US2233726A - Method of treating low carbon open hearth steel - Google Patents

Method of treating low carbon open hearth steel Download PDF

Info

Publication number
US2233726A
US2233726A US339195A US33919540A US2233726A US 2233726 A US2233726 A US 2233726A US 339195 A US339195 A US 339195A US 33919540 A US33919540 A US 33919540A US 2233726 A US2233726 A US 2233726A
Authority
US
United States
Prior art keywords
steel
low carbon
open hearth
aluminum
treating low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US339195A
Inventor
Belding Harvey Ross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US339195A priority Critical patent/US2233726A/en
Application granted granted Critical
Publication of US2233726A publication Critical patent/US2233726A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/04Manufacture of hearth-furnace steel, e.g. Siemens-Martin steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

Patented Mar. 4,1941
PATENT OFFICE METHOD OF TREATING LOW cannon OPEN nmn'rn s'rnm.
Harvey Ross Belding, Sharon, Pa.
No Drawing.
Application June. 6, 1940,
Serial No. 339,195
2 Claims.
This invention relates to low carbon open hearth steel and more particularly to the deoxidation or degasification thereof.
In the making of those special grades of low 6 carbon open hearth steel containing unreacted or alloyed aluminum in excess of the amount required to fully deoxidize (that is, to fully kill or degasify) the steel, much difiiculty has heretofore been encountered in securing a substan- 10 tially complete removal, from the steel of the reaction products of the deoxidizing agents used. The effect of these entrapped reaction products has been to impair the cleanliness, and therefore the surface perfection and physical prop- 5 erties, of the products'made from these special grades of low carbon open hearth steel.
The problem of securing adequate cleanliness in medium and high carbon steel (higher than 0.15% carbon) has not been so diflicult as in the case of low carbon steels,'due to the smaller amounts of oxygen present in the former steels, and therefore the smaller amounts of deoxidation products formed. When the steels contain less than 0.06% carbon, the difficulties have been very great.
It will be understood that the present invention is not concerned with the common and widely used grades of steel known as "semikilled, and also all those special grades of fully killed low carbon steel wherein the presence of an excess of unreacted or alloyed aluminum is not an essential requirement.
Heretofore, the complete deoxidizing of these special grades of low carbon open hearth steel containing excess aluminum, has, so far as I am aware, been performed by adding the required amount of aluminum, with or without otherneoxidizing agents, to the furnace, runner or ladle, to the exclusion of the molds.
I have discovered that the difllculty encountered in securing a substantially complete removal of reaction products from the steel can be overcome if the steel is deoxidized by adding the deoxidizing agent or agents in two por- 45 tions, separated by the longest practicable time interval, rather than by making the deoxidizing addition wholly at any one time as in prior art practice, with the further provision that the first addition must be so adjusted in amount as 50 to leave a very substantial proportion of the iron oxide, originally in the steel, in an unreacted state. This first addition may consist of any usual deoxidizlng agent or agents. Provided further that this second addition, in addition to other deoxidizing agents if desired, must contain an amount of aluminum sufficient in itself to react with all of the iron oxide still remaining in the steel after the first addition, and also leave an excess of aluminum in an unreacted or alloyed condition in the steel. 5 The longest practicable time interval between the two additions is secured by making the second addition invariably in the molds, the first addition being optionally in the furnace just before tapping or in the runner during tapping, or 10 in the ladle during tapping, thus taking'advantage of the comparatively long interval between tapping and the pouring of the ingots.
The following is a full and complete description of the method'of the present invention: 15 (a) A heat of low carbon steel is made in the usual way in the open hearth furnace.
b) To the heat, before or while tapping into the ladle, one or more deoxidizers are added,
which may be aluminum, ferro-silicon, titanium, 20 or other usual and effective deoxidizing agents, singly or in any suitable combinations, but in total amount substantially less than is required to combine with all the oxygen contained in the steel. I prefer to limit these additions to between 25 50% and 75% of the total amount needed to fully deoxidize the steel. I usually prefer to make these additions to the runner or ladle rather than in the furnace, although this is optional. (c) To the ingot molds, while the heat is being teemed thereinto, I then add enough additional aluminum, with or without other deoxidizers, to fully deoxidize the steel, and leave an excess in the unreacted or alloyed condition.
(d) The ingots are then further processed in the usual manner into any desired product.
While I have found that the greatest benefits of my process are secured when not less than 50% or more than 75% of the total amount of 40 deoxidizer or deoxidizers required to react with the aluminum is added to the furnace, runner or ladle, and the remainder, in the form of aluminum, added to the molds, a portion of the benefits of my process can be obtained when not less than 35% or more than 90% of the total amount of deoxidizer or deoxidizers required isadded to the furnace, runner or ladle.
For the purposes of illustration, the following detailed example is submitted:
In a basic open hearth furnace,.'75,000 lbs. of
scrap, 136,000 lbs. of molten pig iron, 15,000 lbs. of raw limestone, and 22,800 lbs. of ore are charged. The heat is worked down with ore in the usual manner. There are added 925 lbs. of
being teemed. Such a heat might analyze as follows:
Per cent Carbon ,09 Manganese .42 Phosphorous .081' Sulphur .026 Silicon .00.?
It will be understood that, except for the carbon limitations, the analysis of the iron or steel is immaterial.
The ingots are then heated, rolled, and further processed in the usual manner.
The following advantages are obtained by practicing the method of the present invention:
(A) The steel is much cleaner, that is, much freer from injurious nonmetallic inclusions, than similar steel produced by any other method of complete deoxidation now known to me.
(B) The steel when cast in ordinary big-enddown, non-hot-topped molds, gives a rolled product substantially free from "pipe" or "pipe laminations. This appears to be due, not to the absence of the usual upper central shrinkage cavity in the ingots, but to the fact that the pipe cavity is clean, or free from injurious nonmetallie inclusions, and thus welds during rolling.
of deoxidation which includes adding to the said 7 steel prior to its introduction to the ingot molds substantially less deoxidizer than is required for complete deoxidation, and then adding to the steel while it is being teemed into the ingot molds a greater amount of aluminum than is required for complete deoxidation, whereby the steel contains alloyed aluminum.
2. In the making of low carbon open hearth steel of not more than 0.15% carbon, the method of deoxidation which includes adding to the said steel prior to its introduction to the ingot molds substantially less deoxidizer than is required for complete deoxidation, and then adding to the steel while it is being teemed into the ingot molds a greater amount of aluminum than is required for complete deoxidation, whereby the steel contains alloyed aluminum, the first addition of deoxidizer being between 35% and of that amount required for complete deoxidation.
HARVEY ROSS BELDING.
US339195A 1940-06-06 1940-06-06 Method of treating low carbon open hearth steel Expired - Lifetime US2233726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US339195A US2233726A (en) 1940-06-06 1940-06-06 Method of treating low carbon open hearth steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US339195A US2233726A (en) 1940-06-06 1940-06-06 Method of treating low carbon open hearth steel

Publications (1)

Publication Number Publication Date
US2233726A true US2233726A (en) 1941-03-04

Family

ID=23327923

Family Applications (1)

Application Number Title Priority Date Filing Date
US339195A Expired - Lifetime US2233726A (en) 1940-06-06 1940-06-06 Method of treating low carbon open hearth steel

Country Status (1)

Country Link
US (1) US2233726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840872A (en) * 1952-01-14 1958-07-01 Sharon Steel Corp Method of economically introducing zirconium into steel
US3767387A (en) * 1967-10-05 1973-10-23 Nippon Kokan Kk High tensile strength steel having excellent press shapability
US3769004A (en) * 1971-05-10 1973-10-30 Iverson J Method of producing a killed steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840872A (en) * 1952-01-14 1958-07-01 Sharon Steel Corp Method of economically introducing zirconium into steel
US3767387A (en) * 1967-10-05 1973-10-23 Nippon Kokan Kk High tensile strength steel having excellent press shapability
US3769004A (en) * 1971-05-10 1973-10-30 Iverson J Method of producing a killed steel

Similar Documents

Publication Publication Date Title
US2283299A (en) Manufacture of steel
US2233726A (en) Method of treating low carbon open hearth steel
US1727180A (en) Vanadium-aluminum-silicon alloy
US2218458A (en) Making of seamless steel tubes
US4014683A (en) Method of making Drawing Quality steel
US2853768A (en) Overhead conductor
US1727088A (en) Method of making rimming steel
US2850373A (en) High-carbon rimmed steel and method of making it
US2715064A (en) Method of producing silicon steel
US4741772A (en) Si contained ferroalloy addition as a weak pre-deoxidation process in steelmaking
US2207109A (en) Manufacture of steel
SU403765A1 (en) ALL-UNION. Cl. C 21c 7/06 UDK 669.183 (088.8)
SU446554A1 (en) Method for the production of ageless mild electrical steel
US2771356A (en) Method of deoxidizing semi-killed steel
US3414041A (en) Method of making rimmed steel
GB944124A (en) Iron-chromium-aluminium alloy
US3518079A (en) Production of rimmed steels
US1545690A (en) Method of deoxidizing open-hearth-steel baths
SU392106A1 (en) METHOD OF GETTING STEEL INGOTS
US1223030A (en) Manufacture of steel.
US1915400A (en) Preparation of alloy steels
GB1041188A (en) Method of producing rimmed steel
SU438717A1 (en) Smelting method of low-carbon electrical steel
US1897017A (en) Process of making low-carbon chromium alloys
SU448233A1 (en) The method of alloying steel with vanadium