US20230201490A1 - Aerosol delivery device and method utilizing a flavoring reservoir - Google Patents

Aerosol delivery device and method utilizing a flavoring reservoir Download PDF

Info

Publication number
US20230201490A1
US20230201490A1 US18/175,933 US202318175933A US2023201490A1 US 20230201490 A1 US20230201490 A1 US 20230201490A1 US 202318175933 A US202318175933 A US 202318175933A US 2023201490 A1 US2023201490 A1 US 2023201490A1
Authority
US
United States
Prior art keywords
aerosol
delivery device
aerosol delivery
air
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/175,933
Inventor
Helmut Buchberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicoventures Trading Ltd
Original Assignee
Nicoventures Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Ltd filed Critical Nicoventures Trading Ltd
Priority to US18/175,933 priority Critical patent/US20230201490A1/en
Priority to US18/296,544 priority patent/US20230241332A1/en
Priority to US18/321,872 priority patent/US20230285694A1/en
Assigned to Nicoventures Trading Limited reassignment Nicoventures Trading Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BATMARK LIMITED
Assigned to BATMARK LIMITED reassignment BATMARK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCHBERGER, HELMUT
Publication of US20230201490A1 publication Critical patent/US20230201490A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0091Inhalators mechanically breath-triggered
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/002Details of inhalators; Constructional features thereof with air flow regulating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/588Means for facilitating use, e.g. by people with impaired vision by olfactory feedback, i.e. smell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated

Definitions

  • the present disclosure relates to an aerosol delivery device and method and in particular but not exclusively to an aerosol delivery device and method that utilise a flavouring reservoir.
  • An aerosol delivery device can be used for generating a nicotine-containing condensation aerosol.
  • US20110226236 which relates to an inhaler component for producing a nicotine-containing steam/air mixture or/and condensation aerosol by evaporation of a nicotine solution which is highly diluted with ethanol or/and water.
  • the inhaler component comprises the following elements: a housing; a chamber arranged in the housing; an air inlet opening for the supply of air from the surroundings to the chamber; an evaporator for evaporating a portion of the highly diluted nicotine solution, the evaporator comprising an evaporation or steam emission surface arranged in the chamber, from which surface the steam produced passes over to the chamber and mixes in the chamber with the air supplied through the air inlet opening, thereby eventually producing the nicotine-containing steam/air mixture or/and condensation aerosol.
  • the inhaler component comprises a two-step solvent removal device which consists of a condensate drainage and storage device communicating with the chamber and of a condenser through which the produced steam/air mixture or/and condensation aerosol can flow.
  • an inhaler component having: a housing with a housing jacket; a mouthpiece with a mouthpiece opening for delivering an inhalable medium into the oral cavity of a user; a scent reservoir that is able to communicate with the environment by diffusion and contains a scent, for releasing the scent into the environment and for the olfactory perception of the scent by the user, wherein a) the housing comprises a housing component; b) the mouthpiece is detachably connected to the housing component; c) the housing jacket comprises a first jacket part and a second jacket part; d) the housing component forms the first jacket part; e) the mouthpiece forms the second jacket part, and f) the scent reservoir is structurally combined with the mouthpiece, has a planar configuration and is arranged flat on the second jacket part or itself forms the second jacket part.
  • a non-heating type tobacco flavor inhaler is described in WO2010/095659.
  • a non-heating type tobacco flavor inhaler is provided with an inhalation holder having an inhalation route defined therein, and also with a filled body disposed in the inhalation route.
  • the filled body consists of tobacco grains, and the inhalation route and the filled body provide air flow resistance in the range from about 40 to about 80 mmAq.
  • a non-heating type flavor inhaler provided with: an inhalation holder; an upstream region and a downstream region which are defined in the inhalation holder, said upstream region extending from the tip of the inhalation holder up to a partition wall, said downstream region extending, except the upstream region, from the tip of the inhalation holder up to the mouthpiece end and having a front flow path extending along the upstream region; outside air introducing openings formed in the peripheral wall of the inhalation holder and allowing the upstream region and the outside to communicate with each other; and a pouch mounted at the boundary between the upstream region and the downstream region, extending along the longitudinal axis of the inhalation holder, and releasing the flavor of tobacco.
  • an aerosol delivery device comprising: an air inlet; a flavouring reservoir arranged to provide release of flavouring material to air passing therethrough; and an aerosol chamber arranged to provide an aerosol in air passing therethrough; and an aerosol outlet; the air inlet, flavouring reservoir, aerosol chamber and aerosol outlet are arranged in fluid communication in that order.
  • a flavoured aerosol can be generated in such manner as to avoid a flavouring reservoir becoming contaminated with aerosol particles and/or condensation of liquid from an aerosol, while at the same time providing that the whole air volume of the flavoured aerosol is subjected to both flavouring and aerosol generation.
  • a device configured to impart flavouring to an airstream admitted the device prior to the airstream reaching an aerosol generator of the device, the device thereby operable to deliver a flavoured aerosol from an outlet.
  • a device can create a flavoured aerosol by passing a whole air volume through both flavouring and aerosol generation without contaminating a flavouring source with aerosol particles and/or condensate.
  • a method of generating a flavoured aerosol comprising: imparting flavour to an airflow by passing airflow through a flavour reservoir to cause flavour molecules and/or particles to be carried by the airflow; generating an aerosol by passing the airflow carrying flavour molecules and/or particles through an aerosol generator that evaporates a liquid into the airflow to create a flavoured aerosol; and delivering the flavoured aerosol to a mouthpiece.
  • a flavoured aerosol can be generated in such manner as to avoid a flavouring reservoir becoming contaminated with aerosol particles and/or condensation of liquid from an aerosol, while at the same time providing that the while air volume of the flavoured aerosol is subjected to both flavouring and aerosol generation.
  • FIG. 1 shows a cross-sectional side view of an aerosol delivery device comprising an aerosol-forming member according to a first example
  • FIG. 2 shows a cross-sectional side view of an aerosol delivery portion of the aerosol delivery device shown in FIG. 1 ;
  • FIGS. 3 to 7 show example aerosol forming members
  • FIG. 8 shows an example aerosol-forming member located in an aerosol chamber
  • FIGS. 9 a and 9 b show example control circuits
  • FIG. 10 shows cross-sectional side view of an aerosol delivery device comprising an aerosol-forming member according to another example.
  • the aerosol delivery device 1 comprises an aerosol delivery portion 1 ′ and a power portion 1 ′′.
  • the aerosol delivery portion 1 ′ and power portion 1 ′′ are arranged as separate regions of a single, unitary, aerosol delivery device 1 having a single housing 2 that houses both portions.
  • the aerosol delivery portion 1 ′ and power portion 1 ′′ can be removably connected to enable a given power portion 1 ′′ to receive a number of different aerosol delivery portions 1 ′ and/or to enable a given aerosol delivery portion 1 ′ to receive a number of different power portions 1 ′′.
  • the housing 2 may be openable to enable replacement of one portion or may be divided in correspondence to the division of the portions such that each portion includes its own respective housing part.
  • the aerosol delivery device 1 may be configured to be re-usable or disposable.
  • the aerosol delivery portion 1 ′ and power portion 1 ′′ are separable, either or both of the aerosol delivery portion 1 ′ and power portion 1 ′′ may be configured as being re-usable or disposable.
  • the power portion 1 ′′ provides a source of electrical power for powering one or more components within the aerosol delivery portion 1 ′.
  • the power portion 1 ′′ has with the housing a battery 30 . Delivery of power from the battery 30 to the aerosol delivery portion 1 ′ is controlled by electric circuitry 34 .
  • the battery may be replaced by another portable power source such as a capacitive power store such as a supercapacitor or ultracapacitor, a mechanical power source such as a spring or dynamo, or an alternative chemical energy source such as a fuel cell.
  • FIG. 2 shows the aerosol delivery portion 1 ′ in greater detail.
  • the aerosol delivery portion 1 ′ is contained within housing 2 and has a mouthpiece 3 at one end and an attachment element at the other end.
  • the attachment element is configured to connect (either permanently or releasably) to the power portion 1 ′′.
  • the attachment element has a connection member 35 to provide for electrical connection between the power portion 1 ′′ and any power utilising elements of the aerosol delivery portion 1 ′.
  • the aerosol delivery portion 1 ′ as shown in FIG. 2 defines a gas pathway therethrough, the gas pathway having an inlet 5 , a flavouring reservoir 36 , a plenum chamber 4 , an aerosol chamber 6 (also referred to as tubular channel 18 ), refining member 32 and an outlet aperture 7 that extends through the mouthpiece 3 .
  • Air can be encouraged to flow through the gas pathway by the application of suction at the mouthpiece 3 .
  • suction may typically be provided by a user drawing air through the aerosol delivery device 1 when inhaling to receive a delivery of aerosol.
  • air taken in through the inlet 5 and passing along the gas pathway first picks up flavouring material from the favouring reservoir 36 before the forming of an aerosol at the aerosol chamber 6 for delivery to the outlet aperture 7 . This process will be described in more detail below.
  • the flavouring reservoir 36 provides an inlet passage or channel between the inlet aperture 5 and the plenum chamber 4 .
  • a single inlet 5 may be provided and in other examples a number of inlets 5 may be provided at different points around the circumference of the housing 2 .
  • the inlet passage or channel provided by the flavouring reservoir has an annular cross section and encompasses the aerosol chamber 6 and associated aerosol forming member 10 .
  • the air inside the inlet passage and the aerosol inside the tubular channel 18 (aerosol chamber 6 ) are flowing in opposite directions.
  • the plenum chamber 4 acts to provide uniformity to the flow of air to the aerosol chamber 6 / tubular channel 18 .
  • the air enters the aerosol chamber 6 via an air inlet 31 ′.
  • the aerosol forming member 10 has a chamber wall 25 surrounding the aerosol chamber 6 , then a liquid reservoir matrix 26 is arranged outside the chamber wall, with the aerosol chamber 6 having an aerosol chamber inlet 31 ′ and an aerosol chamber outlet 31 ′′. Separation between the inlet passage/flavouring reservoir 36 and the liquid reservoir matrix 26 is provided by a support member 37 located between the liquid reservoir matrix 26 and the flavouring reservoir 36 .
  • the aerosol forming member 10 uses heat provided by the flow of electrical current to aid the aerosol generation.
  • the flavouring reservoir 36 is located around the aerosol forming member 10 . While the heat generated by the heating element of the aerosol forming member 10 is primarily used to vaporise liquid provided from the liquid reservoir matrix 26 , a portion of that heat may be used to heat up the flavouring reservoir 36 to an elevated temperature. This secondary or waste heat can be transferred to the flavouring reservoir by thermal conduction through components of the aerosol forming member 10 and support member 37 . For example, heat may be conducted through the chamber wall 25 , through the liquid reservoir matrix 26 and through the tubular support member 37 holding the aerosol forming member 10 and the liquid reservoir matrix 26 , and thereby provided to the flavouring reservoir 36 and the flavours contained therein.
  • This conductive heat transfer enables the flavouring reservoir 36 to reach temperatures that it would not reach otherwise, enabling enhanced release of flavours inside the reservoir.
  • the amount of temperature elevation achieved in the flavouring reservoir by the conductive heat transfer need not be large to achieve the enhanced release of flavours.
  • the amount of temperature rise may depend upon a number of factors associated with use of the device. For example the length of a given draw or puff through the device may affect the operating time of the heating element and thus the total amount of heat generation that occurs during the draw or puff.
  • the time space between draws or puffs may impact the total temperature rise if that timespan is sufficiently short that at least some components of the device do not cool fully between draws or puffs.
  • a temperature rise on the range of 5° C. to 30° C. is anticipated to be feasible and a rise of as little of 1° C. is expected to provide some enhancement to the release of flavours.
  • an expected temperature rise can be calculated and measured and in some examples it may be appropriate to tailor the flavours in the flavouring reservoir to the expected temperature rise.
  • the arrangement of the present example provides that the only gas to enter the flavouring reservoir is air introduced into the device via the inlet aperture(s) 5 . Since the flavouring reservoir 36 does not receive vapour or aerosol generated inside the aerosol chamber 6 , the surface of flavour providing elements within the flavouring reservoir will not attract or become clogged with condensate or aerosol particles generated at the aerosol chamber 6 .
  • the entire air volume drawn in by a user when inhaling to receive a delivery of aerosol (which volume may typically be of the order of 30-80 ml) is provided to the aerosol chamber 6 and can completely be used for generating the aerosol. This can provide for efficient aerosol formation.
  • the flavouring reservoir 36 may comprise a permeable highly porous wadding or filling material. In the present example, the material completely fills/extends over the channel cross section of the inlet passage or channel in which the flavouring reservoir 36 is arranged. In other examples, the flavouring reservoir 36 may extend over a portion that is less than the whole cross section..
  • the flavouring reservoir 36 may consist of a prefabricated pack or cartridge.
  • the flavouring reservoir may comprise or consist of tobacco or tobacco extract. Suitable tobaccos are, in particular, dried fermented tobacco, reconstituted tobacco, expanded tobacco or mixtures of the same. The tobacco may be present as cut tobacco, such as fine cut tobacco, or as fine granulates or tobacco flour.
  • the flavouring reservoir 36 may comprise an inert wadding or filling material or another open-pored inert substrate, the surface of which is coated with a flavouring material.
  • the coating may, for example, contain an extract, condensate or distillate of tobacco or tobacco smoke, or a fraction such as a volatile, aromatic or flavourful fraction of the aforementioned extracts, condensates or distillates, or tobacco flour. Any material, such as the examples given above, of a flavouring extracted from or based upon, at least in part, tobacco may be termed a tobacco derivative.
  • the coating can alternatively or additionally contain menthol or an essential oil.
  • the flavouring substance or material can be a substance insoluble in water and/or glycerol.
  • insolubility is indicative of a solubility of less than one percent by weight at 20° C. and 1 atm.
  • flavouring can be provided to the air entering through the inlet 5 .
  • the release of flavour to the passing air can be facilitated or assisted by heating of the flavouring reservoir, for example using the approach of conducting excess heat from the aerosol forming device 10 to the flavouring reservoir 36 .
  • the flavouring reservoir 36 is additionally configured as a flow resistor 33 .
  • the flow resistor 33 provides the main pressure drop when a user is drawing in air (inhaling through the device, also referred to as drawing on the device or puffing on the device).
  • the arrangement of the flow resistor can be configured to provide a level of pressure drop appropriate to a particular intended use.
  • the pressure drop can be configured to correspond to or approximate the pressure drop that would be expected of a conventional (i.e. ignited tobacco type) cigarette.
  • the comparatively large volume of the flavour reservoir 36 can provide flow characteristics that substantially correspond to those of a cigarette.
  • an alternative pressure drop may be configured as required for the intended use.
  • the flow characteristics of the arrangement depicted in FIG. 2 are substantially linear, i.e. the pressure drop over the flavouring reservoir 36 is directly proportional to the flow rate through the flavouring reservoir 36 .
  • an aerosol-forming member 10 a comprises a material that is configured to wick and heat a solution such that the sheet of material can absorb solution and thereafter heat it up such that it evaporates and forms a vapour.
  • the material used in the present examples is sheet-like in nature and comprises two major opposing surfaces 20 , 21 .
  • the sheet of material may comprise an open-pored structure, foam structure or interconnecting network of pores, all of which form a capillary structure.
  • the capillary structure enables the aerosol-forming member 10 a to wick or absorb a solution.
  • capillary structure used herein is to be understood as a structure through which liquid or a solution can travel as a result of capillary action.
  • the aerosol-forming member 10 a of the present example may be made of a porous, granular, fibrous or flocculent sintered metal(s) so as to form a capillary structure.
  • BekiporTM sintered fibre material from Bekaert falls in this category of materials.
  • the aerosol-forming member 10 a comprises an open-pored metallic foam or a group of layers of wire mesh or calendered wire mesh which also form capillary structures.
  • the aerosol-forming member 10 a may be formed from stainless steel.
  • the aerosol forming member 10 a may be formed with a capillary structure that extends throughout the whole aerosol-forming member 10 a such that it is exposed on the two major surfaces 20 , 21 of the sheet of material.
  • one of the major surfaces 20 , 21 may be sealed with a metallic foil or cover that is sintered or attached to said major surface.
  • a region of one or both of the major surfaces 20 , 21 may be sealed.
  • the aerosol-forming member 10 a is configured such that the capillary structure does not extend throughout the whole aerosol-forming member.
  • a thin support layer may be sintered onto one or both of the major surfaces 20 , 21 . Such a support layer may be formed from a wire mesh made of stainless steel.
  • the material from which the aerosol-forming member 10 a is formed is heatable in that it comprises sufficient electrical resistivity so that when current is passed through, the aerosol-forming member 10 a heats up to a temperature sufficient to cause the solution held in the capillary structure to evaporate or vaporise. Therefore, in the present examples, the aerosol-forming member 10 a can be considered to comprise a heating element formed with a capillary structure such that the heating element and the capillary structure are integrated and form a single entity or unit.
  • the sheet of material comprises a single layer configured to wick and heat a solution
  • the sheet of material can be described as comprising a heating element and a wick that are arranged in the same surface.
  • the aerosol-forming member 10 a may comprise any combination of the aforementioned structures and materials, e.g. by providing multiple layers of different structures/ materials, the layers being joined together, e.g. by sintering.
  • the aerosol-forming member comprises a sheet of material that is sheet-like in nature and formed from a plurality of layers.
  • the aerosol-forming member 10 a may comprise a first heatable layer acting as a heating element. This first layer is formed from a material that is configured to be heated up. This first layer may be formed from a metal, such as stainless steel.
  • the aerosol-forming member 10 a may further comprise a second layer formed with an open-pored structure, foam structure or interconnecting network of pores, all of which form a capillary structure. The capillary structure enables the aerosol-forming member 10 a to wick or absorb a solution.
  • This second layer may be made of a porous, granular, fibrous or flocculent material so as to form the capillary structure.
  • the second layer may comprise an open-pored foam, fabric or a group of mesh layers forming the capillary structure.
  • the second layer may be made of a non-conductive material such as glass, carbon or ceramic. This second layer acts as a wick.
  • the first layer (heating element) and the second layer (wick formed with a capillary structure) are laid on top of each other so as to form a sheet of material having two opposing major surfaces, wherein the capillary structure may be exposed on one or both of the major surfaces.
  • the sheet of material can be described as comprising a heating element and a wick arranged in parallel surfaces.
  • the first layer may be formed of a metal wire mesh or metal foil and the second layer may be formed of a glass fibre structure or fabric fritted onto or otherwise attached to the first layer.
  • the first layer also comprises a capillary structure as described above with reference to the second layer, such that the first layer can both heat and wick a solution.
  • the sheet of material can be described as comprising a heating element and a wick that are arranged in the same surface and in parallel surfaces.
  • the sheet of material comprises a third layer that is similar to the second layer in that it comprises a capillary structure.
  • the second and the third layer sandwich the first layer such that the capillary structure is exposed on both major surfaces of the sheet of material.
  • the sheet of material according to any of the above described examples has a thickness or depth that typically falls within the range of 20-500 ⁇ m. In some examples, the thickness falls within the range of 50 to 200 ⁇ m. The thickness or depth should be understood as meaning the distance between the two major surfaces 20 , 21 of the sheet of material.
  • FIGS. 3 and 4 show the aerosol-forming member 10 a in an unfolded state or position and FIG. 6 shows the aerosol-forming member 10 a in a folded state or position.
  • the sheet of material has a first or central section 11 and a second and a third section 12 , 13 on either side of the central section 11 .
  • the dashed lines in FIG. 3 represent the boundaries between the sections 11 , 12 , 13 .
  • the second 12 and third 13 sections are formed with slots or notches 14 that extend from opposing long edges 12 a , 13 a of the aerosol-forming member 10 a towards and into the first section 11 .
  • FIG. 3 shows the arrangement shown in FIG.
  • the second section 12 is formed with five slots 14 and the third section 13 is formed with four slots 14 , although other configurations of numbers of slots are possible.
  • the slots 14 as illustrated in FIG. 3 are approximately parallel to one another and spaced apart across the second and third sections 12 , 13 .
