US20230288455A1 - Current measurement circuit, current measurement method and nanopore sequencing device - Google Patents

Current measurement circuit, current measurement method and nanopore sequencing device Download PDF

Info

Publication number
US20230288455A1
US20230288455A1 US18/198,460 US202318198460A US2023288455A1 US 20230288455 A1 US20230288455 A1 US 20230288455A1 US 202318198460 A US202318198460 A US 202318198460A US 2023288455 A1 US2023288455 A1 US 2023288455A1
Authority
US
United States
Prior art keywords
unit
pulse signal
current
target
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US18/198,460
Other versions
US11768231B1 (en
Inventor
Qiang E
Jin Wang
Xi Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Qitan Technology Ltd
Original Assignee
Chengdu Qitan Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Qitan Technology Ltd filed Critical Chengdu Qitan Technology Ltd
Assigned to QITAN TECHNOLOGY LTD., CHENGDU reassignment QITAN TECHNOLOGY LTD., CHENGDU ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, JIN, E, Qiang, HU, XI
Publication of US20230288455A1 publication Critical patent/US20230288455A1/en
Application granted granted Critical
Publication of US11768231B1 publication Critical patent/US11768231B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/08Circuits for altering the measuring range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16504Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/002Switches for altering the measuring range or for multitesters

Definitions

  • the present application relates to the technical field of nanopore sequencing, and in particular, to a current measurement circuit, a current measurement method and a nanopore sequencing device.
  • Nanopore gene sequencing is to determine a gene sequence passing through a thin film nanopore by measuring a current signal flowing through the thin film nanopore.
  • a current signal flowing through the thin film nanopore since the current value is very small (usually tens to hundreds of picoamperes, sometimes up to thousands of picoamperes), it is necessary to use an amplifier circuit for measurement, usually using a capacitive trans impedance amplifier (CTIA) circuit for measurement.
  • CTIA capacitive trans impedance amplifier
  • the capacitive trans impedance amplifier circuit converts the current signal into a voltage signal during measurement and amplifies the voltage signal.
  • An analog to digital conversion unit (ADC) is used to sample the amplified voltage signal to obtain a measurement result.
  • ADC analog to digital conversion unit
  • the capacitive trans impedance amplifier circuit has infinite gain, and a capacitor needs to be discharged periodically. During the periodical discharge operation, an instantaneous current formed by the discharging may interfere with an adjacent extremely weak measured current signal, which affects a final accuracy of current measurement.
  • Embodiments of the present application provide a current measurement circuit, a current measurement method and a nanopore sequencing device.
  • the embodiments of the present application provide a current measurement circuit, including: an amplification unit, electrically connected to a sensor unit and configured to amplify an electrical signal from the sensor unit; a comparison unit, electrically connected to the amplification unit and configured to: output a high level under a condition that a voltage signal output by the amplification unit is greater than a preset voltage, and output a low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain an initial pulse signal; a delay unit, electrically connected to the comparison unit and configured to delay an output of the initial pulse signal to obtain a target pulse signal; a resistance unit, wherein two terminals of the resistance unit are electrically connected to an input terminal of the amplification unit and an output terminal of the delay unit respectively, and the resistance unit is configured to feed back charging and discharging currents to the amplification unit based on the target pulse signal; and a calculation unit, electrically connected to the delay unit and configured to calculate a target current
  • the embodiments of the present application provide a current measurement method realized by the current measurement circuit of the first aspect, including: amplifying, by the amplification unit, the electrical signal from the sensor unit; outputting, by the comparison unit, the high level under a condition that the voltage signal output by the amplification unit is greater than the preset voltage and the low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain the initial pulse signal; delaying, by the delay unit, the output of the initial pulse signal to obtain the target pulse signal; feeding back, by the resistance unit, the charging and discharging currents to the amplification unit based on the target pulse signal; and calculating, by the calculation unit, the target current based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit.
  • the embodiments of the present application provide a nanopore sequencing device, including the current measurement circuit of the first aspect.
  • FIG. 1 is a schematic structural diagram of a current measurement circuit according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a current measurement circuit according to an embodiment of the present application.
  • FIG. 3 is a timing waveform diagram of voltages and currents of various nodes according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an adjustable delay unit according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another adjustable delay unit according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a resistance unit according to an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a current measurement method according to an embodiment of the present application.
  • CTIA capacitive trans impedance amplifier
  • the embodiments of the present application provide a current measurement circuit, a current measurement method, and a nanopore sequencing device.
  • the current measurement circuit according to the embodiments of the present application will be firstly introduced below.
  • FIG. 1 illustrates a schematic structural diagram of a current measurement circuit according to an embodiment of the present application.
  • the current measurement circuit includes: an amplification unit 120 , electrically connected to a sensor unit 110 and configured to amplify an electrical signal from the sensor unit 110 ; a comparison unit 130 , electrically connected to the amplification unit 120 and configured to: output a high level under a condition that a voltage signal output by the amplification unit 120 is greater than a preset voltage, and output a low level under a condition that the voltage signal output by the amplification unit 120 is less than the preset voltage, to obtain an initial pulse signal; a delay unit 140 , electrically connected to the comparison unit 130 and configured to delay an output of the initial pulse signal to obtain a target pulse signal; a resistance unit 150 , wherein two terminals of the resistance unit 150 are electrically connected to an input terminal of the amplification unit 120 and an output terminal of the delay unit 140 respectively, and the resistance unit 150 is configured to feed back charging and discharging current
  • an equivalent resistance and a parasitic equivalent parallel capacitance of a thin film nanopore included in the sensor unit 110 are connected in parallel, one terminal of the sensor unit 110 is connected to the ground, and the other terminal of the sensor unit 110 is connected to the amplification unit 120 .
  • the target current is output to the subsequent amplification unit 120 through the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore.
  • the input terminal of the amplification unit 120 is electrically connected to the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore, and the amplification unit 120 may be configured to amplify the electrical signal of an electrical connection point between the amplification unit 120 and the sensor unit 110 via the target current, so as to output the amplified signal to the subsequent comparison unit 130 , wherein the amplification unit is an integral amplification circuit.
  • an input terminal of the comparison unit 130 is electrically connected to an output terminal of the amplification unit 120 , and the comparison unit 130 is configured to: output the high level under a condition that the voltage signal output by the amplification unit 120 is greater than the preset voltage, and output the low level under a condition that the voltage signal output by the amplification unit 120 is less than the preset voltage, to obtain the initial pulse signal for output to the subsequent delay unit 140 .
  • an input terminal of the delay unit 140 is electrically connected to the output terminal of the comparison unit 130 , and the delay unit 140 may be configured to delay the output of the initial pulse signal output by the comparison unit 130 , to obtain the target pulse signal for output to the subsequent computing unit 160 .
  • the two terminals of the resistance unit 150 are electrically connected to the input terminal of the amplification unit 120 and the output terminal of the delay unit 140 respectively.
  • a current direction of a loop where the resistance unit 150 is located is from the output terminal of the delay unit 140 to the input terminal of the amplification unit 120 (see a direction indicated by an arrow I 1 in FIG. 2 ).
