US2239770A - Electrically conductive device and the manufacture thereof - Google Patents
Electrically conductive device and the manufacture thereof Download PDFInfo
- Publication number
- US2239770A US2239770A US16771437A US2239770A US 2239770 A US2239770 A US 2239770A US 16771437 A US16771437 A US 16771437A US 2239770 A US2239770 A US 2239770A
- Authority
- US
- United States
- Prior art keywords
- metal
- oxide
- semi
- contact
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 7
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 239000004065 semiconductor Substances 0.000 description 19
- 230000008016 vaporization Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- 238000005422 blasting Methods 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229940112669 cuprous oxide Drugs 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052949 galena Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- -1 silver and copper Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 108010063955 thrombin receptor peptide (42-47) Proteins 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
- H01C1/142—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/01—Manufacture or treatment
- H10D48/04—Manufacture or treatment of devices having bodies comprising selenium or tellurium in uncombined form
- H10D48/047—Application of an electrode to the exposed surface of the selenium or tellurium after the selenium or tellurium has been applied to foundation plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/01—Manufacture or treatment
- H10D48/07—Manufacture or treatment of devices having bodies comprising cuprous oxide [Cu2O] or cuprous iodide [CuI]
- H10D48/071—Preparation of the foundation plate, preliminary treatment oxidation of the foundation plate or reduction treatment
- H10D48/076—Application of a non-genetic conductive layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
Definitions
- This invention relates to electrically conductive devices and to the manufacture thereof. More particularly, it relates to rectifier units of the dry contact type and to methods offabricating such units.
- Rectifier units of this type of which the copper-copper oxide rectifier is illustrative, comprise generally an electrical conductor and a semi-conductor intimately Joined to each other. During use of such units, electrical connection must be established, of course, to both the conductor and semi-conductor. The nature of the connection to the semi-conductor, it has been found, materialiy affects the impedance and rectifying characteristics of the unit.
- One object of this invention is to establish an efficient, low resistance and substantially nonre'ctifying junction between a conductor and a semi-conductor.
- Another object of this invention is to obtain a junction between a conductor and a semi-conductor which will have substantially constant electrical characteristics throughout an extended period.
- a further object of this invention is to assure uniformity of electrical characteristics among a plurality of similar rectifierunits.
- Another object of this invention is to obtain a high rectification ratio in dry contact rectifiers.
- Still another object of this invention is to expedite and to simplify the manufacture of composite electrically conductive devices, such as dry contact rectifiers, in quantity and at relatively.
- a rectifier comprises a disc of conductive material, such for example as copper, a disc or layer of semi-conductive material, for example cuprous oxide, intimately Joined to the conductive disc. and a low resistance contact material intimately Joined to the semi-conductive disc or layer.
- a restricted portion of the semi-conductive element is subjected to an abrasive or other treatment to remove any insulating film thereon and to form a roughened surface to which contact material will adhere and thereafter a relatively large area con-tact element is formed upon this portion and homogeneously united thereto.
- the contact material is formed upon the semi-conductive element by vaporization of the material in vacuo and deposition thereof upon the previously treated and-roughened portion of the semi-conductive element.
- Fig. 1 is a view partly in perspective and partly diagrammatic of apparatus which may be utilized for the deposition of the contact material upon the semi-conductive element of the rectifier unit, a portion of the housing being broken away to show the internal elements more clearly;
- Fig. 2 is a plan view, with parts broken away, of a mask for mounting rectifier units during the processing of the semi-oonductiveelementand the formation of the contacts thereon;
- Figs. 3 and 4 are enlarged sectional views showing details of the mask illustrated in Fig. 2, Fig. 4 showing also a rectifier uni-t mounted upon the mask; and
- Fig. 5 is a perspective view partly in section of a typical rectifier unit constructed in accordance with this invention, the elements thereof being exaggerated as to thickness for the sake of clarity.
- one surface of the conductive elements which may be, for example, copper discs, are first oxidized by a suitable process.
- the black oxide is removed by chemical or other suitable means.
- the metal-metal oxide units are then placed in a mask and the exposed surface thereof air-blasted with a fine abrasive, such as 200 mesh silicon carbide.
- a fine abrasive such as 200 mesh silicon carbide.
- Other suitable abrasives such as steel grit or sand of the proper size may be used.
- the mask is such that the edges of the units are protected from the blasting 'and roughened also particles.
- a mask such as that shown inFigs. 2, 3 and 4 of the drawings may be used.
- This mask designated generally as 80, comprises a plate 8! having screw holes 32 therein and a perforated plate 33 which is secured to the first plate as by screws 34.
- Each perforation in the plate 33 has a portion 35 of a diameter and depth to receive a metal-metal oxide unit 50. one ofwhich is shown in Fig. 4 and another portion 35 of the diameter of the area to be coated with the contact metal.
- a sheet of resilient material 31 having struck up spring portions. 3% is clamped between the plates SI and 38 so that a portion 38 is opposite each perforation.
- the units to be processed are inserted in the plate 33 and the sheet 31 is clamped over them by means of plate 3
- Each spring portion 38 holds the corresponding unit firmly against a shoulder so that there will be no processing of the marginal portion of the units.
- the air pressure during the blasting is much less than that ordinarily used in commercial sandblasting.
- the air pressure is of the order of forty pounds'per square inch, whereas pressures of less than half this are successful in the present process.
- the surface of the oxide may be mechanically worked by rubbing with an abrasive, such as sandpaper or by similar methods.
- the surface may be cleaned by chemical methods. For example, the red oxide surface of a copper-copper oxide unit may be chemically etched. Care must be taken in any event to avoid injury of the oxide layer and particularly the metal-metal oxide junction.
- a vaporizing apparatus may take the form shown in Fig. 1 in which I is a heavy metal base plate mounted on a suitable support.
- a bell Jar 2 is fitted to the plat with an airtight joint, which may be obtained by known means.
- a plurality of insulated supports 3 project through the base plate I and are suitably sealed therein. These supports also act as conductors through which a heating current may be supplied to metal-holders 4, which are attached to the supports 3 and carry the metal to be vaporized.
- the carriers 4 may be'molybdenum, tungsten or tantalum wires coated with the metal to be vaporized, or may be boats or troughs of the same materials containing the metal.
- the mask 30 is supported on the insulating tips In of the supports 3 with the exposed portion of the metal-metal oxide units toward the vaporizing means.
- the spacing between the mask 3 and the members 4 should be such that the units are not heated above 100 degrees to 150 degrees centigrade.
- the thickness of the film of metal deposited on the unit depends upon the amount i of metal supplied at the vaporizing means and metal-holders 4.
- Suitable pump means are connected to the pipe 5 through a liquid air trap. After the pump means has reduced the pressure toa low value, liquid air is introduced into the bulb or trap 6 inside the bell jar 2. This results in a further reduction of pressure.
- a particularly suitable pressure to be attained is of the order of 2x10 millimeters of mercury. Satisfactory contacts may be made, however. with a pressure ten times higher than this, but preferably the pressure is maintained below 1x 10- millimeters of mercury.
- the pressure in the chamber is measured by an ionization gauge.
- This comprises a device 1 having a plurality of electrodes mounted in the chamber and connected with suitable sources of current, voltage and indicating devices by leads II.
- the device I may comprise the usual internal elements of a triode vacuum tube.
- the metal is vaporized onto the units 50 by the passage of sufficient heating current through the The current is introduced through leading-in conductors I2 from a suitable source (not shown).
- the current to the members 4 is shut off and the parts allowed to cool. After cooling, dry air is introduced through the pipe 8 which is normally closed by the valve 9. The mask is then taken out of the chamber. The units are removed from the mask and are ready to be tested and used.
- the thickness of the metal film deposited be such that the electrical resistance in the direction parallel to the oxide surface is very low. Thisshould be of the order of .1 to .01 of an ohm between two electrodes, one centimeter wide and spaced one centimeter apart. With such low resistance contact need be made to this metal film at only a few points, and hence only small pressures need be used in assembling or mounting the units. Metal films whose thickness is about 10- centimeters or about .1 mil are satisfactory. For some uses, thinner films will be adequate.
- the contact resistance between the metal and the oxide preferably should be about .5 ohm per square centimeter or less.
- the contact resistance per unit area attained is less than one-five hundredth of the specific resistance of the semiconductor.
- crucible which may beheated by electron bombardment, by high frequency induction, or by some other suitablemeans.
- the method of applying a metallic contact layer to the semi-conductor surface of a rectifier unit which comprises placing the unit in a mask which covers a small portion of the unit adjacent its edge, subjecting the exposed portion of the surface of the semi-conductor to a blast of silicon carbide, at a low blasting pressure, placing the mask and unit in a chamber, evacuating the chamber to a high degree, and depositing a metallic layer on the exposed portion.
- The. method of applying a silver contact to the cuprous oxide layer of a copper-cuprous oxide rectifier unit which comprises placing the umt in a mask for protecting the oxide surface adjacent the edge from further processing, cleaningthe exposed surface of oxide to remove any insulating film by applying a blast of silicon carbide at a pressure of about 20 pounds per square inch to it, maintaining the cleanliness of said surface and transferring the mask and unit to a vaporizing chamber containing a metal-carrier loaded with silver, placing" the mask in the chamber so that the oxide surface of the unit is toward the metal-carrier and spaced therefrom a distance such that the unit will not attain a temperature higher than degrees centigrade durlng vaporization, evacuating the chamber first by pumping and then by the introduction of liquid air into a trap in the chamber. to remove the vapors or gases that might form an insulating r film on the oxide surface, the final pressure being in the order of 2x 10- millimeters of mercury,
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Thermistors And Varistors (AREA)
- Rectifiers (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL67096D NL67096C (en:Method) | 1937-10-07 | ||
BE430527D BE430527A (en:Method) | 1937-10-07 | ||
US16771437 US2239770A (en) | 1937-10-07 | 1937-10-07 | Electrically conductive device and the manufacture thereof |
FR844390D FR844390A (fr) | 1937-10-07 | 1938-10-06 | Dispositifs à conductibilité asymétrique et procédés de fabrication |
GB29129/38A GB519987A (en) | 1937-10-07 | 1938-10-07 | Improvements in dry-contact electric rectifiers and in the manufacture thereof |
CH209023D CH209023A (de) | 1937-10-07 | 1938-10-07 | Verfahren zur Herstellung eines Kontaktes an Gleichrichterplatten und nach dem Verfahren hergestellter Anschlusskontakt. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16771437 US2239770A (en) | 1937-10-07 | 1937-10-07 | Electrically conductive device and the manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US2239770A true US2239770A (en) | 1941-04-29 |
Family
ID=22608507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16771437 Expired - Lifetime US2239770A (en) | 1937-10-07 | 1937-10-07 | Electrically conductive device and the manufacture thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US2239770A (en:Method) |
BE (1) | BE430527A (en:Method) |
CH (1) | CH209023A (en:Method) |
FR (1) | FR844390A (en:Method) |
GB (1) | GB519987A (en:Method) |
NL (1) | NL67096C (en:Method) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2453582A (en) * | 1944-06-09 | 1948-11-09 | Libbey Owens Ford Glass Co | Apparatus for making pattern mirrors and other coatings |
US2453801A (en) * | 1944-07-27 | 1948-11-16 | Honeywell Regulator Co | Method and apparatus for coating by thermal evaporation |
US2463906A (en) * | 1944-04-20 | 1949-03-08 | American Optical Corp | Apparatus and method for making optical devices |
US2496721A (en) * | 1945-10-19 | 1950-02-07 | Westinghouse Electric Corp | Rectifier |
US2521687A (en) * | 1947-07-23 | 1950-09-12 | Standard Telephones Cables Ltd | Electroforming apparatus |
US2545606A (en) * | 1946-01-07 | 1951-03-20 | Burris B Cunningham | Method of coating with plutonium acetylacetonate and coated product |
US2547951A (en) * | 1945-02-08 | 1951-04-10 | Levin Irvin | Rectifier |
US2634322A (en) * | 1949-07-16 | 1953-04-07 | Rca Corp | Contact for semiconductor devices |
US2671156A (en) * | 1950-10-19 | 1954-03-02 | Hazeltine Research Inc | Method of producing electrical crystal-contact devices |
US2719097A (en) * | 1949-05-07 | 1955-09-27 | Alois Vogt | Method for the production of thin continuous surface layers of precious metals |
US2969296A (en) * | 1958-12-08 | 1961-01-24 | Bell Telephone Labor Inc | Thermal expansion fixture for spacing vaporized contacts on semiconductor devices |
US2996410A (en) * | 1957-11-25 | 1961-08-15 | Nat Steel Corp | Coating |
US3000346A (en) * | 1958-11-05 | 1961-09-19 | Nat Steel Corp | Vacuum coating apparatus |
US3276423A (en) * | 1963-10-04 | 1966-10-04 | David P Triller | Pattern mask for use in making thin film circuitry |
US3516386A (en) * | 1965-07-16 | 1970-06-23 | Boeing Co | Thin film deposition fixture |
US3617348A (en) * | 1969-10-15 | 1971-11-02 | Motorola Inc | Method and apparatus for the evaporation of chromium-silver |
US3678892A (en) * | 1970-05-19 | 1972-07-25 | Western Electric Co | Pallet and mask for substrates |
US5306345A (en) * | 1992-08-25 | 1994-04-26 | Particle Solutions | Deposition chamber for deposition of particles on semiconductor wafers |
-
0
- BE BE430527D patent/BE430527A/xx unknown
- NL NL67096D patent/NL67096C/xx active
-
1937
- 1937-10-07 US US16771437 patent/US2239770A/en not_active Expired - Lifetime
-
1938
- 1938-10-06 FR FR844390D patent/FR844390A/fr not_active Expired
- 1938-10-07 GB GB29129/38A patent/GB519987A/en not_active Expired
- 1938-10-07 CH CH209023D patent/CH209023A/de unknown
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2463906A (en) * | 1944-04-20 | 1949-03-08 | American Optical Corp | Apparatus and method for making optical devices |
US2453582A (en) * | 1944-06-09 | 1948-11-09 | Libbey Owens Ford Glass Co | Apparatus for making pattern mirrors and other coatings |
US2453801A (en) * | 1944-07-27 | 1948-11-16 | Honeywell Regulator Co | Method and apparatus for coating by thermal evaporation |
US2547951A (en) * | 1945-02-08 | 1951-04-10 | Levin Irvin | Rectifier |
US2496721A (en) * | 1945-10-19 | 1950-02-07 | Westinghouse Electric Corp | Rectifier |
US2545606A (en) * | 1946-01-07 | 1951-03-20 | Burris B Cunningham | Method of coating with plutonium acetylacetonate and coated product |
US2521687A (en) * | 1947-07-23 | 1950-09-12 | Standard Telephones Cables Ltd | Electroforming apparatus |
US2719097A (en) * | 1949-05-07 | 1955-09-27 | Alois Vogt | Method for the production of thin continuous surface layers of precious metals |
US2634322A (en) * | 1949-07-16 | 1953-04-07 | Rca Corp | Contact for semiconductor devices |
US2671156A (en) * | 1950-10-19 | 1954-03-02 | Hazeltine Research Inc | Method of producing electrical crystal-contact devices |
US2996410A (en) * | 1957-11-25 | 1961-08-15 | Nat Steel Corp | Coating |
US3000346A (en) * | 1958-11-05 | 1961-09-19 | Nat Steel Corp | Vacuum coating apparatus |
US2969296A (en) * | 1958-12-08 | 1961-01-24 | Bell Telephone Labor Inc | Thermal expansion fixture for spacing vaporized contacts on semiconductor devices |
US3276423A (en) * | 1963-10-04 | 1966-10-04 | David P Triller | Pattern mask for use in making thin film circuitry |
US3516386A (en) * | 1965-07-16 | 1970-06-23 | Boeing Co | Thin film deposition fixture |
US3617348A (en) * | 1969-10-15 | 1971-11-02 | Motorola Inc | Method and apparatus for the evaporation of chromium-silver |
US3678892A (en) * | 1970-05-19 | 1972-07-25 | Western Electric Co | Pallet and mask for substrates |
US5306345A (en) * | 1992-08-25 | 1994-04-26 | Particle Solutions | Deposition chamber for deposition of particles on semiconductor wafers |
Also Published As
Publication number | Publication date |
---|---|
GB519987A (en) | 1940-04-11 |
CH209023A (de) | 1940-03-15 |
BE430527A (en:Method) | |
FR844390A (fr) | 1939-07-24 |
NL67096C (en:Method) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2239770A (en) | Electrically conductive device and the manufacture thereof | |
US4384918A (en) | Method and apparatus for dry etching and electrostatic chucking device used therein | |
KR910002451B1 (ko) | 온도제어가능 진공처리장치 | |
JPH01251735A (ja) | 静電チャック装置 | |
JPH0697676B2 (ja) | ウエハサセプタ装置 | |
US3641402A (en) | Semiconductor device with beta tantalum-gold composite conductor metallurgy | |
US2438110A (en) | Electrical translating materials and devices and method of making them | |
US3074145A (en) | Semiconductor devices and method of manufacture | |
US3642548A (en) | Method of producing integrated circuits | |
US3200468A (en) | Method and means for contacting and mounting semiconductor devices | |
US3437888A (en) | Method of providing electrical contacts by sputtering a film of gold on a layer of sputtered molybdenum | |
US3507248A (en) | Vacuum evaporation coating apparatus including means for precleaning substrates by ion bombardment | |
US2488369A (en) | Selenium rectifier | |
CN205723449U (zh) | 覆盖环以及物理气相沉积系统 | |
US2608611A (en) | Selenium rectifier including tellurium and method of making it | |
US3204161A (en) | Thin film signal translating device utilizing emitter comprising: cds film, insulating layer, and means for applying potential thereacross | |
US6214413B1 (en) | Method and apparatus for fabricating a wafer spacing mask on a substrate support chuck | |
JPS6247130A (ja) | 反応性イオンエツチング装置 | |
US2215999A (en) | Selenium rectifier having an insulating layer | |
US3492719A (en) | Evaporated metal contacts for the fabrication of silicon carbide devices | |
US2356094A (en) | Method of treating selenium elements | |
US3490142A (en) | Method of making high temperature electrical contacts for silicon devices | |
US3764511A (en) | Moated substrate holding pedestal | |
GB1018811A (en) | A semi-conductor device | |
US3670214A (en) | Voltage-dependent resistors |