  • Opposing free ends of the first section 11 act as electrical terminals 15 , 16 .
  • the electrical terminals 15 , 16 are configured to be electrically connected, e.g. via an electric circuitry 34 , to a power source, such as the battery 30 , so that an electric current can be passed across the aerosol-forming member 10 a .
  • the electrical terminals 15 , 16 may extend from the first section as seen in FIG. 2 enabling them to slot into connection holes (not shown) of the aerosol delivery device, the connection holes being electrically connected to the power source.
  • an electrically conductive wire connected to the power source may be clipped, soldered or welded onto each electrical terminals 15 , 16 so that a current can be passed across the aerosol-forming member 10 a .
  • the electrical terminals are in line with adjacent edges of the second and third sections 12 , 13 such that the terminals do not protrude. These terminals may be connected to an electrically conductive wire via a clip and/or the wire may be soldered or welded onto the terminals. It should also be understood that the electrical terminals may be of any other shape and it is envisaged that other means suitable for connecting the electrical terminals to the power source may be used.
  • the slots 14 compress the electric field 17 such that it is substantially contained within the first section 11 as illustrated in FIG. 4 .
  • the dashed lines in FIG. 4 represent boundaries between the first, second and third sections 11 , 12 , 13 .
  • the first section 11 is primarily or directly heated up whilst the second and third sections 12 , 13 remain relatively unheated, although some heat generated by the current passing through the first section is expected to cause some heating of the second and third sections 12 , 13 .
  • Heat that is generated in or which is conducted to the second and third sections can then be onwardly conducted to provide a small level of heating to the flavouring reservoir 36 as described above.
  • heat may be transferred to the flavour reservoir by one or more of radiation heat originating from the heated first section 11 and absorbed by the chamber wall, and condensation heat released from vapour condensing on chamber wall 25 .
  • the heat transferred to the flavouring reservoir can be thought of as secondary heat or waste heat as such heat is not directly used for generating the aerosol.
  • the present teachings are however not limited to an aerosol-forming member 10 a comprising slots so as to contain the heat within the first section 11 .
  • An example of such an arrangement is shown in FIG. 5 , where the sheet of material comprises discrete sections with different material properties.
  • the first section 11 is made of a material of low electrical resistivity whereas the second or the third sections 12 , 13 are formed from a material with high electrical resistivity such that when a potential difference is applied between the terminals 15 , 16 , an current will primarily pass through the first section.
  • the first section may also be formed with a capillary structure such that it extends throughout the whole aerosol-forming member. The difference in electrical resistivity results in that the first section 11 heats up relatively to the second and third sections 12 , 13 .
  • the sheet of material comprises a non-conductive fibre web or fabric made of glass or carbon fibres, glass or carbon fibre yarns or any other non-conductive and inert fibre materials.
  • the fibre web or fabric provides the capillary structure and extends throughout all sections of the sheet of material.
  • Conductive fibres or wires are incorporated in the fibre web or fabric in a first or central section of the sheet of material making said first or central section heatable.
  • the conductive fibres or wires may be made of stainless steel or of a heating wire alloy like Chromium Nickel.
  • conductive fibres may replace non-conductive fibres and conductive wires (heating wires) may replace non-conductive yarns.
  • FIG. 6 there is shown the aerosol-forming member 10 a in a folded state or position.
  • the second and third sections 12 , 13 are folded about the first section 11 such that the second and third sections 12 , 13 enclose the first section 11 and form a channel 18 .
  • Regions 19 a , 19 b of the second and third sections 12 , 13 overlap such that the channel 18 is completely enclosed in a direction about the first section 11 .
  • the first section 11 is substantially planar or flat and suspended in the channel 18 such that it extends across the channel 18 .
  • second and third sections 12 , 13 do not have to form a tubular channel 18 .
  • the second and third sections 12 , 13 are folded about the first section 11 such that they form a channel having an oval, square, rectangular or any other type of polygonal cross-section.
  • the first section 11 is not limited to being planar or flat.
  • the first section 11 comprises corrugations having ridges and grooves such that it follows a meandering or oscillating path, or a sinusoidal curve.
  • the ridges and grooves may extend in a direction parallel to the opposing long edges 12 a , 13 a of the sheet of material.
  • the third section 13 is omitted such that the aerosol-forming member 10 c has a first section 11 and a second section 12 .
  • the second section 12 extends from the first section 11 and folds about the first section 11 such that the second section 12 forms a channel 18 and the first section 11 is suspended across the channel 18 .
  • the second section 12 partially encloses the first section 11 .
  • the second section 12 may extend around a single surface of the first section such that the cross-section of the aerosol-forming member has a semi-circular shape.
  • the aerosol-forming member 10 a is located in the aerosol chamber 6 .
  • the aerosol forming member thus defines the chamber wall 25 adjacent or proximal a liquid reservoir matrix.
  • the chamber wall therefore may be expected to be at a boundary edge of the structure making up the reservoir matrix.
  • the liquid reservoir matrix 26 comprises a capillary structure, for example an interconnecting porous or open-porous structure, such that it can hold a solution or liquid.
  • the liquid reservoir matrix 26 may be formed from a fibre material, for example polyethylene or polyester fibres.
  • the liquid reservoir may be configured to provide conduction of the secondary heat. This may be provided by the reservoir matrix itself being thermally conductive or may be provided by thermally conductive elements passing through or around the reservoir matrix.
  • the shape of the aerosol chamber 6 defined by the chamber wall 25 corresponds to the shape of the aerosol-forming member 10 a .
  • the second and third sections 12 , 13 contact the liquid reservoir matrix 26 .
  • the aerosol-forming member only comprises a second section 12 as seen in FIG. 7 then only the second section is in contact with the liquid reservoir matrix 26 .
  • only a portion of the second and/or third sections may contact the liquid reservoir matrix 26 .
  • the aerosol-forming member 10 a may contact the liquid reservoir matrix 26 only via the outer edges of sections 12 , 13 .
  • the chamber wall 25 is completely formed by the liquid reservoir matrix 26 .
  • the aerosol forming chamber and aerosol forming member may be constructed in any appropriate manner that provides for aerosol formation as air passes through a chamber.
  • so-called atomisers based upon use of a heating coil wound around a fibre wick may be used.
  • the first section 11 is located across the aerosol chamber 6 .
  • the liquid reservoir matrix 26 does not have to be made out of a heat resistant material as it is shielded from the heat of the first section 11 by the second and/or third sections 12 , 13 that are not substantially heated up during operation of the aerosol delivery device 1 .
  • the secondary heat conducted through or across the reservoir matrix is of sufficiently small magnitude that special thermal resistance is not expected to be required,
  • the liquid reservoir matrix 26 holds a solution that is formed into aerosol by the aerosol-forming member 10 a .
  • the solution is drawn or absorbed into the aerosol-forming member 10 a by capillary action via the capillary structure of the second and the third sections 12 , 13 .
  • the solution is spread throughout the capillary structure of the aerosol-forming member 10 a , i.e. the first, second and third sections 11 , 12 , 13 .
  • the first section 11 is heated up, the solution evaporates from the first section 11 so as to form a vapour which upon condensation forms an inhalable aerosol.
  • the first section 11 is replenished with solution by capillary action moving solution from the liquid reservoir matrix 26 , via the second and third sections 12 , 13 to the first section 11 . This is described in more detail below.
  • the capillarity of the aerosol-forming member 10 a may be greater than the capillarity of the liquid reservoir matrix 26 so as to induce flow of solution from the liquid reservoir matrix 26 towards the aerosol-forming member 10 a .
  • the capillarity is defined by the pore size and the wetting conditions of the respective capillary structures.
  • the power source enabling the aerosol-forming member 10 a to heat up may be a battery 30 .
  • the battery 30 is controlled by the electric circuitry 34 which include a controller and may be mounted on a printed circuit board (PCB). Examples of illustrative circuit structures are shown in FIGS. 9 a and 9 b .
  • the electrical terminals 15 , 16 of the aerosol-forming member 10 a are electrically connected to the positive and negative terminals of the battery 30 respectively as previously described. Control of electrical current to the terminals 15 , 16 is provided by the electrical circuit 34 .
  • the circuit of this example includes a pressure-activated switch 40 that activates responsive to a signal from a pressure sensor 41 .
  • the pressure sensor 41 is arranged to detect a pressure alteration when a user commences inhaling through the aerosol delivery device.
  • the pressure sensor may for example be arranged in fluid communication with the plenum chamber 4 in order to detect the pressure change.
  • the pressure sensor 41 is connected to the electric circuit 34 via the connection member 35 , it is also possible to arrange the pressure sensor 41 at the electric circuit 34 and to provide fluid communication between the plenum chamber 4 and the pressure sensor 41 via a passage extending through the connection member 35 .
  • the signal from the pressure sensor 41 then activates the switch 40 (either directly or via a controller) so as to allow a flow of current from the battery 30 to the terminals 15 , 16 .
  • the switch 40 may be an electrical switch such as a power-MOSFET switching circuit activatable responsive to the signal from the pressure sensor.
  • the switch and any control circuitry therefor may be provided at a PCB of the electric circuit 34 .
  • the control of the supply of current from the battery 30 to the terminals 15 , 16 may be controlled via a switch 42 that activates responsive to a user-activated switch 43 .
  • the user-activated switch may be located at an accessible position on or recessed into the housing 2 .
  • the switch 42 may be activated based upon a direct connection to the user-activated switch 43 .
  • a control circuit may be provided to control the switch 42 responsive to activation of the user-activated switch 43 .
  • the switch 42 may be an electrical switch such as a power-MOSFET switching circuit activatable responsive to the signal from the user-activatable switch 43 .
  • the switch and any control circuitry therefor may be provided at a PCB of the electric circuit 34 .
  • the switching circuit may additionally provide automatic control of the temperature, for example, by using temperature sensors to enable the supply of current to be stopped once a threshold temperature is reached.
  • the switching circuit may additionally or alternatively provide automatic control of duration, to enable the supply of current to be stopped once a threshold activation time is reached.
  • the circuit 34 may be configured to very low or zero power requirements other than when the switch is activated to indicate that provision of current to the terminals 15 , 16 is required.
  • the electrical resistance of the sheet of material causes the first section 11 of the sheet of material to increase in temperature.
  • the resistance of the conductive layer acting as a heating element causes the first section 11 to increase in temperature, which in turn heats up the adjacent non-conductive second and/or third layers of the first section 11 .
  • the user may manually activate the aerosol delivery device 1 (for example see the arrangement of FIG. 9 b ) or the aerosol delivery device 1 may be activated automatically (for example see FIG. 9 a ) as the user starts to inhale through the aerosol delivery device 1 .
  • the battery 30 provides a potential difference between the electrical terminals 15 , 16 of the aerosol-forming member 10 a as the aerosol delivery device is activated, causing current to flow between the electrical terminals 15 , 16 such that the first section 11 of the sheet of material increases in temperature.
  • the heat is substantially contained within the first section 11 due to the slots 14 , athough it should be appreciated that the heat may be contained within the first section by other means as described above. It will also be appreciated that secondary heat may be conveyed to the flavouring reservoir 35 as described above.
  • This increase in temperature at the first section 11 causes the solution held in the capillary structure of the first section 11 of the sheet of material to evaporate so as to form a vapour.
  • the vapour mixes with air drawn into the aerosol delivery device 1 via inlet 5 , flavouring reservoir 35 , plenum chamber 4 and chamber inlet 31 ′ by suction caused by a user inhaling through the device.
  • the vapour mixes with air in the aerosol chamber 6 , and as this occurs the vapour condenses and forms droplets such that an inhalable aerosol is produced.
  • the aerosol-forming member 10 a according to any of the above described embodiments is located in the housing such that the planes of the major surfaces 20 , 21 are parallel to or substantially aligned with the direction of the airflow through the aerosol chamber 6 .
  • the solution evaporates in a direction transverse to the direction of the airflow.
  • the solution is evaporated from both sides in opposite directions as indicated by the arrows in FIG. 8 .
  • the vapour mixes with air so as to form aerosol in the channel 18 formed by the second and/or third sections 12 , 13 .
  • the channel 18 directs the flow of aerosol through the aerosol delivery device towards the user.
  • the aerosol forming device When the aerosol forming device is activated, it is likely that excess vapour will form and then condense onto the chamber wall 6 formed by the second and/or third sections 12 , 13 of the aerosol-forming member 10 a .
  • the condensation heat released may thus provide a source of heat for transfer to the flavour reservoir; the condensate will be reabsorbed into the capillary structure of sections 12 , 13 and resupplied to section 11 of the aerosol-forming member 10 a by capillary action as discussed above.
  • the supply of secondary or waste heat to the flavour reservoir may also be provided by conductive heat transferred within the aerosol forming member from the high temperature section 11 to the adjacent cooler sections 12 , 13 .
  • the supply of secondary or waste heat to the flavour reservoir may also be provided by radiation heat transferred from the high temperature section 11 to the adjacent cooler sections 12 , 13 .
  • Heat rays can cross the aerosol chamber 6 and are then absorbed on the chamber wall 25 formed by sections 12 , 13 . All three sources of heat together are expected to be active to some extent, with the relative ratio therebetween being dependent upon the exact device configuration. Together these mechanisms provide the secondary or waste heat.
  • This waste heat is passed through or around the liquid reservoir matrix 36 so as to reach the flavouring reservoir 36 for heating the flavouring contained therein.
  • the aerosol-forming member 10 a After the aerosol-forming member 10 a has been activated and aerosol has formed in the channel 18 , the aerosol is drawn through the channel 18 as the user continues to inhale. The aerosol then exits the aerosol chamber 6 through a chamber outlet 31 ′′ as seen in FIG. 2 . The aerosol then passes through an optional aerosol refining member 32 provided in the housing 2 , causing the aerosol to be cooled.
  • the refining member 32 may also contain further flavouring agents such as menthol that are released into the flow of aerosol before entering the user’s mouth via the outlet aperture 7 provided in the mouthpiece 3 .
  • the solution that has evaporated from the capillary structure of the first section 11 of the sheet of material is replaced by fresh solution from the liquid reservoir matrix 26 due to the capillary effect of the capillary structure as described above and the second and/or third section being in contact with the liquid reservoir matrix 26 .
  • Fresh air enters the channel 18 via the inlet aperture 5 , flavouring reservoir 36 , plenum chamber 4 and chamber inlet 31 ′.
  • a pressure drop element or flow resistor 33 is provided so that the flow of air into the aerosol chamber 6 can be controlled.
  • the flow resistor 33 may consist of a simple aperture or hole and may be identical with the inlet aperture 5 in the housing 2 .
  • the flow resistor 33 may consist of a porous body similar to a cigarette filter providing the flow resistance of a conventional cigarette.
  • the flow resistor 33 may be provided by the material as discussed above that provides a structure for holding or providing the flavouring within the flavouring reservoir. In such examples this material thus provides dual functionality of flavour carrying and flow restriction.
  • FIG. 10 illustrates another example of an aerosol delivery device.
  • the aerosol delivery device 1 comprises an aerosol delivery portion 1 ′ and a power portion 1 ′′.
  • the aerosol delivery portion 1 ′ and power portion 1 ′′ are arranged as separate regions of a single, unitary, aerosol delivery device 1 having a single housing 2 that houses both portions.
  • the aerosol delivery portion 1 ′ and power portion 1 ′′ can be removably connected to enable a given power portion 1 ′′ to receive a number of different aerosol delivery portions 1 ′ and/or to enable a given aerosol delivery portion 1 ′ to receive a number of different power portions 1 ′′.
  • the housing 2 may be openable to enable replacement of one portion or component (such as a power source 30 ) or may be divided in correspondence to the division of the portions such that each portion includes its own respective housing part.
  • the aerosol delivery device 1 may be configured to be re-usable or disposable.
  • the aerosol delivery portion 1 ′ and power portion 1 ′′ are separable or openable, either or both of the aerosol delivery portion 1 ′ and power portion 1 ′′ may be configured as being re-usable or disposable.
  • the portably power source 30 (which may be a battery or other portably power source as discussed with reference to FIG. 1 above) does not use the full diameter of the housing 2 , but rather has located thereabout (either wholly surrounding or adjacent in part) the gas pathway from the inlet 5 to the plenum chamber 4 .
  • this gas pathway has arranged therein a flavouring reservoir 36 .
  • the flavouring reservoir 36 operates in the same manner as that discussed with reference to FIGS. 1 and 2 above, save in the arrangements for warming of the flavouring reservoir 36 .
  • the plenum chamber 4 acts to provide uniformity to the flow of air to the aerosol chamber 6 / tubular channel 18 .
  • the air inside the inlet passage and the aerosol inside the tubular channel 18 are flowing in like directions but are separated by axial offset between the centre of flow through the inlet passage and tubular channel and by the plenum chamber 4 .
  • flavouring reservoir 36 two options for transfer of heat to the flavouring reservoir 36 can be employed, either independently or in combination.
  • the property of many batteries to experience a slight temperature increase when supplying current is utilised.
  • the heat generated by the power supply 30 may be used to provide the supply of heat to the flavouring reservoir 36 arranges about or adjacent the power supply 30 .
  • the second of these options utilises a separate heat generation that provides heat for the flavouring reservoir 36 other than by way of conducting secondary heat from the aerosol forming member 10 .
  • Such separate heat generation could be provided by providing for the control circuit 34 to allow a low of current through one or more conductive structures in or adjacent to the flavouring reservoir 36 at the same time as the provision of current to the aerosol forming member 10 .
  • this conductive heat transfer enables the flavouring reservoir 36 to reach temperatures that it would not reach otherwise, enabling enhanced release of flavours inside the reservoir.
  • implementations may also be provided in which no addition heat provision is made to the flavouring source and instead the incoming air is passed through the flavouring reservoir without heating of the flavouring reservoir before the air reaches the aerosol generation structure.
  • this solution may comprise certain constituents or substances that may have a stimulatory effect on the user. These constituents or substances may be of any kind that is suitable for being delivered via inhalation.
  • the solution in which the constituents or substances are held or dissolved may primarily consist of water, ethanol, glycerol, propylene glycol or mixtures of the aforementioned solvents.
  • channel used herein is not limited to a specific cross-section. Furthermore, the channel may be completely enclosed about the longitudinal axis of the channel, however it should also be appreciated that the channel may not be enclosed but open along a section parallel to the longitudinal axis of the channel.
  • aerosol-forming member 10 may be oxidised or coated with a non-conductive material so as to prevent a short circuit.

Abstract

There can be provided a device configured to impart flavouring to an airstream admitted the device prior to the airstream reaching an aerosol generator of the device, the device thereby operable to deliver a flavoured aerosol from an outlet.

Description

    RELATED APPLICATION
  • This application is a continuation application of 17/452,435 filed Oct. 27, 2021, which is a continuation of Application No. 17/443,170 filed Jul. 21, 2021, which is a continuation of Application No. 16/842,153 filed Apr. 7, 2020, which is a continuation of Application No. 16/377,331 filed Apr. 8, 2019, which is a continuation of Application No. 15/503,456 filed Feb. 13, 2017, which in turn is a National Phase entry of PCT Application No. PCT/GB2015/052212, filed Jul. 31, 2015, which claims priority from GB Patent Application No. 1414331.7, filed Aug. 13, 2014, all of which as hereby fully incorporated herein by reference.
  • FIELD AND BACKGROUND
  • The present disclosure relates to an aerosol delivery device and method and in particular but not exclusively to an aerosol delivery device and method that utilise a flavouring reservoir.
  • An aerosol delivery device can be used for generating a nicotine-containing condensation aerosol.
  • One example of an inhaler is described in US20110226236 which relates to an inhaler component for producing a nicotine-containing steam/air mixture or/and condensation aerosol by evaporation of a nicotine solution which is highly diluted with ethanol or/and water. The inhaler component comprises the following elements: a housing; a chamber arranged in the housing; an air inlet opening for the supply of air from the surroundings to the chamber; an evaporator for evaporating a portion of the highly diluted nicotine solution, the evaporator comprising an evaporation or steam emission surface arranged in the chamber, from which surface the steam produced passes over to the chamber and mixes in the chamber with the air supplied through the air inlet opening, thereby eventually producing the nicotine-containing steam/air mixture or/and condensation aerosol. In order to remove the high solvent diluent in the formed steam/air mixture or condensation aerosol to a maximum possible extent, the inhaler component comprises a two-step solvent removal device which consists of a condensate drainage and storage device communicating with the chamber and of a condenser through which the produced steam/air mixture or/and condensation aerosol can flow.
  • Another example of an inhaler component is described in WO2011/109848 which relates to an inhaler component having: a housing with a housing jacket; a mouthpiece with a mouthpiece opening for delivering an inhalable medium into the oral cavity of a user; a scent reservoir that is able to communicate with the environment by diffusion and contains a scent, for releasing the scent into the environment and for the olfactory perception of the scent by the user, wherein a) the housing comprises a housing component; b) the mouthpiece is detachably connected to the housing component; c) the housing jacket comprises a first jacket part and a second jacket part; d) the housing component forms the first jacket part; e) the mouthpiece forms the second jacket part, and f) the scent reservoir is structurally combined with the mouthpiece, has a planar configuration and is arranged flat on the second jacket part or itself forms the second jacket part.
  • A non-heating type tobacco flavor inhaler is described in WO2010/095659. According to this document, a non-heating type tobacco flavor inhaler is provided with an inhalation holder having an inhalation route defined therein, and also with a filled body disposed in the inhalation route. The filled body consists of tobacco grains, and the inhalation route and the filled body provide air flow resistance in the range from about 40 to about 80 mmAq.
  • Another non-heating type flavor inhaler is described in WO 2010/095660. According to this document, a non-heating type flavor inhaler provided with: an inhalation holder; an upstream region and a downstream region which are defined in the inhalation holder, said upstream region extending from the tip of the inhalation holder up to a partition wall, said downstream region extending, except the upstream region, from the tip of the inhalation holder up to the mouthpiece end and having a front flow path extending along the upstream region; outside air introducing openings formed in the peripheral wall of the inhalation holder and allowing the upstream region and the outside to communicate with each other; and a pouch mounted at the boundary between the upstream region and the downstream region, extending along the longitudinal axis of the inhalation holder, and releasing the flavor of tobacco.
  • SUMMARY
  • Viewed from a first aspect, there can be provided an aerosol delivery device comprising: an air inlet; a flavouring reservoir arranged to provide release of flavouring material to air passing therethrough; and an aerosol chamber arranged to provide an aerosol in air passing therethrough; and an aerosol outlet; the air inlet, flavouring reservoir, aerosol chamber and aerosol outlet are arranged in fluid communication in that order. Thus a flavoured aerosol can be generated in such manner as to avoid a flavouring reservoir becoming contaminated with aerosol particles and/or condensation of liquid from an aerosol, while at the same time providing that the whole air volume of the flavoured aerosol is subjected to both flavouring and aerosol generation.
  • Viewed from another aspect, there can be provided a device configured to impart flavouring to an airstream admitted the device prior to the airstream reaching an aerosol generator of the device, the device thereby operable to deliver a flavoured aerosol from an outlet. Thus a device can create a flavoured aerosol by passing a whole air volume through both flavouring and aerosol generation without contaminating a flavouring source with aerosol particles and/or condensate.
  • Viewed from a further aspect, there can be provided a method of generating a flavoured aerosol, the method comprising: imparting flavour to an airflow by passing airflow through a flavour reservoir to cause flavour molecules and/or particles to be carried by the airflow; generating an aerosol by passing the airflow carrying flavour molecules and/or particles through an aerosol generator that evaporates a liquid into the airflow to create a flavoured aerosol; and delivering the flavoured aerosol to a mouthpiece. Thus a flavoured aerosol can be generated in such manner as to avoid a flavouring reservoir becoming contaminated with aerosol particles and/or condensation of liquid from an aerosol, while at the same time providing that the while air volume of the flavoured aerosol is subjected to both flavouring and aerosol generation.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The present disclosure will now be discussed, by way of example only, with reference to the following drawings in which like reference numerals denote like elements.
  • FIG. 1 shows a cross-sectional side view of an aerosol delivery device comprising an aerosol-forming member according to a first example;
  • FIG. 2 shows a cross-sectional side view of an aerosol delivery portion of the aerosol delivery device shown in FIG. 1 ;
  • FIGS. 3 to 7 show example aerosol forming members;
  • FIG. 8 shows an example aerosol-forming member located in an aerosol chamber;
  • FIGS. 9 a and 9 b show example control circuits; and
  • FIG. 10 shows cross-sectional side view of an aerosol delivery device comprising an aerosol-forming member according to another example.
  • While the presently described approach is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that drawings and detailed description thereto are not intended to limit the scope to the particular form disclosed, but on the contrary, the scope is to cover all modifications, equivalents and alternatives falling within the spirit and scope as defined by the appended claims
  • DESCRIPTION
  • Referring to FIG. 1 , there is shown a first example of an aerosol delivery device. The aerosol delivery device 1 comprises an aerosol delivery portion 1′ and a power portion 1″. In the present example, the aerosol delivery portion 1′ and power portion 1″ are arranged as separate regions of a single, unitary, aerosol delivery device 1 having a single housing 2 that houses both portions. In other examples, the aerosol delivery portion 1′ and power portion 1″ can be removably connected to enable a given power portion 1″ to receive a number of different aerosol delivery portions 1′ and/or to enable a given aerosol delivery portion 1′ to receive a number of different power portions 1″. In such alternative examples, the housing 2 may be openable to enable replacement of one portion or may be divided in correspondence to the division of the portions such that each portion includes its own respective housing part.
  • The aerosol delivery device 1 may be configured to be re-usable or disposable. In the example in which the aerosol delivery portion 1′ and power portion 1″ are separable, either or both of the aerosol delivery portion 1′ and power portion 1″ may be configured as being re-usable or disposable.
  • The power portion 1″ provides a source of electrical power for powering one or more components within the aerosol delivery portion 1′. In the present example, the power portion 1″ has with the housing a battery 30. Delivery of power from the battery 30 to the aerosol delivery portion 1′ is controlled by electric circuitry 34. In other examples the battery may be replaced by another portable power source such as a capacitive power store such as a supercapacitor or ultracapacitor, a mechanical power source such as a spring or dynamo, or an alternative chemical energy source such as a fuel cell.
  • FIG. 2 shows the aerosol delivery portion 1′ in greater detail. As can be seen from FIG. 2 , the aerosol delivery portion 1′ is contained within housing 2 and has a mouthpiece 3 at one end and an attachment element at the other end. The attachment element is configured to connect (either permanently or releasably) to the power portion 1″. As shown in FIG. 2 , the attachment element has a connection member 35 to provide for electrical connection between the power portion 1″ and any power utilising elements of the aerosol delivery portion 1′.
  • The aerosol delivery portion 1′ as shown in FIG. 2 defines a gas pathway therethrough, the gas pathway having an inlet 5, a flavouring reservoir 36, a plenum chamber 4, an aerosol chamber 6 (also referred to as tubular channel 18), refining member 32 and an outlet aperture 7 that extends through the mouthpiece 3. Air can be encouraged to flow through the gas pathway by the application of suction at the mouthpiece 3. Such suction may typically be provided by a user drawing air through the aerosol delivery device 1 when inhaling to receive a delivery of aerosol. In overview, air taken in through the inlet 5 and passing along the gas pathway first picks up flavouring material from the favouring reservoir 36 before the forming of an aerosol at the aerosol chamber 6 for delivery to the outlet aperture 7. This process will be described in more detail below.
  • As shown in FIG. 2 , the flavouring reservoir 36 provides an inlet passage or channel between the inlet aperture 5 and the plenum chamber 4. In some examples a single inlet 5 may be provided and in other examples a number of inlets 5 may be provided at different points around the circumference of the housing 2. The inlet passage or channel provided by the flavouring reservoir has an annular cross section and encompasses the aerosol chamber 6 and associated aerosol forming member 10. In the configuration of the present example, the air inside the inlet passage and the aerosol inside the tubular channel 18 (aerosol chamber 6) are flowing in opposite directions.
  • As fresh air moves through the inlet passage it passes over or through the flavouring reservoir 36 which results in the release of flavours. The flavours disperse in the air and are taken downstream together with the air. The flavour enriched/ flavoured air is then collected in the plenum chamber 4. The plenum chamber 4 acts to provide uniformity to the flow of air to the aerosol chamber 6/ tubular channel 18. The air enters the aerosol chamber 6 via an air inlet 31′.
  • As will be described in more detail below, the aerosol forming member 10 has a chamber wall 25 surrounding the aerosol chamber 6, then a liquid reservoir matrix 26 is arranged outside the chamber wall, with the aerosol chamber 6 having an aerosol chamber inlet 31′ and an aerosol chamber outlet 31″. Separation between the inlet passage/flavouring reservoir 36 and the liquid reservoir matrix 26 is provided by a support member 37 located between the liquid reservoir matrix 26 and the flavouring reservoir 36. The aerosol forming member 10 uses heat provided by the flow of electrical current to aid the aerosol generation.
  • In the present example, the flavouring reservoir 36 is located around the aerosol forming member 10. While the heat generated by the heating element of the aerosol forming member 10 is primarily used to vaporise liquid provided from the liquid reservoir matrix 26, a portion of that heat may be used to heat up the flavouring reservoir 36 to an elevated temperature. This secondary or waste heat can be transferred to the flavouring reservoir by thermal conduction through components of the aerosol forming member 10 and support member 37. For example, heat may be conducted through the chamber wall 25, through the liquid reservoir matrix 26 and through the tubular support member 37 holding the aerosol forming member 10 and the liquid reservoir matrix 26, and thereby provided to the flavouring reservoir 36 and the flavours contained therein.
  • This conductive heat transfer enables the flavouring reservoir 36 to reach temperatures that it would not reach otherwise, enabling enhanced release of flavours inside the reservoir. As the release of flavours inside the reservoir is principally by diffusion, and as diffusion is significantly temperature dependent in operation, the amount of temperature elevation achieved in the flavouring reservoir by the conductive heat transfer need not be large to achieve the enhanced release of flavours. In addition to the thermal conductivity properties of the conductive heat transfer path and a heated structure of the reservoir, the amount of temperature rise may depend upon a number of factors associated with use of the device. For example the length of a given draw or puff through the device may affect the operating time of the heating element and thus the total amount of heat generation that occurs during the draw or puff. Also, the time space between draws or puffs may impact the total temperature rise if that timespan is sufficiently short that at least some components of the device do not cool fully between draws or puffs. In practice a temperature rise on the range of 5° C. to 30° C. is anticipated to be feasible and a rise of as little of 1° C. is expected to provide some enhancement to the release of flavours. For a given implementation of the device, an expected temperature rise can be calculated and measured and in some examples it may be appropriate to tailor the flavours in the flavouring reservoir to the expected temperature rise.
  • The arrangement of the present example provides that the only gas to enter the flavouring reservoir is air introduced into the device via the inlet aperture(s) 5. Since the flavouring reservoir 36 does not receive vapour or aerosol generated inside the aerosol chamber 6, the surface of flavour providing elements within the flavouring reservoir will not attract or become clogged with condensate or aerosol particles generated at the aerosol chamber 6.
  • As will be appreciated, the entire air volume drawn in by a user when inhaling to receive a delivery of aerosol (which volume may typically be of the order of 30-80 ml) is provided to the aerosol chamber 6 and can completely be used for generating the aerosol. This can provide for efficient aerosol formation.
  • The flavouring reservoir 36 may comprise a permeable highly porous wadding or filling material. In the present example, the material completely fills/extends over the channel cross section of the inlet passage or channel in which the flavouring reservoir 36 is arranged. In other examples, the flavouring reservoir 36 may extend over a portion that is less than the whole cross section.. The flavouring reservoir 36 may consist of a prefabricated pack or cartridge. In some examples, the flavouring reservoir may comprise or consist of tobacco or tobacco extract. Suitable tobaccos are, in particular, dried fermented tobacco, reconstituted tobacco, expanded tobacco or mixtures of the same. The tobacco may be present as cut tobacco, such as fine cut tobacco, or as fine granulates or tobacco flour. Such forms provide a relatively large surface area to facilitate the release of flavours contained in the tobacco. In another example, the flavouring reservoir 36 may comprise an inert wadding or filling material or another open-pored inert substrate, the surface of which is coated with a flavouring material. The coating may, for example, contain an extract, condensate or distillate of tobacco or tobacco smoke, or a fraction such as a volatile, aromatic or flavourful fraction of the aforementioned extracts, condensates or distillates, or tobacco flour. Any material, such as the examples given above, of a flavouring extracted from or based upon, at least in part, tobacco may be termed a tobacco derivative. The coating can alternatively or additionally contain menthol or an essential oil.
  • The flavouring substance or material can be a substance insoluble in water and/or glycerol. In the present context, insolubility is indicative of a solubility of less than one percent by weight at 20° C. and 1 atm. Thus, by providing for dispersal of flavourings into the airflow within the flavouring reservoirs, even flavourings that are not water or glycerol soluble can be effectively included in the aerosol provided by the aerosol delivery device.
  • Thereby a flavouring can be provided to the air entering through the inlet 5. As described above, the release of flavour to the passing air can be facilitated or assisted by heating of the flavouring reservoir, for example using the approach of conducting excess heat from the aerosol forming device 10 to the flavouring reservoir 36.
  • In the present example, the flavouring reservoir 36 is additionally configured as a flow resistor 33. The flow resistor 33 provides the main pressure drop when a user is drawing in air (inhaling through the device, also referred to as drawing on the device or puffing on the device). The arrangement of the flow resistor can be configured to provide a level of pressure drop appropriate to a particular intended use. In one example, the pressure drop can be configured to correspond to or approximate the pressure drop that would be expected of a conventional (i.e. ignited tobacco type) cigarette. The comparatively large volume of the flavour reservoir 36 can provide flow characteristics that substantially correspond to those of a cigarette. In other examples where the device is configured for delivery of flavouring and/or liquid suspension in aerosol of materials other than those associated with tobacco smoking, an alternative pressure drop may be configured as required for the intended use. The flow characteristics of the arrangement depicted in FIG. 2 are substantially linear, i.e. the pressure drop over the flavouring reservoir 36 is directly proportional to the flow rate through the flavouring reservoir 36.
  • FIG. 3 now shows more detail of the aerosol forming member. As shown in FIG. 3 , an aerosol-forming member 10 a comprises a material that is configured to wick and heat a solution such that the sheet of material can absorb solution and thereafter heat it up such that it evaporates and forms a vapour. The material used in the present examples is sheet-like in nature and comprises two major opposing surfaces 20, 21. The sheet of material may comprise an open-pored structure, foam structure or interconnecting network of pores, all of which form a capillary structure. The capillary structure enables the aerosol-forming member 10 a to wick or absorb a solution. The term “capillary structure” used herein is to be understood as a structure through which liquid or a solution can travel as a result of capillary action.
  • The aerosol-forming member 10 a of the present example may be made of a porous, granular, fibrous or flocculent sintered metal(s) so as to form a capillary structure. For instance, Bekipor™ sintered fibre material from Bekaert (www.bekaert.com) falls in this category of materials. In other examples, the aerosol-forming member 10 a comprises an open-pored metallic foam or a group of layers of wire mesh or calendered wire mesh which also form capillary structures. The aerosol-forming member 10 a may be formed from stainless steel. Furthermore, the aerosol forming member 10 a may be formed with a capillary structure that extends throughout the whole aerosol-forming member 10 a such that it is exposed on the two major surfaces 20, 21 of the sheet of material. In some examples, one of the major surfaces 20, 21 may be sealed with a metallic foil or cover that is sintered or attached to said major surface. Alternatively, a region of one or both of the major surfaces 20, 21 may be sealed. In another example, the aerosol-forming member 10 a is configured such that the capillary structure does not extend throughout the whole aerosol-forming member. In another example, a thin support layer may be sintered onto one or both of the major surfaces 20, 21. Such a support layer may be formed from a wire mesh made of stainless steel.
  • The material from which the aerosol-forming member 10 a is formed is heatable in that it comprises sufficient electrical resistivity so that when current is passed through, the aerosol-forming member 10 a heats up to a temperature sufficient to cause the solution held in the capillary structure to evaporate or vaporise. Therefore, in the present examples, the aerosol-forming member 10 a can be considered to comprise a heating element formed with a capillary structure such that the heating element and the capillary structure are integrated and form a single entity or unit.
  • In the above described examples wherein the sheet of material comprises a single layer configured to wick and heat a solution, the sheet of material can be described as comprising a heating element and a wick that are arranged in the same surface.
  • Additionally, the aerosol-forming member 10 a may comprise any combination of the aforementioned structures and materials, e.g. by providing multiple layers of different structures/ materials, the layers being joined together, e.g. by sintering.
  • In one such example, the aerosol-forming member comprises a sheet of material that is sheet-like in nature and formed from a plurality of layers. For example, the aerosol-forming member 10 a may comprise a first heatable layer acting as a heating element. This first layer is formed from a material that is configured to be heated up. This first layer may be formed from a metal, such as stainless steel. The aerosol-forming member 10 a may further comprise a second layer formed with an open-pored structure, foam structure or interconnecting network of pores, all of which form a capillary structure. The capillary structure enables the aerosol-forming member 10 a to wick or absorb a solution. This second layer may be made of a porous, granular, fibrous or flocculent material so as to form the capillary structure. Alternatively, the second layer may comprise an open-pored foam, fabric or a group of mesh layers forming the capillary structure. The second layer may be made of a non-conductive material such as glass, carbon or ceramic. This second layer acts as a wick. The first layer (heating element) and the second layer (wick formed with a capillary structure) are laid on top of each other so as to form a sheet of material having two opposing major surfaces, wherein the capillary structure may be exposed on one or both of the major surfaces. In this example, the sheet of material can be described as comprising a heating element and a wick arranged in parallel surfaces. In one example, the first layer may be formed of a metal wire mesh or metal foil and the second layer may be formed of a glass fibre structure or fabric fritted onto or otherwise attached to the first layer.
  • In another example, the first layer also comprises a capillary structure as described above with reference to the second layer, such that the first layer can both heat and wick a solution. In this example, the sheet of material can be described as comprising a heating element and a wick that are arranged in the same surface and in parallel surfaces.
  • In another example, the sheet of material comprises a third layer that is similar to the second layer in that it comprises a capillary structure. The second and the third layer sandwich the first layer such that the capillary structure is exposed on both major surfaces of the sheet of material.
  • The sheet of material according to any of the above described examples has a thickness or depth that typically falls within the range of 20-500 µm. In some examples, the thickness falls within the range of 50 to 200 µm. The thickness or depth should be understood as meaning the distance between the two major surfaces 20, 21 of the sheet of material.
  • FIGS. 3 and 4 show the aerosol-forming member 10 a in an unfolded state or position and FIG. 6 shows the aerosol-forming member 10 a in a folded state or position. The sheet of material has a first or central section 11 and a second and a third section 12, 13 on either side of the central section 11. The dashed lines in FIG. 3 represent the boundaries between the sections 11, 12, 13. The second 12 and third 13 sections are formed with slots or notches 14 that extend from opposing long edges 12 a, 13 a of the aerosol-forming member 10 a towards and into the first section 11. In the arrangement shown in FIG. 3 , the second section 12 is formed with five slots 14 and the third section 13 is formed with four slots 14, although other configurations of numbers of slots are possible. The slots 14 as illustrated in FIG. 3 are approximately parallel to one another and spaced apart across the second and third sections 12, 13.
  • Opposing free ends of the first section 11 act as electrical terminals 15, 16. The electrical terminals 15, 16 are configured to be electrically connected, e.g. via an electric circuitry 34, to a power source, such as the battery 30, so that an electric current can be passed across the aerosol-forming member 10 a. The electrical terminals 15, 16 may extend from the first section as seen in FIG. 2 enabling them to slot into connection holes (not shown) of the aerosol delivery device, the connection holes being electrically connected to the power source. Alternatively, an electrically conductive wire connected to the power source may be clipped, soldered or welded onto each electrical terminals 15, 16 so that a current can be passed across the aerosol-forming member 10 a. In some examples, the electrical terminals are in line with adjacent edges of the second and third sections 12, 13 such that the terminals do not protrude. These terminals may be connected to an electrically conductive wire via a clip and/or the wire may be soldered or welded onto the terminals. It should also be understood that the electrical terminals may be of any other shape and it is envisaged that other means suitable for connecting the electrical terminals to the power source may be used.
  • When a current is passed through the aerosol-forming member 10 a, the slots 14 compress the electric field 17 such that it is substantially contained within the first section 11 as illustrated in FIG. 4 . The dashed lines in FIG. 4 represent boundaries between the first, second and third sections 11, 12, 13. As a result, the first section 11 is primarily or directly heated up whilst the second and third sections 12, 13 remain relatively unheated, although some heat generated by the current passing through the first section is expected to cause some heating of the second and third sections 12, 13. Heat that is generated in or which is conducted to the second and third sections can then be onwardly conducted to provide a small level of heating to the flavouring reservoir 36 as described above. Additionally or alternatively heat may be transferred to the flavour reservoir by one or more of radiation heat originating from the heated first section 11 and absorbed by the chamber wall, and condensation heat released from vapour condensing on chamber wall 25. The heat transferred to the flavouring reservoir can be thought of as secondary heat or waste heat as such heat is not directly used for generating the aerosol.
  • The present teachings are however not limited to an aerosol-forming member 10 a comprising slots so as to contain the heat within the first section 11. An example of such an arrangement is shown in FIG. 5 , where the sheet of material comprises discrete sections with different material properties. The first section 11 is made of a material of low electrical resistivity whereas the second or the third sections 12, 13 are formed from a material with high electrical resistivity such that when a potential difference is applied between the terminals 15, 16, an current will primarily pass through the first section. It should be understood that the first section may also be formed with a capillary structure such that it extends throughout the whole aerosol-forming member. The difference in electrical resistivity results in that the first section 11 heats up relatively to the second and third sections 12, 13.
  • An example of such an embodiment is wherein the sheet of material comprises a non-conductive fibre web or fabric made of glass or carbon fibres, glass or carbon fibre yarns or any other non-conductive and inert fibre materials. The fibre web or fabric provides the capillary structure and extends throughout all sections of the sheet of material. Conductive fibres or wires are incorporated in the fibre web or fabric in a first or central section of the sheet of material making said first or central section heatable. The conductive fibres or wires may be made of stainless steel or of a heating wire alloy like Chromium Nickel. Alternatively, conductive fibres may replace non-conductive fibres and conductive wires (heating wires) may replace non-conductive yarns.
  • Thus it will be understood that a variety of constructions consistent with the present teachings are possible to achieve primary heating of a first section 11 to facilitate aerosol generation and to achieve secondary heating by way of conduction of heat from the aerosol forming member to the flavour reservoir.
  • Referring now to FIG. 6 , there is shown the aerosol-forming member 10 a in a folded state or position. The second and third sections 12, 13 are folded about the first section 11 such that the second and third sections 12, 13 enclose the first section 11 and form a channel 18. Regions 19 a, 19 b of the second and third sections 12, 13 overlap such that the channel 18 is completely enclosed in a direction about the first section 11. The first section 11 is substantially planar or flat and suspended in the channel 18 such that it extends across the channel 18.
  • It should be understood that the second and third sections 12, 13 do not have to form a tubular channel 18. In alternative examples the second and third sections 12, 13 are folded about the first section 11 such that they form a channel having an oval, square, rectangular or any other type of polygonal cross-section.
  • It should also be appreciated that the first section 11 is not limited to being planar or flat. In an alternative example, the first section 11 comprises corrugations having ridges and grooves such that it follows a meandering or oscillating path, or a sinusoidal curve. The ridges and grooves may extend in a direction parallel to the opposing long edges 12 a, 13 a of the sheet of material. In another example, as shown in FIG. 7 , the third section 13 is omitted such that the aerosol-forming member 10 c has a first section 11 and a second section 12. The second section 12 extends from the first section 11 and folds about the first section 11 such that the second section 12 forms a channel 18 and the first section 11 is suspended across the channel 18. Alternatively, the second section 12 partially encloses the first section 11. For example, the second section 12 may extend around a single surface of the first section such that the cross-section of the aerosol-forming member has a semi-circular shape.
  • Referring now to FIG. 8 , the aerosol-forming member 10 a is located in the aerosol chamber 6. The aerosol forming member thus defines the chamber wall 25 adjacent or proximal a liquid reservoir matrix. The chamber wall therefore may be expected to be at a boundary edge of the structure making up the reservoir matrix. The liquid reservoir matrix 26 comprises a capillary structure, for example an interconnecting porous or open-porous structure, such that it can hold a solution or liquid. The liquid reservoir matrix 26 may be formed from a fibre material, for example polyethylene or polyester fibres. In an example where heat is to be provided to the flavouring reservoir 35 by conduction of secondary heat from the aerosol forming member, the liquid reservoir may be configured to provide conduction of the secondary heat. This may be provided by the reservoir matrix itself being thermally conductive or may be provided by thermally conductive elements passing through or around the reservoir matrix.
  • The shape of the aerosol chamber 6 defined by the chamber wall 25 corresponds to the shape of the aerosol-forming member 10 a. In the arrangement shown in FIG. 8 , the second and third sections 12, 13 contact the liquid reservoir matrix 26. In other examples, it may be that only one of the second and third sections 12, 13 contacts the liquid reservoir matrix 26. Alternatively, if the aerosol-forming member only comprises a second section 12 as seen in FIG. 7 then only the second section is in contact with the liquid reservoir matrix 26. It should also be understood that it is not necessary for the whole second and/or third sections 12, 13 to contact the liquid reservoir matrix 26. For example, only a portion of the second and/or third sections may contact the liquid reservoir matrix 26. In such examples it may be the case that surface sections of the liquid reservoir matrix 26 (not in contact with sections 12, 13) effectively form sections of the chamber wall 25. In another example the aerosol-forming member 10 a may contact the liquid reservoir matrix 26 only via the outer edges of sections 12, 13. In this example the chamber wall 25 is completely formed by the liquid reservoir matrix 26.
  • As will be appreciated, the aerosol forming chamber and aerosol forming member may be constructed in any appropriate manner that provides for aerosol formation as air passes through a chamber. Thus as an alternative, so-called atomisers based upon use of a heating coil wound around a fibre wick may be used.
  • As is illustrated in FIG. 8 , the first section 11 is located across the aerosol chamber 6.
  • Advantageously, the liquid reservoir matrix 26 does not have to be made out of a heat resistant material as it is shielded from the heat of the first section 11 by the second and/or third sections 12, 13 that are not substantially heated up during operation of the aerosol delivery device 1. The secondary heat conducted through or across the reservoir matrix is of sufficiently small magnitude that special thermal resistance is not expected to be required,
  • The liquid reservoir matrix 26 holds a solution that is formed into aerosol by the aerosol-forming member 10 a. The solution is drawn or absorbed into the aerosol-forming member 10 a by capillary action via the capillary structure of the second and the third sections 12, 13. The solution is spread throughout the capillary structure of the aerosol-forming member 10 a, i.e. the first, second and third sections 11, 12 ,13. When the first section 11 is heated up, the solution evaporates from the first section 11 so as to form a vapour which upon condensation forms an inhalable aerosol. Thereafter, and even during the heating, the first section 11 is replenished with solution by capillary action moving solution from the liquid reservoir matrix 26, via the second and third sections 12, 13 to the first section 11. This is described in more detail below.
  • The capillarity of the aerosol-forming member 10 a may be greater than the capillarity of the liquid reservoir matrix 26 so as to induce flow of solution from the liquid reservoir matrix 26 towards the aerosol-forming member 10 a. The capillarity is defined by the pore size and the wetting conditions of the respective capillary structures.
  • As previously described, the power source enabling the aerosol-forming member 10 a to heat up may be a battery 30. The battery 30 is controlled by the electric circuitry 34 which include a controller and may be mounted on a printed circuit board (PCB). Examples of illustrative circuit structures are shown in FIGS. 9 a and 9 b .
  • As is shown in FIG. 9 a , the electrical terminals 15, 16 of the aerosol-forming member 10 a are electrically connected to the positive and negative terminals of the battery 30 respectively as previously described. Control of electrical current to the terminals 15, 16 is provided by the electrical circuit 34. The circuit of this example includes a pressure-activated switch 40 that activates responsive to a signal from a pressure sensor 41. The pressure sensor 41 is arranged to detect a pressure alteration when a user commences inhaling through the aerosol delivery device. The pressure sensor may for example be arranged in fluid communication with the plenum chamber 4 in order to detect the pressure change. Although it is indicated in FIG. 9 that the pressure sensor 41 is connected to the electric circuit 34 via the connection member 35, it is also possible to arrange the pressure sensor 41 at the electric circuit 34 and to provide fluid communication between the plenum chamber 4 and the pressure sensor 41 via a passage extending through the connection member 35. The signal from the pressure sensor 41 then activates the switch 40 (either directly or via a controller) so as to allow a flow of current from the battery 30 to the terminals 15, 16. The switch 40 may be an electrical switch such as a power-MOSFET switching circuit activatable responsive to the signal from the pressure sensor. The switch and any control circuitry therefor may be provided at a PCB of the electric circuit 34.
  • As shown in the example of FIG. 9 b , the control of the supply of current from the battery 30 to the terminals 15, 16 may be controlled via a switch 42 that activates responsive to a user-activated switch 43. The user-activated switch may be located at an accessible position on or recessed into the housing 2. The switch 42 may be activated based upon a direct connection to the user-activated switch 43. Alternatively, a control circuit may be provided to control the switch 42 responsive to activation of the user-activated switch 43. The switch 42 may be an electrical switch such as a power-MOSFET switching circuit activatable responsive to the signal from the user-activatable switch 43. The switch and any control circuitry therefor may be provided at a PCB of the electric circuit 34.
  • In addition, the switching circuit may additionally provide automatic control of the temperature, for example, by using temperature sensors to enable the supply of current to be stopped once a threshold temperature is reached. The switching circuit may additionally or alternatively provide automatic control of duration, to enable the supply of current to be stopped once a threshold activation time is reached.
  • In some examples, the circuit 34 may be configured to very low or zero power requirements other than when the switch is activated to indicate that provision of current to the terminals 15, 16 is required.
  • When current is drawn from the battery 30 and through the sheet of material, the electrical resistance of the sheet of material causes the first section 11 of the sheet of material to increase in temperature. In the embodiment wherein the sheet of material comprises several layers, the resistance of the conductive layer acting as a heating element causes the first section 11 to increase in temperature, which in turn heats up the adjacent non-conductive second and/or third layers of the first section 11.
  • Operation of the aerosol delivery device 1 will now be described with reference to FIGS. 1 and 8 . In use, the user may manually activate the aerosol delivery device 1 (for example see the arrangement of FIG. 9 b ) or the aerosol delivery device 1 may be activated automatically (for example see FIG. 9 a ) as the user starts to inhale through the aerosol delivery device 1. In either approach, the battery 30 provides a potential difference between the electrical terminals 15, 16 of the aerosol-forming member 10 a as the aerosol delivery device is activated, causing current to flow between the electrical terminals 15, 16 such that the first section 11 of the sheet of material increases in temperature. The heat is substantially contained within the first section 11 due to the slots 14, athough it should be appreciated that the heat may be contained within the first section by other means as described above. It will also be appreciated that secondary heat may be conveyed to the flavouring reservoir 35 as described above. This increase in temperature at the first section 11 causes the solution held in the capillary structure of the first section 11 of the sheet of material to evaporate so as to form a vapour. The vapour mixes with air drawn into the aerosol delivery device 1 via inlet 5, flavouring reservoir 35, plenum chamber 4 and chamber inlet 31′ by suction caused by a user inhaling through the device. The vapour mixes with air in the aerosol chamber 6, and as this occurs the vapour condenses and forms droplets such that an inhalable aerosol is produced.
  • The aerosol-forming member 10 a according to any of the above described embodiments is located in the housing such that the planes of the major surfaces 20, 21 are parallel to or substantially aligned with the direction of the airflow through the aerosol chamber 6. Thus, when a solution is held in the aerosol-forming member 10 a and it is heated up such that the solution evaporates, the solution evaporates in a direction transverse to the direction of the airflow. In the embodiments wherein the capillary structure is exposed on both sides of the sheet of material, the solution is evaporated from both sides in opposite directions as indicated by the arrows in FIG. 8 . The vapour mixes with air so as to form aerosol in the channel 18 formed by the second and/or third sections 12, 13. The channel 18 directs the flow of aerosol through the aerosol delivery device towards the user.
  • When the aerosol forming device is activated, it is likely that excess vapour will form and then condense onto the chamber wall 6 formed by the second and/or third sections 12, 13 of the aerosol-forming member 10 a. The condensation heat released may thus provide a source of heat for transfer to the flavour reservoir; the condensate will be reabsorbed into the capillary structure of sections 12, 13 and resupplied to section 11 of the aerosol-forming member 10 a by capillary action as discussed above. In addition to any such condensation heat, the supply of secondary or waste heat to the flavour reservoir may also be provided by conductive heat transferred within the aerosol forming member from the high temperature section 11 to the adjacent cooler sections 12, 13. Further, the supply of secondary or waste heat to the flavour reservoir may also be provided by radiation heat transferred from the high temperature section 11 to the adjacent cooler sections 12, 13. Heat rays can cross the aerosol chamber 6 and are then absorbed on the chamber wall 25 formed by sections 12, 13. All three sources of heat together are expected to be active to some extent, with the relative ratio therebetween being dependent upon the exact device configuration. Together these mechanisms provide the secondary or waste heat. This waste heat is passed through or around the liquid reservoir matrix 36 so as to reach the flavouring reservoir 36 for heating the flavouring contained therein.
  • After the aerosol-forming member 10 a has been activated and aerosol has formed in the channel 18, the aerosol is drawn through the channel 18 as the user continues to inhale. The aerosol then exits the aerosol chamber 6 through a chamber outlet 31″ as seen in FIG. 2 . The aerosol then passes through an optional aerosol refining member 32 provided in the housing 2, causing the aerosol to be cooled. The refining member 32 may also contain further flavouring agents such as menthol that are released into the flow of aerosol before entering the user’s mouth via the outlet aperture 7 provided in the mouthpiece 3. Meanwhile, the solution that has evaporated from the capillary structure of the first section 11 of the sheet of material is replaced by fresh solution from the liquid reservoir matrix 26 due to the capillary effect of the capillary structure as described above and the second and/or third section being in contact with the liquid reservoir matrix 26. Fresh air enters the channel 18 via the inlet aperture 5, flavouring reservoir 36, plenum chamber 4 and chamber inlet 31′. In some examples, a pressure drop element or flow resistor 33 is provided so that the flow of air into the aerosol chamber 6 can be controlled. The flow resistor 33 may consist of a simple aperture or hole and may be identical with the inlet aperture 5 in the housing 2. Alternatively the flow resistor 33 may consist of a porous body similar to a cigarette filter providing the flow resistance of a conventional cigarette. In some examples the flow resistor 33 may be provided by the material as discussed above that provides a structure for holding or providing the flavouring within the flavouring reservoir. In such examples this material thus provides dual functionality of flavour carrying and flow restriction.
  • Thus there have now been described examples of implementing the operation and structure of an aerosol delivery device that utilises secondary heat from an aerosol generation structure to warm a flavouring source to facilitate distribution of flavouring from the flavouring source to incoming air before that incoming air reaches the aerosol generation structure.
  • FIG. 10 illustrates another example of an aerosol delivery device. The aerosol delivery device 1 comprises an aerosol delivery portion 1′ and a power portion 1″. In the present example, the aerosol delivery portion 1′ and power portion 1″ are arranged as separate regions of a single, unitary, aerosol delivery device 1 having a single housing 2 that houses both portions. In other examples, the aerosol delivery portion 1′ and power portion 1″ can be removably connected to enable a given power portion 1″ to receive a number of different aerosol delivery portions 1′ and/or to enable a given aerosol delivery portion 1′ to receive a number of different power portions 1″. In such alternative examples, the housing 2 may be openable to enable replacement of one portion or component (such as a power source 30) or may be divided in correspondence to the division of the portions such that each portion includes its own respective housing part.
  • The aerosol delivery device 1 may be configured to be re-usable or disposable. In the example in which the aerosol delivery portion 1′ and power portion 1″ are separable or openable, either or both of the aerosol delivery portion 1′ and power portion 1″ may be configured as being re-usable or disposable.
  • In this example, the portably power source 30 (which may be a battery or other portably power source as discussed with reference to FIG. 1 above) does not use the full diameter of the housing 2, but rather has located thereabout (either wholly surrounding or adjacent in part) the gas pathway from the inlet 5 to the plenum chamber 4. As in the previous examples, this gas pathway has arranged therein a flavouring reservoir 36. The flavouring reservoir 36 operates in the same manner as that discussed with reference to FIGS. 1 and 2 above, save in the arrangements for warming of the flavouring reservoir 36.
  • As in the example described above, as fresh air moves through the inlet passage it passes over or through the flavouring reservoir 36 which results in the release of flavours. The flavours disperse in the air and are taken downstream together with the air. The flavour enriched/ flavoured air is then collected in the plenum chamber 4. The plenum chamber 4 acts to provide uniformity to the flow of air to the aerosol chamber 6/ tubular channel 18. In the configuration of the present example, the air inside the inlet passage and the aerosol inside the tubular channel 18 (aerosol chamber 6) are flowing in like directions but are separated by axial offset between the centre of flow through the inlet passage and tubular channel and by the plenum chamber 4.
  • In the example of FIG. 10 , two options for transfer of heat to the flavouring reservoir 36 can be employed, either independently or in combination.
  • In the first of these options, the property of many batteries to experience a slight temperature increase when supplying current is utilised. Thus, when the portable power supply 30 is a battery or other power supply that tends to experience a temperature increase when supplying current, the heat generated by the power supply 30 may be used to provide the supply of heat to the flavouring reservoir 36 arranges about or adjacent the power supply 30.
  • The second of these options utilises a separate heat generation that provides heat for the flavouring reservoir 36 other than by way of conducting secondary heat from the aerosol forming member 10. Such separate heat generation could be provided by providing for the control circuit 34 to allow a low of current through one or more conductive structures in or adjacent to the flavouring reservoir 36 at the same time as the provision of current to the aerosol forming member 10.
  • As in the example described above, this conductive heat transfer enables the flavouring reservoir 36 to reach temperatures that it would not reach otherwise, enabling enhanced release of flavours inside the reservoir.
  • Thus there have now been described examples of implementing the operation and structure of an aerosol delivery device that utilises secondary heat from an aerosol generation structure or an alternative heat source to warm a flavouring source to facilitate distribution of flavouring from the flavouring source to incoming air before that incoming air reaches the aerosol generation structure. It will be seen that the examples presented provide a compact structure.
  • It will be appreciated that implementations may also be provided in which no addition heat provision is made to the flavouring source and instead the incoming air is passed through the flavouring reservoir without heating of the flavouring reservoir before the air reaches the aerosol generation structure.
  • The above described embodiments of the aerosol-forming member 10 of the aerosol delivery device 1 are described for use with a solution. It should be understood that this solution may comprise certain constituents or substances that may have a stimulatory effect on the user. These constituents or substances may be of any kind that is suitable for being delivered via inhalation. The solution in which the constituents or substances are held or dissolved may primarily consist of water, ethanol, glycerol, propylene glycol or mixtures of the aforementioned solvents. By means of a sufficiently high degree of dilution in an easily volatile solvent, such as ethanol and/or water, even substances which are otherwise difficult to evaporate can evaporate in a substantially residue-free manner, and thermal decomposition of the liquid material can be avoided or significantly reduced.
  • It should be understood that the term “channel” used herein is not limited to a specific cross-section. Furthermore, the channel may be completely enclosed about the longitudinal axis of the channel, however it should also be appreciated that the channel may not be enclosed but open along a section parallel to the longitudinal axis of the channel.
  • It is also envisaged that the aerosol-forming member 10 according to any of the embodiments described above may be oxidised or coated with a non-conductive material so as to prevent a short circuit.
  • This disclosure shows by way of illustration various embodiments in which the present teachings may be practiced and provide for an aerosol-forming member, aerosol delivery device component and aerosol delivery device. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed features. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilised and modifications may be made without departing from the scope and/or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist in essence of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. In addition, the disclosure includes other teachings not presently claimed, but which may be claimed in future.

Claims (15)

1. An aerosol delivery device comprising:
an air inlet;
a flavoring reservoir arranged to provide release of flavoring material;
an aerosol chamber arranged to provide an aerosol in air passing therethrough; and
an aerosol forming member arranged to generate an aerosol in air passing through the aerosol chamber; and
an aerosol outlet;
wherein the air inlet, aerosol chamber and aerosol outlet are arranged in fluid communication in that order.
2. The aerosol delivery device of claim 1, further comprising a power source for providing power to the aerosol generator to heat the aerosol generator, wherein the power source is arranged in the aerosol delivery device to allow air from the air inlet to flow past the power source in a direction towards the aerosol chamber.
3. The aerosol delivery device of claim 2, wherein the power source is arranged in the aerosol delivery device to allow air from the air inlet to flow past a first side of the power source, and to flow past a second side of the power source which is opposite the first side of the power source.
4. The aerosol delivery device of claim 3, wherein the power source is arranged in the aerosol delivery device to allow the air which flows from the first side of the power source to mix with the air which flows past the second side of the power source before reaching the aerosol chamber.
5. The aerosol delivery device of claim 2, wherein the power source is a battery.
6. The aerosol delivery device of claim 1, further comprising an electric terminal for supplying power to the aerosol forming member, wherein the air from the air inlet is configured to pass the electric terminal before reaching the aerosol chamber.
7. The aerosol delivery device of claim 1, wherein the aerosol delivery device further comprises a plenum chamber downstream of the air inlet and upstream of the aerosol forming member.
8. The aerosol delivery device of claim 1, wherein the aerosol delivery device further comprises a pressure sensor for detecting a pressure change when a user commences inhaling through the aerosol delivery device, wherein the aerosol delivery device further comprises a passage to provide fluid communication between the air inlet and the pressure sensor.
9. The aerosol delivery device of claim 8, wherein the passage is parallel with a longitudinal axis of the aerosol delivery device.
10. The aerosol delivery device of claim 1, further comprising a flow resistor for controlling the flow of air to the aerosol chamber.
11. The aerosol delivery device of claim 1, further comprising a mouthpiece comprising a mouthpiece outlet, wherein the mouthpiece extends over the flavoring reservoir.
12. A method of generating a flavored aerosol in an aerosol delivery device, the method comprising:
generating an aerosol by passing an airflow through an aerosol generator that evaporates a liquid into the airflow to create an aerosol; and
delivering the aerosol to a mouthpiece from the aerosol delivery device.
13. The method of claim 12, wherein the generating comprises passing the airflow through a heated aerosol generator.
14. The method of claim 12, further comprising triggering heating of the aerosol generator responsive to detection of an airflow.
15. The method of claim 12, further comprising restricting the airflow prior to prior to the passing the airflow through the aerosol generator.
US18/175,933 2014-08-13 2023-02-28 Aerosol delivery device and method utilizing a flavoring reservoir Pending US20230201490A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/175,933 US20230201490A1 (en) 2014-08-13 2023-02-28 Aerosol delivery device and method utilizing a flavoring reservoir
US18/296,544 US20230241332A1 (en) 2014-08-13 2023-04-06 Aerosol delivery device and method utilizing a flavoring reservoir
US18/321,872 US20230285694A1 (en) 2014-08-13 2023-05-23 Aerosol delivery device and method utilizing a flavoring reservoir

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GB1414331.7 2014-08-13
GB1414331.7A GB2529201A (en) 2014-08-13 2014-08-13 Device and method
PCT/GB2015/052212 WO2016024083A1 (en) 2014-08-13 2015-07-31 Device and method
US201715503456A 2017-02-13 2017-02-13
US16/377,331 US10674771B2 (en) 2014-08-13 2019-04-08 Aerosol delivery device and method utilizing a flavoring reservoir
US16/842,153 US11116919B2 (en) 2014-08-13 2020-04-07 Aerosol delivery device and method utilizing a flavoring reservoir
US17/443,170 US20210346620A1 (en) 2014-08-13 2021-07-21 Aerosol delivery device and method utilizing a flavoring reservoir
US17/452,435 US11865248B2 (en) 2014-08-13 2021-10-27 Aerosol delivery device and method utilizing a flavoring reservoir
US18/175,933 US20230201490A1 (en) 2014-08-13 2023-02-28 Aerosol delivery device and method utilizing a flavoring reservoir

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/452,435 Continuation US11865248B2 (en) 2014-08-13 2021-10-27 Aerosol delivery device and method utilizing a flavoring reservoir

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/296,544 Continuation US20230241332A1 (en) 2014-08-13 2023-04-06 Aerosol delivery device and method utilizing a flavoring reservoir

Publications (1)

Publication Number Publication Date
US20230201490A1 true US20230201490A1 (en) 2023-06-29

Family

ID=51629701

Family Applications (8)

Application Number Title Priority Date Filing Date
US15/503,456 Active US10278427B2 (en) 2014-08-13 2015-07-31 Aerosol delivery device and method utilizing a flavoring reservoir
US16/377,331 Active US10674771B2 (en) 2014-08-13 2019-04-08 Aerosol delivery device and method utilizing a flavoring reservoir
US16/842,153 Active US11116919B2 (en) 2014-08-13 2020-04-07 Aerosol delivery device and method utilizing a flavoring reservoir
US17/443,170 Pending US20210346620A1 (en) 2014-08-13 2021-07-21 Aerosol delivery device and method utilizing a flavoring reservoir
US17/452,435 Active 2035-11-27 US11865248B2 (en) 2014-08-13 2021-10-27 Aerosol delivery device and method utilizing a flavoring reservoir
US18/175,933 Pending US20230201490A1 (en) 2014-08-13 2023-02-28 Aerosol delivery device and method utilizing a flavoring reservoir
US18/296,544 Pending US20230241332A1 (en) 2014-08-13 2023-04-06 Aerosol delivery device and method utilizing a flavoring reservoir
US18/321,872 Pending US20230285694A1 (en) 2014-08-13 2023-05-23 Aerosol delivery device and method utilizing a flavoring reservoir

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US15/503,456 Active US10278427B2 (en) 2014-08-13 2015-07-31 Aerosol delivery device and method utilizing a flavoring reservoir
US16/377,331 Active US10674771B2 (en) 2014-08-13 2019-04-08 Aerosol delivery device and method utilizing a flavoring reservoir
US16/842,153 Active US11116919B2 (en) 2014-08-13 2020-04-07 Aerosol delivery device and method utilizing a flavoring reservoir
US17/443,170 Pending US20210346620A1 (en) 2014-08-13 2021-07-21 Aerosol delivery device and method utilizing a flavoring reservoir
US17/452,435 Active 2035-11-27 US11865248B2 (en) 2014-08-13 2021-10-27 Aerosol delivery device and method utilizing a flavoring reservoir

Family Applications After (2)

Application Number Title Priority Date Filing Date
US18/296,544 Pending US20230241332A1 (en) 2014-08-13 2023-04-06 Aerosol delivery device and method utilizing a flavoring reservoir
US18/321,872 Pending US20230285694A1 (en) 2014-08-13 2023-05-23 Aerosol delivery device and method utilizing a flavoring reservoir

Country Status (19)

Country Link
US (8) US10278427B2 (en)
EP (5) EP3967160B1 (en)
JP (6) JP6755237B2 (en)
KR (7) KR102282329B1 (en)
CN (3) CN110507009B (en)
AU (2) AU2015303019B2 (en)
BR (1) BR112017002893B1 (en)
CA (3) CA3176709A1 (en)
ES (1) ES2717759T3 (en)
GB (1) GB2529201A (en)
HU (1) HUE043106T2 (en)
MY (1) MY188300A (en)
PH (3) PH12017500262B1 (en)
PL (1) PL3180060T3 (en)
RU (2) RU2704552C2 (en)
TR (1) TR201903842T4 (en)
UA (1) UA120760C2 (en)
WO (1) WO2016024083A1 (en)
ZA (2) ZA201700973B (en)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160345631A1 (en) 2005-07-19 2016-12-01 James Monsees Portable devices for generating an inhalable vapor
AT508244B1 (en) 2010-03-10 2010-12-15 Helmut Dr Buchberger INHALATORKOMPONENTE
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10980273B2 (en) 2013-11-12 2021-04-20 VMR Products, LLC Vaporizer, charger and methods of use
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
PT3504991T (en) 2013-12-23 2021-03-01 Juul Labs Int Inc Vaporization device systems and methods
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
GB201401519D0 (en) * 2014-01-29 2014-03-12 Batmark Ltd Aerosol-forming member
GB201407642D0 (en) 2014-04-30 2014-06-11 British American Tobacco Co Aerosol-cooling element and arrangements for apparatus for heating a smokable material
GB2529201A (en) 2014-08-13 2016-02-17 Batmark Ltd Device and method
GB201418817D0 (en) * 2014-10-22 2014-12-03 British American Tobacco Co Apparatus and method for generating an inhalable medium, and a cartridge for use therewith
WO2016090303A1 (en) 2014-12-05 2016-06-09 Pax Labs, Inc. Calibrated dose control
GB201503411D0 (en) 2015-02-27 2015-04-15 British American Tobacco Co Apparatus and method for generating an inhalable medium, and a cartridge for use therewith
EA034488B1 (en) 2015-05-06 2020-02-13 Олтриа Клайент Сервисиз Ллк Non-combustible smoking device
EP3135137B1 (en) * 2015-08-28 2021-04-28 Fontem Holdings 1 B.V. Electronic smoking device with additive reservoir
GB201517471D0 (en) 2015-10-02 2015-11-18 British American Tobacco Co Apparatus for generating an inhalable medium
PL3386323T3 (en) * 2015-12-18 2021-08-02 Jt International S.A. Personal vaporizer device
DE202017007467U1 (en) 2016-02-11 2021-12-08 Juul Labs, Inc. Fillable vaporizer cartridge
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
CN105559151B (en) * 2016-03-21 2019-05-24 湖南中烟工业有限责任公司 A kind of ultrasonic ultrasonic delay line memory and electronic cigarette
GB201605102D0 (en) 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Mechanical connector for electronic vapour provision system
EP3463530B1 (en) 2016-05-25 2021-10-13 Philip Morris Products S.A. Method for providing an aerosol-generating device, aerosol-generating device and flat aerosol-generating article for use in such a device
US11364354B2 (en) 2016-05-25 2022-06-21 Philip Morris Products S.A. Method for providing an aerosol-generating device, aerosol-generating device and flat aerosol-generating article for use in such a device
CN107456557A (en) * 2016-06-03 2017-12-12 陈龙斌 Aromatotherapy preparation based on essential oil and the device for applying this kind of preparation
GB201610220D0 (en) 2016-06-13 2016-07-27 Nicoventures Holdings Ltd Aerosol delivery device
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
US10617151B2 (en) * 2016-07-21 2020-04-14 Rai Strategic Holdings, Inc. Aerosol delivery device with a liquid transport element comprising a porous monolith and related method
PL3496556T3 (en) * 2016-08-09 2022-11-21 Nicoventures Trading Limited Receptacle, cartridge, apparatus and methods for generating an inhalable medium
GB201615602D0 (en) 2016-09-14 2016-10-26 British American Tobacco Investments Ltd Receptacle Section
GB201615601D0 (en) 2016-09-14 2016-10-26 British American Tobacco Investments Ltd Receptacle section
US10842193B2 (en) 2016-10-04 2020-11-24 Altria Client Services Llc Non-combustible smoking device and elements thereof
GB201618481D0 (en) * 2016-11-02 2016-12-14 British American Tobacco Investments Ltd Aerosol provision article
US10433585B2 (en) 2016-12-28 2019-10-08 Altria Client Services Llc Non-combustible smoking systems, devices and elements thereof
GB201700136D0 (en) 2017-01-05 2017-02-22 British American Tobacco Investments Ltd Aerosol generating device and article
GB201700620D0 (en) 2017-01-13 2017-03-01 British American Tobacco Investments Ltd Aerosol generating device and article
TWI778054B (en) 2017-05-02 2022-09-21 瑞士商菲利浦莫里斯製品股份有限公司 Aerosol-generating system with case
GB201707758D0 (en) 2017-05-15 2017-06-28 British American Tobacco Investments Ltd Ground tobacco composition
GB201707805D0 (en) * 2017-05-16 2017-06-28 Nicoventures Holdings Ltd Atomiser for vapour provision device
GB201709201D0 (en) * 2017-06-09 2017-07-26 Nicoventures Holdings Ltd Electronic aerosol provision system
US20180368472A1 (en) * 2017-06-21 2018-12-27 Altria Client Services Llc Encapsulated ingredients for e-vaping devices and method of manufacturing thereof
US10792443B2 (en) 2017-06-30 2020-10-06 Blackship Technologies Development Llc Composite micro-vaporizer wicks
GB2566802B (en) * 2017-08-09 2022-06-22 Twenty Sixteen 2016 Pharma Ltd Pulmonary delivery devices
CN207428417U (en) * 2017-09-09 2018-06-01 深圳市余看智能科技有限公司 Burning tobacco pore does not suck device for a kind of heating
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
WO2019090363A1 (en) * 2017-11-06 2019-05-09 Avanzato Technology Corp. Dual chamber vaporization tank
JP7196172B2 (en) * 2017-11-30 2022-12-26 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム System for generating liquid aerosol
GB201720338D0 (en) * 2017-12-06 2018-01-17 British American Tobacco Investments Ltd Component for an aerosol-generating apparatus
CN107890142B (en) * 2017-12-22 2022-05-27 深圳市艾维普思科技有限公司 Electronic cigarette
GB2569964A (en) * 2018-01-04 2019-07-10 William John McLaughlin David Aerosol production system
GB201801257D0 (en) * 2018-01-25 2018-03-14 British American Tobacco Investments Ltd Apparatus for heating aerosol-generating material
GB201802590D0 (en) 2018-02-16 2018-04-04 Nicoventures Trading Ltd Aerosol provision article
GB201802591D0 (en) * 2018-02-16 2018-04-04 Nicoventures Trading Ltd Aerosol provision article
CN110522080A (en) * 2018-05-24 2019-12-03 中国科学院理化技术研究所 A kind of conduction pipe tobacco atomising device and sucking device
EA202092913A1 (en) * 2018-05-31 2021-03-01 ДжейТи ИНТЕРНЭШНЛ СА AEROSOL-GENERATING PRODUCT, AEROSOL-GENERATING SYSTEM, AND METHOD FOR GENERATING AROMATIC AEROSOL
EP3826705B1 (en) 2018-07-23 2022-09-14 Juul Labs, Inc. Airflow management for vaporizer device
US11464082B2 (en) * 2018-07-31 2022-10-04 Juul Labs, Inc. Cartridge-based heat not burn vaporizer
US11413409B2 (en) 2018-09-12 2022-08-16 Juul Labs, Inc. Vaporizer including positive temperature coefficient of resistivity (PTCR) heating element
KR102442049B1 (en) * 2018-09-18 2022-09-13 주식회사 케이티앤지 Aerosol generating apparatus having heater heating materials with different phase respectively
CN109123806A (en) * 2018-09-21 2019-01-04 深圳麦克韦尔股份有限公司 Toast smoking set
JP2022506502A (en) * 2018-11-05 2022-01-17 ジュール・ラブズ・インコーポレイテッド Cartridge for vaporizer device
JP6609687B1 (en) * 2018-12-27 2019-11-20 日本たばこ産業株式会社 Power supply unit for aerosol inhaler, its control method and control program
EP3692832A1 (en) * 2019-02-07 2020-08-12 Nerudia Ltd. Smoking substitute device
CN113747806A (en) * 2019-03-11 2021-12-03 尼科创业贸易有限公司 Aerosol supply device
GB201903539D0 (en) * 2019-03-15 2019-05-01 Nicoventures Trading Ltd Atomiser for a vapour provision system
EP3711601A1 (en) * 2019-03-21 2020-09-23 Nerudia Limited Aerosol-generation apparatus and aerosol delivery system
CN210203316U (en) * 2019-05-07 2020-03-31 深圳市合元科技有限公司 Cigarette bullet and electron cigarette
EP3753595A1 (en) * 2019-06-21 2020-12-23 Nerudia Limited Aerosol delivery device
KR102343351B1 (en) * 2019-10-11 2021-12-24 주식회사 케이티앤지 Aerosol generating device
EP3838010A1 (en) * 2019-12-19 2021-06-23 JT International SA Heater
US20230021401A1 (en) * 2019-12-19 2023-01-26 Jt International Sa Aerosol Generating Device
EP3838013A1 (en) * 2019-12-19 2021-06-23 JT International SA Aerosol generation device
EP3838011A1 (en) * 2019-12-19 2021-06-23 JT International SA Aerosol generation device
EP4098077A2 (en) * 2020-01-28 2022-12-07 Philip Morris Products S.A. Heating element having heat conductive and wicking filaments
KR102451073B1 (en) * 2020-06-16 2022-10-05 주식회사 케이티앤지 Aerosol delivering device and aerosol generating device with the same
KR102513573B1 (en) * 2020-07-03 2023-03-23 주식회사 케이티앤지 Medium mixing device and Aerosol generating device with the same
WO2022050677A1 (en) * 2020-09-02 2022-03-10 Kt&G Corporation Aerosol delivering device and aerosol generating device including the same
CN214047570U (en) * 2020-09-21 2021-08-27 深圳雾芯科技有限公司 Electron cigarette main part, atomization plant and electron cigarette
GB202014919D0 (en) * 2020-09-22 2020-11-04 Nicoventures Trading Ltd Aerosol provision system
KR102576245B1 (en) * 2021-01-13 2023-09-07 주식회사 케이티앤지 Aerosol generating apparatus
GB2609269B (en) * 2021-07-19 2024-02-14 Nicoventures Trading Ltd Aerosol provision system
KR20240014100A (en) * 2021-07-19 2024-01-31 니코벤처스 트레이딩 리미티드 Aerosol provision system
KR102604614B1 (en) * 2021-08-03 2023-11-20 주식회사 케이티앤지 Nicotine inhaler
CN115350370A (en) * 2022-08-17 2022-11-18 达州市久盈科技有限公司 Non-contact direct-heating aerosol generating structure and atomizing method thereof, aerosol generating assembly and aerosol generator

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB408856A (en) 1933-08-14 1934-04-19 Wietske Van Seters Bosch Improvements in and relating to inhalers
US2809634A (en) 1956-08-07 1957-10-15 Murai Hirotada Inhaling and sniffing pipe
US3356094A (en) 1965-09-22 1967-12-05 Battelle Memorial Institute Smoking devices
US3521643A (en) 1968-02-26 1970-07-28 Ernest Toth Cigarette-simulating inhaler
US3521642A (en) 1968-03-14 1970-07-28 Jules L Jordan Brassiere construction
US3771534A (en) 1971-09-30 1973-11-13 O Kuehne Combination filter and cigarette holder
US4094119A (en) 1977-03-18 1978-06-13 The Risdon Manufacturing Company Method of making a product for dispensing a volatile substance
US4161283A (en) 1977-06-03 1979-07-17 Sy Hyman Article for the dispensing of volatiles
US4145001A (en) 1977-09-15 1979-03-20 American Can Company Packaging for controlled release of volatile substances
US4480647A (en) 1982-07-16 1984-11-06 International Flavors & Fragrances Inc. Use of cyclohexenyl-alkyl acrolein derivatives in augmenting or enhancing the aroma or taste of smoking tobacco compositions and smoking tobacco articles
US4503851A (en) 1983-08-05 1985-03-12 Klaus Braunroth Disposable face mask with odor masking attachment
US4655229A (en) * 1984-01-30 1987-04-07 R. J. Reynolds Tobacco Company Flavor delivery system
JPS62175896A (en) 1986-01-30 1987-08-01 三菱電機株式会社 Monitor for housing complex
JPS62175896U (en) 1986-04-25 1987-11-09
WO1988001884A1 (en) 1986-09-19 1988-03-24 Terasaki Paul I Sniffing stick
JPH0194861A (en) 1987-10-06 1989-04-13 Isamu Watabe Smelling method of aroma and smelling equipment therefor
CA1301010C (en) * 1988-03-16 1992-05-19 Jed E. Rose Smoking of regenerated tobacco smoke
US4947875A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Flavor delivery articles utilizing electrical energy
US4947874A (en) * 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Smoking articles utilizing electrical energy
US4917301A (en) 1988-11-15 1990-04-17 International Flavors & Fragrances, Inc. Container with microporous membrane for dispensing vapor from volatile liquid
US5082008A (en) * 1988-12-09 1992-01-21 Johnson Robert R Smoking article
US5167242A (en) 1990-06-08 1992-12-01 Kabi Pharmacia Aktiebolaq Nicotine-impermeable container and method of fabricating the same
US5388594A (en) 1991-03-11 1995-02-14 Philip Morris Incorporated Electrical smoking system for delivering flavors and method for making same
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
CR4906A (en) 1993-09-10 1994-09-09 Philip Morris Prod ELECTRIC SMOKING SYSTEM TO DISTRIBUTE FLAVORS AND METHOD FOR ITS MANUFACTURE
IE72523B1 (en) 1994-03-10 1997-04-23 Elan Med Tech Nicotine oral delivery device
JPH0856640A (en) 1994-08-23 1996-03-05 Setsuo Kuroki Inhaling tool
WO1996022801A1 (en) 1995-01-25 1996-08-01 Heinz Hermann Weick Pocket inhaler
AR002035A1 (en) * 1995-04-20 1998-01-07 Philip Morris Prod A CIGARETTE, A CIGARETTE AND LIGHTER ADAPTED TO COOPERATE WITH THEMSELVES, A METHOD TO IMPROVE THE DELIVERY OF A SPRAY OF A CIGARETTE, A CONTINUOUS MATERIAL OF TOBACCO, A WORKING CIGARETTE, A MANUFACTURING MANUFACTURING METHOD , A METHOD FOR FORMING A HEATER AND AN ELECTRICAL SYSTEM FOR SMOKING
US5636787A (en) 1995-05-26 1997-06-10 Gowhari; Jacob F. Eyeglasses-attached aromatic dispensing device
DE19630619C2 (en) 1996-07-29 1998-07-09 Mueller Extract Co Gmbh Essentially nicotine-free tobacco flavor oil and process for its production
DE19654945C2 (en) 1996-07-29 1998-05-20 Mueller Extract Co Gmbh Essentially nicotine-free tobacco flavor oil and process for its production
FR2754455B1 (en) 1996-10-15 1998-12-31 Millipore Sa VOLATILE PRODUCT DELIVERY DEVICE WITH SUPER-HYDROPHOBIC MEMBRANE
US5944025A (en) * 1996-12-30 1999-08-31 Brown & Williamson Tobacco Company Smokeless method and article utilizing catalytic heat source for controlling products of combustion
JP3328659B2 (en) 1997-06-23 2002-09-30 長井 大泰 Smoking pipe
KR100289448B1 (en) 1997-07-23 2001-05-02 미즈노 마사루 Flavor generator
US6234167B1 (en) * 1998-10-14 2001-05-22 Chrysalis Technologies, Incorporated Aerosol generator and methods of making and using an aerosol generator
US6761176B2 (en) * 1999-04-21 2004-07-13 Gi Yong Yoo Tobacco substitute composition
JP2002078476A (en) 2000-09-06 2002-03-19 Mineharu Kasagi Smoke-quitting pipe
CN2487392Y (en) 2001-03-09 2002-04-24 范建华 Volatilized smell inhalator
KR20030025485A (en) * 2001-09-21 2003-03-29 주식회사 만도 Solenoid valve for brake system
US6598607B2 (en) * 2001-10-24 2003-07-29 Brown & Williamson Tobacco Corporation Non-combustible smoking device and fuel element
US7913686B2 (en) 2002-12-19 2011-03-29 Scadds Incorporated Self contained aerosol dual delivery system (SCADDS)
CN100381083C (en) 2003-04-29 2008-04-16 韩力 Electronic nonflammable spraying cigarette
US7100618B2 (en) 2003-05-05 2006-09-05 Armando Dominguez Sensory smoking simulator
DE10356925B4 (en) 2003-12-05 2006-05-11 Lts Lohmann Therapie-Systeme Ag Inhaler for basic active pharmaceutical ingredients and process for its preparation
US7540286B2 (en) * 2004-06-03 2009-06-02 Alexza Pharmaceuticals, Inc. Multiple dose condensation aerosol devices and methods of forming condensation aerosols
US7798420B2 (en) 2005-02-11 2010-09-21 Battelle Memorial Institute Aerosol dispensing device and method
US7647932B2 (en) * 2005-08-01 2010-01-19 R.J. Reynolds Tobacco Company Smoking article
US20070074734A1 (en) * 2005-09-30 2007-04-05 Philip Morris Usa Inc. Smokeless cigarette system
US20070102013A1 (en) 2005-09-30 2007-05-10 Philip Morris Usa Inc. Electrical smoking system
WO2007098337A2 (en) 2006-02-17 2007-08-30 Jake Brenneise Portable vaporizing device and method for inhalation and/or aromatherapy without combustion
JP2008035742A (en) 2006-08-03 2008-02-21 British American Tobacco Pacific Corporation Evaporating apparatus
DE102006039115A1 (en) 2006-08-21 2008-03-27 Roman Veksler Delivery method e.g. for aromatic substances to human nose, involves delivering aromatic substances to human nose with aromatic source delivered from container next to nose of man
TR201808388T4 (en) 2006-10-02 2018-07-23 Philip Morris Products Sa Continuous high pressure transmission system.
US7726320B2 (en) * 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
US10668058B2 (en) 2007-03-30 2020-06-02 Philip Morris Products S.A. Device and method for delivery of a medicament
CA2914382C (en) * 2007-08-10 2018-03-06 Philip Morris Products S.A. Distillation-based smoking article
EP2113178A1 (en) * 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
GB0808154D0 (en) * 2008-05-06 2008-06-11 British American Tobacco Co Aerosol dispensing device
AT507187B1 (en) 2008-10-23 2010-03-15 Helmut Dr Buchberger INHALER
RU2556525C2 (en) 2009-02-23 2015-07-10 Джапан Тобакко Инк. Heating device for inhaling flavour
EP2399637B1 (en) 2009-02-23 2014-10-22 Japan Tobacco, Inc. Non-heating tobacco flavor suction device
ES2674139T3 (en) * 2009-03-23 2018-06-27 Japan Tobacco, Inc. Article for aroma inhalation, non-combustion type
AT508244B1 (en) 2010-03-10 2010-12-15 Helmut Dr Buchberger INHALATORKOMPONENTE
CN101822420B (en) * 2010-04-22 2012-06-27 修运强 Combined type multifunctional electronic simulated cigarette
US9861772B2 (en) * 2010-05-15 2018-01-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler cartridge
US8459182B2 (en) 2010-09-17 2013-06-11 E I Du Pont De Nemours And Company Method and apparatus for securing printing forms on a mountable surface
US8770557B2 (en) * 2010-12-10 2014-07-08 Helen Of Troy Limited Humidifier with improved heated scent mechanism
EP2468117A1 (en) * 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system having means for determining depletion of a liquid substrate
KR20120008751U (en) * 2011-06-13 2012-12-24 이영찬 an electronic cigarette
UA111630C2 (en) * 2011-10-06 2016-05-25 Сіс Рісорсез Лтд. BURNING SYSTEM
UA113744C2 (en) * 2011-12-08 2017-03-10 DEVICE FOR FORMATION OF AEROSOL WITH INTERNAL HEATER
EP2625974A1 (en) * 2012-02-13 2013-08-14 Philip Morris Products S.A. Aerosol-generating article having a flavour-generating component
US9854839B2 (en) * 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
JP2015511128A (en) * 2012-02-22 2015-04-16 アルトリア クライアント サービシーズ インコーポレイテッドAltria Client Services Inc. Electronic smoking goods
WO2013163234A1 (en) 2012-04-23 2013-10-31 Massachusetts Institute Of Technology Stable layer-by-layer coated particles
AR091509A1 (en) * 2012-06-21 2015-02-11 Philip Morris Products Sa ARTICLE TO SMOKE TO BE USED WITH AN INTERNAL HEATING ELEMENT
US9814262B2 (en) * 2012-07-11 2017-11-14 Sis Resources, Ltd. Hot-wire control for an electronic cigarette
JP5937934B2 (en) 2012-09-20 2016-06-22 シチズンホールディングス株式会社 Paper discharge device and printer
WO2014097294A1 (en) * 2012-12-17 2014-06-26 Sis Resources Ltd. Flavor enhancement for e-cigarette
WO2014110119A1 (en) * 2013-01-08 2014-07-17 L. Perrigo Company Electronic cigarette
TW201442651A (en) * 2013-03-15 2014-11-16 Philip Morris Products Sa Smoking article with an airflow directing element comprising an aerosol-modifying agent
CN103393222B (en) * 2013-08-16 2015-09-16 湖北中烟工业有限责任公司 There is the nicotine smoke fog normal temperature cigarette of tobacco flavor
US10058129B2 (en) * 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
CN103786740A (en) 2014-01-23 2014-05-14 北京东车科技有限公司 Railway vehicle bogie
CN103783674A (en) 2014-01-24 2014-05-14 深圳市合元科技有限公司 Baking type atomization device and aerosol inhalation device
DE202014001718U1 (en) * 2014-02-27 2015-05-28 Xeo Holding GmbH smoking device
AU2015222843B8 (en) * 2014-02-28 2019-12-12 Altria Client Services Llc Electronic vaping device and components thereof
US9642397B2 (en) * 2014-03-31 2017-05-09 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
GB201411526D0 (en) 2014-06-27 2014-08-13 British American Tobacco Co Powder
CA2951105A1 (en) 2014-07-11 2016-01-14 Philip Morris Products S.A. Aerosol-forming cartridge comprising a tobacco-containing material
GB2529201A (en) * 2014-08-13 2016-02-17 Batmark Ltd Device and method
GB201511361D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic vapour provision system

Also Published As

Publication number Publication date
RU2018141222A3 (en) 2019-06-13
WO2016024083A1 (en) 2016-02-18
KR20210132754A (en) 2021-11-04
EP3967161A1 (en) 2022-03-16
KR102489985B1 (en) 2023-01-17
CA3119414A1 (en) 2016-02-18
ZA201700973B (en) 2019-10-30
JP6755237B2 (en) 2020-09-16
EP3545998A1 (en) 2019-10-02
GB2529201A (en) 2016-02-17
JP2019071886A (en) 2019-05-16
AU2019201795B2 (en) 2020-08-20
JP2023103394A (en) 2023-07-26
EP3180060A1 (en) 2017-06-21
CN106659250B (en) 2019-11-01
KR102003551B1 (en) 2019-07-24
AU2019201795A1 (en) 2019-04-04
US20190230993A1 (en) 2019-08-01
KR20220085846A (en) 2022-06-22
PH12017500262A1 (en) 2017-07-10
AU2015303019A1 (en) 2017-03-02
KR102603161B1 (en) 2023-11-16
EP3967160B1 (en) 2024-02-14
EP4292458A3 (en) 2024-03-06
KR102524022B1 (en) 2023-04-19
JP2021192632A (en) 2021-12-23
MY188300A (en) 2021-11-25
PL3180060T3 (en) 2019-08-30
EP3180060B1 (en) 2019-01-30
US11865248B2 (en) 2024-01-09
JP6698143B2 (en) 2020-05-27
US20200229495A1 (en) 2020-07-23
KR20170032387A (en) 2017-03-22
US20230241332A1 (en) 2023-08-03
KR20230073354A (en) 2023-05-25
EP3967160A1 (en) 2022-03-16
CN106659250A (en) 2017-05-10
UA120760C2 (en) 2020-02-10
TR201903842T4 (en) 2019-04-22
JP2017529896A (en) 2017-10-12
CN110507009B (en) 2022-05-31
JP7228013B2 (en) 2023-02-22
HUE043106T2 (en) 2019-07-29
EP4292458A2 (en) 2023-12-20
BR112017002893B1 (en) 2022-08-02
US20220040422A1 (en) 2022-02-10
PH12020500541A1 (en) 2021-09-01
US20230285694A1 (en) 2023-09-14
KR20210094144A (en) 2021-07-28
PH12020551516A1 (en) 2021-07-26
CA2957478A1 (en) 2016-02-18
ES2717759T3 (en) 2019-06-25
BR112017002893A2 (en) 2017-12-12
RU2674084C2 (en) 2018-12-04
CN110507008B (en) 2023-03-28
US10674771B2 (en) 2020-06-09
US20170238611A1 (en) 2017-08-24
KR20230054768A (en) 2023-04-25
US20210346620A1 (en) 2021-11-11
ZA201904259B (en) 2021-02-24
CA2957478C (en) 2021-08-03
GB201414331D0 (en) 2014-09-24
AU2015303019B2 (en) 2019-01-17
RU2017104461A (en) 2018-08-14
RU2704552C2 (en) 2019-10-29
JP6980834B2 (en) 2021-12-15
CA3176709A1 (en) 2016-02-18
US10278427B2 (en) 2019-05-07
JP2020127413A (en) 2020-08-27
CN110507009A (en) 2019-11-29
RU2018141222A (en) 2018-12-26
JP2023025229A (en) 2023-02-21
CN110507008A (en) 2019-11-29
US11116919B2 (en) 2021-09-14
KR102282329B1 (en) 2021-07-27
PH12017500262B1 (en) 2017-07-10
KR20190089087A (en) 2019-07-29

Similar Documents

Publication Publication Date Title
US20230201490A1 (en) Aerosol delivery device and method utilizing a flavoring reservoir

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: NICOVENTURES TRADING LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BATMARK LIMITED;REEL/FRAME:063744/0927

Effective date: 20191219

Owner name: BATMARK LIMITED, GREAT BRITAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BUCHBERGER, HELMUT;REEL/FRAME:063744/0837

Effective date: 20140721