  • the current direction of the loop where the resistance unit 150 is located is from the input terminal of the amplification unit 120 to the output terminal of the delay unit 140 (see a direction indicated by an arrow 12 in FIG. 2 ).
  • an input terminal of the calculation unit 160 is electrically connected to the output terminal of the delay unit 140 , and the calculation unit 160 is configured to calculate a value of the target current based on a pulse voltage generated by the target pulse signal output by the delay unit 140 .
  • one terminal of the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore is connected to the ground, the amplification unit amplifies the electrical signal across the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore via the target current, and the amplified voltage signal is output through the comparison unit and the delay unit to obtain the target pulse signal.
  • the output voltage signal is a high level of the pulse signal
  • discharging may be performed through the loop where the resistance unit is located.
  • the value of the target current is calculated based on the voltage pulse signal, which avoids an influence of instantaneous current generated when the capacitor is discharged periodically, thereby improving an accuracy of current measurement.
  • FIG. 2 illustrates a schematic structural diagram of a current measurement circuit according to a specific embodiment of the present application.
  • the amplification unit includes an operational amplifier U 1 and an integrating capacitor, wherein a non-inverting input terminal of the operational amplifier is configured to access an operating voltage Vbias 1 , an inverting input terminal of the operational amplifier is electrically connected to the sensor unit, and an output terminal of the operational amplifier is electrically connected to one terminal of the integrating capacitor and to the comparison unit, and the other terminal of the integrating capacitor is electrically connected to the inverting input terminal of the operational amplifier.
  • the operating voltage Vbias 1 accessed by the operational amplifier is an operating voltage of nanopore sequencing.
  • the integrating capacitor includes n capacitors connected in parallel, and the amplification unit further includes n first switches, each of the first switches is connected in series with a capacitor, wherein n is an integer greater than or equal to 2, capacitance values of the n capacitors are different.
  • the integrating capacitor connected to the operational amplifier includes a plurality of parallel capacitors C 1 , C 2 , . . . , Cn, and each of the parallel capacitors is connected in series with one of the first switchs SW 1 , SW 2 , . . . , SWn.
  • the sensor unit includes a thin film nanopore equivalent resistance Rel and a thin film nanopore parasitic equivalent parallel capacitance Cp 1 connected in parallel.
  • One terminal of the sensor unit is connected to the ground, and the other terminal of the sensor unit is electrically connected to the inverting input terminal of the operational amplifier U 1 .
  • the sensor unit is configured to generate a target current Is.
  • a voltage V ⁇ 2 of the inverting input terminal is equal to a voltage of the non-inverting input terminal, and both the voltages are Vbias 1 , therefore the target current Is flowing through the thin film nanopore equivalent resistance Rel and the thin film nanopore parasitic equivalent parallel capacitance Cp 1 is generated.
  • an insulating thin film with a nanoscale pore divides a liquid chamber into two small chambers, each of the two small chambers has an electrode, and two electrodes have different potentials.
  • ssDNA single-stranded DNA
  • a current between the electrodes will change in amplitude.
  • Rel is the equivalent resistance of the thin film nanopore
  • Cp 1 is the parasitic equivalent parallel capacitance of the thin film nanopore.
  • the present application is used to measure the current signal Is during gene sequencing.
  • the voltage V ⁇ 2 of the inverting input terminal of the operational amplifier U 1 is equal to a voltage of the non-inverting input terminal of the operational amplifier U 1 , and both the voltages are Vbias I.
  • Vbias 1 is the potential difference between the electrodes in the two small chambers when performing nanopore gene sequencing, namely, the operating voltage of nanopore sequencing.
  • the comparison unit includes a voltage comparator, an inverting input terminal of the voltage comparator is configured to access the preset voltage; a non-inverting input terminal of the voltage comparator is electrically connected to an output terminal of the amplification unit, and the voltage comparator is configured to: output the high level under a condition that the voltage signal received from the amplification unit is greater than the preset voltage, and output the low level under a condition that the voltage signal received from the amplification unit is less than the preset voltage, to obtain the initial pulse signal; an output terminal of the voltage comparator is electrically connected to an adjustable delay unit. As shown in FIG.
  • the voltage comparator U 2 is connected to a threshold voltage Vbias 2 , and compares a voltage V ⁇ 1 output by the amplification unit with the threshold voltage Vbias 2 . Under a condition that V ⁇ 1 is greater than Vbias 2 , a high level VH is output; under a condition that V ⁇ 1 is less than Vbias 2 , a low level VL is output, that is, the voltage comparator U 2 outputs an initial voltage pulse signal V ⁇ 3 whose high level is VH and low level is VL (see FIG. 3 ).
  • the embodiments of the present application does not limit the value of the preset voltage, high level, and low level, but the high level of the voltage comparator should be higher than the operating voltage and the low level of the voltage comparator should be lower than the operating voltage.
  • the delay unit includes the adjustable delay unit, an input terminal of the adjustable delay unit is electrically connected to the output terminal of the voltage comparator; an output terminal of the adjustable delay unit is electrically connected to the calculation unit, the adjustable delay unit is configured to delay the output of the initial pulse signal to obtain the target pulse signal.
  • the adjustable delay unit may be formed by cascading multiple voltage-controlled delay inverters. The adjustable delay unit U 3 delays and outputs the obtained initial voltage pulse signal V ⁇ 3 based on a preset time delay Td to obtain the target pulse signal Vo.
  • the resistance unit includes m resistors connected in parallel, where m is an integer greater than or equal to 2, and resistance values of the m resistors are different.
  • Current values of the charging current and the discharging current may be calculated through the output voltage of the delay unit and a resistor. Specifically, a ratio of the output voltage of the delay unit to a resistor in the resistance unit is a current of a loop where the resistor is located. Under a condition that the integrating capacitor is discharged, a direction of the current of the loop is a direction shown by I 1 in FIG.
  • a magnitude I 1 of the current of the loop is (VH-Vbias 1 )/Rn, Rn is any resistor selected from R 1 -Rm, and a magnitude of the discharging current provided to the integrating capacitor of the amplification unit is I 1 -Is; under a condition that the integrating capacitor is charged, the direction of the current of the loop is a direction shown by I 2 in FIG. 2 , a magnitude I 2 of the current of the loop is (Vbias 1 -VL)/Rn, Rn is any resistor selected from R 1 -Rm, and a magnitude of the charging current provided to the integrating capacitor of the amplification unit is I 2 +Is.
  • the resistance unit further includes m second switches, and each of the second switches is connected in series with a resistor.
  • the resistance unit includes m resistors R 1 , R 2 , . . . , Rm connected in parallel, and each of the resistors is connected in series with a switch T 1 , T 2 , . . . , Tm.
  • the calculation unit is electrically connected to the delay unit and is configured to calculate the target current based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit.
  • Calculating the target current based on the target pulse signal output by the delay unit includes: calculating, by the calculation unit, the target current based on a frequency and a duty cycle of the target pulse signal output by the delay unit; or performing, by the calculation unit, moving average calculation based on the target pulse signal output by the delay unit to obtain a value of the target current.
  • a charging or discharging speed of the integrating capacitor is much faster than a changing speed of the target current signal Is, that is, the target current signal Is remains relatively constant during one charging and discharging cycle of the integrating capacitor.
  • the calculation unit calculates the target current based on the duty cycle of the target voltage pulse signal output by the delay unit, a length of time T H for Vo to output a high level VH, and a length of time T L for Vo to output a low level VL during one charging and discharging cycle of the integrating capacitor is calculated based on the preset time delay Td of the delay unit:
  • T H I ⁇ 1 + I ⁇ 2 I ⁇ 1 - Is ⁇ Td
  • T L I ⁇ 1 + I ⁇ 2 I ⁇ 2 + Is ⁇ Td
  • I 1 is a current of a loop where the resistance unit is located when the integrating capacitor is discharged
  • I 2 is a current of the loop where the resistance unit is located when the integrating capacitor is charged.
  • the target current Is is calculated as:
  • the calculation unit is configured for performing moving average calculation based on the voltage pulse signal output by the delay unit, an average value of output voltages within a period of time window is obtained through calculation, and the target current is calculated based on the charging current value and the discharging current value.
  • the frequency and the duty cycle of the target pulse signal vary with a change of the target current.
  • varying of the frequency and duty cycle of the target pulse signal with a change of the target current includes: under a condition that the target current increases, an output waveform of the target pulse signal varies in a manner that: a low-level duty cycle becomes larger, and a high-level duty cycle becomes smaller.
  • varying of the frequency and duty cycle of the target pulse signal with a change of the target current further includes: under a condition that the target current decreases, the output waveform of the target pulse signal varies in a manner that: the low-level duty cycle becomes smaller, and the high-level duty cycle becomes larger.
  • the computing unit includes a Field Programmable Gate Array (FPGA), or a Micro Control Unit (MCU).
  • FPGA Field Programmable Gate Array
  • MCU Micro Control Unit
  • a process of calculating the target current based on the frequency and duty cycle of the voltage pulse signal output by the delay unit, or performing moving average calculation based on the voltage pulse signal output by the delay unit to obtain the value of the target current may be realized by the FPGA or MCU.
  • the sensor unit includes the equivalent resistance and the parasitic equivalent parallel capacitance of the thin film nanopore.
  • the target current is the current flowing through the thin film nanopore during nanopore gene sequencing.
  • the calculation unit includes a moving average filter U 4 .
  • the moving average filter U 4 may be replaced by other computing devices, and FIG. 2 is only an example.
  • the non-inverting input terminal of the operational amplifier U 1 is connected to the operating voltage Vbias 1
  • the charging and discharging currents input to the integrating capacitor connected to the inverting input terminal of the operational amplifier is obtained based on the target current Is generated by the sensor unit and a current flowing through the resistance unit I 1 /I 2 , wherein a voltage at the electrical connection point V ⁇ 2 of the inverting input is Vbias 1 .
  • the integrating capacitor integrates the two current signals to obtain a voltage signal V ⁇ 1, and the output terminal of the operational amplifier transmits the voltage signal V ⁇ 1 to the comparison unit.
  • the voltage comparator U 2 of the comparison unit compares the received voltage signal V ⁇ 1 with the threshold voltage Vbias 2 , and outputs the initial pulse signal V ⁇ 3 to the input terminal of the adjustable delay unit U 3 .
  • the adjustable delay unit U 3 outputs the target pulse signal Vo to the calculation unit U 4 after the received initial pulse signal V ⁇ 3 is delayed by the preset time delay Td. Based on a voltage difference between the target pulse signal Vo and the voltage Vbias 1 of the inverting input terminal of the operational amplifier U 1 , a corresponding current I 1 or I 2 passing through the resistance unit is generated.
  • the calculation unit U 4 calculates the target current Is based on the voltage pulse signal Vo.
  • a resistor with a relatively small resistance value is selected to provide relatively large charging and discharging currents I 1 , I 2 ; under a condition that the measured target current Is is relatively small, a resistor with a relatively large resistance value is selected to provide relatively small charging and discharging currents I 1 , I 2 .
  • the preset time delay may be increased; under a condition that the target current I s is relatively large, the preset time delay may be decreased.
  • a moving time window Ta can also be adjusted to adjust an accuracy of a current measurement result.
  • timing waveforms of voltages and currents of various nodes are shown in FIG. 3 .
  • the adjustable delay unit U 3 charges the integrating capacitor through the charging current I 2 , and the output voltage V ⁇ 1 of the amplification unit gradually increases.
  • the output voltage pulse signal Vo of the adjustable delay unit U 3 is reversed, and jumps from the low level VL to the high level VH.
  • the adjustable delay unit U 3 starts to discharge the integrating capacitor through the discharging current I 1 (I 1 >Is, which is a prerequisite for normal operation of a pulse width modulation current measurement circuit, that is, the nanopore sequencing current Is must be less than the discharging current I 1 ), and the voltage V ⁇ 1 output by the amplification unit gradually decreases.
  • the voltage comparator U 2 Under a condition that the voltage V ⁇ 1 output by the amplification unit drops below the threshold voltage Vbias 2 of the voltage comparator, the voltage comparator U 2 is reversed, and its output voltage pulse signal V ⁇ 3 jumps from the high level VH to the low level VL.
  • the output voltage pulse signal Vo of the adjustable delay unit U 3 jumps from the high level VH to the low level VL.
  • the charging current I 2 +Is of the integrating capacitor increases, a charging rate of the integrating capacitor accelerates, and a rising slope of V ⁇ 1 becomes larger; at the same time, the discharging current I 1 -Is of the integrating capacitor decreases, and a discharging rate of the integrating capacitor slows down, and a falling slope of V ⁇ 1 becomes smaller.
  • the output waveform of the pulse signal Vo varies in a manner that: the low-level VL duty cycle becomes smaller, and the high-level VH duty cycle becomes larger.
  • the charging current I 2 +Is of the integrating capacitor decreases, the charging rate of the integrating capacitor slows down, and the rising slope of V ⁇ 1 decreases; at the same time, the discharging current I 1 -Is of the integrating capacitor increases, and the discharging rate of the integrating capacitor becomes faster, and the falling slope of V ⁇ 1 becomes larger.
  • the output waveform of the pulse signal Vo varies in a manner that: the low-level VL duty cycle becomes larger, and the high-level VH duty cycle becomes smaller.
  • the pulse signal Vo is a pulse width modulation signal, and a change of its duty cycle can reflect a change of the target current Is as an analog signal.
  • Both I 1 and I 2 are of known current magnitudes, where I 1 is the current of the loop where the resistance unit is located when the integrating capacitor is discharged, and I 2 is the current of the loop where the resistance unit is located when the integrating capacitor is charged.
  • the nanopore sequencing current Is may be calculated. Specifically, when the calculation unit calculates the target current based on the duty cycle of Vo, the length of time T H for Vo to output the high level VH, and the length of time T L for Vo to output the low level VL during one charging and discharging cycle of the integrating capacitor is calculated based on the time delay Td.
  • the target current Is is calculated.
  • a current integrating circuit can be combined to amplify a weak current flowing through the thin film nanopore and convert it into a pulse width modulation signal, and a measurement result of the current signal is obtained by measuring the frequency and duty cycle of the pulse width modulation signal, or by performing moving average calculation on the pulse width modulation signal, which has characteristics of high gain and high linearity.
  • a problem of noise interference brought by the periodical discharging of the capacitor to an adjacent nanopore sequencing channel is solved, which increases a current measurement range.
  • the adjustable delay unit may be realized by cascading different numbers of delay inverters, as shown in FIG. 4 .
  • the adjustable delay unit is realized by setting different delay capacitance values, as shown in FIG. 5 .
  • the adjustable delay unit is realized by FPGA.
  • measurement of the frequency and duty cycle of the voltage pulse signal output by the delay unit may be realized by a circuit such as a counter.
  • the resistance unit may be realized by using a T-shaped resistance network, which can reduce an area occupied by the resistance unit in an integrated circuit.
  • FIG. 7 illustrates a schematic flowchart of a current measurement method according to an embodiment of the present application.
  • the current measurement method of the present application may be implemented by the above-mentioned current measurement circuit, and the method includes steps 710 to 750 .
  • the electrical signal from the sensor unit is amplified by the amplification unit.
  • the high level is output by the comparison unit under a condition that the voltage signal output by the amplification unit is greater than the preset voltage and the low level is output by the comparison unit under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain the initial pulse signal.
  • the output of the initial pulse signal is delayed by the delay unit to obtain the target pulse signal.
  • the charging and discharging currents are fed back by the resistance unit to the amplification unit based on the target pulse signal.
  • the target current is calculated by the calculation unit based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit.
  • the present application also provides a nanopore sequencing device including a current measurement circuit, and the device may be configured to measure the target current.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

This application provides a current measurement circuit including: an amplification unit, configured to amplify an electrical signal from the sensor unit; a comparison unit, configured to obtain an initial pulse signal based on a voltage signal output by the amplification unit and a preset voltage; a delay unit, electrically connected to the comparison unit and configured to delay an output of the initial pulse signal to obtain a target pulse signal; a resistance unit, wherein two terminals of the resistance unit are electrically connected to an input terminal of the amplification unit and an output terminal of the delay unit respectively, and the resistance unit is configured to charge and discharge the amplification unit based on the target pulse signal; and a calculation unit, electrically connected to the delay unit and configured to calculate a target current based on the target pulse signal output by the delay unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of International Application No. PCT/CN2022/136564, filed on Dec. 5, 2022, which claims priority to Chinese Patent Application No. 202210063946.7, entitled “CURRENT MEASUREMENT CIRCUIT, CURRENT MEASUREMENT METHOD AND NANOPORE SEQUENCING DEVICE”, filed on Jan. 20, 2022, both of which are hereby incorporated by reference in their entireties.
  • TECHNICAL FIELD
  • The present application relates to the technical field of nanopore sequencing, and in particular, to a current measurement circuit, a current measurement method and a nanopore sequencing device.
  • BACKGROUND
  • Nanopore gene sequencing is to determine a gene sequence passing through a thin film nanopore by measuring a current signal flowing through the thin film nanopore. When measuring the current, since the current value is very small (usually tens to hundreds of picoamperes, sometimes up to thousands of picoamperes), it is necessary to use an amplifier circuit for measurement, usually using a capacitive trans impedance amplifier (CTIA) circuit for measurement.
  • The capacitive trans impedance amplifier circuit converts the current signal into a voltage signal during measurement and amplifies the voltage signal. An analog to digital conversion unit (ADC) is used to sample the amplified voltage signal to obtain a measurement result. In the above method, the capacitive trans impedance amplifier circuit has infinite gain, and a capacitor needs to be discharged periodically. During the periodical discharge operation, an instantaneous current formed by the discharging may interfere with an adjacent extremely weak measured current signal, which affects a final accuracy of current measurement.
  • SUMMARY
  • Embodiments of the present application provide a current measurement circuit, a current measurement method and a nanopore sequencing device.
  • In a first aspect, the embodiments of the present application provide a current measurement circuit, including: an amplification unit, electrically connected to a sensor unit and configured to amplify an electrical signal from the sensor unit; a comparison unit, electrically connected to the amplification unit and configured to: output a high level under a condition that a voltage signal output by the amplification unit is greater than a preset voltage, and output a low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain an initial pulse signal; a delay unit, electrically connected to the comparison unit and configured to delay an output of the initial pulse signal to obtain a target pulse signal; a resistance unit, wherein two terminals of the resistance unit are electrically connected to an input terminal of the amplification unit and an output terminal of the delay unit respectively, and the resistance unit is configured to feed back charging and discharging currents to the amplification unit based on the target pulse signal; and a calculation unit, electrically connected to the delay unit and configured to calculate a target current based on the target pulse signal output by the delay unit, wherein the target current is a current flowing through the sensor unit.
  • In a second aspect, the embodiments of the present application provide a current measurement method realized by the current measurement circuit of the first aspect, including: amplifying, by the amplification unit, the electrical signal from the sensor unit; outputting, by the comparison unit, the high level under a condition that the voltage signal output by the amplification unit is greater than the preset voltage and the low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain the initial pulse signal; delaying, by the delay unit, the output of the initial pulse signal to obtain the target pulse signal; feeding back, by the resistance unit, the charging and discharging currents to the amplification unit based on the target pulse signal; and calculating, by the calculation unit, the target current based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit.
  • In a third aspect, the embodiments of the present application provide a nanopore sequencing device, including the current measurement circuit of the first aspect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to more clearly illustrate technical solutions of the embodiments of the present application, the accompanying drawings that need to be used in the embodiments of the present application will be briefly introduced below. For those skilled in the art, additional drawings can be derived from these accompanying drawings without any inventive effort.
  • FIG. 1 is a schematic structural diagram of a current measurement circuit according to an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a current measurement circuit according to an embodiment of the present application;
  • FIG. 3 is a timing waveform diagram of voltages and currents of various nodes according to an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of an adjustable delay unit according to an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of another adjustable delay unit according to an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a resistance unit according to an embodiment of the present application;
  • FIG. 7 is a schematic flow chart of a current measurement method according to an embodiment of the present application.
  • DETAILED DESCRIPTION
  • Features and exemplary embodiments of various aspects of the present application will be described in detail below, and in order to make objects, technical solutions and advantages of the present application more clear and apparent, the present application is further described in detail below in conjunction with the drawings and specific embodiments. It should be understood that specific embodiments described herein are only intended to interpret the present application, and are not intended to limit the present application. For those skilled in the art, the present application may be practiced without some of these specific details. The following description of the embodiments is only intended to provide a better understanding of the present application by illustrating examples of the present application.
  • It should be noted that, relational terms herein such as “first” and “second”, and the like, are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Furthermore, terms “comprising”, “including”, or any other variant thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus including a series of elements includes not only those elements, but also other elements not expressly listed or elements inherent to such process, method, article, or apparatus. Without further restrictions, an element qualified by “includes . . . ” does not exclude an existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • Currently, under a condition that a capacitive trans impedance amplifier (CTIA) circuit is used for weak current measurement, since the capacitive trans impedance amplifier circuit has infinite gain, a capacitor needs to be discharged periodically, which increases the complexity of the circuit. At the same time, an instantaneous current generated by the discharging will also affect the adjacent extremely weak measured current, which affects an accuracy of the measurement.
  • In order to solve problems in the prior art, the embodiments of the present application provide a current measurement circuit, a current measurement method, and a nanopore sequencing device. The current measurement circuit according to the embodiments of the present application will be firstly introduced below.
  • FIG. 1 illustrates a schematic structural diagram of a current measurement circuit according to an embodiment of the present application. As shown in FIG. 1 , the current measurement circuit includes: an amplification unit 120, electrically connected to a sensor unit 110 and configured to amplify an electrical signal from the sensor unit 110; a comparison unit 130, electrically connected to the amplification unit 120 and configured to: output a high level under a condition that a voltage signal output by the amplification unit 120 is greater than a preset voltage, and output a low level under a condition that the voltage signal output by the amplification unit 120 is less than the preset voltage, to obtain an initial pulse signal; a delay unit 140, electrically connected to the comparison unit 130 and configured to delay an output of the initial pulse signal to obtain a target pulse signal; a resistance unit 150, wherein two terminals of the resistance unit 150 are electrically connected to an input terminal of the amplification unit 120 and an output terminal of the delay unit 140 respectively, and the resistance unit 150 is configured to feed back charging and discharging currents to the amplification unit 120 based on the target pulse signal; and a calculation unit 160, electrically connected to the delay unit 140 and configured to calculate a target current based on the target pulse signal output by the delay unit, wherein the target current is a current flowing through the sensor unit 110.
  • In the embodiments of the present application, an equivalent resistance and a parasitic equivalent parallel capacitance of a thin film nanopore included in the sensor unit 110 are connected in parallel, one terminal of the sensor unit 110 is connected to the ground, and the other terminal of the sensor unit 110 is connected to the amplification unit 120. The target current is output to the subsequent amplification unit 120 through the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore.
  • In the embodiments of the present application, the input terminal of the amplification unit 120 is electrically connected to the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore, and the amplification unit 120 may be configured to amplify the electrical signal of an electrical connection point between the amplification unit 120 and the sensor unit 110 via the target current, so as to output the amplified signal to the subsequent comparison unit 130, wherein the amplification unit is an integral amplification circuit.
  • In the embodiments of the present application, an input terminal of the comparison unit 130 is electrically connected to an output terminal of the amplification unit 120, and the comparison unit 130 is configured to: output the high level under a condition that the voltage signal output by the amplification unit 120 is greater than the preset voltage, and output the low level under a condition that the voltage signal output by the amplification unit 120 is less than the preset voltage, to obtain the initial pulse signal for output to the subsequent delay unit 140.
  • In the embodiments of the present application, an input terminal of the delay unit 140 is electrically connected to the output terminal of the comparison unit 130, and the delay unit 140 may be configured to delay the output of the initial pulse signal output by the comparison unit 130, to obtain the target pulse signal for output to the subsequent computing unit 160.
  • In the embodiments of the present application, the two terminals of the resistance unit 150 are electrically connected to the input terminal of the amplification unit 120 and the output terminal of the delay unit 140 respectively. Under a condition that the target pulse signal output by the delay unit 140 is at a high level, a current direction of a loop where the resistance unit 150 is located is from the output terminal of the delay unit 140 to the input terminal of the amplification unit 120 (see a direction indicated by an arrow I1 in FIG. 2 ). Under a condition that the target pulse signal output by the delay unit 140 is at a low level, the current direction of the loop where the resistance unit 150 is located is from the input terminal of the amplification unit 120 to the output terminal of the delay unit 140 (see a direction indicated by an arrow 12 in FIG. 2 ).
  • In the embodiments of the present application, an input terminal of the calculation unit 160 is electrically connected to the output terminal of the delay unit 140, and the calculation unit 160 is configured to calculate a value of the target current based on a pulse voltage generated by the target pulse signal output by the delay unit 140.
  • In the embodiments of the present application, one terminal of the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore is connected to the ground, the amplification unit amplifies the electrical signal across the equivalent resistance and parasitic equivalent parallel capacitance of the thin film nanopore via the target current, and the amplified voltage signal is output through the comparison unit and the delay unit to obtain the target pulse signal. Under a condition that the output voltage signal is a high level of the pulse signal, discharging may be performed through the loop where the resistance unit is located. The value of the target current is calculated based on the voltage pulse signal, which avoids an influence of instantaneous current generated when the capacitor is discharged periodically, thereby improving an accuracy of current measurement.
  • FIG. 2 illustrates a schematic structural diagram of a current measurement circuit according to a specific embodiment of the present application. As shown in FIG. 2 , the amplification unit includes an operational amplifier U1 and an integrating capacitor, wherein a non-inverting input terminal of the operational amplifier is configured to access an operating voltage Vbias1, an inverting input terminal of the operational amplifier is electrically connected to the sensor unit, and an output terminal of the operational amplifier is electrically connected to one terminal of the integrating capacitor and to the comparison unit, and the other terminal of the integrating capacitor is electrically connected to the inverting input terminal of the operational amplifier. The operating voltage Vbias1 accessed by the operational amplifier is an operating voltage of nanopore sequencing.
  • In some embodiments, the integrating capacitor includes n capacitors connected in parallel, and the amplification unit further includes n first switches, each of the first switches is connected in series with a capacitor, wherein n is an integer greater than or equal to 2, capacitance values of the n capacitors are different.
  • As shown in FIG. 2 , the integrating capacitor connected to the operational amplifier includes a plurality of parallel capacitors C1, C2, . . . , Cn, and each of the parallel capacitors is connected in series with one of the first switchs SW1, SW2, . . . , SWn.
  • In some embodiments, as shown in FIG. 2 , the sensor unit includes a thin film nanopore equivalent resistance Rel and a thin film nanopore parasitic equivalent parallel capacitance Cp1 connected in parallel. One terminal of the sensor unit is connected to the ground, and the other terminal of the sensor unit is electrically connected to the inverting input terminal of the operational amplifier U1. The sensor unit is configured to generate a target current Is. Since one terminal of the sensor unit is connected to the ground and a voltage of the terminal is 0, and the other terminal of the sensor unit is connected to the inverting input terminal of the operational amplifier U1 and under a condition that the operational amplifier U1 is in a linear operating area, a voltage V×2 of the inverting input terminal is equal to a voltage of the non-inverting input terminal, and both the voltages are Vbias1, therefore the target current Is flowing through the thin film nanopore equivalent resistance Rel and the thin film nanopore parasitic equivalent parallel capacitance Cp1 is generated.
  • Specifically, the present application is applied to a nanopore gene sequencing device. In the device, an insulating thin film with a nanoscale pore divides a liquid chamber into two small chambers, each of the two small chambers has an electrode, and two electrodes have different potentials. Driven by an electrode potential difference, single-stranded DNA (ssDNA) passes from one chamber through the nanoscale hole on the insulating thin film to another chamber. When single-stranded DNA passes through the nanopore, due to a difference in properties of different bases, a current between the electrodes will change in amplitude. By reading the change in the current between the electrodes, DNA sequence information can be obtained. In FIG. 2 , Rel is the equivalent resistance of the thin film nanopore, and Cp1 is the parasitic equivalent parallel capacitance of the thin film nanopore. When single-stranded DNA passes through the nanopore, due to a blockage by the bases to the thin film nanopore, a resistance of the thin film nanopore to the current between the electrodes becomes larger, and due to the difference in properties of different bases, degrees of blockage to the thin film nanopore by different bases are different, therefore the thin film nanopore in FIG. 2 is equivalent to a variable resistor Rel; that is, a resistance value of Rel in FIG. 2 changes, then the current Is to be measured flowing through the thin film nanopore changes. When performing gene sequencing, a magnitude of Is is between tens and hundreds of picoamperes. The present application is used to measure the current signal Is during gene sequencing. Under a condition that the operational amplifier U1 is in the linear operating area, the voltage V×2 of the inverting input terminal of the operational amplifier U1 is equal to a voltage of the non-inverting input terminal of the operational amplifier U1, and both the voltages are Vbias I. Vbias1 is the potential difference between the electrodes in the two small chambers when performing nanopore gene sequencing, namely, the operating voltage of nanopore sequencing.
  • In some embodiments, the comparison unit includes a voltage comparator, an inverting input terminal of the voltage comparator is configured to access the preset voltage; a non-inverting input terminal of the voltage comparator is electrically connected to an output terminal of the amplification unit, and the voltage comparator is configured to: output the high level under a condition that the voltage signal received from the amplification unit is greater than the preset voltage, and output the low level under a condition that the voltage signal received from the amplification unit is less than the preset voltage, to obtain the initial pulse signal; an output terminal of the voltage comparator is electrically connected to an adjustable delay unit. As shown in FIG. 2 , the voltage comparator U2 is connected to a threshold voltage Vbias2, and compares a voltage V×1 output by the amplification unit with the threshold voltage Vbias2. Under a condition that V×1 is greater than Vbias2, a high level VH is output; under a condition that V×1 is less than Vbias2, a low level VL is output, that is, the voltage comparator U2 outputs an initial voltage pulse signal V×3 whose high level is VH and low level is VL (see FIG. 3 ). It should be known that, a value of the preset voltage, high level, and low level can be set, the embodiments of the present application does not limit the value of the preset voltage, high level, and low level, but the high level of the voltage comparator should be higher than the operating voltage and the low level of the voltage comparator should be lower than the operating voltage.
  • In some embodiments, the delay unit includes the adjustable delay unit, an input terminal of the adjustable delay unit is electrically connected to the output terminal of the voltage comparator; an output terminal of the adjustable delay unit is electrically connected to the calculation unit, the adjustable delay unit is configured to delay the output of the initial pulse signal to obtain the target pulse signal. As shown in FIG. 2 , the adjustable delay unit may be formed by cascading multiple voltage-controlled delay inverters. The adjustable delay unit U3 delays and outputs the obtained initial voltage pulse signal V×3 based on a preset time delay Td to obtain the target pulse signal Vo.
  • In some embodiments, the resistance unit includes m resistors connected in parallel, where m is an integer greater than or equal to 2, and resistance values of the m resistors are different. Under a condition that an output voltage of the delay unit is at a high level, since the high level is higher than the operating voltage of the electrical connection point between the amplification unit and the sensor unit, a current flowing from the output terminal of the delay unit, through the resistance unit, to the input terminal of the amplification unit is generated, thereby providing a discharging current to the integrating capacitor of the amplification unit; under a condition that the output voltage of the delay unit is at a low level, since the low level is lower than the operating voltage of the electrical connection point between the amplification unit and the sensor unit, a current flowing from the input terminal of the amplification unit, through the resistance unit, to the output terminal of the delay unit is generated, thereby providing a charging current to the integrating capacitor of the amplification unit. Current values of the charging current and the discharging current may be calculated through the output voltage of the delay unit and a resistor. Specifically, a ratio of the output voltage of the delay unit to a resistor in the resistance unit is a current of a loop where the resistor is located. Under a condition that the integrating capacitor is discharged, a direction of the current of the loop is a direction shown by I1 in FIG. 2 , a magnitude I1 of the current of the loop is (VH-Vbias1)/Rn, Rn is any resistor selected from R1-Rm, and a magnitude of the discharging current provided to the integrating capacitor of the amplification unit is I1-Is; under a condition that the integrating capacitor is charged, the direction of the current of the loop is a direction shown by I2 in FIG. 2 , a magnitude I2 of the current of the loop is (Vbias1-VL)/Rn, Rn is any resistor selected from R1-Rm, and a magnitude of the charging current provided to the integrating capacitor of the amplification unit is I2+Is.
  • In some embodiments, the resistance unit further includes m second switches, and each of the second switches is connected in series with a resistor.
  • As shown in FIG. 2 , the resistance unit includes m resistors R1, R2, . . . , Rm connected in parallel, and each of the resistors is connected in series with a switch T1, T2, . . . , Tm.
  • In some embodiments, the calculation unit is electrically connected to the delay unit and is configured to calculate the target current based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit. Calculating the target current based on the target pulse signal output by the delay unit includes: calculating, by the calculation unit, the target current based on a frequency and a duty cycle of the target pulse signal output by the delay unit; or performing, by the calculation unit, moving average calculation based on the target pulse signal output by the delay unit to obtain a value of the target current. When calculating the target current, a charging or discharging speed of the integrating capacitor is much faster than a changing speed of the target current signal Is, that is, the target current signal Is remains relatively constant during one charging and discharging cycle of the integrating capacitor. Under a condition that the calculation unit calculates the target current based on the duty cycle of the target voltage pulse signal output by the delay unit, a length of time TH for Vo to output a high level VH, and a length of time TL for Vo to output a low level VL during one charging and discharging cycle of the integrating capacitor is calculated based on the preset time delay Td of the delay unit:
  • T H = I 1 + I 2 I 1 - Is Td T L = I 1 + I 2 I 2 + Is Td
  • wherein, I1 is a current of a loop where the resistance unit is located when the integrating capacitor is discharged, and I2 is a current of the loop where the resistance unit is located when the integrating capacitor is charged.
  • Based on the duty cycle D of the high level VH of the target pulse signal Vo being
  • D = T H T H + T L ,
  • the target current Is is calculated as:

  • Is=D/1+(D−1)/2
  • Under a condition that the calculation unit is configured for performing moving average calculation based on the voltage pulse signal output by the delay unit, an average value of output voltages within a period of time window is obtained through calculation, and the target current is calculated based on the charging current value and the discharging current value.
  • In some embodiments, the frequency and the duty cycle of the target pulse signal vary with a change of the target current.
  • In some embodiments, varying of the frequency and duty cycle of the target pulse signal with a change of the target current includes: under a condition that the target current increases, an output waveform of the target pulse signal varies in a manner that: a low-level duty cycle becomes larger, and a high-level duty cycle becomes smaller.
  • In some embodiments, varying of the frequency and duty cycle of the target pulse signal with a change of the target current further includes: under a condition that the target current decreases, the output waveform of the target pulse signal varies in a manner that: the low-level duty cycle becomes smaller, and the high-level duty cycle becomes larger.
  • In some embodiments, the computing unit includes a Field Programmable Gate Array (FPGA), or a Micro Control Unit (MCU). A process of calculating the target current based on the frequency and duty cycle of the voltage pulse signal output by the delay unit, or performing moving average calculation based on the voltage pulse signal output by the delay unit to obtain the value of the target current may be realized by the FPGA or MCU.
  • In some embodiments, the sensor unit includes the equivalent resistance and the parasitic equivalent parallel capacitance of the thin film nanopore.
  • In some embodiments, the target current is the current flowing through the thin film nanopore during nanopore gene sequencing.
  • As shown in FIG. 2 , the calculation unit includes a moving average filter U4. It should be known that, the moving average filter U4 may be replaced by other computing devices, and FIG. 2 is only an example.
  • For the circuit diagram as shown in FIG. 2 , its operating principle is as follows: during a current measurement, the non-inverting input terminal of the operational amplifier U1 is connected to the operating voltage Vbias1, the charging and discharging currents input to the integrating capacitor connected to the inverting input terminal of the operational amplifier is obtained based on the target current Is generated by the sensor unit and a current flowing through the resistance unit I1/I2, wherein a voltage at the electrical connection point V×2 of the inverting input is Vbias1. After the charging and discharging currents is transmitted to the integrating capacitor, the integrating capacitor integrates the two current signals to obtain a voltage signal V×1, and the output terminal of the operational amplifier transmits the voltage signal V×1 to the comparison unit. The voltage comparator U2 of the comparison unit compares the received voltage signal V×1 with the threshold voltage Vbias2, and outputs the initial pulse signal V×3 to the input terminal of the adjustable delay unit U3. The adjustable delay unit U3 outputs the target pulse signal Vo to the calculation unit U4 after the received initial pulse signal V×3 is delayed by the preset time delay Td. Based on a voltage difference between the target pulse signal Vo and the voltage Vbias1 of the inverting input terminal of the operational amplifier U1, a corresponding current I1 or I2 passing through the resistance unit is generated. At the same time, the calculation unit U4 calculates the target current Is based on the voltage pulse signal Vo. Under a condition that the target pulse signal Vo is greater than the voltage Vbias1 of the inverting input terminal V×2 of the operational amplifier U1, a current I1 flowing from the output terminal of the delay unit, through the resistance unit, to the input terminal of the amplification unit is generated; under a condition that the target pulse signal Vo is lower than the voltage Vbias1 of the inverting input terminal V×2 of the operational amplifier U1, a current I2 flowing from the input terminal of the amplification unit, through the resistance unit, to the output terminal of the delay unit is generated.
  • Specifically, for n integrating capacitors connected in parallel, it is necessary to select a switch corresponding to one of the capacitors to be turned on, and the remaining switches are in a turn-off state. Under a condition that the measured target current Is is relatively large, an integrating capacitor with a relatively large capacitance value is selected to acquire a larger measurement range; under a condition that the measured target current Is is relatively small, an integrating capacitor with a relatively small capacitance value is selected to acquire a smaller measuring range. For m resistors connected in parallel, it is necessary to select a switch corresponding to one of the resistors to be turned on, and the remaining switches are all in a turn-off state. Under a condition that the measured target current Is is relatively large, a resistor with a relatively small resistance value is selected to provide relatively large charging and discharging currents I1, I2; under a condition that the measured target current Is is relatively small, a resistor with a relatively large resistance value is selected to provide relatively small charging and discharging currents I1, I2. For the time delay Td of the adjustable delay unit, under a condition that the target current Is is relatively small, the preset time delay may be increased; under a condition that the target current I s is relatively large, the preset time delay may be decreased. Based on a selection of the integrating capacitor, resistor, and time delay, it can be ensured that, under a condition that the nanopore sequencing current Is changes in a large range, the frequency and duty cycle of the output pulse width modulation signal Vo remain within a certain reasonable range, and a current measurement range of a current measurement circuit can be adjusted. Under a condition that the calculation unit uses a method of moving average for calculation, a moving time window Ta can also be adjusted to adjust an accuracy of a current measurement result.
  • In one embodiment, timing waveforms of voltages and currents of various nodes are shown in FIG. 3 . In conjunction with FIG. 2 and FIG. 3 , under a condition that the pulse signal Vo is at the low level VL, the adjustable delay unit U3 charges the integrating capacitor through the charging current I2, and the output voltage V×1 of the amplification unit gradually increases.
  • Under a condition that the voltage V×1 output by the amplification unit increases to be higher than the threshold voltage Vbias2 of the voltage comparator, the output of the voltage comparator U2 is reversed, and the output voltage pulse signal V×3 jumps from the low level VL to the high level VH.
  • After a delay of certain time period (Td), the output voltage pulse signal Vo of the adjustable delay unit U3 is reversed, and jumps from the low level VL to the high level VH.
  • The adjustable delay unit U3 starts to discharge the integrating capacitor through the discharging current I1 (I1>Is, which is a prerequisite for normal operation of a pulse width modulation current measurement circuit, that is, the nanopore sequencing current Is must be less than the discharging current I1), and the voltage V×1 output by the amplification unit gradually decreases.
  • Under a condition that the voltage V×1 output by the amplification unit drops below the threshold voltage Vbias2 of the voltage comparator, the voltage comparator U2 is reversed, and its output voltage pulse signal V×3 jumps from the high level VH to the low level VL.
  • After a delay of certain time period (Td), the output voltage pulse signal Vo of the adjustable delay unit U3 jumps from the high level VH to the low level VL.
  • Under a condition that the target current Is increases, the charging current I2+Is of the integrating capacitor increases, a charging rate of the integrating capacitor accelerates, and a rising slope of V×1 becomes larger; at the same time, the discharging current I1-Is of the integrating capacitor decreases, and a discharging rate of the integrating capacitor slows down, and a falling slope of V×1 becomes smaller. The output waveform of the pulse signal Vo varies in a manner that: the low-level VL duty cycle becomes smaller, and the high-level VH duty cycle becomes larger.
  • Under a condition that the target current Is decreases, the charging current I2+Is of the integrating capacitor decreases, the charging rate of the integrating capacitor slows down, and the rising slope of V×1 decreases; at the same time, the discharging current I1-Is of the integrating capacitor increases, and the discharging rate of the integrating capacitor becomes faster, and the falling slope of V×1 becomes larger. The output waveform of the pulse signal Vo varies in a manner that: the low-level VL duty cycle becomes larger, and the high-level VH duty cycle becomes smaller.
  • It can be known from the above contents that, the pulse signal Vo is a pulse width modulation signal, and a change of its duty cycle can reflect a change of the target current Is as an analog signal.
  • Both I1 and I2 are of known current magnitudes, where I1 is the current of the loop where the resistance unit is located when the integrating capacitor is discharged, and I2 is the current of the loop where the resistance unit is located when the integrating capacitor is charged. By calculating the pulse width modulation signal Vo, the nanopore sequencing current Is may be calculated. Specifically, when the calculation unit calculates the target current based on the duty cycle of Vo, the length of time TH for Vo to output the high level VH, and the length of time TL for Vo to output the low level VL during one charging and discharging cycle of the integrating capacitor is calculated based on the time delay Td.
  • Based on the duty cycle D of the high level VH of the target pulse signal Vo, the target current Is is calculated.
  • In the embodiments of the present application, a current integrating circuit can be combined to amplify a weak current flowing through the thin film nanopore and convert it into a pulse width modulation signal, and a measurement result of the current signal is obtained by measuring the frequency and duty cycle of the pulse width modulation signal, or by performing moving average calculation on the pulse width modulation signal, which has characteristics of high gain and high linearity. At the same time, a problem of noise interference brought by the periodical discharging of the capacitor to an adjacent nanopore sequencing channel is solved, which increases a current measurement range.
  • In some embodiments, the adjustable delay unit may be realized by cascading different numbers of delay inverters, as shown in FIG. 4 . Alternatively, the adjustable delay unit is realized by setting different delay capacitance values, as shown in FIG. 5 . Alternatively, the adjustable delay unit is realized by FPGA.
  • In some embodiments, measurement of the frequency and duty cycle of the voltage pulse signal output by the delay unit may be realized by a circuit such as a counter.
  • In some embodiments, as shown in FIG. 6 , the resistance unit may be realized by using a T-shaped resistance network, which can reduce an area occupied by the resistance unit in an integrated circuit.
  • FIG. 7 illustrates a schematic flowchart of a current measurement method according to an embodiment of the present application. The current measurement method of the present application may be implemented by the above-mentioned current measurement circuit, and the method includes steps 710 to 750.
  • At step 710, the electrical signal from the sensor unit is amplified by the amplification unit.
  • At step 720, the high level is output by the comparison unit under a condition that the voltage signal output by the amplification unit is greater than the preset voltage and the low level is output by the comparison unit under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain the initial pulse signal.
  • At step 730, the output of the initial pulse signal is delayed by the delay unit to obtain the target pulse signal.
  • At step 740, the charging and discharging currents are fed back by the resistance unit to the amplification unit based on the target pulse signal.
  • At step 750, the target current is calculated by the calculation unit based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit.
  • It should be noted that, all relevant contents of various steps involved in the above-mentioned method embodiments may be implemented based on corresponding functional units, and can achieve corresponding technical effects. For the sake of brevity, details will not be repeated herein.
  • Based on the current measurement circuit in the above embodiments, the present application also provides a nanopore sequencing device including a current measurement circuit, and the device may be configured to measure the target current.
  • The above contents are only specific implementations of the present application, and those skilled in the art can clearly understand that for the convenience and brevity of description, the specific operating process of the above-described systems, modules and units may refer to the above-mentioned method embodiments, which will not be repeated herein. It should be understood that a protection scope of the present application is not limited thereto, any person skilled in the art can easily think of various equivalent modifications or replacements within a technical scope disclosed in the present application, and these modifications or replacements shall be covered within the protection scope of the present application.

Claims (15)

What is claimed is:
1. A current measurement circuit, comprising:
an amplification unit, electrically connected to a sensor unit and configured to amplify an electrical signal from the sensor unit;
a comparison unit, electrically connected to the amplification unit and configured to: output a high level under a condition that a voltage signal output by the amplification unit is greater than a preset voltage, and output a low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain an initial pulse signal;
a delay unit, electrically connected to the comparison unit and configured to delay an output of the initial pulse signal to obtain a target pulse signal;
a resistance unit, wherein two terminals of the resistance unit are electrically connected to an input terminal of the amplification unit and an output terminal of the delay unit respectively, and the resistance unit is configured to feed back charging and discharging currents to the amplification unit based on the target pulse signal; and
a calculation unit, electrically connected to the delay unit and configured to calculate a target current based on the target pulse signal output by the delay unit, wherein the target current is a current flowing through the sensor unit,
wherein the calculation unit is configured to calculate the target current based on the target pulse signal output by the delay unit by:
calculating the target current based on a frequency and a duty cycle of the target pulse signal output by the delay unit; or
performing moving average calculation based on the target pulse signal output by the delay unit to obtain a value of the target current.
2. The current measurement circuit of claim 1, wherein the amplification unit comprises an operational amplifier and an integrating capacitor;
a non-inverting input terminal of the operational amplifier is configured to access an operating voltage;
an inverting input terminal of the operational amplifier is electrically connected to the sensor unit, and an output terminal of the operational amplifier is electrically connected to one terminal of the integrating capacitor and to the comparison unit, and the other terminal of the integrating capacitor is electrically connected to the inverting input terminal of the operational amplifier.
3. The current measurement circuit of claim 2, wherein the integrating capacitor comprises n capacitors connected in parallel, the amplification unit further comprises n first switches, each of the first switches is connected in series with a capacitor, wherein n is an integer greater than or equal to 2, capacitance values of the n capacitors are different, and one of the n capacitors is selectable as the integrating capacitor based on a magnitude of the target current.
4. The current measurement circuit of claim 1, wherein the comparison unit comprises a voltage comparator;
an inverting input terminal of the voltage comparator is configured to access the preset voltage;
a non-inverting input terminal of the voltage comparator is electrically connected to an output terminal of the amplification unit, and the voltage comparator is configured to: output a high level under a condition that the voltage signal output by the amplification unit is greater than the preset voltage, and output a low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain the initial pulse signal;
an output terminal of the voltage comparator is electrically connected to the delay unit.
5. The current measurement circuit of claim 1, wherein the delay unit comprises an adjustable delay unit;
an input terminal of the adjustable delay unit is electrically connected to an output terminal of the voltage comparator;
an output terminal of the adjustable delay unit is electrically connected to the calculation unit;
an output delay of the adjustable delay unit is adjustable based on a magnitude of the target current.
6. The current measurement circuit of claim 1, wherein the resistance unit comprises m resistors connected in parallel, wherein m is an integer greater than or equal to 2, resistance values of the m resistors are different, and one of the m resistors is selectable as the resistance unit based on a magnitude of the target current.
7. The current measurement circuit of claim 6, wherein the resistance unit further comprises m second switches, and each of the second switches is connected in series with a resistor.
8. The current measurement circuit of claim 1, wherein the frequency and the duty cycle of the target pulse signal vary with a change of the target current.
9. The current measurement circuit of claim 8, wherein varying of the frequency and duty cycle of the target pulse signal with a change of the target current comprises:
under a condition that the target current increases, an output waveform of the target pulse signal varies in a manner that: a low-level duty cycle becomes larger, and a high-level duty cycle becomes smaller.
10. The current measurement circuit of claim 9, wherein varying of the frequency and duty cycle of the target pulse signal with a change of the target current further comprises:
under a condition that the target current decreases, the output waveform of the target pulse signal varies in a manner that: the low-level duty cycle becomes smaller, and the high-level duty cycle becomes larger.
11. The current measurement circuit of claim 1, wherein the calculation unit comprises a Field Programmable Gate Array (FPGA), or a Micro Control Unit (MCU), or a moving average calculation unit.
12. The current measurement circuit of claim 1, wherein the sensor unit comprises an equivalent resistance and a parasitic equivalent parallel capacitance of a thin film nanopore.
13. The current measurement circuit of claim 12, wherein the target current is a current flowing through the thin film nanopore during nanopore gene sequencing.
14. A current measurement method realized by the current measurement circuit of claim 1, comprising:
amplifying, by the amplification unit, the electrical signal from the sensor unit;
outputting, by the comparison unit, the high level under a condition that the voltage signal output by the amplification unit is greater than the preset voltage and the low level under a condition that the voltage signal output by the amplification unit is less than the preset voltage, to obtain the initial pulse signal;
delaying, by the delay unit, the output of the initial pulse signal to obtain the target pulse signal;
feeding back, by the resistance unit, the charging and discharging currents to the amplification unit based on the target pulse signal; and
calculating, by the calculation unit, the target current based on the target pulse signal output by the delay unit, wherein the target current is the current flowing through the sensor unit,
wherein the calculating, by the calculation unit, the target current based on the target pulse signal output by the delay unit comprises:
calculating, by the calculation unit, the target current based on a frequency and a duty cycle of the target pulse signal output by the delay unit; or
performing, by the calculation unit, moving average calculation based on the target pulse signal output by the delay unit to obtain a value of the target current.
15. A nanopore sequencing device, comprising the current measurement circuit of claim 1.
US18/198,460 2022-01-20 2023-05-17 Current measurement circuit, current measurement method and nanopore sequencing device Active US11768231B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202210063946.7A CN114089024B (en) 2022-01-20 2022-01-20 Current measuring circuit, measuring method and nanopore sequencing device
CN202210063946.7 2022-01-20
PCT/CN2022/136564 WO2023138236A1 (en) 2022-01-20 2022-12-05 Current measurement circuit, current measurement method and nanopore sequencing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136564 Continuation WO2023138236A1 (en) 2022-01-20 2022-12-05 Current measurement circuit, current measurement method and nanopore sequencing apparatus

Publications (2)

Publication Number Publication Date
US20230288455A1 true US20230288455A1 (en) 2023-09-14
US11768231B1 US11768231B1 (en) 2023-09-26

Family

ID=80308937

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/198,460 Active US11768231B1 (en) 2022-01-20 2023-05-17 Current measurement circuit, current measurement method and nanopore sequencing device

Country Status (3)

Country Link
US (1) US11768231B1 (en)
CN (1) CN114089024B (en)
WO (1) WO2023138236A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089024B (en) * 2022-01-20 2022-04-26 成都齐碳科技有限公司 Current measuring circuit, measuring method and nanopore sequencing device
CN118353428B (en) * 2024-06-17 2024-08-16 深圳市瀚强科技股份有限公司 Target signal generating device and radio frequency power supply system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257125A (en) * 1979-05-01 1981-03-17 The Singer Company Receiver for unipolar Manchester fiber optics signals
SU1628021A1 (en) * 1981-12-28 1991-02-15 Предприятие П/Я Г-4377 Device for non-contact measuring amplitude of pulse current in digit electronic unit
TW419592B (en) * 1998-03-31 2001-01-21 Hitachi Maxell Current accumulating value detecting apparatus, current detecting apparatus and the battery set used
JP4374729B2 (en) * 2000-05-16 2009-12-02 ヤマハ株式会社 Current measurement circuit, current consumption measurement circuit, and charge / discharge current measurement circuit
WO2007069102A2 (en) * 2005-12-15 2007-06-21 Koninklijke Philips Electronics N.V. Current measurement circuit and method
RU2311658C9 (en) * 2006-05-11 2008-05-10 Лайф Сенсор Ко., Лтд. Sensor for finding moving objects by means of ultra-broadband signal probing (variants)
CN101471577B (en) * 2007-12-29 2011-06-15 比亚迪股份有限公司 Voltage balance circuit for double-burl chargeable battery
CN101963629A (en) * 2009-07-24 2011-02-02 瑞萨电子(中国)有限公司 Current detection device and method
US9581563B2 (en) * 2011-01-24 2017-02-28 Genia Technologies, Inc. System for communicating information from an array of sensors
JP2017040580A (en) * 2015-08-20 2017-02-23 株式会社オートネットワーク技術研究所 Current sensing circuit
US11196334B2 (en) * 2017-07-31 2021-12-07 Rohm Co., Ltd. Current sense circuit
JP7087373B2 (en) * 2017-12-20 2022-06-21 富士電機株式会社 Current detection circuit and current detection method for semiconductor devices
GB2580988B (en) * 2019-03-19 2022-04-13 Oxford Nanopore Tech Ltd Current measurement apparatus, molecular entity sensing apparatus, method of measuring a current, method of sensing a molecular entity
JP7293968B2 (en) * 2019-08-09 2023-06-20 オムロン株式会社 CONTROL CIRCUIT FOR POWER CONVERTER AND POWER CONVERTER
US11936351B2 (en) * 2020-01-16 2024-03-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for error amplification and processing
US11728731B2 (en) * 2020-05-09 2023-08-15 Intel Corporation Accurate load current sensing apparatus and method
CN112649661B (en) * 2020-12-30 2023-09-26 无锡市同飞科技有限公司 Current detection circuit based on Hall sensor
CN112924745A (en) * 2021-01-21 2021-06-08 季华实验室 Nanopore gene sequencing micro-current detection device
CN112795476B (en) * 2021-04-15 2021-07-02 成都齐碳科技有限公司 Nanopore sequencing circuit, sequencing method and device
CN113489464B (en) * 2021-07-02 2022-10-04 西安电子科技大学 Read-out circuit and half-edge shared read-out array for nanopore gene sequencing
CN215340043U (en) * 2021-07-30 2021-12-28 深圳凌扬微电子有限公司 Switching power supply low current detection circuit
CN114089024B (en) * 2022-01-20 2022-04-26 成都齐碳科技有限公司 Current measuring circuit, measuring method and nanopore sequencing device

Also Published As

Publication number Publication date
CN114089024B (en) 2022-04-26
WO2023138236A1 (en) 2023-07-27
CN114089024A (en) 2022-02-25
US11768231B1 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
US11768231B1 (en) Current measurement circuit, current measurement method and nanopore sequencing device
US8289034B2 (en) Capacitance measurement circuit and capacitance measurement method thereof
US6750796B1 (en) Low noise correlated double sampling modulation system
US20090108858A1 (en) Methods and systems for calibrating rc circuits
CN1848667A (en) Ring oscillator for compensating voltage source offset
CN110163015B (en) Multiplier circuit, corresponding device and method
US10601431B2 (en) Time-to-voltage converter using correlated double sampling
USRE34899E (en) Analog to digital conversion with charge balanced voltage to frequency converter having polarity responsive offset
WO2004032330A1 (en) Pulse width modulation analog to digital conversion
US4797603A (en) Device for measuring the ratio of two low value capacities
CN109164695B (en) Picosecond-level time interval measuring circuit and method
EP0477537B1 (en) Timing generator
US3943506A (en) Multiple ramp digitisers
CN112702021B (en) Circuit and method for acquiring breakdown voltage of photodiode
CN112881775B (en) Low-power-consumption high-resolution capacitance measuring circuit
US11329607B2 (en) RC oscillator
Palojarvi et al. A new approach to avoid walk error in pulsed laser rangefinding
US20030016064A1 (en) Device and method for calibrating the pulse duration of a signal source
CN110739937B (en) Switch type square wave generator adopting parallel reference voltage source
US6930495B1 (en) Digitizing ohmmeter system
US5030850A (en) Off-set stabilizer for comparator output
KR101074981B1 (en) Current-voltage conversion circuit
JP3189866B2 (en) Resistance meter calibration device
US7224193B2 (en) Current-voltage conversion circuit
CN114002496B (en) Compensation capacitance adjusting circuit, compensation capacitance adjusting method and nanopore sequencing circuit

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: MICROENTITY

AS Assignment

Owner name: QITAN TECHNOLOGY LTD., CHENGDU, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:E, QIANG;WANG, JIN;HU, XI;SIGNING DATES FROM 20230301 TO 20230303;REEL/FRAME:063701/0013

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE