US20230209997A1 - Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device - Google Patents

Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device Download PDF

Info

Publication number
US20230209997A1
US20230209997A1 US18/108,805 US202318108805A US2023209997A1 US 20230209997 A1 US20230209997 A1 US 20230209997A1 US 202318108805 A US202318108805 A US 202318108805A US 2023209997 A1 US2023209997 A1 US 2023209997A1
Authority
US
United States
Prior art keywords
organic
group
substituted
unsubstituted
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/108,805
Inventor
Sun-Ha Park
Gi-Wook Kang
Eui-Su Kang
Hun Kim
Jae-Jin OH
Dong-Kyu Ryu
Sang-Shin Lee
Han-Ill Lee
Soo-Hyun Min
Min-Jee PARK
Eun-Sun Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52813259&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20230209997(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to US18/108,805 priority Critical patent/US20230209997A1/en
Publication of US20230209997A1 publication Critical patent/US20230209997A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • An organic alloy for an organic optoelectric device, an organic optoelectric device, and a display device are disclosed.
  • An organic optoelectric device is a device that converts electrical energy into photoenergy, and vice versa.
  • An organic optoelectric device may be classified as follows in accordance with its driving principles.
  • One is a photoelectric device where excitons generated by photoenergy are separated into electrons and holes and the electrons and holes are transferred to different electrodes respectively and electrical energy is generated, and the other is a light emitting device to generate photoenergy from electrical energy by supplying a voltage or a current to electrodes.
  • Examples of the organic optoelectric device include an organic photoelectric device, an organic light emitting diode, an organic solar cell, and an organic photo-conductor drum, and the like.
  • the organic light emitting diode (OLED) has recently drawn attention due to an increase in demand for flat panel displays.
  • the organic light emitting diode converts electrical energy into light by applying current to an organic light emitting material, and has a structure in which an organic layer is interposed between an anode and a cathode.
  • the organic layer may include an emission layer and optionally an auxiliary layer
  • the auxiliary layer may include at least one layer selected from, for example a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, an electron injection layer, and a hole blocking layer in order to improve efficiency and stability of an organic light emitting diode.
  • Performance of an organic light emitting diode may be affected by characteristics of the organic layer, and among them, may be mainly affected by an organic material of the organic layer.
  • One embodiment provides an organic alloy applicable for an organic optoelectric device.
  • Another embodiment provides organic optoelectric device including the organic alloy.
  • Yet another embodiment provides a display device including the organic optoelectric device.
  • an organic alloy for an organic optoelectric device that is an organic alloy of at least two kinds of organic compounds, the at least two kinds of organic compounds includes a first organic compound and a second organic compound, a difference between evaporation temperatures of the first organic compound and the second organic compound is less than or equal to about 20° C. at less than or equal to about 10 ⁇ 3 torr, and a light emitting wavelength of the organic alloy is different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture of the first organic compound and the second organic compound.
  • an organic optoelectric device including an anode and a cathode facing each other, at least one organic layer interposed between the anode and the cathode, wherein the organic layer includes the organic alloy.
  • a display device including the organic optoelectric device is provided.
  • the present invention may provide an organic alloy having different characteristics from those of a conventional single organic compound and a simple mixture thereof and realize an organic optoelectric device having high efficiency and long life-span by applying the organic alloy to the organic optoelectric device.
  • FIGS. 1 and 2 are cross-sectional views showing organic light emitting diodes according to each embodiment the present invention.
  • FIG. 3 is a graph showing light emitting characteristics of an organic alloy according to Example 1 and organic materials according to Comparative Examples 1 to 3 depending on a wavelength
  • FIG. 4 is a graph showing light emitting characteristics of an organic alloy according to Example 2 and organic materials according to Comparative Examples 1, 4 and 5 depending on a wavelength.
  • substituted refers to one substituted with deuterium, a halogen, a hydroxy group, an amino group, a substituted or unsubstituted C1 to C30 amine group, a nitro group, a substituted or unsubstituted C1 to C40 silyl group, a C1 to C30 alkyl group, a C1 to C10 alkylsilyl group, a C3 to C30 cycloalkyl group, a C2 to C30 heterocycloalkyl group, a C6 to C30 aryl group, a C2 to C30 heterocyclic group, a C1 to C20 alkoxy group, a fluoro group, a C1 to C10 trifluoroalkyl group such as a trifluoromethyl group and the like, or a cyano group, instead of at least one hydrogen of a substituent or a compound.
  • the substituted C6 to C30 aryl group may be fused with another adjacent substituted C6 to C30 aryl group to form a substituted or unsubstituted fluorene ring.
  • hetero refers to one including 1 to 3 hetero atoms selected from N, O, S, P and Si, and remaining carbons in one compound or substituent.
  • alkyl group may refer to an aliphatic hydrocarbon group.
  • the alkyl group may refer to “a saturated alkyl” without any double bond or triple bond.
  • the alkyl group may be a C1 to C30 alkyl group. More specifically, the alkyl group may be a C1 to C20 alkyl group or a C1 to C10 alkyl group.
  • a C1 to C4 alkyl group includes 1 to 4 carbons in alkyl chain, and may be selected from methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl.
  • alkyl group may be a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • aryl group refers to a substituent including all element of the cycle having p-orbitals which form conjugation, and may be monocyclic or fused ring polycyclic (i.e., rings sharing adjacent pairs of carbon atoms) functional group.
  • heterocyclic group may refer to cyclic group including 1 to 3 hetero atoms selected from N, O, S, P and Si, and remaining carbons in a cyclic group.
  • the heterocyclic group may be a fused ring where each ring may include the 1 to 3 heteroatoms.
  • the substituted or unsubstituted C6 to C30 aryl group and/or the substituted or unsubstituted C2 to C30 heterocyclic group may be a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted naphthacenyl group, a substituted or unsubstituted pyrenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted p-terphenyl group, a substituted or unsubstituted m-terphenyl group, a substituted or unsubstituted chrysenyl group, a substituted or unsubstituted triphenylenyl group, a
  • hole characteristics refer to characteristics capable of donating an electron to form a hole when electric field is applied, and characteristics that hole formed in the anode is easily injected into the emission layer and transported in the emission layer due to conductive characteristics according to HOMO level.
  • electron characteristics refer to characteristics capable of accepting an electron when electric field is applied, and characteristics that electron formed in the cathode is easily injected into the emission layer and transported in the emission layer due to conductive characteristics according to LUMO level.
  • the organic alloy is a material obtained by pre-treating more than two single organic compounds and a chemical interaction among the single organic compounds may be provided due to the pre-treatment.
  • the pre-treating may be a heat treatment such as heating and sublimation followed by cooling, but is not limited thereto.
  • the first and second organic compounds may have an evaporation temperature within the same or a predetermined range.
  • the evaporation temperature indicates a temperature at which the first and second organic compounds may be deposited on a substrate at a predetermined rate under high vacuum of less than or equal to about 10 ⁇ 3 Torr, for example, an average temperature when the first and second organic compounds are thermally evaporated to be about 300 nm to about 800 nm thick at a rate of about 0.5 to about 2 ⁇ /sec under high vacuum of less than or equal to about 10 ⁇ 3 Torr.
  • the difference between evaporation temperatures of the first organic compound and the second organic compound may be less than or equal to about 20° C. at less than or equal to about 10 ⁇ 3 torr.
  • a difference between evaporation temperatures of the first organic compound and the second organic compound may be about 0° C. to 10° C. and specifically about 0° C. to about 5° C.
  • the organic alloy has a chemical interaction among more than two single organic compounds as described above and thus, different intrinsic characteristics from the single organic compounds and their simple mixture having no chemical interaction among single organic compounds.
  • the simple mixture is obtained by physically mixing single organic compounds without any pre-treatment.
  • the organic alloy of the first and second organic compounds may have different intrinsic characteristics from those of the first organic compound, the second organic compound, and a simple mixture thereof, while the single mixture of the first and second organic compounds show characteristics of the first organic compound, the second organic compound, or a combination thereof.
  • the light emitting wavelength of the organic alloy may be different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture thereof.
  • the organic alloy may release new energy and emit light by a new energy bandgap between a high HOMO energy level and a low LUMO energy level of the first and second organic compounds due to intermolecular electron transfer system of the two organic compounds.
  • the energy bandgap of the organic alloy may be an energy difference between LUMO energy level of the first organic compound and HOMO energy level of the second organic compound or between LUMO energy level of the second organic compound and HOMO energy level of the first organic compound.
  • the simple mixture of the first and second organic compounds may have either an energy bandgap between LUMO energy and HOMO energy of the first organic compound or a bandgap between LUMO energy and HOMO energy of the second organic compound.
  • the organic alloy may have a smaller or larger bandgap than that of the first organic compound, the second organic compound, and the simple mixture thereof. Accordingly, the light emitting wavelength of the organic alloy may be different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture thereof.
  • a maximum light emitting wavelength ( ⁇ max ) of the organic alloy may be shifted greater than or equal to about 20 nm compared with a maximum light emitting wavelength of the simple mixture of the first and second organic compounds, for example, shifted greater than or equal to about 20 nm toward a long wavelength region.
  • the organic alloy may have a different color from those of the first organic compound, the second organic compound, and the simple mixture thereof.
  • the organic alloy may have a color with a longer wavelength region than those of the first organic compound, the second organic compound, and the simple mixture thereof.
  • the organic alloy may have a different glass transition temperature (Tg) from that of the first organic compound, the second organic compound, and the simple mixture thereof.
  • the organic alloy may have a different crystallization temperature (Tc) from that of the first organic compound, the second organic compound, and the simple mixture thereof.
  • the organic alloy may have a different melting point (Tm) from that of the first organic compound, the second organic compound, and the simple mixture thereof. Since the glass transition temperature (Tg), the crystallization temperature (Tc), and the melting point (Tm) show inherent thermodynamic characteristics of a molecule, the compounds having the different glass transition temperature (Tg), the different crystallization temperature (Tc) and the different melting point (Tm) may be different compounds.
  • the organic alloy may have inherent thermodynamic characteristics such as the glass transition temperature (Tg), the crystallization temperature (Tc), and the melting point (Tm), which may be substantially constant within an error range.
  • the error range may vary depending on a measurement condition, for example, may be within about ⁇ 5° C. and specifically, within about ⁇ 2° C. These thermodynamic characteristics may be different from those of the simple mixture of the first and second organic compounds having no inherent thermodynamic characteristics.
  • the organic alloy may be pre-treated in various methods, for example, in a method of heat-treating the first and second organic compounds at greater than or equal to an evaporation temperature and liquidating or gasifying the first and second organic compounds and then, cooling and solidifying the heat-treated compounds.
  • the first and second organic compounds may be melted liquid or gasified vapor at the evaporation temperature, and the pre-treated organic alloy may be a solid like a mass or powder.
  • the organic alloy obtained as a solid mass may be additionally physically ground with a blender and the like.
  • the organic alloy is a resulting material obtained through the aforementioned pre-treatment and may be supplied by using one source to form a thin film. Accordingly, the deposition process may become simple without a control process required when more than two organic compounds are respectively supplied by using separate sources.
  • the organic alloy is a resulting material obtained through the aforementioned pre-treatment and thus, may secure uniformity and consistency for deposition compared with the more than two single organic compounds supplied by using more than two separate sources or their simple mixture of supplied by using one single source. Accordingly, when a plurality of thin films are formed through a continuous process, the organic alloy may be used to continuously produce the thin films including components in a substantially equivalent ratio and thus, increase reproducibility and reliability of the thin films.
  • the first and second organic compounds may include any material having an evaporation temperature for pre-treatment at a predetermined temperature without a particular limit, for example, a compound having electron characteristics and a compound having hole characteristics to improve mobility of electrons and holes.
  • the first organic compound may be a compound having relatively strong electron characteristics
  • the second organic compound may be a compound having relatively strong hole characteristics
  • the organic alloy of the first organic compound having relatively strong electron characteristics and the second organic compound having relatively strong hole characteristics may have bipolar characteristics.
  • the first organic compound is a compound having relatively strong electron characteristics, for example a compound represented by the following Chemical Formula 1.
  • Z is independently N or CR a
  • R 1 to R 10 and R a are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a combination thereof,
  • L is a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group or a substituted or unsubstituted terphenylene group,
  • n1 to n3 are independently 0 or 1, and n1+n2+n3 ⁇ 1.
  • the 6-membered rings substituting the triphenylene group indicate all the 6-membered rings directly or indirectly linked to the triphenylene group and include 6-membered rings including a carbon atom, a nitrogen atom, or a combination thereof.
  • the first organic compound may be represented by for example the following Chemical Formula 1-1 or 1-II, depending on the bonding position of the triphenylene group.
  • the first organic compound includes the triphenylene group and at least one nitrogen-containing heterocyclic group.
  • the first organic compound includes at least one nitrogen-containing ring and thereby, may have a structure of easily accepting electrons when an electric field is applied thereto and thus, decrease a driving voltage of an organic optoelectric device including the first organic compound.
  • the first organic compound has a bipolar structure by including both a triphenylene structure of easily accepting holes and a nitrogen-containing ring moiety of easily accepting electrons and may appropriately balance a flow of the holes and the electrons, and accordingly, improve efficiency of an organic optoelectric device when applied thereto.
  • the first organic compound represented by the above Chemical Formula 1 has at least one kink structure as a center of an arylene group and/or a heterocyclic group.
  • the kink structure is a structure that a linking moiety of the arylene group and/or the heterocyclic group is not a linear structure.
  • a linking moiety of the arylene group and/or the heterocyclic group is not a linear structure.
  • ortho phenylene (o-phenylene) and meta phenylene (m-phenylene) have the kink structure where a linking moiety does not form a linear structure
  • para phenylene p-phenylene
  • the kink structure may be formed as a center of a linking group (L) and/or an arylene group/a heterocyclic group.
  • a kink structure may be formed as a center of an arylene group/a heterocyclic group, and for example, the compound may be represented by the following Chemical Formula 1a or 1b.
  • a kink structure is formed as a center of a linking group (L), and for example, the L is may be a substituted or unsubstituted phenylene having the kink structure, a substituted or unsubstituted biphenylene group having the kink structure, or a substituted or unsubstituted terphenylene group having the kink structure.
  • the L may be selected from, for example substituted or unsubstituted groups listed in the following Group 1.
  • R 15 to R 42 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, a substituted or unsubstituted amine group, a substituted or unsubstituted C6 to C30 arylamine group, a substituted or unsubstituted C6 to C30 heteroarylamine group, a substituted or unsubstituted C1 to C30 alkoxy group, a halogen, a halogen-containing group, a cyano group, a hydroxyl group, an amino group, a nitro group, a carboxyl group, a fer
  • the first organic compound may have at least two kink structures and for example, two to four kink structures.
  • the first organic compound may appropriately localize charges and control a conjugation-system flow due to the above kink structure, and thus improve a life-span of an organic optoelectric device to which the composition is applied.
  • the number of R 1 to R 6 that is the total number of 6-membered rings substituting the triphenylene group is limited to be less than or equal to 6, and thereby thermal decomposition of the compound by a high temperature during a deposition process may be decreased.
  • the first organic compound may be effectively prevented from stacking depending on the structure and decrease process stability and simultaneously, a deposition temperature.
  • This stacking prevention effect may be further increased when the compound includes the linking group (L) of the above Chemical Formula 1.
  • the first organic compound may be, for example represented by one of the following Chemical Formulae 1c to 1t.
  • R 1 to R 10 are independently the same as described above, and
  • R 60 to R 77 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, a substituted or unsubstituted amine group, a substituted or unsubstituted C6 to C30 arylamine group, a substituted or unsubstituted C6 to C30 heteroarylamine group, a substituted or unsubstituted C1 to C30 alkoxy group, a halogen, a halogen-containing group, a cyano group, a hydroxyl group, an amino group, a nitro group, a carboxyl group, a
  • the first organic compound may be, for example, a compound listed in the following Group 2 but is not limited thereto.
  • At least one or more kinds of the first organic compound may be used.
  • the second organic compound may be a compound having relatively strong hole characteristics, for example, a compound represented by the following Chemical Formula 2.
  • Y 1 and Y 2 are independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof,
