Associates, L.L.C. Method of controlling operating depth of an electricity-generating device having a tethered water current-driven turbine
US6756695B2 (en) * 2001-08-09 2004-06-29 Aerovironment Inc. Method of and apparatus for wave energy conversion using a float with excess buoyancy
WO2003056169A1 (en) * 2001-12-27 2003-07-10 Norman Perner Underwater power station
US7541688B2 (en) * 2004-11-17 2009-06-02 Ocean Flow Energy Limited Floating apparatus for deploying in marine current for gaining energy
US20090091135A1 (en) * 2005-09-12 2009-04-09 Gulfstream Technologies, Inc. Apparatus and method for generating electric power from a sub-surface water current
US7471006B2 (en) * 2005-09-12 2008-12-30 Gulfstream Technologies, Inc. Apparatus and method for generating electric power from a subsurface water current
US20070231072A1 (en) * 2006-01-04 2007-10-04 Jennings Clifford A Submersible tethered platform for undersea electrical power generation
US7291936B1 (en) * 2006-05-03 2007-11-06 Robson John H Submersible electrical power generating plant
US7682126B2 (en) * 2006-06-09 2010-03-23 David Joseph Parker Tethered propgen
US20100276935A1 (en) * 2007-09-20 2010-11-04 Dehlsen Associates, L.L.C. Renewable energy fluid pump to fluid-based energy generation
EP2216543A1 (en) * 2007-11-12 2010-08-11 Nova Laboratory Co., Ltd. Water flow power generation equipment
US20100327583A1 (en) * 2009-06-30 2010-12-30 Hunt Turner Pitch, roll and drag stabilization of a tethered hydrokinetic device
US8219257B2 (en) * 2009-06-30 2012-07-10 Hunt Turner Power control protocol for a hydrokinetic device including an array thereof
US20130106105A1 (en) * 2011-10-31 2013-05-02 Aquantis, Inc. Multi-Megawatt Ocean Current Energy Extraction Device
US20140083090A1 (en) * 2012-09-25 2014-03-27 Magnus PAULANDER Sea-wave power generation plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine translation of WO 03/056169 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022268986A1 (en) * 2021-06-24 2022-12-29 Minesto Ab Submersible power plant

Also Published As

Publication number Publication date
US9890762B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
US9803614B2 (en) Systems and methods for hydroelectric systems
JP6746628B2 (en) Hydro turbine with variable buoyancy
US20090212562A1 (en) Method and apparatus for tidal power generation
JP5084890B2 (en) Structure of ultra low drop turbine with flow rate and flow control
CN103742338A (en) Underwater monitor powered by ocean current energy
JP2013504714A (en) Underwater hydroelectric generator and method
KR20110058998A (en) Tide generator having multi-winges type
US20100123316A1 (en) Power generator barge
KR20070026780A (en) A system of underwater power generation
US9890762B2 (en) Positive boyancy hydraulic power system and method
US20120119501A1 (en) System and Method for Fluid Flow Power Generation
CN103452794B (en) A kind of automatic pumping water device of tide energy
GB2512057A (en) Tidal energy powered pumped storage systems
GB2469120A (en) System and method of transferring water to shore
JP6721886B2 (en) Axial structure of floating body support shaft and floating power generation apparatus having the axial structure of the floating body support shaft
CN102287314A (en) Seagull-imitated wave power generation driving method and device
GB2478218A (en) Integrated offshore wind and tidal power system
TW201643314A (en) Ocean current power generation system
CN104153937A (en) Wave energy collecting device adaptable to tide level change
JP5371081B2 (en) Water wheel and wave energy utilization device using the water wheel
KR101631066B1 (en) A tidal current and sea wave-power generating apparatus
JP2018145956A (en) Hydraulic power generation system
RU59744U1 (en) WAVE POWER INSTALLATION
KR102375024B1 (en) Sea water pumped hydro power system with wave pump
US20240141865A1 (en) Power plant

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4