US2458013A - Selenium rectifier element and method of manufacturing same - Google Patents
Selenium rectifier element and method of manufacturing same Download PDFInfo
- Publication number
- US2458013A US2458013A US580077A US58007745A US2458013A US 2458013 A US2458013 A US 2458013A US 580077 A US580077 A US 580077A US 58007745 A US58007745 A US 58007745A US 2458013 A US2458013 A US 2458013A
- Authority
- US
- United States
- Prior art keywords
- selenium
- electrode
- counter
- rectifier element
- selenium rectifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 title description 21
- 229910052711 selenium Inorganic materials 0.000 title description 21
- 239000011669 selenium Substances 0.000 title description 21
- 238000004519 manufacturing process Methods 0.000 title description 6
- 230000000903 blocking effect Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 5
- 229910052776 Thorium Inorganic materials 0.000 description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/06—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
- H01L21/10—Preliminary treatment of the selenium or tellurium, its application to the foundation plate, or the subsequent treatment of the combination
- H01L21/108—Provision of discrete insulating layers, i.e. non-genetic barrier layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/06—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
- H01L21/10—Preliminary treatment of the selenium or tellurium, its application to the foundation plate, or the subsequent treatment of the combination
- H01L21/105—Treatment of the surface of the selenium or tellurium layer after having been made conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/06—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
- H01L21/12—Application of an electrode to the exposed surface of the selenium or tellurium after the selenium or tellurium has been applied to the foundation plate
Definitions
- the selenium rectifier elements are subjected during manufacturing to a. treatment which largely eliminates the aforesaid weakness, so that the elements can be formed much more rapidly after the said treatment. Moreoventhe ready-formed elements can endure higher blocking voltages than heretofore.
- a selenium layer is applied to a metal base plate and is then subjected to a combined pressure and heat treatment in order to be transformed into the well-conducting modification.
- a counter-electrode is applied to the free selenium surface, usually by spraying a liquid metal alloy having a low fusing point thereto, but in another a solid counter-electrode only under pressure.
- the treatment according to the present invention consists in supplying to the selenium surface adjacent to the counter-electrode small quantities of thorium or zirconium or of a kindred metal or of a compound containing some of these metals.
- the said metals may be supplied to the selenium surface by condensing their vapors or by cathode sputtering before the counter-electrode is applied. It is also possible to apply a metal by alloying it with the counter-electrode, if the latter is intended to be applied by spraying, but not by mixing it into the selenium, since it seems necessary for a good result of the treatment that the addition 01' the metal is limited to the layer of the selenium immediately adjacent to the counters-electrode.
- a simple and eilicient method of supplying a compound of the aforesaid metals is to dissolve the compound into a solvent and to treat the selenium surface with the solution.
- the solvent should be evaporated before the application of the counter-electrode.
- Water may be used as a solvent, it has not been found especially appropriate, first because the selenium surface is only with a certain difiiculty moistened thereby and also because the water is comparatively slowly evaporated and probably has an unfavorable action in the meantime. Alcohols and other organic solvents have been found more appropriate for these reasons.
- the compound applied should of course be soluble in the solvent employed and should further not contain, besides the desired metal, substances which may have a noisome infiuence.
- the treatment described influences the cur rent-voltage characteristic oi the selenium ele ment in the blocking direction in a very favorable way as regards its operating properties, as has been proved by cathode ray oscillograms.
- the leakage current is rather low up to a certain blocking voltage but is then so rapidly increased that the characteristic curve is practically parallel-to the current modification by applying axis.
- the leakage current rises considerably slower for high blocking voltages. This property together with that of a more rapid forming enables selenium rectifier elements according to the present invention to be employed for higher blocking voltages and makes them less sensitive to incidental overvoltages than elements which have not been treated in the aforesaid manner.
- blocking layer photoelectric cells containing selenium may be regarded. These difler in construction from rectifier elements substantially only in that the counter-electrode is'translucent or transparent. The invention is also applicable to the manufacture of such photoelectric cells.
- selenium rectifier elements in which a selenium layer is applied onto a metallic base, such layer is converted into an electrically conducting state, and a metallic counter-electrode applied over such layer, the step of treating the converted layer before the counter-electrode is applied with a compound of at least one of the metals of the group consisting of zirconium, thorium, hafnium and titanium.
- a selenium rectifier having a base plate, an electrically conducting selenium layer thereon, and a metallic counter-electrode over said layer, said layer having been treated before application of the counter-electrode with a compound of at least one metal selected from the group consisting of zirconium, thorium, hafnium and titanium.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biotechnology (AREA)
- Rectifiers (AREA)
- Photovoltaic Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE593808X | 1944-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2458013A true US2458013A (en) | 1949-01-04 |
Family
ID=20312683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US580077A Expired - Lifetime US2458013A (en) | 1944-03-04 | 1945-02-27 | Selenium rectifier element and method of manufacturing same |
Country Status (5)
Country | Link |
---|---|
US (1) | US2458013A (xx) |
BE (1) | BE458445A (xx) |
FR (1) | FR909281A (xx) |
GB (1) | GB593808A (xx) |
NL (1) | NL79203C (xx) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3510364A (en) * | 1967-03-21 | 1970-05-05 | Siemens Ag | Contact structure for a thermoelectric device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1866351A (en) * | 1927-01-29 | 1932-07-05 | Gen Electric | Rectification of alternating currents |
US1926884A (en) * | 1928-10-01 | 1933-09-12 | Western Electric Co | Electric rectifier |
US2137428A (en) * | 1930-05-15 | 1938-11-22 | Philips Nv | Electrode system of unsymmetrical conductivity |
US2246161A (en) * | 1938-06-14 | 1941-06-17 | Gen Electric | Selenium cells and method of producing the same |
US2279746A (en) * | 1939-10-13 | 1942-04-14 | Union Switch & Signal Co | Alternating electric current rectifier of the selenium type |
US2361157A (en) * | 1942-03-17 | 1944-10-24 | Union Switch & Signal Co | Alternating electric current rectifier of the selenium type |
US2362545A (en) * | 1942-01-29 | 1944-11-14 | Bell Telephone Labor Inc | Selenium rectifier and method of making it |
US2375355A (en) * | 1940-05-17 | 1945-05-08 | Bolidens Gruv Ab | Selenium rectifier |
US2380880A (en) * | 1942-10-19 | 1945-07-31 | Union Switch & Signal Co | Alternating electric current rectifier of the selenium type |
US2391194A (en) * | 1942-07-29 | 1945-12-18 | B L Electric Company | Rectifiers |
-
0
- BE BE458445D patent/BE458445A/xx unknown
- NL NL79203D patent/NL79203C/xx active
-
1945
- 1945-02-12 GB GB3429/45A patent/GB593808A/en not_active Expired
- 1945-02-14 FR FR909281D patent/FR909281A/fr not_active Expired
- 1945-02-27 US US580077A patent/US2458013A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1866351A (en) * | 1927-01-29 | 1932-07-05 | Gen Electric | Rectification of alternating currents |
US1926884A (en) * | 1928-10-01 | 1933-09-12 | Western Electric Co | Electric rectifier |
US2137428A (en) * | 1930-05-15 | 1938-11-22 | Philips Nv | Electrode system of unsymmetrical conductivity |
US2246161A (en) * | 1938-06-14 | 1941-06-17 | Gen Electric | Selenium cells and method of producing the same |
US2279746A (en) * | 1939-10-13 | 1942-04-14 | Union Switch & Signal Co | Alternating electric current rectifier of the selenium type |
US2375355A (en) * | 1940-05-17 | 1945-05-08 | Bolidens Gruv Ab | Selenium rectifier |
US2362545A (en) * | 1942-01-29 | 1944-11-14 | Bell Telephone Labor Inc | Selenium rectifier and method of making it |
US2361157A (en) * | 1942-03-17 | 1944-10-24 | Union Switch & Signal Co | Alternating electric current rectifier of the selenium type |
US2391194A (en) * | 1942-07-29 | 1945-12-18 | B L Electric Company | Rectifiers |
US2380880A (en) * | 1942-10-19 | 1945-07-31 | Union Switch & Signal Co | Alternating electric current rectifier of the selenium type |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3510364A (en) * | 1967-03-21 | 1970-05-05 | Siemens Ag | Contact structure for a thermoelectric device |
Also Published As
Publication number | Publication date |
---|---|
BE458445A (xx) | |
NL79203C (xx) | |
GB593808A (en) | 1947-10-27 |
FR909281A (fr) | 1946-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2121603A (en) | Method of producing selenium rectifiers | |
US4341594A (en) | Method of restoring semiconductor device performance | |
US3438873A (en) | Anodic treatment to alter solubility of dielectric films | |
US2375355A (en) | Selenium rectifier | |
US2458013A (en) | Selenium rectifier element and method of manufacturing same | |
US2510361A (en) | Method of producing selenium rectifiers | |
US2237802A (en) | Method of treating dry plate elements | |
US2467953A (en) | Use of glow discharge in vacuum coating processes | |
CH662007A5 (en) | Method of soldering semiconductor components | |
JPS5989796A (ja) | 電解コンデンサ用アルミ箔の製造方法 | |
US2395259A (en) | Method of making dry rectifiers | |
US2014169A (en) | Filming metal for condensers | |
US2076904A (en) | Filming metal coatings and method of forming the same | |
US3492719A (en) | Evaporated metal contacts for the fabrication of silicon carbide devices | |
US2437336A (en) | Alternating electric current rectifier | |
US2223203A (en) | Dry plate element and method of forming same | |
US2201709A (en) | Manufacture of alternating electric current rectifiers | |
US4009481A (en) | Metal semiconductor diode | |
US3321389A (en) | Method of anodically etching aluminum foils at elevated temperatures in an electrolyte including chloride and sulfate ions | |
US2476989A (en) | Selenium rectifiers and method of manufacturing the same | |
US2468527A (en) | Blocking-layer cell | |
US2433402A (en) | Selenium cell and lacquer therefor | |
US2902618A (en) | Cathode | |
US2426242A (en) | Lacquer | |
US2361156A (en) | Manufacture of alternating current rectifiers of the selenium type |