US2366423A - Radiosonde antenna system - Google Patents

Radiosonde antenna system Download PDF

Info

Publication number
US2366423A
US2366423A US455110A US45511042A US2366423A US 2366423 A US2366423 A US 2366423A US 455110 A US455110 A US 455110A US 45511042 A US45511042 A US 45511042A US 2366423 A US2366423 A US 2366423A
Authority
US
United States
Prior art keywords
antenna
radiosonde
transmitter
signals
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US455110A
Inventor
Jr Charles B Pear
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WASHINGTON INST OF TECHNOLOGY
WASHINGTON INSTITUTE OF TECHNOLOGY Inc
Original Assignee
WASHINGTON INST OF TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WASHINGTON INST OF TECHNOLOGY filed Critical WASHINGTON INST OF TECHNOLOGY
Priority to US455110A priority Critical patent/US2366423A/en
Application granted granted Critical
Publication of US2366423A publication Critical patent/US2366423A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Definitions

  • This invention relates to the art of radiosonding, by which is meant the radiation, from a transmitter carried aloft by a balloon, of signals which are caused to vary in accordance with changes in atmospheric conditions such as humidity, temperature and pressure, the reception of such signals on the ground and the interpretation of such signals to record changes in at mospheric conditions at various altitudes.
  • the transmitting apparatus including the power supply, be small and light, thus limiting the amount of energy available for radiation. It has also been found that in reaching its maximum altitude of approximately kilometers the radiosonde will often travel as much as 150 kilometers laterally from the starting point and, therefore, from the point at which the radiated signals are received. It will be apparent that the combination of low permissible power, because of weight considerations, with large possible distance over which transmission must be effected, places a considerable burden on the transmitting apparatus and often results in the reception of signals which are too weak for proper interpretation.
  • a further object is to provide means to concentrate the energy radiated by a radiosonde transmitter in such a way that, at the most distant lateral point which the transmitter will reach, the signal strength at the receiver or starting point will be a maximum, while increased signal strength will be achieved for lateral travel of the radiosonde less than the maximum.
  • Fig. 1 is a view of a radiosonde apparatus embodying means according to this invention
  • Fig. 2 is a plan view taken on line 2-2 of Fig. 1, and
  • FIG. 1 is a diagram showing the fields radiated out the use of means according to this invention.
  • I provide means for concen trating the'energy radiatedby the radiosonde transmitting apparatus in such a mannerthat the signal strength increases from a minimum in a direction substantially vertically downward from the antenna to a maximum in a plane ex, tending substantially horizontally through the upper end of the antenna, whereby as the radiosonde drifts laterally from the point where the signals are received the strength of the received signals will not decrease.
  • the reflector comprises a plurality, for example eight, of radial, metal wires or rods l4 connected together at their inner ends and supported there by the case 8 and, at their outer ends supported by a hoop I6.
  • Support for the hoop may be provided by strings or wires l8 which are attached at their outer ends to the hoop and at their inner ends to the upper part of the case 8 or to the string 6 which connects the case to the balloon.
  • the reflector may be six wavelengths in diameter but if special results or effects are desired other diameters must be determined experimentally.
  • the dotted line figure A represents the vertical field pattern for a simple di-pole comprising two quarter-wave vertical radiators supported respectively above and below the transmitter case and not having associated therewith any means according to this invention, and therefore representing the vertical field pattern produced by prior art radiosondes.
  • the full line figure B represents the vertical field pattern for a 0.625 wave antenna supported beneath a reflector in the manner taught by this invention. It will be seen that the two fields are of substantially equal strength along a vertical line extending downwardly from the antenna while the field B is of considerably greater strength than field A along substantially all lines through the antenna and inclined below the horizontal. Further, it will be seen that the strength of field B along such downwardly inclined lines is considerably greater than the strength of the same field along the downwardly-extending vertical line.
  • the radiated signal strength will be represented by the point at which a line through the antenna 8 below the horizontal intersectsthe diagram B, as shown in Fig. 3.
  • the reflector will substantially prevent radiation above the plane thereof; this being indicated in Fig. 3 by lack ofrepresentation of field B above the horizontal line through the reflector.
  • a system of determining meterological conditions by radio comprising an aerial body adapted to freely float in space, a radio transmitter carried by the aerial body, a normally vertical antenna carried by the aerial body, having an effective radiating portion extending below the transmitter only, and connected and adapted to radiate signals supplied thereto by the transmitter, and means carried by the aerial body for radiating signals from the antenna having minimum strength in a substantially vertical direction below the aerial body and maximum strength in a substantially horizontal plane through the approximate location of the aerial body as it floats in space, said means comprising a reflector positioned entirely above the antenna.
  • said means comprise a plurality of substantially horizontal conducting members extending radially outward from a point adjacent the upper end of the antenna.
  • said means comprise a plurality of substantially horizontal conducting members extending radially outward from a point adjacent the upper end of the antenna and having their outer ends connected and supported by a circular hoop.

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

Jan. 2, 1945. c, PEAR, JR 2,366,423
RADIOSONDE ANTENNA SYSTEM Filed Aug. 17, 1942 Char/es B. PearJ Patented Jan. 2, 1945 2,366,423 KADIOSONDE ANTENNA SYSTEM Charles B. Pear, Jr., Prince Georges County, Md.,,
assignor to Washington Institute of Technology, Inc.. Washington, D. C., a corporation of Delaware Application August 17, 1942, Serial No. 455,110
6 Claims.
This invention relates to the art of radiosonding, by which is meant the radiation, from a transmitter carried aloft by a balloon, of signals which are caused to vary in accordance with changes in atmospheric conditions such as humidity, temperature and pressure, the reception of such signals on the ground and the interpretation of such signals to record changes in at mospheric conditions at various altitudes.
In order to allow ascension of the transmittercarrying balloon to as great a height as possible, it is necessary that the transmitting apparatus, including the power supply, be small and light, thus limiting the amount of energy available for radiation. It has also been found that in reaching its maximum altitude of approximately kilometers the radiosonde will often travel as much as 150 kilometers laterally from the starting point and, therefore, from the point at which the radiated signals are received. It will be apparent that the combination of low permissible power, because of weight considerations, with large possible distance over which transmission must be effected, places a considerable burden on the transmitting apparatus and often results in the reception of signals which are too weak for proper interpretation.
It is accordingly the principal object, of this invention to provide means for increasing the effective signal strength of a radiosonde transmitter without materially increasing the load which must be supported by the balloon.
A further object is to provide means to concentrate the energy radiated by a radiosonde transmitter in such a way that, at the most distant lateral point which the transmitter will reach, the signal strength at the receiver or starting point will be a maximum, while increased signal strength will be achieved for lateral travel of the radiosonde less than the maximum.
Other objects and features of novelty of the invention will be made apparent by the following description and the annexed drawing which, it will be understood, is only illustrative of the invention and imposes n limitation thereon not imposed by the appended claims.
Referring to the drawing, in which similar reference numerals and letters refer to like parts,
Fig. 1 is a view of a radiosonde apparatus embodying means according to this invention;
Fig. 2 is a plan view taken on line 2-2 of Fig. 1, and
-Fig 3 is a diagram showing the fields radiated out the use of means according to this invention.
By this invention I provide means for concen trating the'energy radiatedby the radiosonde transmitting apparatus in such a mannerthat the signal strength increases from a minimum in a direction substantially vertically downward from the antenna to a maximum in a plane ex, tending substantially horizontally through the upper end of the antenna, whereby as the radiosonde drifts laterally from the point where the signals are received the strength of the received signals will not decrease.
In putting my invention into effect I provide a single antenna l0 depending from the transmitter case 8 and above this antenna I provide a horizontal reflector l2 which concentrates the radiations from the antenna ID in the manner required to prevent decrease in signal strength at the point of reception as the radiosonde ascends and drifts laterally from the point where the signals are received. In its preferred form, which is illustrated in Figs. 1 and 2, the reflector comprises a plurality, for example eight, of radial, metal wires or rods l4 connected together at their inner ends and supported there by the case 8 and, at their outer ends supported by a hoop I6. Support for the hoop may be provided by strings or wires l8 which are attached at their outer ends to the hoop and at their inner ends to the upper part of the case 8 or to the string 6 which connects the case to the balloon. In a preferred form the reflector may be six wavelengths in diameter but if special results or effects are desired other diameters must be determined experimentally.
In Fig. 3 of the drawing, the dotted line figure A represents the vertical field pattern for a simple di-pole comprising two quarter-wave vertical radiators supported respectively above and below the transmitter case and not having associated therewith any means according to this invention, and therefore representing the vertical field pattern produced by prior art radiosondes. The full line figure B represents the vertical field pattern for a 0.625 wave antenna supported beneath a reflector in the manner taught by this invention. It will be seen that the two fields are of substantially equal strength along a vertical line extending downwardly from the antenna while the field B is of considerably greater strength than field A along substantially all lines through the antenna and inclined below the horizontal. Further, it will be seen that the strength of field B along such downwardly inclined lines is considerably greater than the strength of the same field along the downwardly-extending vertical line.
By reason of these relative strengths of the field B in difierent directions downward from the transmitter it will be seen that if the balloon raises the radiating means vertically upwardly from the starting point without lateral drift, the signal strength at the starting point will be a minimum but will always be suficient for proper reception inasmuch as in this case the distance of the transmitter from the receiving point will also be a minimum. The radiated signal will increase in the direction of the receiver with lateral drift of the-balloon and transmitting means during ascent; as will be seen from a consideration of diagram B. There will, therefore, be no decrease in received signal strength due to lateral drift, as the radiated signal will increase with increase in the lateral distance of theradiating means from the receiver. At a height of 20 kilometers and a lateral distance of 150 kilometers from the starting point the radiated signal strength will be represented by the point at which a line through the antenna 8 below the horizontal intersectsthe diagram B, as shown in Fig. 3. The reflector will substantially prevent radiation above the plane thereof; this being indicated in Fig. 3 by lack ofrepresentation of field B above the horizontal line through the reflector.
While I- have described and illustrated one embodiment of my invention it will be apparent to those skilled in the art that other'embodiments thereof and modifications of the disclosed structure may be made without departing in any way from the spirit or scope of the invention, for the limits of which reference must be had to the appended claims.
What is claimed is:
1. A system of determining meterological conditions by radio, comprising an aerial body adapted to freely float in space, a radio transmitter carried by the aerial body, a normally vertical antenna carried by the aerial body, having an effective radiating portion extending below the transmitter only, and connected and adapted to radiate signals supplied thereto by the transmitter, and means carried by the aerial body for radiating signals from the antenna having minimum strength in a substantially vertical direction below the aerial body and maximum strength in a substantially horizontal plane through the approximate location of the aerial body as it floats in space, said means comprising a reflector positioned entirely above the antenna.
2. A system according to claim 1, in which said means comprise a substantially horizontallydisposed reflector above the antenna.
3. A system according to claim 1, in which said means comprise a plurality of substantially horizontal conducting members extending radially outward from a point adjacent the upper end of the antenna.
4. A system according to claim 1, in which said means comprise a plurality of substantially horizontal conducting members extending radially outward from a point adjacent the upper end of the antenna and having their outer ends connected and supported by a circular hoop.
5. A system according to claim 1, wherein the antenna is 0.625 wavelength.
6. A system according to claim 1, wherein the reflector is six wavelengths in diameter.
CHARLES B. PEAR, JR.
US455110A 1942-08-17 1942-08-17 Radiosonde antenna system Expired - Lifetime US2366423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US455110A US2366423A (en) 1942-08-17 1942-08-17 Radiosonde antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US455110A US2366423A (en) 1942-08-17 1942-08-17 Radiosonde antenna system

Publications (1)

Publication Number Publication Date
US2366423A true US2366423A (en) 1945-01-02

Family

ID=23807442

Family Applications (1)

Application Number Title Priority Date Filing Date
US455110A Expired - Lifetime US2366423A (en) 1942-08-17 1942-08-17 Radiosonde antenna system

Country Status (1)

Country Link
US (1) US2366423A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462102A (en) * 1945-08-02 1949-02-22 Edwin J Istvan Modulated reflecting-resonant target
US2489337A (en) * 1945-08-10 1949-11-29 Us Sec War Aerial reflecting signal target
US2593427A (en) * 1945-01-23 1952-04-22 Us Sec War Counterpoise
US2987269A (en) * 1949-06-03 1961-06-06 Weller Royal Method for radar direction of missiles
US3129427A (en) * 1960-05-25 1964-04-14 All Products Company Spiral antenna mounted on openwork support
US3604001A (en) * 1967-12-05 1971-09-07 Robert E Deal Method and apparatus for locating cooperative personnel in densely foliated areas
US5470032A (en) * 1994-04-18 1995-11-28 Williams, Jr.; Joseph B. Airborne monitoring system and method
US6167263A (en) * 1997-05-16 2000-12-26 Spherecore, Inc. Aerial communications network including a plurality of aerial platforms
US20030109281A1 (en) * 2001-04-18 2003-06-12 Knoblach Gerald M. Unmanned lighter-than-air safe termination and recovery methods
US6628941B2 (en) 1999-06-29 2003-09-30 Space Data Corporation Airborne constellation of communications platforms and method
US20050014499A1 (en) * 1999-06-29 2005-01-20 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9632503B2 (en) 2001-04-18 2017-04-25 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9643706B2 (en) 2001-04-18 2017-05-09 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9908608B2 (en) 2001-04-18 2018-03-06 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US10059421B2 (en) 2014-12-30 2018-08-28 Space Data Corporation Multifunctional balloon membrane
US10207802B2 (en) 2014-12-24 2019-02-19 Space Data Corporation Breaking apart a platform upon pending collision
US10403160B2 (en) 2014-12-24 2019-09-03 Space Data Corporation Techniques for intelligent balloon/airship launch and recovery window location

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2593427A (en) * 1945-01-23 1952-04-22 Us Sec War Counterpoise
US2462102A (en) * 1945-08-02 1949-02-22 Edwin J Istvan Modulated reflecting-resonant target
US2489337A (en) * 1945-08-10 1949-11-29 Us Sec War Aerial reflecting signal target
US2987269A (en) * 1949-06-03 1961-06-06 Weller Royal Method for radar direction of missiles
US3129427A (en) * 1960-05-25 1964-04-14 All Products Company Spiral antenna mounted on openwork support
US3604001A (en) * 1967-12-05 1971-09-07 Robert E Deal Method and apparatus for locating cooperative personnel in densely foliated areas
US5470032A (en) * 1994-04-18 1995-11-28 Williams, Jr.; Joseph B. Airborne monitoring system and method
US6167263A (en) * 1997-05-16 2000-12-26 Spherecore, Inc. Aerial communications network including a plurality of aerial platforms
US9964629B2 (en) 1999-06-29 2018-05-08 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US8825232B2 (en) 1999-06-29 2014-09-02 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US20050014499A1 (en) * 1999-06-29 2005-01-20 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US10429489B2 (en) 1999-06-29 2019-10-01 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US7356390B2 (en) 1999-06-29 2008-04-08 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US20080299990A1 (en) * 1999-06-29 2008-12-04 Space Data Corporation Systems and applications of lighter-than-air (lta) platforms
US6628941B2 (en) 1999-06-29 2003-09-30 Space Data Corporation Airborne constellation of communications platforms and method
US9519045B2 (en) 1999-06-29 2016-12-13 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9678193B2 (en) 2001-04-18 2017-06-13 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9908608B2 (en) 2001-04-18 2018-03-06 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9632503B2 (en) 2001-04-18 2017-04-25 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9643706B2 (en) 2001-04-18 2017-05-09 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US9658618B1 (en) 2001-04-18 2017-05-23 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US7801522B2 (en) 2001-04-18 2010-09-21 Space Data Corporation Unmanned lighter-than-air safe termination and recovery methods
US9823663B2 (en) 2001-04-18 2017-11-21 Space Data Corporation Unmanned lighter-than-air-safe termination and recovery methods
US10710695B2 (en) 2001-04-18 2020-07-14 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US20030109281A1 (en) * 2001-04-18 2003-06-12 Knoblach Gerald M. Unmanned lighter-than-air safe termination and recovery methods
US8644789B2 (en) 2001-04-18 2014-02-04 Space Data Corporation Unmanned lighter-than-air-safe termination and recovery methods
US10894592B2 (en) 2001-04-18 2021-01-19 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
US7203491B2 (en) 2001-04-18 2007-04-10 Space Data Corporation Unmanned lighter-than-air safe termination and recovery methods
US10403160B2 (en) 2014-12-24 2019-09-03 Space Data Corporation Techniques for intelligent balloon/airship launch and recovery window location
US10207802B2 (en) 2014-12-24 2019-02-19 Space Data Corporation Breaking apart a platform upon pending collision
US10696400B2 (en) 2014-12-24 2020-06-30 Space Data Corporation Breaking apart a platform upon pending collision
US10059421B2 (en) 2014-12-30 2018-08-28 Space Data Corporation Multifunctional balloon membrane
US10689084B2 (en) 2014-12-30 2020-06-23 Space Data Corporation Multifunctional balloon membrane

Similar Documents

Publication Publication Date Title
US2366423A (en) Radiosonde antenna system
US2598064A (en) Air-borne radio relaying system
US2151336A (en) Radio signaling apparatus
US2426218A (en) Instrument navigation system
US2130913A (en) System for the communication of intelligence
US2995740A (en) Radar system
US2462102A (en) Modulated reflecting-resonant target
US4115777A (en) Aircraft landing systems
GB489775A (en) Improvements in or relating to antenna systems
US2712604A (en) Antenna assembly with de-icing means
US2134126A (en) Aircraft landing system
US3160879A (en) Object locating system
US1799576A (en) Method of emitting radio signals
US2912693A (en) Omnidirectional beacon antenna
US2006918A (en) System for landing aircraft
GB995396A (en) Logarithmic periodic antenna
US2402378A (en) Radio beacon system
US2979719A (en) Omnidirectional beacon antenna
US1904773A (en) Radio ground
GB438804A (en) Directional radio transmitting arrangements particularly applicable for determining bearings
GB926599A (en) Improvements in or relating to aerials
US2439663A (en) System for navigating aircraft
US2800658A (en) Triple-tilt antenna
Curtiss et al. A Practical System for Radiometeorography
US2260273A (en) Method and system for landing aircraft