  • Ar 1 and Ar 2 are a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof, and
  • R 11 to R 13 , R 43 and R 44 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heterocyclic group, or a combination thereof.
  • the second organic compound is a compound having bipolar characteristics in which hole characteristics are relatively stronger than electron characteristics and thus, increases charge mobility and stability by forming an organic alloy with the first organic compound and resultantly, may improve luminous efficiency and life-span characteristics.
  • Ar 1 and Ar 2 of the above Chemical Formula 2 are substitutents having hole or electron characteristics, and may be independently for example a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted triphenylenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted benzofuranyl group, a substituted or unsubstituted benzothiophenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or un
  • At least one of Ar 1 and Ar 2 of the above Chemical Formula 2 may be for example substituents having electron characteristics, and may be for example substituents represented by the following Chemical Formula A.
  • Z is independently N or CR b ,
  • A1 and A2 are independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof,
  • At least one of the Z, A1 and A2 includes N, and
  • a and b are independently 0 or 1.
  • the substituent represented by the above Chemical Formula A may be for example one of functional groups listed in the following Group 3.
  • At least one of Ar 1 and Ar 2 of the above Chemical Formula 2 may be, for example a substituent having hole characteristics, and may be, for example substituents listed in the following Group 4.
  • the compound represented by the above Chemical Formula 2 may be, for example selected from compounds listed in the following Group 5, but is not limited thereto.
  • At least one or more kinds of the second organic compound may be used.
  • first and second organic compounds may be variously combined to prepare various organic alloys.
  • the first organic compound may be at least one of compounds listed in the following Group A
  • the second organic compound may be at least one of compounds listed in the following Group B, but they are not limited thereto.
  • the first organic compound is a compound having relatively strong electron characteristics
  • the second organic compound is a compound having relatively strong hole characteristics
  • they are pre-treated to form an organic alloy to increase mobility of electrons and holes and thus, to remarkably improve luminous efficiency compared with when the first compound or the second compound is used at alone.
  • excitons When the single material having biased toward electron characteristics or biased toward hole characteristics is used to form an emission layer, excitons may be relatively more formed at an interface of an emission layer and the electron transport layer (ETL) or hole transport layer (HTL). As a result, the excitons in the emission layer may interact with charges at the interface of the electron transport layer (ETL) or the hole transport layer (HTL) and thus, cause a roll-off of sharply deteriorating efficiency and also, sharply deteriorate light emitting life-span characteristics.
  • ETL electron transport layer
  • HTL hole transport layer
  • the organic alloy of the first organic compound and the second organic compound is introduced into the emission layer to manufacture a device balancing carriers in the emission layer, so that a light emitting area may not be biased toward either the electron transport layer (ETL) or hole transport layer (HTL) and thus, remarkably improving roll-off and simultaneously life-span characteristics.
  • ETL electron transport layer
  • HTL hole transport layer
  • the organic alloy may be obtained by using the first organic compound and the second organic compound in a mole ratio, for example about 1:10 to about 10:1. As another examples, the organic alloy may be obtained by using the first organic compound and the second organic compound in a mole ratio of about 1:4 to about 4:1, or in a mole ratio of about 1:1.
  • bipolar characteristics may be realized more efficiently and efficiency and life-span may be improved.
  • the organic alloy may be obtained by pre-treating the above first organic compound and second organic compound, or may be obtained by pre-treating at least one kind of an organic compound besides the above first organic compound and second organic compound.
  • the organic alloy may be used as an organic material for an organic optoelectric device, and may be used as, for example a light emitting material, a light absorbing material, a charge transport material, a charge injection material, a charge blocking material, or a combination thereof.
  • the organic alloy may be used as a light emitting material for an organic optoelectric device.
  • the organic alloy may be used as a host, and may further include at least one kind of a dopant.
  • the dopant may be a red, green, or blue dopant, for example a phosphorescent dopant.
  • the dopant is mixed with the organic alloy in a small amount to cause light emission, and may be generally a material such as a metal complex that emits light by multiple excitation into a triplet or more.
  • the dopant may be, for example an inorganic, organic, or organic/inorganic compound, and one or more kinds thereof may be used.
  • Examples of the phosphorescent dopant may be an organic metal compound including Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof.
  • the phosphorescent dopant may be, for example a compound represented by the following Chemical Formula Z, but is not limited thereto.
  • M is a metal
  • L and X are the same or different, and are a ligand to form a complex compound with M.
  • the M may be, for example Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof, and the L and X may be, for example a bidendate ligand.
  • the organic material may form a film using a dry film-forming method such as chemical vapor deposition or a solution process.
  • the organic optoelectric device may be any device to convert electrical energy into photoenergy and vice versa without particular limitation, and may be, for example an organic photoelectric device, an organic light emitting diode, an organic solar cell, and an organic photo-conductor drum.
  • the organic optoelectric device includes an anode and a cathode facing each other, and at least one organic layer interposed between the anode and the cathode, wherein the organic layer includes the above organic material.
  • FIGS. 1 and 2 are cross-sectional views of each organic light emitting diode according to one embodiment.
  • an organic light emitting diode 100 includes an anode 120 and a cathode 110 facing each other and an organic layer 105 interposed between the anode 120 and cathode 110 .
  • the anode 120 may be made of a conductor having a large work function to help hole injection, and may be for example metal, metal oxide and/or a conductive polymer.
  • the anode 120 may be a metal such as nickel, platinum, vanadium, chromium, copper, zinc, gold, and the like or an alloy thereof; metal oxide such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and the like; a combination of metal and oxide such as ZnO and Al or SnO 2 and Sb; a conductive polymer such as poly(3-methylthiophene), poly(3,4-(ethylene-1,2-dioxy)thiophene) (PEDOT), polypyrrole, and polyaniline, but is not limited thereto.
  • the cathode 110 may be made of a conductor having a small work function to help electron injection, and may be for example metal, metal oxide and/or a conductive polymer.
  • the cathode 110 may be for example a metal or an alloy thereof such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum silver, tin, lead, cesium, barium, and the like; a multi-layer structure material such as LiF/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca, but is not limited thereto.
  • the organic layer 105 may include an emission layer 130 including the above organic material.
  • the emission layer 130 may include, for example the above organic material.
  • an organic light emitting diode 200 further includes a hole auxiliary layer 140 as well as an emission layer 130 .
  • the hole auxiliary layer 140 may further increase hole injection and/or hole mobility between the anode 120 and emission layer 130 and block electrons.
  • the hole auxiliary layer 140 may be, for example a hole transport layer (HTL), a hole injection layer (HIL), and/or an electron blocking layer (EBL), and may include at least one layer.
  • HTL hole transport layer
  • HIL hole injection layer
  • EBL electron blocking layer
  • an organic light emitting diode may further include an electron transport layer (ETL), an electron injection layer (EIL), a hole injection layer (HIL), and the like, in an organic layer 105 in FIG. 1 or FIG. 2 .
  • ETL electron transport layer
  • EIL electron injection layer
  • HIL hole injection layer
  • the organic light emitting diodes 100 and 200 may be manufactured by forming an anode or a cathode on a substrate, forming an organic layer in accordance with a dry coating method such as evaporation, sputtering, plasma plating, and ion plating; and forming a cathode or an anode thereon.
  • a dry coating method such as evaporation, sputtering, plasma plating, and ion plating
  • the organic light emitting diode may be applied to an organic light emitting diode (OLED) display.
  • OLED organic light emitting diode
  • the compound A-33 had an evaporation temperature of about 226 ⁇ 10° C. under less than or equal to 10 ⁇ 3 Torr.
  • the compound B-10 had an evaporation temperature of about 225 ⁇ 10° C. under less than or equal to 10 ⁇ 3 Torr.
  • the compound B-43 had an evaporation temperature of about 232 ⁇ 10° C. under less than or equal to 10 ⁇ 3 Torr.
  • a powder-type organic alloy was obtained by putting the compound A-33 and the compound B-10 in a mole ratio of 1:1 in a vacuum chamber of less than or equal to 10 ⁇ 3 Torr, melting the compound A-33 and the compound B-10 by increasing temperature of the vacuum chamber, solidifying them by cooling down to room temperature of 25° C., and grinding the solid with a blender.
  • a powder-type organic alloy was obtained by putting the compound A-33 and the compound B-43 in a mole ratio of 1:1 in a vacuum chamber of less than or equal to 10 ⁇ 3 Torr, melting the compound A-33 and the compound B-43 by increasing temperature of the vacuum chamber, solidifying them by cooling down to room temperature of 25° C., and grinding the solid with a blender.
  • a powder-type compound A-33 was prepared by grinding the compound A-33 according to Synthesis Example 5 with a blender at room temperature (25° C.).
  • the powder-type compound B-10 was prepared by grinding the compound B-10 according to Synthesis Example 1 of a second organic compound at temperature (25° C.) with a blender.
  • a powder-type compound B-43 was obtained by grinding the compound B-43 according to Synthesis Example 2 of a second organic compound at room temperature (25° C.) with a blender.
  • the compound A-33 according to Synthesis Example 5 and the compound B-43 according to Synthesis Example 1 of a second organic compound were physically ground in a mole ratio of 1:1 at room temperature (25° C.) with a blender, preparing a simple mixture.
  • Optical properties of the organic alloys according to Examples 1 and 2 and the organic materials according to Comparative Examples 1 to 5 were evaluated.
  • the optical properties were evaluated by measuring photoluminescence (PL) spectrum of powders of the organic alloys according to Examples 1 and 2 and the organic materials according to Comparative Examples 1 to 5 with a Fluorescence spectrophotometer (F-4500, Hitachi).
  • the powders were used as a sample, and herein, a solid sample holder of 650-0161 (Hitachi) was used as a PL holder.
  • FIG. 3 is a graph showing light emitting characteristics of the organic alloy according to Example 1 and the organic materials according to Comparative Examples 1 to 3 depending on a wavelength
  • FIG. 4 is a graph showing light emitting characteristics of the organic alloy according to Example 2 and the organic materials according to Comparative Examples 1, 4, and 5 depending on a wavelength.
  • the organic alloy of Example 1 showed different optical properties from the organic materials according to Comparative Examples 1 to 3
  • the organic alloy of Example 2 showed different optical properties from the organic materials according to Comparative Examples 1, 4, and 5.
  • the organic alloy of Example 1 showed inherent optical properties differing from those of the first organic compound A-33 and the second organic compound B-10, for example, a maximum light emitting wavelength greater than or equal to about 20 nm moving toward a long wavelength, while the organic material of Comparative Example 3, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-10, showed optical properties of the first organic compound A-33, the second organic compound B-10, or a combination thereof.
  • the organic alloy of Example 2 showed inherent optical properties differing from those of the first organic compound A-33 and the second organic compound B-43, for example, a maximum light emitting wavelength greater than or equal to about 20 nm toward a long wavelength, while the organic material of Comparative Example 5, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-43 showed optical properties of the first organic compound A-33, the second organic compound B-43, or a combination thereof.
  • the organic alloy according to Example 1 showed inherent energy level differing from those of the first organic compound A-33 and the second organic compound B-10, while the organic material of Comparative Example 3, that is, a mixture of the first organic compound A-33 and the second organic compound B-10, showed substantially similar energy level to that of the first organic compound A-33 or the second organic compound B-10.
  • the organic alloy of Example 2 showed inherent energy level differing from those of first organic compound A-33 and the second organic compound B-43, while the organic material of Comparative Example 5, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-43 showed substantially similar energy level to that of the first organic compound A-33 or the second organic compound B-43.
  • thermodynamic characteristics of the organic alloys of Examples 1 and 2 and the organic materials of Comparative Examples 1 to 5 were evaluated.
  • the thermodynamic characteristics of the organic alloys of Examples 1 and 2 and the organic materials of Comparative Examples 1 to 5 were measured through differential scanning calorimetry by using DSC1 (Mettler-Toledo Inc.).
  • the organic alloy of Example 1 showed different thermodynamic characteristics from those of the organic materials of Comparative Examples 1 to 3, and the organic alloy of Example 2 showed different thermodynamic characteristics from the organic materials according to Comparative Examples 1, 4, and 5.
  • the organic alloy of Example 1 showed inherent thermodynamic characteristics differing from those of the first organic compound A-33, the second organic compound B-10, and a simple mixture thereof, while the organic material of Comparative Example 3, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-10 showed substantially similar thermodynamic characteristics to those of the organic material of Comparative Example 2.
  • the organic alloy of Example 2 showed different thermodynamic characteristics from those of the first organic compound A-33, the second organic compound B-43, and a simple mixture of the first organic compound A-33 and the second organic compound B-43, while the organic material of Comparative Example 5, a simple mixture of the first organic compound A-33 and the second organic compound B-43 showed substantially similar thermodynamic characteristics to those of the organic material of Comparative Example 4, that is, the second organic compound B-43.
  • thermodynamic characteristics of the organic alloy of Examples 1 and 2 and organic materials of Comparative Examples 3 and 5 was evaluated. The consistency of thermodynamic characteristics was evaluated by more than once measuring the thermodynamic characteristics of Evaluation 2 and seeing if the measurements were constant.
  • the organic alloys of Examples 1 and 2 showed constant melting points within an error range of ⁇ 5° C., especially, within an error range of ⁇ 2° C. over more than one measurement, while the organic materials of Comparative Examples 3 and 5 showed largely different melting points over the measurements, for example, within an error range of about 20° C. Accordingly, the organic alloys of Examples 1 and 2 showed more constant organic thermodynamic characteristics than a single organic compound or a simple mixture thereof.
  • the variation with time during continuous process was evaluated by continuously depositing the organic alloys of Examples 1 and 2 and the organic materials of Comparative Examples 3 and 5 on a glass substrate to form a plurality of films and examining if single organic compounds constantly maintained a ratio in each film through a high performance liquid chromatography (HPLC) analysis method.
  • HPLC high performance liquid chromatography
  • the films formed of the organic alloys according to Examples 1 and 2 showed almost constant ratio among single organic compounds, that is, A-33/B-10 or A-33/1B-43 compared with the thin films formed of the organic materials according to Comparative Examples 3 and 5. Accordingly, a thin film formed of an organic alloy may be reproduced through a continuous process compared with a thin film formed of a simple mixture.
  • a glass substrate coated with a 1500 ⁇ -thick ITO (Indium tin oxide) was cleaned with distilled water and an ultrasonic wave.
  • glass substrate was ultrasonic wave-cleaned with a solvent such as isopropyl alcohol, acetone, methanol and the like and dried, and then, moved to a plasma cleaner, cleaned by using oxygen plasma for 10 minutes and to a vacuum depositor.
  • a solvent such as isopropyl alcohol, acetone, methanol and the like
  • HIL hole injection layer
  • HTL hole transport layer
  • a 400 ⁇ -thick emission layer was formed by vacuum-depositing the organic alloy of Example 1 as a host doped with 10 wt % of tris(4-methyl-2,5-diphenylpyridine)iridium (III) (the compound D) as a dopant.
  • a 300 ⁇ -thick electron transport layer (ETL) was formed on the emission layer by vacuum-depositing 8-(4-(4-(naphthalen-2-yl)-6-(naphthalen-3-yl)-1,3,5-triazin-2-yl)phenyl)quinoline (the compound E) and simultaneously hydroxyquinoline lithium (Liq) in a ratio of 1:1, and a cathode was formed on the electron transport layer (ETL) by sequentially vacuum-depositing Liq to be 15 ⁇ thick and Al to be 1200 ⁇ thick, manufacturing an organic light emitting diode.
  • ETL electron transport layer
  • the organic light emitting diode had a structure of five-story organic thin films and specifically,
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic alloy of Example 2 instead of the organic alloy of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 1, that is, the compound A-33 as a single host instead of the organic alloy of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 2, that is, the compound B-10 as a single host instead of the organic alloy of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 3, that is, a simple mixture of the compound A-33 and the compound B-10 instead of the organic alloy of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 4, that is, the compound B-43 as a single host instead of the organic alloy of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 5, that is, a simple mixture of the compound A-33 and the compound B-43instead of the organic alloy of Example 1.
  • Luminance of the manufactured organic light emitting diodes was measured for luminance, while increasing the voltage from 0 V to 10 V using a luminance meter (Minolta Cs-1000A).
  • Luminance (cd/ 2 ) was maintained at 6000 cd/m 2 and a time at current efficiency (cd/A) decreases to 97% was measured.
  • the organic light emitting diode of Example 3 showed equivalent or improved luminous efficiency and life-span characteristics compared with the organic light emitting diodes of Comparative Examples 6 to 8, and the organic light emitting diode of Example 4 showed equivalent or improved luminous efficiency and life-span characteristics compared with the organic light emitting diodes of Comparative Examples 6, 9, and 10. Accordingly, an organic light emitting diode using the organic alloy turned out to have equivalent or improved performance compared with an organic light emitting diode using a single organic compound or a simple mixture thereof.

Abstract

Disclosed are an organic alloy for an organic optoelectric device that is an organic alloy of at least two kinds of organic compounds, the at least two kinds of organic compounds includes a first organic compound and a second organic compound, a difference between evaporation temperatures of the first organic compound and the second organic compound is less than or equal to about 20° C. at less than or equal to about 10−3 torr, and a light emitting wavelength of the organic alloy is different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture of the first organic compound and the second organic compound, and an organic optoelectric device and a display device including the organic alloy.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a continuation application based on pending application Ser. No. 14/903,197, filed Jan. 6, 2016. Application Ser. No. 14/903,197 is the U.S. national phase application based on PCT Application No. PCT/KR2014/005306, filed Jun. 17, 2014, which is based on Korean Patent Application No. 10-2013-0121569, filed Oct. 11, 2013, the entire contents of all of which being hereby incorporated by reference.
  • TECHNICAL FIELD
  • An organic alloy for an organic optoelectric device, an organic optoelectric device, and a display device are disclosed.
  • BACKGROUND ART
  • An organic optoelectric device is a device that converts electrical energy into photoenergy, and vice versa.
  • An organic optoelectric device may be classified as follows in accordance with its driving principles. One is a photoelectric device where excitons generated by photoenergy are separated into electrons and holes and the electrons and holes are transferred to different electrodes respectively and electrical energy is generated, and the other is a light emitting device to generate photoenergy from electrical energy by supplying a voltage or a current to electrodes.
  • Examples of the organic optoelectric device include an organic photoelectric device, an organic light emitting diode, an organic solar cell, and an organic photo-conductor drum, and the like.
  • Among them, the organic light emitting diode (OLED) has recently drawn attention due to an increase in demand for flat panel displays. The organic light emitting diode converts electrical energy into light by applying current to an organic light emitting material, and has a structure in which an organic layer is interposed between an anode and a cathode. Herein, the organic layer may include an emission layer and optionally an auxiliary layer, and the auxiliary layer may include at least one layer selected from, for example a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, an electron injection layer, and a hole blocking layer in order to improve efficiency and stability of an organic light emitting diode.
  • Performance of an organic light emitting diode may be affected by characteristics of the organic layer, and among them, may be mainly affected by an organic material of the organic layer.
  • Particularly, development for an organic material being capable of increasing hole and electron mobility and simultaneously increasing electrochemical stability is needed so that the organic light emitting diode may be applied to a large-size flat panel display.
  • DISCLOSURE Technical Problem
  • One embodiment provides an organic alloy applicable for an organic optoelectric device.
  • Another embodiment provides organic optoelectric device including the organic alloy.
  • Yet another embodiment provides a display device including the organic optoelectric device.
  • Technical Solution
  • According to one embodiment, provided is an organic alloy for an organic optoelectric device that is an organic alloy of at least two kinds of organic compounds, the at least two kinds of organic compounds includes a first organic compound and a second organic compound, a difference between evaporation temperatures of the first organic compound and the second organic compound is less than or equal to about 20° C. at less than or equal to about 10−3 torr, and a light emitting wavelength of the organic alloy is different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture of the first organic compound and the second organic compound.
  • According to another embodiment, provided is an organic optoelectric device including an anode and a cathode facing each other, at least one organic layer interposed between the anode and the cathode, wherein the organic layer includes the organic alloy.
  • According to yet another embodiment, a display device including the organic optoelectric device is provided.
  • Advantageous Effects
  • The present invention may provide an organic alloy having different characteristics from those of a conventional single organic compound and a simple mixture thereof and realize an organic optoelectric device having high efficiency and long life-span by applying the organic alloy to the organic optoelectric device.
  • DESCRIPTION OF DRAWINGS
  • FIGS. 1 and 2 are cross-sectional views showing organic light emitting diodes according to each embodiment the present invention,
  • FIG. 3 is a graph showing light emitting characteristics of an organic alloy according to Example 1 and organic materials according to Comparative Examples 1 to 3 depending on a wavelength, and
  • FIG. 4 is a graph showing light emitting characteristics of an organic alloy according to Example 2 and organic materials according to Comparative Examples 1, 4 and 5 depending on a wavelength.
  • BEST MODE
  • Hereinafter, embodiments of the present invention are described in detail. However, these embodiments are exemplary, and this disclosure is not limited thereto.
  • As used herein, when a definition is not otherwise provided, the term “substituted” refers to one substituted with deuterium, a halogen, a hydroxy group, an amino group, a substituted or unsubstituted C1 to C30 amine group, a nitro group, a substituted or unsubstituted C1 to C40 silyl group, a C1 to C30 alkyl group, a C1 to C10 alkylsilyl group, a C3 to C30 cycloalkyl group, a C2 to C30 heterocycloalkyl group, a C6 to C30 aryl group, a C2 to C30 heterocyclic group, a C1 to C20 alkoxy group, a fluoro group, a C1 to C10 trifluoroalkyl group such as a trifluoromethyl group and the like, or a cyano group, instead of at least one hydrogen of a substituent or a compound.
  • In addition, two adjacent substituents of the substituted halogen, hydroxy group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C2 to C30 heterocycloalkyl group, C6 to C30 aryl group, C2 to C30 heterocyclic group, C1 to C20 alkoxy group, fluoro group, C1 to C10 trifluoroalkyl group such as trifluoromethyl group and the like, or cyano group may be fused to each other to form a ring. For example, the substituted C6 to C30 aryl group may be fused with another adjacent substituted C6 to C30 aryl group to form a substituted or unsubstituted fluorene ring.
  • In the present specification, when specific definition is not otherwise provided, the term “hetero” refers to one including 1 to 3 hetero atoms selected from N, O, S, P and Si, and remaining carbons in one compound or substituent.
  • In the present specification, when a definition is not otherwise provided, the term “alkyl group” may refer to an aliphatic hydrocarbon group. The alkyl group may refer to “a saturated alkyl” without any double bond or triple bond.
  • The alkyl group may be a C1 to C30 alkyl group. More specifically, the alkyl group may be a C1 to C20 alkyl group or a C1 to C10 alkyl group. For example, a C1 to C4 alkyl group includes 1 to 4 carbons in alkyl chain, and may be selected from methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl.
  • Specific examples of the alkyl group may be a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • In the present specification, the term “aryl group” refers to a substituent including all element of the cycle having p-orbitals which form conjugation, and may be monocyclic or fused ring polycyclic (i.e., rings sharing adjacent pairs of carbon atoms) functional group.
  • As used herein, the term “heterocyclic group” may refer to cyclic group including 1 to 3 hetero atoms selected from N, O, S, P and Si, and remaining carbons in a cyclic group. The heterocyclic group may be a fused ring where each ring may include the 1 to 3 heteroatoms.
  • More specifically, the substituted or unsubstituted C6 to C30 aryl group and/or the substituted or unsubstituted C2 to C30 heterocyclic group may be a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted naphthacenyl group, a substituted or unsubstituted pyrenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted p-terphenyl group, a substituted or unsubstituted m-terphenyl group, a substituted or unsubstituted chrysenyl group, a substituted or unsubstituted triphenylenyl group, a substituted or unsubstituted perylenyl group, a substituted or unsubstituted indenyl group, a substituted or unsubstituted furanyl group, a substituted or unsubstituted thiophenyl group, a substituted or unsubstituted pyrrolyl group, a substituted or unsubstituted pyrazolyl group, a substituted or unsubstituted imidazolyl group, a substituted or unsubstituted triazolyl group, a substituted or unsubstituted oxazolyl group, a substituted or unsubstituted thiazolyl group, a substituted or unsubstituted oxadiazolyl group, a substituted or unsubstituted thiadiazolyl group, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, a substituted or unsubstituted triazinyl group, a substituted or unsubstituted benzofuranyl group, a substituted or unsubstituted benzothiophenyl group, a substituted or unsubstituted benzimidazolyl group, a substituted or unsubstituted indolyl group, a substituted or unsubstituted quinolinyl group, a substituted or unsubstituted isoquinolinyl group, a substituted or unsubstituted quinazolinyl group, a substituted or unsubstituted quinoxalinyl group, a substituted or unsubstituted naphthyridinyl group, a substituted or unsubstituted benzoxazinyl group, a substituted or unsubstituted benzthiazinyl group, a substituted or unsubstituted acridinyl group, a substituted or unsubstituted phenazinyl group, a substituted or unsubstituted phenothiazinyl group, a substituted or unsubstituted phenoxazinyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, a substituted or unsubstituted carbazole group, a combination thereof, or a fused group of the combination, but are limited thereto.
  • In the specification, hole characteristics refer to characteristics capable of donating an electron to form a hole when electric field is applied, and characteristics that hole formed in the anode is easily injected into the emission layer and transported in the emission layer due to conductive characteristics according to HOMO level.
  • In addition, electron characteristics refer to characteristics capable of accepting an electron when electric field is applied, and characteristics that electron formed in the cathode is easily injected into the emission layer and transported in the emission layer due to conductive characteristics according to LUMO level.
  • Hereinafter, an organic alloy for an organic optoelectric device according to one embodiment is described.
  • The organic alloy is a material obtained by pre-treating more than two single organic compounds and a chemical interaction among the single organic compounds may be provided due to the pre-treatment. The pre-treating may be a heat treatment such as heating and sublimation followed by cooling, but is not limited thereto.
  • When the more than two single organic compounds include first and second organic compounds, the first and second organic compounds may have an evaporation temperature within the same or a predetermined range. Herein, the evaporation temperature indicates a temperature at which the first and second organic compounds may be deposited on a substrate at a predetermined rate under high vacuum of less than or equal to about 10−3 Torr, for example, an average temperature when the first and second organic compounds are thermally evaporated to be about 300 nm to about 800 nm thick at a rate of about 0.5 to about 2 Å/sec under high vacuum of less than or equal to about 10−3 Torr.
  • For example, the difference between evaporation temperatures of the first organic compound and the second organic compound may be less than or equal to about 20° C. at less than or equal to about 10−3 torr. Within the range, a difference between evaporation temperatures of the first organic compound and the second organic compound may be about 0° C. to 10° C. and specifically about 0° C. to about 5° C.
  • The organic alloy has a chemical interaction among more than two single organic compounds as described above and thus, different intrinsic characteristics from the single organic compounds and their simple mixture having no chemical interaction among single organic compounds. Herein, the simple mixture is obtained by physically mixing single organic compounds without any pre-treatment. In other words, when the more than two single organic compounds include the first and second organic compounds, the organic alloy of the first and second organic compounds may have different intrinsic characteristics from those of the first organic compound, the second organic compound, and a simple mixture thereof, while the single mixture of the first and second organic compounds show characteristics of the first organic compound, the second organic compound, or a combination thereof.
  • For example, the light emitting wavelength of the organic alloy may be different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture thereof.
  • The organic alloy may release new energy and emit light by a new energy bandgap between a high HOMO energy level and a low LUMO energy level of the first and second organic compounds due to intermolecular electron transfer system of the two organic compounds. For example, the energy bandgap of the organic alloy may be an energy difference between LUMO energy level of the first organic compound and HOMO energy level of the second organic compound or between LUMO energy level of the second organic compound and HOMO energy level of the first organic compound. On the other hand, the simple mixture of the first and second organic compounds may have either an energy bandgap between LUMO energy and HOMO energy of the first organic compound or a bandgap between LUMO energy and HOMO energy of the second organic compound. Herein, the organic alloy may have a smaller or larger bandgap than that of the first organic compound, the second organic compound, and the simple mixture thereof. Accordingly, the light emitting wavelength of the organic alloy may be different from light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture thereof.
  • A maximum light emitting wavelength (λmax) of the organic alloy may be shifted greater than or equal to about 20 nm compared with a maximum light emitting wavelength of the simple mixture of the first and second organic compounds, for example, shifted greater than or equal to about 20 nm toward a long wavelength region.
  • In addition, the organic alloy may have a different color from those of the first organic compound, the second organic compound, and the simple mixture thereof. For example, the organic alloy may have a color with a longer wavelength region than those of the first organic compound, the second organic compound, and the simple mixture thereof.
  • Furthermore, the organic alloy may have a different glass transition temperature (Tg) from that of the first organic compound, the second organic compound, and the simple mixture thereof. In addition, the organic alloy may have a different crystallization temperature (Tc) from that of the first organic compound, the second organic compound, and the simple mixture thereof. In addition, the organic alloy may have a different melting point (Tm) from that of the first organic compound, the second organic compound, and the simple mixture thereof. Since the glass transition temperature (Tg), the crystallization temperature (Tc), and the melting point (Tm) show inherent thermodynamic characteristics of a molecule, the compounds having the different glass transition temperature (Tg), the different crystallization temperature (Tc) and the different melting point (Tm) may be different compounds.
  • The organic alloy may have inherent thermodynamic characteristics such as the glass transition temperature (Tg), the crystallization temperature (Tc), and the melting point (Tm), which may be substantially constant within an error range. The error range may vary depending on a measurement condition, for example, may be within about ±5° C. and specifically, within about ±2° C. These thermodynamic characteristics may be different from those of the simple mixture of the first and second organic compounds having no inherent thermodynamic characteristics.
  • The organic alloy may be pre-treated in various methods, for example, in a method of heat-treating the first and second organic compounds at greater than or equal to an evaporation temperature and liquidating or gasifying the first and second organic compounds and then, cooling and solidifying the heat-treated compounds. The first and second organic compounds may be melted liquid or gasified vapor at the evaporation temperature, and the pre-treated organic alloy may be a solid like a mass or powder. In addition, the organic alloy obtained as a solid mass may be additionally physically ground with a blender and the like.
  • The organic alloy is a resulting material obtained through the aforementioned pre-treatment and may be supplied by using one source to form a thin film. Accordingly, the deposition process may become simple without a control process required when more than two organic compounds are respectively supplied by using separate sources.
  • In addition, the organic alloy is a resulting material obtained through the aforementioned pre-treatment and thus, may secure uniformity and consistency for deposition compared with the more than two single organic compounds supplied by using more than two separate sources or their simple mixture of supplied by using one single source. Accordingly, when a plurality of thin films are formed through a continuous process, the organic alloy may be used to continuously produce the thin films including components in a substantially equivalent ratio and thus, increase reproducibility and reliability of the thin films.
  • The first and second organic compounds may include any material having an evaporation temperature for pre-treatment at a predetermined temperature without a particular limit, for example, a compound having electron characteristics and a compound having hole characteristics to improve mobility of electrons and holes. For example, the first organic compound may be a compound having relatively strong electron characteristics, and the second organic compound may be a compound having relatively strong hole characteristics, and thus, the organic alloy of the first organic compound having relatively strong electron characteristics and the second organic compound having relatively strong hole characteristics may have bipolar characteristics.
  • The first organic compound is a compound having relatively strong electron characteristics, for example a compound represented by the following Chemical Formula 1.
  • Figure US20230209997A1-20230629-C00001
  • In the above Chemical Formula 1,
  • Z is independently N or CRa
  • at least one of Z is N,
  • R1 to R10 and Ra are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a combination thereof,
  • In the above Chemical Formula 1, the total number of 6-membered rings substituting the triphenylene group is less than or equal to 6,
  • L is a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group or a substituted or unsubstituted terphenylene group,
  • n1 to n3 are independently 0 or 1, and n1+n2+n3≥1.
  • Herein, the 6-membered rings substituting the triphenylene group indicate all the 6-membered rings directly or indirectly linked to the triphenylene group and include 6-membered rings including a carbon atom, a nitrogen atom, or a combination thereof.
  • The first organic compound may be represented by for example the following Chemical Formula 1-1 or 1-II, depending on the bonding position of the triphenylene group.
  • Figure US20230209997A1-20230629-C00002
  • In the above Chemical Formula 1-1 or 1-II, Z, R1 to R10, L and n1 to n3 are the same as described above.
  • The first organic compound includes the triphenylene group and at least one nitrogen-containing heterocyclic group.
  • The first organic compound includes at least one nitrogen-containing ring and thereby, may have a structure of easily accepting electrons when an electric field is applied thereto and thus, decrease a driving voltage of an organic optoelectric device including the first organic compound.
  • In addition, the first organic compound has a bipolar structure by including both a triphenylene structure of easily accepting holes and a nitrogen-containing ring moiety of easily accepting electrons and may appropriately balance a flow of the holes and the electrons, and accordingly, improve efficiency of an organic optoelectric device when applied thereto.
  • The first organic compound represented by the above Chemical Formula 1 has at least one kink structure as a center of an arylene group and/or a heterocyclic group.
  • The kink structure is a structure that a linking moiety of the arylene group and/or the heterocyclic group is not a linear structure. For example, as for phenylene, ortho phenylene (o-phenylene) and meta phenylene (m-phenylene) have the kink structure where a linking moiety does not form a linear structure, while para phenylene (p-phenylene) has no kink structure because where a linking moiety forms a linear structure.
  • In the above Chemical Formula 1, the kink structure may be formed as a center of a linking group (L) and/or an arylene group/a heterocyclic group.
  • For example, when n1 in the above Chemical Formula 1 is 0, that is, there is no linking group (L), a kink structure may be formed as a center of an arylene group/a heterocyclic group, and for example, the compound may be represented by the following Chemical Formula 1a or 1b.
  • Figure US20230209997A1-20230629-C00003
  • In the above Chemical Formula 1a or 1 b, Z, R1 to R10 and L are the same as described above.
  • For example, when n1 in the above Chemical Formula 1 is 1, a kink structure is formed as a center of a linking group (L), and for example, the L is may be a substituted or unsubstituted phenylene having the kink structure, a substituted or unsubstituted biphenylene group having the kink structure, or a substituted or unsubstituted terphenylene group having the kink structure. The L may be selected from, for example substituted or unsubstituted groups listed in the following Group 1.
  • Figure US20230209997A1-20230629-C00004
    Figure US20230209997A1-20230629-C00005
  • In the Group 1,
  • R15 to R42 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, a substituted or unsubstituted amine group, a substituted or unsubstituted C6 to C30 arylamine group, a substituted or unsubstituted C6 to C30 heteroarylamine group, a substituted or unsubstituted C1 to C30 alkoxy group, a halogen, a halogen-containing group, a cyano group, a hydroxyl group, an amino group, a nitro group, a carboxyl group, a ferrocenyl group, or a combination thereof.
  • The first organic compound may have at least two kink structures and for example, two to four kink structures.
  • The first organic compound may appropriately localize charges and control a conjugation-system flow due to the above kink structure, and thus improve a life-span of an organic optoelectric device to which the composition is applied.
  • In addition, in Chemical Formula 1, the number of R1 to R6, that is the total number of 6-membered rings substituting the triphenylene group is limited to be less than or equal to 6, and thereby thermal decomposition of the compound by a high temperature during a deposition process may be decreased.
  • In addition, the first organic compound may be effectively prevented from stacking depending on the structure and decrease process stability and simultaneously, a deposition temperature. This stacking prevention effect may be further increased when the compound includes the linking group (L) of the above Chemical Formula 1.
  • The first organic compound may be, for example represented by one of the following Chemical Formulae 1c to 1t.
  • Figure US20230209997A1-20230629-C00006
    Figure US20230209997A1-20230629-C00007
    Figure US20230209997A1-20230629-C00008
    Figure US20230209997A1-20230629-C00009
    Figure US20230209997A1-20230629-C00010
  • In the above Chemical Formulae 1c to 1t,
  • Z and R1 to R10 are independently the same as described above, and
  • R60 to R77 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, a substituted or unsubstituted amine group, a substituted or unsubstituted C6 to C30 arylamine group, a substituted or unsubstituted C6 to C30 heteroarylamine group, a substituted or unsubstituted C1 to C30 alkoxy group, a halogen, a halogen-containing group, a cyano group, a hydroxyl group, an amino group, a nitro group, a carboxyl group, a ferrocenyl group, or a combination thereof.
  • The first organic compound may be, for example, a compound listed in the following Group 2 but is not limited thereto.
  • Figure US20230209997A1-20230629-C00011
    Figure US20230209997A1-20230629-C00012
    Figure US20230209997A1-20230629-C00013
    Figure US20230209997A1-20230629-C00014
    Figure US20230209997A1-20230629-C00015
    Figure US20230209997A1-20230629-C00016
    Figure US20230209997A1-20230629-C00017
    Figure US20230209997A1-20230629-C00018
    Figure US20230209997A1-20230629-C00019
    Figure US20230209997A1-20230629-C00020
    Figure US20230209997A1-20230629-C00021
    Figure US20230209997A1-20230629-C00022
    Figure US20230209997A1-20230629-C00023
    Figure US20230209997A1-20230629-C00024
    Figure US20230209997A1-20230629-C00025
    Figure US20230209997A1-20230629-C00026
    Figure US20230209997A1-20230629-C00027
    Figure US20230209997A1-20230629-C00028
    Figure US20230209997A1-20230629-C00029
    Figure US20230209997A1-20230629-C00030
    Figure US20230209997A1-20230629-C00031
    Figure US20230209997A1-20230629-C00032
    Figure US20230209997A1-20230629-C00033
    Figure US20230209997A1-20230629-C00034
    Figure US20230209997A1-20230629-C00035
    Figure US20230209997A1-20230629-C00036
    Figure US20230209997A1-20230629-C00037
    Figure US20230209997A1-20230629-C00038
    Figure US20230209997A1-20230629-C00039
    Figure US20230209997A1-20230629-C00040
    Figure US20230209997A1-20230629-C00041
    Figure US20230209997A1-20230629-C00042
    Figure US20230209997A1-20230629-C00043
    Figure US20230209997A1-20230629-C00044
    Figure US20230209997A1-20230629-C00045
  • At least one or more kinds of the first organic compound may be used.
  • The second organic compound may be a compound having relatively strong hole characteristics, for example, a compound represented by the following Chemical Formula 2.
  • Figure US20230209997A1-20230629-C00046
  • In the above Chemical Formula 2,
  • Y1 and Y2 are independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof,
  • Ar1 and Ar2 are a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof, and
  • R11 to R13, R43 and R44 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heterocyclic group, or a combination thereof.
  • The second organic compound is a compound having bipolar characteristics in which hole characteristics are relatively stronger than electron characteristics and thus, increases charge mobility and stability by forming an organic alloy with the first organic compound and resultantly, may improve luminous efficiency and life-span characteristics.
  • Ar1 and Ar2 of the above Chemical Formula 2 are substitutents having hole or electron characteristics, and may be independently for example a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted triphenylenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted benzofuranyl group, a substituted or unsubstituted benzothiophenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, a substituted or unsubstituted triazinyl group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, or a combination thereof.
  • At least one of Ar1 and Ar2 of the above Chemical Formula 2 may be for example substituents having electron characteristics, and may be for example substituents represented by the following Chemical Formula A.
  • Figure US20230209997A1-20230629-C00047
  • In the above Chemical Formula A,
  • Z is independently N or CRb,
  • A1 and A2 are independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof,
  • at least one of the Z, A1 and A2 includes N, and
  • a and b are independently 0 or 1.
  • The substituent represented by the above Chemical Formula A may be for example one of functional groups listed in the following Group 3.
  • Figure US20230209997A1-20230629-C00048
    Figure US20230209997A1-20230629-C00049
    Figure US20230209997A1-20230629-C00050
    Figure US20230209997A1-20230629-C00051
  • In addition, at least one of Ar1 and Ar2 of the above Chemical Formula 2 may be, for example a substituent having hole characteristics, and may be, for example substituents listed in the following Group 4.
  • Figure US20230209997A1-20230629-C00052
    Figure US20230209997A1-20230629-C00053
  • The compound represented by the above Chemical Formula 2 may be, for example selected from compounds listed in the following Group 5, but is not limited thereto.
  • Figure US20230209997A1-20230629-C00054
    Figure US20230209997A1-20230629-C00055
    Figure US20230209997A1-20230629-C00056
    Figure US20230209997A1-20230629-C00057
    Figure US20230209997A1-20230629-C00058
    Figure US20230209997A1-20230629-C00059
    Figure US20230209997A1-20230629-C00060
    Figure US20230209997A1-20230629-C00061
    Figure US20230209997A1-20230629-C00062
    Figure US20230209997A1-20230629-C00063
    Figure US20230209997A1-20230629-C00064
    Figure US20230209997A1-20230629-C00065
    Figure US20230209997A1-20230629-C00066
    Figure US20230209997A1-20230629-C00067
    Figure US20230209997A1-20230629-C00068
    Figure US20230209997A1-20230629-C00069
    Figure US20230209997A1-20230629-C00070
    Figure US20230209997A1-20230629-C00071
    Figure US20230209997A1-20230629-C00072
    Figure US20230209997A1-20230629-C00073
    Figure US20230209997A1-20230629-C00074
    Figure US20230209997A1-20230629-C00075
    Figure US20230209997A1-20230629-C00076
    Figure US20230209997A1-20230629-C00077
    Figure US20230209997A1-20230629-C00078
    Figure US20230209997A1-20230629-C00079
    Figure US20230209997A1-20230629-C00080
    Figure US20230209997A1-20230629-C00081
    Figure US20230209997A1-20230629-C00082
    Figure US20230209997A1-20230629-C00083
    Figure US20230209997A1-20230629-C00084
    Figure US20230209997A1-20230629-C00085
    Figure US20230209997A1-20230629-C00086
  • At least one or more kinds of the second organic compound may be used.
  • The above first and second organic compounds may be variously combined to prepare various organic alloys. For example the first organic compound may be at least one of compounds listed in the following Group A, and the second organic compound may be at least one of compounds listed in the following Group B, but they are not limited thereto.
  • Figure US20230209997A1-20230629-C00087
  • Figure US20230209997A1-20230629-C00088
    Figure US20230209997A1-20230629-C00089
  • As described above, the first organic compound is a compound having relatively strong electron characteristics, the second organic compound is a compound having relatively strong hole characteristics, and they are pre-treated to form an organic alloy to increase mobility of electrons and holes and thus, to remarkably improve luminous efficiency compared with when the first compound or the second compound is used at alone.
  • When the single material having biased toward electron characteristics or biased toward hole characteristics is used to form an emission layer, excitons may be relatively more formed at an interface of an emission layer and the electron transport layer (ETL) or hole transport layer (HTL). As a result, the excitons in the emission layer may interact with charges at the interface of the electron transport layer (ETL) or the hole transport layer (HTL) and thus, cause a roll-off of sharply deteriorating efficiency and also, sharply deteriorate light emitting life-span characteristics. In order to solve this problem, the organic alloy of the first organic compound and the second organic compound is introduced into the emission layer to manufacture a device balancing carriers in the emission layer, so that a light emitting area may not be biased toward either the electron transport layer (ETL) or hole transport layer (HTL) and thus, remarkably improving roll-off and simultaneously life-span characteristics.
  • The organic alloy may be obtained by using the first organic compound and the second organic compound in a mole ratio, for example about 1:10 to about 10:1. As another examples, the organic alloy may be obtained by using the first organic compound and the second organic compound in a mole ratio of about 1:4 to about 4:1, or in a mole ratio of about 1:1.
  • Within the range, bipolar characteristics may be realized more efficiently and efficiency and life-span may be improved.
  • The organic alloy may be obtained by pre-treating the above first organic compound and second organic compound, or may be obtained by pre-treating at least one kind of an organic compound besides the above first organic compound and second organic compound.
  • The organic alloy may be used as an organic material for an organic optoelectric device, and may be used as, for example a light emitting material, a light absorbing material, a charge transport material, a charge injection material, a charge blocking material, or a combination thereof.
  • For example, the organic alloy may be used as a light emitting material for an organic optoelectric device. Herein, the organic alloy may be used as a host, and may further include at least one kind of a dopant. The dopant may be a red, green, or blue dopant, for example a phosphorescent dopant.
  • The dopant is mixed with the organic alloy in a small amount to cause light emission, and may be generally a material such as a metal complex that emits light by multiple excitation into a triplet or more. The dopant may be, for example an inorganic, organic, or organic/inorganic compound, and one or more kinds thereof may be used.
  • Examples of the phosphorescent dopant may be an organic metal compound including Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof. The phosphorescent dopant may be, for example a compound represented by the following Chemical Formula Z, but is not limited thereto.

  • L2MX  [Chemical Formula Z]
  • In the above Chemical Formula Z, M is a metal, and L and X are the same or different, and are a ligand to form a complex compound with M.
  • The M may be, for example Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof, and the L and X may be, for example a bidendate ligand.
  • The organic material may form a film using a dry film-forming method such as chemical vapor deposition or a solution process.
  • Hereinafter, an organic optoelectric device to which the organic material is applied is described.
  • The organic optoelectric device may be any device to convert electrical energy into photoenergy and vice versa without particular limitation, and may be, for example an organic photoelectric device, an organic light emitting diode, an organic solar cell, and an organic photo-conductor drum.
  • The organic optoelectric device includes an anode and a cathode facing each other, and at least one organic layer interposed between the anode and the cathode, wherein the organic layer includes the above organic material.
  • Herein, an organic light emitting diode as one example of an organic optoelectric device is described referring to drawings.
  • FIGS. 1 and 2 are cross-sectional views of each organic light emitting diode according to one embodiment.
  • Referring to FIG. 1 , an organic light emitting diode 100 according to one embodiment includes an anode 120 and a cathode 110 facing each other and an organic layer 105 interposed between the anode 120 and cathode 110.
  • The anode 120 may be made of a conductor having a large work function to help hole injection, and may be for example metal, metal oxide and/or a conductive polymer. The anode 120 may be a metal such as nickel, platinum, vanadium, chromium, copper, zinc, gold, and the like or an alloy thereof; metal oxide such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and the like; a combination of metal and oxide such as ZnO and Al or SnO2 and Sb; a conductive polymer such as poly(3-methylthiophene), poly(3,4-(ethylene-1,2-dioxy)thiophene) (PEDOT), polypyrrole, and polyaniline, but is not limited thereto.
  • The cathode 110 may be made of a conductor having a small work function to help electron injection, and may be for example metal, metal oxide and/or a conductive polymer. The cathode 110 may be for example a metal or an alloy thereof such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum silver, tin, lead, cesium, barium, and the like; a multi-layer structure material such as LiF/Al, LiO2/Al, LiF/Ca, LiF/Al and BaF2/Ca, but is not limited thereto.
  • The organic layer 105 may include an emission layer 130 including the above organic material.
  • The emission layer 130 may include, for example the above organic material.
  • Referring to FIG. 2 , an organic light emitting diode 200 further includes a hole auxiliary layer 140 as well as an emission layer 130. The hole auxiliary layer 140 may further increase hole injection and/or hole mobility between the anode 120 and emission layer 130 and block electrons. The hole auxiliary layer 140 may be, for example a hole transport layer (HTL), a hole injection layer (HIL), and/or an electron blocking layer (EBL), and may include at least one layer.
  • In one embodiment of the present invention, an organic light emitting diode may further include an electron transport layer (ETL), an electron injection layer (EIL), a hole injection layer (HIL), and the like, in an organic layer 105 in FIG. 1 or FIG. 2 .
  • The organic light emitting diodes 100 and 200 may be manufactured by forming an anode or a cathode on a substrate, forming an organic layer in accordance with a dry coating method such as evaporation, sputtering, plasma plating, and ion plating; and forming a cathode or an anode thereon.
  • The organic light emitting diode may be applied to an organic light emitting diode (OLED) display.
  • MODE FOR INVENTION
  • Hereinafter, the embodiments are illustrated in more detail with reference to examples. These examples, however, are not in any sense to be interpreted as limiting the scope of the invention.
  • Preparation of Single Organic Compound
  • Synthesis of First Organic Compound: Compound A-33 Synthesis Example 1: Synthesis of Intermediate I-2
  • Figure US20230209997A1-20230629-C00090
  • 32.7 g (107 mmol) of 2-bromotriphenylene was dissolved in 0.3 L of tetrahydrofuran (THF) under a nitrogen atmosphere, 20 g (128 mmol) of 3-chlorophenylboronic acid and 1.23 g (1.07 mmol) of tetrakis(triphenylphosphine)palladium were added thereto, and the mixture was agitated. Subsequently, 36.8 g (267 mmol) of potassium carbonate saturated in water was added thereto, and the mixture was heated and refluxed at 80° C. for 24 hours. When the reaction was complete, water was added to the reaction solution, and the mixture was treated with dichloromethane (DCM) for extraction and with anhydrous MgSO4 to remove moisture and then, filtered and concentrated under a reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 22.6 g (63%) of the compound I-2.
  • HRMS (70 eV, EI+): m/z calcd for C24H15Cl: 338.0862, found: 338.
  • Elemental Analysis: C, 85%; H, 5%
  • Synthesis Example 2: Synthesis of Intermediate I-3
  • Figure US20230209997A1-20230629-C00091
  • 22.6 g (66.7 mmol) of the compound I-2 was dissolved in 0.3 L of dimethylformamide (DMF) under a nitrogen atmosphere, 25.4 g (100 mmol) of bis(pinacolato)diboron, 0.54 g (0.67 mmol) of (1,1′-bis(diphenylphosphine)ferrocene)dichloropalladium (II), and 16.4 g (167 mmol) of potassium acetate were added thereto, and the mixture was heated and refluxed at 150° C. for 48 hours. When the reaction was complete, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining 18.6 g (65%) of a compound I-3.
  • HRMS (70 eV, EI+): m/z calcd for C30H27BO2: 430.2104, found: 430.
  • Elemental Analysis: C, 84%; H, 6%
  • Synthesis Example 3: Synthesis of Intermediate I-6
  • Figure US20230209997A1-20230629-C00092
  • 50 g (116 mmol) of the compound I-3 was dissolved in 0.5 L of tetrahydrofuran (THF) under a nitrogen atmosphere, 39.4 g (139 mmol) of 1-bromo-3-iodobenzene and 1.34 g (1.16 mmol) of tetrakis(triphenylphosphine) palladium were added thereto, and the mixture was agitated. Subsequently, 40.1 g (290 mmol) of potassium carbonate saturated in water was added thereto, and the mixture was heated and refluxed at 80° C. for 12 hours. When the reaction was complete, water was added to the reaction solution, and the mixture was treated dichloromethane (DCM) for extraction and treated with anhydrous MgSO4 to remove moisture and then, filtered and concentrated under a reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 42.6 g (80%) of the compound I-6.
  • HRMS (70 eV, EI+): m/z calcd for C30H19Br: 458.0670, found: 458.
  • Elemental Analysis: C, 78%; H, 4%
  • Synthesis Example 4: Synthesis of Intermediate I-7
  • Figure US20230209997A1-20230629-C00093
  • 40 g (87.1 mmol) of the compound I-6 was dissolved in 0.3 L of dimethylformamide (DMF) under a nitrogen atmosphere, 26.5 g (104 mmol) of bis(pinacolato)diboron, 0.71 g (0.87 mmol) of (1,1′-bis(diphenylphosphine)ferrocene)dichloropalladium (II) and 21.4 g (218 mmol) of potassium acetate were added thereto, and the mixture was heated and refluxed at 150° C. for 26 hours. When the reaction was complete, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining 34 g (77%) of the compound I-7.
  • HRMS (70 eV, EI+): m/z calcd for C36H31B02: 506.2417, found: 506.
  • Elemental Analysis: C, 85%; H, 6%
  • Synthesis Example 5: Synthesis of Compound A-33
  • Figure US20230209997A1-20230629-C00094
  • 20 g (39.5 mmol) of the compound I-7 was dissolved in 0.2 L of tetrahydrofuran (THF) under a nitrogen atmosphere, 10.6 g (39.5 mmol) of 2-chloro-4,6-diphenyl-1,3,5-triazine and 0.46 g (0.4 mmol) of tetrakis(triphenylphosphine)palladium were added thereto, and the mixture was agitated. Subsequently, 13.6 g (98.8 mmol) of potassium carbonate saturated in water was added thereto, and the mixture was heated and refluxed at 80° C. for 23 hours. When the reaction was complete, water was added to the reaction solution, and the mixture was treated with dichloromethane (DCM) for extraction and with anhydrous MgSO4 to remove moisture and then, filtered and concentrated under a reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 17.9 g (74%) of the compound A-33.
  • HRMS (70 eV, EI+): m/z calcd for C45H29N3: 611.2361, found: 611.
  • Elemental Analysis: C, 88%; H, 5%
  • The compound A-33 had an evaporation temperature of about 226±10° C. under less than or equal to 10−3 Torr.
  • Synthesis Example 1 of Second Organic Compound: Compound B-10
  • Figure US20230209997A1-20230629-C00095
    Figure US20230209997A1-20230629-C00096
  • First Step: Synthesis of Compound J
  • 26.96 g (81.4 mmol) of N-phenyl carbazole-3-boronic acid pinacolate, 23.96 g (97.36 mmol) of 3-bromo carbazole, and 230 mL of tetrahydrofuran were mixed with 100 ml of a 2 M-potassium carbonate aqueous solution, and the mixture was heated and refluxed under a nitrogen current for 12 hours. When the reaction was complete, a solid produced by pouring methanol to the reactant was filtered and dissolved in chlorobenzene again, activated carbon and anhydrous magnesium sulfate were added thereto, and the mixture was agitated. The solution was filtered and recrystallized by using chlorobenzene and methanol, obtaining 22.6 g of a compound J (a yield: 68%).
  • HRMS (70 eV, EI+): m/z calcd for C30H20N2: 408.16, found: 408
  • Elemental Analysis: C. 88%: H. 5%
  • Second Step: Synthesis of Compound B-10
  • 22.42 g (54.88 mmol) of the compound J, 20.43 g (65.85 mmol) of 2-bromo-4,6-diphenylpyridine, and 7.92 g (82.32 mmol) of tertiarybutoxysodium were dissolved in 400 ml of toluene, and 1.65 g (1.65 mmol) of palladium dibenzylideneamine and 1.78 g (4.39 mmol) of tri-tertiarybutylphosphine (P(t-Bu)3) were added in a dropwise fashion. The reaction solution was heated 110° C. and agitated under a nitrogen current for 12 hours. When the reaction was complete, a solid produced by pouring methanol to the reactant was filtered and dissolved in chlorobenzene again, activated carbon and anhydrous magnesium sulfate were added thereto, and the mixture was agitated. The solution was filtered and recrystallized by using chlorobenzene and methanol, obtaining 28.10 g of a compound B-10 (a yield: 80%).
  • HRMS (70 eV, EI+): m/z calcd for C47H31N3: 637.25, found: 637
  • Elemental Analysis: C, 89%; H, 5%
  • The compound B-10 had an evaporation temperature of about 225±10° C. under less than or equal to 10−3 Torr.
  • Synthesis Example 2 of Second Organic Compound: Compound B-43
  • Figure US20230209997A1-20230629-C00097
  • 12.33 g (30.95 mmol) of biphenylcarbazolyl bromide, 12.37 g (34.05 mmol) of biphenylcarbazolylboronic acid, and 12.83 g (92.86 mmol) of potassium carbonate, and 1.07 g (0.93 mmmol) of tetrakis-(triphenylphosphine)palladium (0) were suspended in 120 ml of toluene and 50 ml of distilled water, and the suspended solution was refluxed and agitated for 12 hours. Subsequently, the reactant was extracted with dichloromethane and distilled water, and an organic layer obtained therefrom was filtered with silica gel. Subsequently, an organic solution therein was removed, and a solid product therefrom was recrystallized with dichloromethane and n-hexane, obtaining a compound B-43 18.7 g (a yield: 92%).
  • HRMS (70 eV, EI+): m/z calcd for C48H32N2: 636.26, found: 636
  • Elemental Analysis: C, 91%; H, 5%
  • The compound B-43 had an evaporation temperature of about 232±10° C. under less than or equal to 10−3 Torr.
  • Example: Preparation of Organic Alloy Example 1: Organic Alloy of Compound A-33 and Compound B-10
  • A powder-type organic alloy was obtained by putting the compound A-33 and the compound B-10 in a mole ratio of 1:1 in a vacuum chamber of less than or equal to 10−3 Torr, melting the compound A-33 and the compound B-10 by increasing temperature of the vacuum chamber, solidifying them by cooling down to room temperature of 25° C., and grinding the solid with a blender.
  • Example 2: Organic Alloy of Compound A-33 and Compound B-43
  • A powder-type organic alloy was obtained by putting the compound A-33 and the compound B-43 in a mole ratio of 1:1 in a vacuum chamber of less than or equal to 10−3 Torr, melting the compound A-33 and the compound B-43 by increasing temperature of the vacuum chamber, solidifying them by cooling down to room temperature of 25° C., and grinding the solid with a blender.
  • Comparative Example: Preparation of Single Compound and Simple Mixture Comparative Example 1: Single Compound A-33
  • A powder-type compound A-33 was prepared by grinding the compound A-33 according to Synthesis Example 5 with a blender at room temperature (25° C.).
  • Comparative Example 2: Single Compound B-10
  • The powder-type compound B-10 was prepared by grinding the compound B-10 according to Synthesis Example 1 of a second organic compound at temperature (25° C.) with a blender.
  • Comparative Example 3: Simple Mixture of Compound A-33 and Compound B-10
  • The compound A-33 according to Synthesis Example 5 and the compound B-10 according to Synthesis Example 1 of a second organic compound were physically ground in a mole ratio of 1:1 with a blender, obtaining a simple mixture.
  • Comparative Example 4: Single Compound B-43
  • A powder-type compound B-43 was obtained by grinding the compound B-43 according to Synthesis Example 2 of a second organic compound at room temperature (25° C.) with a blender.
  • Comparative Example 5: Simple Mixture of Compound A-33 and Compound B-43
  • The compound A-33 according to Synthesis Example 5 and the compound B-43 according to Synthesis Example 1 of a second organic compound were physically ground in a mole ratio of 1:1 at room temperature (25° C.) with a blender, preparing a simple mixture.
  • Evaluation Evaluation 1
  • Optical properties of the organic alloys according to Examples 1 and 2 and the organic materials according to Comparative Examples 1 to 5 were evaluated. The optical properties were evaluated by measuring photoluminescence (PL) spectrum of powders of the organic alloys according to Examples 1 and 2 and the organic materials according to Comparative Examples 1 to 5 with a Fluorescence spectrophotometer (F-4500, Hitachi). The powders were used as a sample, and herein, a solid sample holder of 650-0161 (Hitachi) was used as a PL holder.
  • The results are illustrated referring to FIGS. 3 and 4 and the following Tables 1 and 2.
  • FIG. 3 is a graph showing light emitting characteristics of the organic alloy according to Example 1 and the organic materials according to Comparative Examples 1 to 3 depending on a wavelength, and FIG. 4 is a graph showing light emitting characteristics of the organic alloy according to Example 2 and the organic materials according to Comparative Examples 1, 4, and 5 depending on a wavelength.
  • TABLE 1
    Maximum light
    emitting wavelength
    λmax (nm) eV
    Example 1 483 2.57
    Comparative Example 1 411 3.02
    Comparative Example 2 449 2.76
    Comparative Example 3 463 2.78
  • TABLE 2
    Maximum light
    emitting wavelength
    λmax (nm) eV
    Example 2 488 2.55
    Comparative Example 1 411 3.02
    Comparative Example 4 420 2.95
    Comparative Example 5 421 2.95
  • Referring to FIGS. 3 and 4 and the Tables 1 and 2, the organic alloy of Example 1 showed different optical properties from the organic materials according to Comparative Examples 1 to 3, and the organic alloy of Example 2 showed different optical properties from the organic materials according to Comparative Examples 1, 4, and 5.
  • In particular, the organic alloy of Example 1 showed inherent optical properties differing from those of the first organic compound A-33 and the second organic compound B-10, for example, a maximum light emitting wavelength greater than or equal to about 20 nm moving toward a long wavelength, while the organic material of Comparative Example 3, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-10, showed optical properties of the first organic compound A-33, the second organic compound B-10, or a combination thereof.
  • Likewise, the organic alloy of Example 2 showed inherent optical properties differing from those of the first organic compound A-33 and the second organic compound B-43, for example, a maximum light emitting wavelength greater than or equal to about 20 nm toward a long wavelength, while the organic material of Comparative Example 5, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-43 showed optical properties of the first organic compound A-33, the second organic compound B-43, or a combination thereof.
  • In addition, the organic alloy according to Example 1 showed inherent energy level differing from those of the first organic compound A-33 and the second organic compound B-10, while the organic material of Comparative Example 3, that is, a mixture of the first organic compound A-33 and the second organic compound B-10, showed substantially similar energy level to that of the first organic compound A-33 or the second organic compound B-10.
  • Likewise, the organic alloy of Example 2 showed inherent energy level differing from those of first organic compound A-33 and the second organic compound B-43, while the organic material of Comparative Example 5, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-43 showed substantially similar energy level to that of the first organic compound A-33 or the second organic compound B-43.
  • Evaluation 2
  • Thermodynamic characteristics of the organic alloys of Examples 1 and 2 and the organic materials of Comparative Examples 1 to 5 were evaluated. The thermodynamic characteristics of the organic alloys of Examples 1 and 2 and the organic materials of Comparative Examples 1 to 5 were measured through differential scanning calorimetry by using DSC1 (Mettler-Toledo Inc.).
  • The results are provided in Tables 3 and 4.
  • TABLE 3
    Thermodynamic characteristics
    glass transition crystallization
    temperature temperature melting point
    (Tg, ° C.) (Tc, ° C.) (Tm, ° C.)
    Example 1 122 215 261
    Comparative Example 1 287
    Comparative Example 2 133
    Comparative Example 3 133 255
  • TABLE 4
    Thermodynamic characteristics
    glass transition crystallization
    temperature temperature melting point
    (Tg, ° C.) (Tc, ° C.) (Tm, ° C.)
    Example 2 116 184 260
    Comparative Example 1 287
    Comparative Example 4 122
    Comparative Example 5 124 252
  • Referring to Tables 3 and 4, the organic alloy of Example 1 showed different thermodynamic characteristics from those of the organic materials of Comparative Examples 1 to 3, and the organic alloy of Example 2 showed different thermodynamic characteristics from the organic materials according to Comparative Examples 1, 4, and 5.
  • In particular, the organic alloy of Example 1 showed inherent thermodynamic characteristics differing from those of the first organic compound A-33, the second organic compound B-10, and a simple mixture thereof, while the organic material of Comparative Example 3, that is, a simple mixture of the first organic compound A-33 and the second organic compound B-10 showed substantially similar thermodynamic characteristics to those of the organic material of Comparative Example 2.
  • Likewise, the organic alloy of Example 2 showed different thermodynamic characteristics from those of the first organic compound A-33, the second organic compound B-43, and a simple mixture of the first organic compound A-33 and the second organic compound B-43, while the organic material of Comparative Example 5, a simple mixture of the first organic compound A-33 and the second organic compound B-43 showed substantially similar thermodynamic characteristics to those of the organic material of Comparative Example 4, that is, the second organic compound B-43.
  • Evaluation 3
  • Consistency of the thermodynamic characteristics of the organic alloy of Examples 1 and 2 and organic materials of Comparative Examples 3 and 5 was evaluated. The consistency of thermodynamic characteristics was evaluated by more than once measuring the thermodynamic characteristics of Evaluation 2 and seeing if the measurements were constant.
  • The results are illustrated referring to Tables 5 and 6.
  • TABLE 5
    Comparative
    Example 3 Example 1
    #1 #2 #3 #1 #2 #3 #4 #5
    Melting point 259.9 255.2 280.1 260.7 261.4 260.1 261.3 261.3
    (Tm, ° C.)
  • TABLE 6
    Comparative
    Example 5 Example 2
    #1 #2 #3 #1 #2 #3 #4 #5
    Melting point 259.9 280.3 276.3 260.3 261.5 260.2 262.1 261.9
    (Tm, ° C.)
  • Referring to Tables 5 and 6, the organic alloys of Examples 1 and 2 showed constant melting points within an error range of ±5° C., especially, within an error range of ±2° C. over more than one measurement, while the organic materials of Comparative Examples 3 and 5 showed largely different melting points over the measurements, for example, within an error range of about 20° C. Accordingly, the organic alloys of Examples 1 and 2 showed more constant organic thermodynamic characteristics than a single organic compound or a simple mixture thereof.
  • Evaluation 4
  • Variation of the organic alloys according to Examples 1 and 2 with time during continuous process was evaluated.
  • The variation with time during continuous process was evaluated by continuously depositing the organic alloys of Examples 1 and 2 and the organic materials of Comparative Examples 3 and 5 on a glass substrate to form a plurality of films and examining if single organic compounds constantly maintained a ratio in each film through a high performance liquid chromatography (HPLC) analysis method. The variation with time during continuous process may be evaluated by seeing how much constantly a ratio among the components forming a film in a continuous process was managed.
  • The results are provided in Tables 7 and 8.
  • In the following Table 7, three samples of the organic alloy according to Example 1 were prepared and used to form each thin film by repeating three times a continuous process, and the thin films were respectively marked as Examples 1-1, 1-2, and 1-3, and in the following Table 8, two samples of the organic alloy according to Example 2 were prepared and used to form each thin film by three times or five times repeating a continuous process and the films were respectively marked as Examples 2-1 and 2-2.
  • TABLE 7
    Variation with time during continuous process
    A-33 B-10 A-33/ Variation ratio
    (mol %) (mol %) B-10 with time (%)
    Example 1-1 1 52.2 47.8 1.09 2.67
    2 52.6 47.4 1.11
    3 52.8 47.2 1.12
    Example 1-2 1 53.3 46.7 1.14 1.90
    2 53.5 46.5 1.15
    3 53.8 46.2 1.16
    Example 1-3 1 53.1 46.9 1.13 2.90
    2 53.7 46.3 1.16
    3 53.8 46.2 1.16
    Comparative 1 50.7 49.3 1.03 11.02
    Example 3 2 53.4 46.6 1.14
    3 53.6 46.4 1.16
  • TABLE 8
    Variation with time during continuous process
    sample A-33 B-43 A-33/ Variation ratio
    No. (mol %) (mol %) B-43 with time (%)
    Example 2-1 1 53.6 46.4 1.16 1.36
    2 53.7 46.3 1.16
    3 54.0 46.0 1.17
    Example 2-2 1 54.3 46.7 1.19 0.79
    2 54.5 45.5 1.20
    3 54.5 45.5 1.20
    4 54.5 45.5 1.20
    5 54.5 45.5 1.20
    Comparative 1 49.6 50.4 0.98 22.01
    Example 5 2 53.5 46.5 1.15
    3 55.7 44.3 1.26
  • Referring to Tables 7 and 8, the films formed of the organic alloys according to Examples 1 and 2 showed almost constant ratio among single organic compounds, that is, A-33/B-10 or A-33/1B-43 compared with the thin films formed of the organic materials according to Comparative Examples 3 and 5. Accordingly, a thin film formed of an organic alloy may be reproduced through a continuous process compared with a thin film formed of a simple mixture.
  • Manufacture of Organic Light Emitting Diode Example 3
  • A glass substrate coated with a 1500 Å-thick ITO (Indium tin oxide) was cleaned with distilled water and an ultrasonic wave. When the glass substrate is cleaned with distilled water, glass substrate was ultrasonic wave-cleaned with a solvent such as isopropyl alcohol, acetone, methanol and the like and dried, and then, moved to a plasma cleaner, cleaned by using oxygen plasma for 10 minutes and to a vacuum depositor. This ITO transparent electrode was used as an anode, a 700 Å-thick hole injection layer (HIL) was formed on the ITO substrate by vacuum-depositing N4,N4′-diphenyl-N4,N4′-bis(9-phenyl-9H-carbazol-3-yl)biphenyl-4,4′-diamine (the compound A), and a hole transport layer (HTL) was formed by depositing 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) (the compound B) to be 50 Å thick and then, N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine (the compound C) to be 1020 Å thick on the injection layer. On the hole transport layer (HTL), a 400 Å-thick emission layer was formed by vacuum-depositing the organic alloy of Example 1 as a host doped with 10 wt % of tris(4-methyl-2,5-diphenylpyridine)iridium (III) (the compound D) as a dopant.
  • Subsequently, a 300 Å-thick electron transport layer (ETL) was formed on the emission layer by vacuum-depositing 8-(4-(4-(naphthalen-2-yl)-6-(naphthalen-3-yl)-1,3,5-triazin-2-yl)phenyl)quinoline (the compound E) and simultaneously hydroxyquinoline lithium (Liq) in a ratio of 1:1, and a cathode was formed on the electron transport layer (ETL) by sequentially vacuum-depositing Liq to be 15 Å thick and Al to be 1200 Å thick, manufacturing an organic light emitting diode.
  • The organic light emitting diode had a structure of five-story organic thin films and specifically,
  • a structure of ITO/A 700 Å/B 50 Å/C 1020 Å/EML[organic alloy:D=X:10%]400 Å/E:Liq 300 Å/Liq 15 Å/Al 1200 Å.
  • (X=weight ratio)
  • Example 4
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic alloy of Example 2 instead of the organic alloy of Example 1.
  • Comparative Example 6
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 1, that is, the compound A-33 as a single host instead of the organic alloy of Example 1.
  • Comparative Example 7
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 2, that is, the compound B-10 as a single host instead of the organic alloy of Example 1.
  • Comparative Example 8
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 3, that is, a simple mixture of the compound A-33 and the compound B-10 instead of the organic alloy of Example 1.
  • Comparative Example 9
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 4, that is, the compound B-43 as a single host instead of the organic alloy of Example 1.
  • Comparative Example 10
  • An organic light emitting diode was manufactured according to the same method as Example 3 except for using the organic material of Comparative Example 5, that is, a simple mixture of the compound A-33 and the compound B-43instead of the organic alloy of Example 1.
  • Evaluation 4
  • Luminous efficiency and life-span characteristics of the organic light emitting diodes according to Examples 3 and 4 and Comparative Examples 6 to 10 were evaluated.
  • The measurements were specifically performed in the following method, and the results were provided in the following Table 9 and Table 10.
  • (1) Measurement of Current Density Change Depending on Voltage Change
  • Current values flowing in the unit device of the manufactured organic light emitting diodes were measured for, while increasing the voltage from 0 V to 10 V using a current-voltage meter (Keithley 2400), and the measured current values were divided by an area to provide the results.
  • (2) Measurement of Luminance Change Depending on Voltage Change
  • Luminance of the manufactured organic light emitting diodes was measured for luminance, while increasing the voltage from 0 V to 10 V using a luminance meter (Minolta Cs-1000A).
  • (3) Measurement of Luminous Efficiency
  • Current efficiency (cd/A) at the same current density (10 mA/cm2) were calculated by using the luminance, current density, and voltages obtained from items (1) and (2).
  • (4) Measurement of Life-Span
  • Luminance (cd/2) was maintained at 6000 cd/m2 and a time at current efficiency (cd/A) decreases to 97% was measured.
  • TABLE 9
    Luminous Life-
    efficiency spanT97
    Host (cd/A) (h)
    Example 3 A-33 + B-10 47.7 450
    organic alloy
    Comparative Example 6 A-33 31.1 150
    Comparative Example 7 B-10 34.8 10
    Comparative Example 8 A-33 + B-10 45.1 350
    simple mixture
  • TABLE 10
    Luminous Life-
    efficiency spanT97
    Host (cd/A) (h)
    Example 4 A-33 + B-43 47.8 900
    organic alloy
    Comparative Example 6 A-33 31.1 150
    Comparative Example 9 B-43 2.6 10
    Comparative Example 10 A-33 + B-43 44.0 720
    simple mixture
  • Referring to Tables 9 and 10, the organic light emitting diode of Example 3 showed equivalent or improved luminous efficiency and life-span characteristics compared with the organic light emitting diodes of Comparative Examples 6 to 8, and the organic light emitting diode of Example 4 showed equivalent or improved luminous efficiency and life-span characteristics compared with the organic light emitting diodes of Comparative Examples 6, 9, and 10. Accordingly, an organic light emitting diode using the organic alloy turned out to have equivalent or improved performance compared with an organic light emitting diode using a single organic compound or a simple mixture thereof.
  • While this invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Therefore, the aforementioned embodiments should be understood to be exemplary but not limiting the present invention in any way.
  • DESCRIPTION OF SYMBOLS
      • 100, 200: organic light emitting diode
      • 105: organic layer
      • 110: cathode
      • 120: anode
      • 130: emission layer
      • 140: hole auxiliary layer

Claims (20)

1. An organic alloy for an organic optoelectric device, which is a material obtained by pre-treating at least two kinds of organic compounds, wherein:
the at least two kinds of organic compounds includes a first organic compound and a second organic compound,
a difference between an evaporation temperature of the first organic compound and an evaporation temperature of the second organic compound is less than or equal to 20° C., as determined at a same pressure at less than or equal to 10−3 torr,
the pre-treating includes heating the first organic compound and the second organic compound together to form a melted first organic compound and second organic compound and then cooling and solidifying the melted first organic compound and second organic compound to form the organic alloy, and
a maximum light emitting wavelength of the organic alloy in solid form is different from maximum light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture of the first organic compound and the second organic compound in solid form, the maximum light emitting wavelengths being determined at a same condition.
2. The organic alloy of claim 1, wherein the difference between the evaporation temperature of the first organic compound and the evaporation temperature of the second organic compound is 0° C. to 10° C. at less than or equal to 10−3 torr.
3. The organic alloy of claim 1, wherein the maximum light emitting wavelength of the organic alloy is shifted greater than or equal to 20 nm compared with a maximum light emitting wavelength of the simple mixture of the first organic compound and the second organic compound.
4. The organic alloy of claim 1, wherein the organic alloy has a color with a longer wavelength region than wavelength regions of the first organic compound, the second organic compound, and the simple mixture of the first organic compound and the second organic compound.
5. The organic alloy of claim 1, wherein the organic alloy has a different melting point than melting points of the first organic compound, the second organic compound, and the simple mixture of the first organic compound and the second organic compound.
6. The organic alloy of claim 1, wherein the organic alloy has a constant melting point.
7. The organic alloy of claim 1, wherein the organic alloy is present as a solid or powder at room temperature.
8. The organic alloy of claim 1, wherein the first organic compound and the second organic compound are included in the organic alloy in a mole ratio of 1:10 to 10:1.
9. The organic alloy of claim 1, wherein the first organic compound and the second organic compound are included in the organic alloy in a mole ratio of 1:1.
10. The organic alloy of claim 1, wherein the first organic compound has electron characteristics, and the second organic compound has hole characteristics.
11. The organic alloy of claim 1, wherein:
the first organic compound includes a compound represented by the following Chemical Formula 1, and
the second organic compound includes a compound represented by the following Chemical Formula 2:
Figure US20230209997A1-20230629-C00098
in Chemical Formula 1,
Z is independently N or CRa,
at least one of Z is N,
R1 to R10 and Ra are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a combination thereof,
a total number of 6-membered rings substituting the triphenylene group in the Chemical Formula 1 is less than or equal to 6,
L is a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group or a substituted or unsubstituted terphenylene group,
n1 to n3 are each independently 0 or 1, and
n1+n2+n3≥1,
Figure US20230209997A1-20230629-C00099
in Chemical Formula 2,
Y1 and Y2 are each independently a single bond, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof,
Ar1 and Ar2 are each independently substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a combination thereof, and
R11 to R13 and R43 to R44 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heterocyclic group, or a combination thereof.
12. The organic alloy of claim 11, wherein:
the first organic compound is represented by Chemical Formula 1-1 or Chemical Formula 1-II:
Figure US20230209997A1-20230629-C00100
in Chemical Formulae 1-I and 1-II,
Z is independently N or CRa,
at least one of Z is N,
R1 to R10 and Ra are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a combination thereof,
a total number of 6-membered rings substituting the triphenylene group is less than or equal to 6 in the above Chemical Formula 1-I and Chemical Formula 1-II,
L is a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group or a substituted or unsubstituted terphenylene group,
n1 to n3 are each independently 0 or 1, and
n1+n2+n3≥1.
13. The organic alloy of claim 11, wherein L of Chemical Formula 1 is a single bond, a substituted or unsubstituted phenylene group having an ortho—or meta-bonded structure, a substituted or unsubstituted biphenylene group having an ortho- or meta-bonded structure, or a substituted or unsubstituted terphenylene group having an ortho- or meta-bonded structure.
14. The organic alloy of claim 11, wherein:
L of Chemical Formula 1 is a single bond or a substituted or unsubstituted group of Group 1:
Figure US20230209997A1-20230629-C00101
Figure US20230209997A1-20230629-C00102
in Group 1, R15 to R42 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heterocyclic group, a substituted or unsubstituted amine group, a substituted or unsubstituted C6 to C30 arylamine group, a substituted or unsubstituted C6 to C30 heterocyclic amine group, a substituted or unsubstituted C1 to C30 alkoxy group, a halogen, a halogen-containing group, a cyano group, a hydroxyl group, an amino group, a nitro group, a carboxyl group, a ferrocenyl group, or a combination thereof.
15. The organic alloy of claim 11, wherein Ar1 and Ar2 of Chemical Formula 2 are each independently substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted benzofuranyl group, a substituted or unsubstituted benzothiophenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, a substituted or unsubstituted triazinyl group, a substituted or unsubstituted triphenylene group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, or a combination thereof.
16. An organic optoelectric device, comprising:
an anode and a cathode facing each other,
at least one organic layer between the anode and the cathode,
wherein the at least one organic layer includes the organic alloy of claim 1.
17. A display device comprising the organic optoelectric device of claim 16.
18. An organic alloy of a first organic compound and a second organic compound, wherein:
a maximum light emitting wavelength of the organic alloy is different from maximum light emitting wavelengths of the first organic compound, the second organic compound, and a simple mixture of the first organic compound and the second organic compound, the maximum light emitting wavelengths being determined at a same condition,
the organic alloy is obtained by heating the first organic compound and the second organic compound together to form a melted first organic compound and second organic compound and then cooling and solidifying the melted first organic compound and second organic compound to form the organic alloy,
the first organic compound is a compound of Group A, and
the second organic compound is a compound of Group B:
Figure US20230209997A1-20230629-C00103
Figure US20230209997A1-20230629-C00104
Figure US20230209997A1-20230629-C00105
19. An organic optoelectric device, comprising:
an anode and a cathode facing each other,
at least one organic layer between the anode and the cathode,
wherein the at least one organic layer includes the organic alloy of claim 18.
20. A display device comprising the organic optoelectric device of claim 19.
US18/108,805 2013-10-11 2023-02-13 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device Pending US20230209997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/108,805 US20230209997A1 (en) 2013-10-11 2023-02-13 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2013-0121569 2013-10-11
KR1020130121569A KR101812581B1 (en) 2013-10-11 2013-10-11 Organic alloy for organic optoelectric device and organic optoelectric device and display device
PCT/KR2014/005306 WO2015053459A1 (en) 2013-10-11 2014-06-17 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device
US201614903197A 2016-01-06 2016-01-06
US18/108,805 US20230209997A1 (en) 2013-10-11 2023-02-13 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/005306 Continuation WO2015053459A1 (en) 2013-10-11 2014-06-17 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device
US14/903,197 Continuation US20160141505A1 (en) 2013-10-11 2014-06-17 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device

Publications (1)

Publication Number Publication Date
US20230209997A1 true US20230209997A1 (en) 2023-06-29

Family

ID=52813259

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/903,197 Abandoned US20160141505A1 (en) 2013-10-11 2014-06-17 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device
US17/163,861 Pending US20210175428A1 (en) 2013-10-11 2021-02-01 Method of manufacturing organic optoelectronic device, and organic optoelectronic device and display device
US18/108,805 Pending US20230209997A1 (en) 2013-10-11 2023-02-13 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/903,197 Abandoned US20160141505A1 (en) 2013-10-11 2014-06-17 Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device
US17/163,861 Pending US20210175428A1 (en) 2013-10-11 2021-02-01 Method of manufacturing organic optoelectronic device, and organic optoelectronic device and display device

Country Status (7)

Country Link
US (3) US20160141505A1 (en)
EP (3) EP3056554B1 (en)
JP (3) JP6769873B2 (en)
KR (1) KR101812581B1 (en)
CN (2) CN105579550A (en)
TW (1) TWI549331B (en)
WO (1) WO2015053459A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086941A1 (en) 2010-01-15 2011-07-21 出光興産株式会社 Organic electroluminescent element
KR101812581B1 (en) 2013-10-11 2017-12-27 제일모직 주식회사 Organic alloy for organic optoelectric device and organic optoelectric device and display device
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
KR101829749B1 (en) 2014-10-31 2018-02-19 삼성에스디아이 주식회사 Organic compound for optoelectric device and composition for optoelectric device and organic optoelectric device and display device
KR101888934B1 (en) 2015-04-24 2018-08-16 삼성에스디아이 주식회사 Organic compound for optoelectric device andorganic optoelectric device and display device
CN106316925A (en) * 2015-06-26 2017-01-11 上海和辉光电有限公司 Organic electroluminescence compound and application thereof
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US20190319197A1 (en) * 2016-11-23 2019-10-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic compound, applications thereof, organic mixture, and organic electronic device
CN109790120A (en) * 2016-11-23 2019-05-21 广州华睿光电材料有限公司 The organic mixture of nitrogen-containing hetero carbazole derivates and its application
KR20180081646A (en) * 2017-01-06 2018-07-17 삼성디스플레이 주식회사 Organic light emitting device
KR102275343B1 (en) 2017-02-28 2021-07-09 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
KR20180137772A (en) * 2017-06-19 2018-12-28 삼성에스디아이 주식회사 Organic optoelectric device and display device
CN109206408A (en) * 2017-06-29 2019-01-15 祥德科技股份有限公司 It can be used as the bipolar compound of luminescent material and the organic illuminating element using the bipolar compound
KR101856728B1 (en) 2017-08-10 2018-05-10 주식회사 엘지화학 Organic light emitting device
KR20190070586A (en) 2017-12-13 2019-06-21 엘지디스플레이 주식회사 Compound for electron transporting material and organic light emitting diode including the same
KR102235989B1 (en) * 2018-06-14 2021-04-05 주식회사 엘지화학 Compound and organic light emitting device comprising the same
TWI660028B (en) * 2018-07-13 2019-05-21 祥德科技股份有限公司 Light emitting layer host material for organic light emitting element
KR20210144768A (en) 2019-03-25 2021-11-30 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Melt mixture for organic electroluminescent device, and organic electroluminescent device
KR20220061004A (en) 2020-11-05 2022-05-12 롬엔드하스전자재료코리아유한회사 A plurality of host materials, composition comprising the same, and organic electroluminescent device comprising the same
JP2024504057A (en) * 2021-04-30 2024-01-30 エルジー・ケム・リミテッド organic light emitting device
JP2024501230A (en) * 2021-05-06 2024-01-11 エルジー・ケム・リミテッド organic light emitting device
KR20220151981A (en) * 2021-05-07 2022-11-15 주식회사 엘지화학 Organic light emitting device
JP2024503848A (en) * 2021-05-07 2024-01-29 エルジー・ケム・リミテッド organic light emitting device
WO2023063163A1 (en) * 2021-10-14 2023-04-20 出光興産株式会社 Mixed powder for organic electroluminescent element, production method therefor, method for manufacturing organic electroluminescent element using said mixed powder, method for selecting compound in said mixed powder, and composition for vacuum deposition
WO2023100891A1 (en) * 2021-11-30 2023-06-08 出光興産株式会社 Solid molten mixture, solid composition, mixed powder, method for choosing organic compound, method for producing solid molten mixture, and method for producing organic electroluminescent element
WO2023171544A1 (en) * 2022-03-08 2023-09-14 出光興産株式会社 Mixed powder, method for manufacturing mixed powder, composition, organic electroluminescent element, and method for manufacturing organic electroluminescent element
KR102487491B1 (en) * 2022-06-13 2023-01-12 솔루스첨단소재 주식회사 Pellet for organic electroluminescent device and organic electroluminescent device using the same

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853905A (en) 1997-09-08 1998-12-29 Motorola, Inc. Efficient single layer electroluminescent device
JP2000223268A (en) * 1999-01-27 2000-08-11 Toray Ind Inc Manufacture of organic electroluminescent element
TW593622B (en) 2000-05-19 2004-06-21 Eastman Kodak Co Method of using predoped materials for making an organic light-emitting device
JP2002146516A (en) * 2000-11-07 2002-05-22 Sony Corp Vapor deposition method for organic thin film
JP2003045650A (en) 2001-07-17 2003-02-14 Kiko Kenji Kagi Kofun Yugenkoshi Manufacturing device for organic el element
JP2003347059A (en) * 2002-05-27 2003-12-05 Tdk Corp Organic el element
JP2006203172A (en) * 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd Organic electroluminescent element
US20060134464A1 (en) * 2004-12-22 2006-06-22 Fuji Photo Film Co. Ltd Organic electroluminescent element
JP4882444B2 (en) * 2006-03-27 2012-02-22 株式会社デンソー Organic EL device
KR100762014B1 (en) * 2006-07-24 2007-10-04 제일모직주식회사 The conductive polymer composition comprising organic ionic salt and opto-electronic device using thereof
JP2009027091A (en) * 2007-07-23 2009-02-05 Sony Corp Organic electroluminescence element, and display unit
JP5553763B2 (en) * 2008-09-24 2014-07-16 出光興産株式会社 Composite organic electroluminescent material
JP2010206191A (en) 2009-02-09 2010-09-16 Mitsubishi Chemicals Corp Organic electroluminescent element material, composition for organic electroluminescent element for wet film formation, and organic electroluminescent element
US8425801B2 (en) * 2009-04-10 2013-04-23 Idemitsu Kosan Co., Ltd. Composite organic electroluminescent material and production method thereof
JP2011199174A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Light-emitting layer forming solid material, organic electroluminescent element, and method for producing the same
KR101637061B1 (en) * 2010-04-28 2016-07-06 유니버셜 디스플레이 코포레이션 Depositing premixed materials
CN103282538B (en) * 2011-01-18 2015-04-22 夏普株式会社 Vapor deposition apparatus, vapor deposition method, organic EL element, and organic EL display apparatus
JP2012195140A (en) * 2011-03-16 2012-10-11 Nitto Denko Corp Method for forming organic electroluminescent luminous layer
KR20190014600A (en) * 2011-03-23 2019-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
TWI727297B (en) * 2011-08-25 2021-05-11 日商半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, electronic device, lighting device, and novel organic compound
KR20130062583A (en) * 2011-12-05 2013-06-13 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescence compounds and organic electroluminescence device using the same
KR101704150B1 (en) * 2011-12-05 2017-02-07 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescent element and organic electroluminescent element
WO2013084885A1 (en) * 2011-12-05 2013-06-13 出光興産株式会社 Organic electroluminescent element
US9496508B2 (en) * 2011-12-07 2016-11-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element using same
KR20130084093A (en) * 2012-01-16 2013-07-24 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescence compounds and organic electroluminescence device using the same
KR101649683B1 (en) * 2013-09-06 2016-08-19 제일모직 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
KR101812581B1 (en) 2013-10-11 2017-12-27 제일모직 주식회사 Organic alloy for organic optoelectric device and organic optoelectric device and display device

Also Published As

Publication number Publication date
EP3056554B1 (en) 2022-04-06
CN105579550A (en) 2016-05-11
KR20150042650A (en) 2015-04-21
WO2015053459A1 (en) 2015-04-16
KR101812581B1 (en) 2017-12-27
JP2023106457A (en) 2023-08-01
US20160141505A1 (en) 2016-05-19
EP4027402A1 (en) 2022-07-13
TWI549331B (en) 2016-09-11
JP2016535942A (en) 2016-11-17
EP4027403A1 (en) 2022-07-13
JP7336412B2 (en) 2023-08-31
US20210175428A1 (en) 2021-06-10
EP3056554A1 (en) 2016-08-17
JP2020127020A (en) 2020-08-20
CN112563430A (en) 2021-03-26
JP6769873B2 (en) 2020-10-14
TW201515301A (en) 2015-04-16
EP3056554A4 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
US20230209997A1 (en) Organic alloy for organic optoelectronic device, organic optoelectronic device, and display device
US10050212B2 (en) Organic optoelectric device and display device
US9735369B2 (en) Luminescent material for organic optoelectric device and organic optoelectric device and display device
US20160126472A1 (en) Composition for organic optoelectronic device, organic optoelectronic device, and display device
US10193081B2 (en) Organic compound for optoelectric device and composition for optoelectric device and organic optoelectric device and display device
US10873033B2 (en) Organic compound, composition, organic optoelectronic diode, and display device
US20230255109A1 (en) Compound, composition and organic optoelectronic device and display device
US11362281B2 (en) Compound for organic optoelectronic diode, composition for organic optoelectronic diode, organic optoelectronic diode, and display apparatus
US20200317654A1 (en) Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device
US20210013426A1 (en) Composition for organic optoelectric device and organic optoelectric device and display device
US20170200902A1 (en) Compound, organic optoelectronic diode containing same, and display device
US20200176688A1 (en) Organic optoelectronic diode and display device
US20190198775A1 (en) Composition and organic optoelectronic device and display device
US11926603B2 (en) Compound, composition, organic optoelectronic diode, and display device
US20210070706A1 (en) Composition, organic optoelectronic device, and display device
US20210098704A1 (en) Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device
CN110872511A (en) Composition for organic photoelectric device, organic photoelectric device and display device
US20180026205A1 (en) Composition for organic optoelectronic device and organic optoelectronic device and display device
US10096784B2 (en) Compound for organic optoelectric device, composition for organic optoelectric device and organic optoelectric device and display device
US10505126B2 (en) Composition for organic optoelectric device and organic optoelectric device and display device
US20210104684A1 (en) Compound for organic optoelectronic device, organic optoelectronic device and display device
US9825242B2 (en) Compound for organic optoelectric device, organic light-emitting diode including same, display device including organic light-emitting diode
US20220024927A1 (en) Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device
US11453659B2 (en) Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device
US20210126204A1 (en) Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION