US20220389150A1 - Method for isocyanate and polyurethane production with improved sustainability - Google Patents

Method for isocyanate and polyurethane production with improved sustainability Download PDF

Info

Publication number
US20220389150A1
US20220389150A1 US17/774,163 US202017774163A US2022389150A1 US 20220389150 A1 US20220389150 A1 US 20220389150A1 US 202017774163 A US202017774163 A US 202017774163A US 2022389150 A1 US2022389150 A1 US 2022389150A1
Authority
US
United States
Prior art keywords
hydrogen
water
gas
rwgs
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/774,163
Other languages
English (en)
Inventor
Andreas Bulan
Rainer Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Intellectual Property GmbH and Co KG
Original Assignee
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Intellectual Property GmbH and Co KG
Assigned to COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG reassignment COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BULAN, ANDREAS, WEBER, RAINER
Publication of US20220389150A1 publication Critical patent/US20220389150A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0712Purification ; Separation of hydrogen chloride by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to a process for producing isocyanates and optionally polyurethanes by synthesizing phosgene from carbon monoxide and chlorine, reacting phosgene with diamines to form diisocyanates and hydrogen chloride, optionally reacting the diisocyanates with polyethers and/or polyesters to form polyurethanes, providing a carbon dioxide gas stream and purifying the carbon dioxide gas stream of secondary constituents, and subsequently reacting the carbon dioxide to produce carbon monoxide, which is used in the phosgene synthesis.
  • the invention further relates to the utilization of polyurethane-containing waste materials (hereinafter also referred to as “polyurethane material waste”) to produce chemical feedstocks for the production of isocyanates and optionally then polyurethanes, in which polyurethane material waste is used to generate carbon dioxide and hydrocarbons and possibly carbon monoxide and hydrogen, for example by pyrolysis, the carbon dioxide is reacted with hydrogen to form carbon monoxide in a so-called reverse water-gas shift reaction (hereinafter referred to as RWGS reaction), and the carbon monoxide obtained is converted into isocyanate via phosgene and the isocyanate can be processed further into new polyurethane material.
  • polyurethane material waste polyurethane material waste
  • RWGS reaction reverse water-gas shift reaction
  • the invention relates in particular to a process for the low-emission production of isocyanates using an RWGS reaction and to the provision of hydrogen from a water electrolysis or from an electrolysis for the production of chlorine, and also to the use of oxygen from the water electrolysis for burning materials containing polyurethane to carbon dioxide and optionally burning pyrolysis residues obtained from materials containing polyurethane and use of the carbon dioxide obtained in each case as a feedstock for the RWGS reaction.
  • the carbon monoxide preferably produced from utilization of polyurethane material waste, is reacted with chlorine to form phosgene and this is reacted with amines to form isocyanates.
  • the isocyanates can, through reaction with a polyether polyol or polyester polyol, be used to produce fresh polyurethane materials. This closes a section of the value chain. If CO 2 and electricity from renewable energy sources are used for the water electrolysis, it is possible to produce polyurethane material with a further improvement in sustainability. The proportion of fossil carbon in the polyurethane should be significantly reduced.
  • Polyurethanes also referred to hereinbelow as PUs for short, are plastics that result from the polyaddition reaction of polyols containing at least two hydroxyl groups with polyisocyanates.
  • the use of diols and diisocyanates results in linear polyurethanes.
  • Crosslinked polyurethanes can be produced by reacting triisocyanate-diisocyanate mixtures with triol-diol mixtures.
  • the properties of PUs can be varied within a wide range. Depending on the degree of crosslinking and/or the isocyanate or OH component used, thermosets, thermoplastics or elastomers are obtained.
  • Polyurethanes are however also used as molding compounds for compression molding, as casting resins (isocyanate resins), as (textile) elastic fibers, polyurethane coatings, and as polyurethane adhesives. It is also very easy to produce foams from polyurethane.
  • Flexible PU foams are used for a great many purposes, especially as upholstery material, for example for furniture and car seats, as mattress foam, as carpet backing material, for textile lamination, as cleaning sponge or as filter material.
  • Rigid PU foams are used mainly for thermal insulation, for example in buildings, cooling devices, hot and cold storage, and for some pipe systems (plastic jacket composite pipes, flexible composite pipes).
  • One approach to material recycling of PUs is glycolysis, in which the urethane group is reacted with glycol to form carbamate and a polyol.
  • the urethane group can also be reacted with an amine to form urea and a polyol.
  • the object of the present invention was to find a more sustainable process for isocyanate production and ultimately also for polyurethane production, including recycling processes and closing of value chains.
  • essential components for polyurethane production such as carbon monoxide, hydrogen or the electricity for electrolysis operations such as water electrolysis and chloralkali electrolysis have been produced from fossil fuels.
  • carbon monoxide and hydrogen are conventionally obtained from natural gas or coal by means of reforming processes, and chlorine is obtained from electrolysis with electricity produced using fossil fuels such as oil, coal or natural gas.
  • the “sustainability” of a process is understood by those skilled in the art according to the definition of sustainability (sustainable development) coined by the UN in the Brundtland Report of the “World Commission on Environment and Development”, this being that the execution of the process in the present makes the smallest possible contribution, or none at all, to compromising the ability of future generations to meet their own needs, in particular needs in respect of the use of resources such as fossil raw materials and especially in respect of the conservation of living space, for example the protection of the earth's atmosphere. It is thus an object of the invention to make the production of isocyanate and optionally polyurethane more sustainable than the production methods known from the prior art. The contribution of the production of isocyanate, and thus of polyurethane, to a decreasing ability to meet the needs of fixture generations should be reduced or even avoided.
  • An object of the invention is thus to reduce the use of fossil feedstocks as a reactant for isocyanate production and possibly also the use of fossil feedstocks to provide energy for isocyanate production.
  • the latter object in particular should further improve the carbon footprint of PU production in order to protect the earth's atmosphere.
  • the invention relates to a process for producing isocyanates (and optionally polyurethanes) by at least the following steps:
  • a step for reacting the diisocyanates with polyether polyol and/or polyester polyol to form polyurethanes can additionally be included in the process of the invention.
  • “Lower hydrocarbons” are in accordance with the invention understood as meaning hydrocarbons having 1 to 8 carbon atoms.
  • “Amine scrubbing” of the product gas of the RWGS reaction is here understood as meaning in particular the generally known scrubbing of the gas mixture according to the principle of chemisorption with amines such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) or diglycolamine (DGA), which even at relatively low pressure in an absorption column achieves a high purity of the purified gas mixture.
  • amines such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) or diglycolamine (DGA)
  • Renewable energy is understood by those skilled in the art as meaning energy from an energy source that does not become exhausted, such as wind energy, hydro energy or solar energy.
  • a preferred embodiment of the process of the invention is characterized in that carbon dioxide formed from the utilization of polyurethane material waste by burning and/or by pyrolysis is used for the RWGS synthesis. In this case, it is in turn preferable when oxygen gas obtained from the water electrolysis is used for burning.
  • polyurethane material waste may have arisen through the use of commercial polyurethane, the polyurethane having been produced from diisocyanates provided by the process of the invention.
  • the process is said to be a “closed loop” process.
  • the oxygen gas used for burning can in turn preferably be obtained from the water electrolysis.
  • the polyurethane material waste is utilized for example by pyrolyzing said polyurethane material waste at elevated temperature, optionally in the presence of a catalyst, to obtain carbon dioxide, possibly carbon monoxide, possibly hydrogen, possibly a mixture of aliphatic and aromatic low-molecular-weight hydrocarbons and nitrogen-containing hydrocarbons, and possibly a residue of higher-molecular-weight hydrocarbons.
  • the mixture obtained in the pyrolysis is then preferably subjected to refining to obtain a gas mixture of carbon dioxide, carbon monoxide, hydrogen gas, and other low-molecular-weight hydrocarbon compounds that are gaseous under standard conditions.
  • the burning of the residue obtained in the pyrolysis and optionally of any other polyurethane material waste can be effected in particular with oxygen-containing gas, in particular with pure oxygen, to obtain gas containing carbon dioxide.
  • the RWGS synthesis uses carbon dioxide formed from burning polyurethane material waste using oxygen obtained from water electrolysis.
  • the water electrolysis and/or the electrochemical oxidation is performed using electricity generated from renewable energy, in particular electricity optionally obtained through the use of wind power, solar energy or hydro power.
  • the water electrolysis and/or the electrochemical oxidation are performed using electricity from feedback energy obtained from burning used polyurethane material and/or from performing the RWGS reaction.
  • a further alternative embodiment of the novel process is characterized in that the RWGS reaction is performed using electricity generated from renewable energy, in particular electricity optionally obtained through the use of wind power, solar energy or hydro power.
  • the RWGS reaction is heated by means of feedback energy obtained from burning polyurethane material waste.
  • “Feedback energy” is understood by those skilled in the art as meaning energy, especially thermal energy, that is taken from a process step of the process of the invention (optionally converted into another form of energy, for example electricity) and reintroduced into another process step of the process of the invention.
  • the RWGS reaction is heated by burning hydrocarbons from renewable hydrocarbon production, in particular by burning biomethane.
  • Biomethane is here understood as meaning methane obtained from the biogas that is produced by the fermentation of biomass.
  • a further particularly preferred variant of the novel process is characterized in that the polyurethane material is, after having been used, recycled as polyurethane material waste and that the polyurethane material waste is burned to form carbon dioxide and the carbon dioxide used as feed material in the purification step.
  • the oxygen for burning is preferably obtained from a water electrolysis.
  • the hydrogen formed in the water electrolysis is optionally used in the optional refining step and/or in a hydrogenation of nitro compounds, wherein the amines obtained in the hydrogenation of nitro compounds can be used in isocyanate production. Any hydrogen withdrawn that is obtained in the new process is preferably used in the hydrogenation of nitro compounds. This provides access to amines as precursors of the isocyanate.
  • the material cycle is in a particularly preferred embodiment of the process of the invention further closed in that the polyurethane material is, after having been used, recycled as polyurethane material waste and that the polyurethane material waste is burned to form carbon dioxide and the carbon dioxide used as feed material in the purification step.
  • the polyurethane material waste is reacted with for example pure oxygen O 2 evolved at the anode as by-product of the water electrolysis.
  • the heat of reaction evolved during burning can be used as feedback energy for the production of steam and/or electricity.
  • the heat can be used to operate the pyrolysis and the electricity generated can be used in the electrolysis. This further improves the overall efficiency of the novel process.
  • the heat obtained during burning can also be used as feedback energy to heat the RWGS reaction, which further improves the overall energy efficiency of the novel process compared to the prior art.
  • the CO 2 originating from burning or pyrolysis of the polyurethane material waste is obtained in highly concentrated form and is supplied to a purification step before further use.
  • the by-products of burning for example sulfur compounds such as SO 2, nitrogen compounds such as NO X , and residual organics as well as dust and other compounds formed from the components present in the PU material, are separated off.
  • the burning of the polyurethane material waste with pure oxygen can be carried out, for example, according to the process known as the oxyfuel process in an atmosphere of pure oxygen and CO 2 (recirculating flue gas).
  • the resulting flue gas is not diluted with the nitrogen present in air and consists essentially of CO 2 and water vapor.
  • the water vapor can be easily condensed, with the result that a highly concentrated CO 2 stream (concentration in the ideal case close to 100 percent) is formed.
  • the CO 2 can then be purified and further processed, optionally also compressed and stored.
  • some of the energy obtained from the pyrolysis or burning of the polyurethane material can be converted into steam or electricity.
  • the electricity obtained can be used to operate the electrolysis, resulting in an even more efficient process with low consumption of electrical energy.
  • the purification of the CO 2 from combustion gases can be carried out using processes generally known from the prior art. This is described by way of example hereinbelow.
  • the first step here is, for example, purification of the combustion gases, the main component of which is CO 2 .
  • the setup for a combustion gas purification is subdivided into different stages.
  • the particular task of purification is to provide CO 2 for the subsequent RWGS reaction that is free of interfering secondary constituents.
  • dust is removed from the combustion gas.
  • Any acidic gas present such as hydrogen chloride formed from chlorine compounds present in the waste, can then be removed. This is done using, for example, offgas scrubbing towers.
  • the combustion gas is thereby also cooled and freed from further dusts and any heavy metals present.
  • sulfur dioxide gas that has formed is also removed in a scrubbing circuit and reacted for example with slaked lime to form calcium sulfate.
  • the removal of nitrogen compounds from the combustion gases can be carried out for example on catalyst-containing zeolites or by adding urea or ammonia to convert the nitrogen oxides back to nitrogen and water.
  • the catalysts are usually operated at a temperature of above 320° C.
  • the N 2 compounds can be removed by scrubbing with nitric acid or scrubbing with catalysts.
  • the drying and further purification of the CO 2 can be effected by known conventional methods. Drying for example by treatment with concentrated sulfuric acid.
  • activated carbon filters are used to remove any residual organics and last metal residues still present in the combustion gas by means of activated carbon. This can be done using, for example, activated carbon in dust form that is metered into the combustion gas stream or flue gas stream and then deposited again on the fabric filter together with the accumulated contaminants.
  • the used carbon is discharged and supplied to energy recovery (described in principle in: https://www.ava-augsburg.de/umwelt/rauchgasgraphy/).
  • the purification processes performed on the combustion gases provide CO 2 that can be used as a feedstock for the RWGS reaction.
  • CO 2 can also optionally be separated off by amine scrubbing.
  • the supply of additional oxygen gas to the pyrolysis reaction space is not preferred.
  • the pyrolysis of the used polyurethane material can preferably be performed as follows:
  • the pyrolysis of the polyurethane material is carried out at elevated temperature, optionally in the presence of a catalyst, to obtain possibly carbon dioxide, possibly carbon monoxide, possibly hydrogen, a mixture of aliphatic and aromatic low-molecular-weight hydrocarbons and nitrogen-containing hydrocarbons, and a residue of higher-molecular-weight hydrocarbon compounds,
  • the polyurethane material waste that is recycled and comminuted as described above can be supplied to the pyrolysis step, it being possible for the pyrolysis to be carried out either with or without a catalyst.
  • the fractions formed during the pyrolysis are gaseous, liquid and solid, with the solid phase mostly consisting mainly of pyrolytic carbon.
  • the liquid long-chain carbon compounds comprising aromatics such as toluene, benzene, and xylene are preferably supplied to a refining process.
  • the compounds can be separated or in refining processes optionally reacted further with hydrogen, preferably hydrogen from water electrolysis, with the result that propene and ethene (as precursors for polyols, polyethers) may also be obtained.
  • the long-chain liquid hydrocarbon compounds can be separated off and processed further. It is also possible to reuse aromatic compounds such as benzene or aniline or—if present—isocyanates as feedstocks in appropriate syntheses.
  • the pyrolysis can optionally be operated in particular in such a way that larger amounts of carbon monoxide and possibly hydrogen are generated.
  • These gases can be separated off together with the short-chain hydrocarbon compounds, for example in the refining step, or they can also be separated off separately and then supplied to a carbon monoxide-hydrogen separation and used.
  • the solid substances obtained during the pyrolysis consist mostly of carbon. This solid phase can be reacted with pure oxygen from the water electrolysis. This also gives rise to a highly concentrated stream of CO 2 , which is supplied to a purification step.
  • Another option for producing high-purity CO 2 is to absorb the CO 2 in an alkali solution, for example aqueous potassium hydroxide solution. This results in the formation of potassium hydrogen carbonate, which can then be thermally decomposed back to CO 2 and potassium hydroxide. Heat generated from pyrolysis or burning can be used here.
  • an alkali solution for example aqueous potassium hydroxide solution.
  • the purified CO 2 is supplied to the RWGS reaction.
  • the gas mixture taken from the RWGS reaction is cooled. On cooling, the water of reaction separates off. The water of reaction can be returned to the water electrolysis as a feedstock. After the water separation, the gas is supplied to the CO 2 separation.
  • the CO 2 separation is carried out for example by means of an amine scrubbing step in which the CO 2 is removed and the residual gas consisting of CO and H 2 is supplied to a H 2 /CO gas separation unit.
  • the CO obtained is then supplied to the phosgene synthesis and reacted here with Cl 2 to form phosgene.
  • the phosgene produced is supplied to the isocyanate production. In the isocyanate production, phosgene is reacted with an amine to form an isocyanate and hydrogen chloride.
  • the hydrogen obtained from the water electrolysis or from the H 2 /CO separation can either be supplied to the hydrogenation of nitro compounds to amines and hence to the production of isocyanates.
  • the isocyanate from isocyanate production is reacted with polyether polyol or with polyester polyol to form polyurethane material in a corresponding synthesis.
  • the novel process can also preferably be operated in such a way that part of the polyurethane material waste is supplied directly for burning instead of pyrolysis.
  • the hydrogen chloride (HCl) produced during isocyanate production may be supplied to a different HCl recycling unit such as an HCl diaphragm or HCl electrolysis with a gas-diffusion electrode or a catalytic gas-phase oxidation.
  • a different HCl recycling unit such as an HCl diaphragm or HCl electrolysis with a gas-diffusion electrode or a catalytic gas-phase oxidation.
  • the O 2 required can be obtained from the water electrolysis.
  • the isocyanates and the polyether polyols and optionally also polyester polyols can then be used to produce the PU materials that are needed commercially.
  • the polyurethanes are used in various commercial applications. At the end of their useful life, the materials are supplied to a recycling unit and the PU materials separated here. The separated material is then resupplied, as polyurethane material waste, for utilization in the form of pyrolysis and/or burning.
  • FIG. 1 shows a schematic overview of the overall process comprising the RWGS reaction, chlorine production, PU production, use, and utilization of the polyurethane material waste therefrom to afford CO 2 for the RWGS reaction
  • thermocatalytic gas-phase oxidation 16
  • Chlorine from chloralkali electrolysis ( 14 ) (preferably with oxygen-depolarized cathode (ODC) with supply of oxygen ( 27 ))
  • FIG. 2 shows a schematic overview of the overall process comprising the RWGS reaction, hydrochloric acid electrolysis according to the diaphragm process (HCl—DIA) for chlorine production, including optional PU production, use of the polyurethane material, and utilization of polyurethane material waste therefrom to afford CO 2 for the RWGS reaction.
  • HCl—DIA diaphragm process
  • FIG. 1 and FIG. 2 illustrate the closed-loop variant of the process of the invention. It is of course possible in one embodiment to use, as a polyurethane material waste ( 38 ) feed, also polyurethane material that has been produced not from recycled polyurethane material ( 37 ) in the sense of a closed-loop process, but from toluene-2,4-diisocyanate that originated directly from feedstocks from fossil sources without recycling. In this variant, steps ( 3 ), ( 35 a ), ( 35 b ), and ( 37 ) are to be deleted in FIG. 1 and FIG. 2 .
  • a total of 3.24 t/h of hydrogen was taken from the water electrolysis ( 5 ), which meant that an additional 21.86 t/h of water was added.
  • the remaining gas mixture ( 39 a ) from the RWGS was supplied to a CO 2 separation ( 8 ).
  • the CO 2 separation was effected by amine scrubbing, wherein the separated CO 2 ( 31 b ) was recycled to the RWGS reaction.
  • the energy for the CO 2 separation from the CO 2 -amine complex formed was obtained from the separation of water ( 7 ) from the RWGS gases ( 39 ).
  • the gas freed of CO 2 ( 39 b ) was supplied to the H 2 /CO separation ( 9 ).
  • H 2 /CO separation For the H 2 /CO separation, a so-called cold box was employed, in which the H 2 /CO gas mixture was cooled and hydrogen and CO were separated. The separated hydrogen ( 29 c ) was returned to the RWGS ( 6 ). 11.35 t/h of CO from the H 2 /CO separation ( 9 ) was supplied to a phosgene synthesis ( 1 ). Here, the CO reacted with 29.79 t/h of chlorine taken from an HCl gas-phase oxidation ( 16 ).
  • the oxygen ( 27 ) required was taken from the water electrolysis ( 5 ).
  • the toluene diisocyanate ( 24 ) obtained was reacted in a conventional manner with polyether polyols ( 35 a ) or polyester polyols ( 35 b ) to form polyurethane material ( 37 ).
  • steps ( 3 ), ( 35 a ), ( 35 b ), and ( 37 ) are to be deleted in FIG. 1 and FIG. 2 .
  • the hydrogen ( 29 ) was generated in a water electrolysis with a power of 45 MW in which renewable energy was used.
  • the water electrolysis ( 5 ) was an alkaline water electrolysis operated with a current density of 8 kA/m 2 and a cell voltage of 2 V per electrolysis element. Supplied to this were 45 MW and 21.86 t/h of water plus 7.3 t/h of water from H 2 O separation ( 7 ). 3.24 t/h of H 2 was taken from the water electrolysis.
  • the RWGS reaction was operated at 802° C., the temperature was generated by burning bio-natural gas.
  • a total of 2.43 t/h of hydrogen was taken from the water electrolysis, which meant that an additional 14.56 t/h of water was added.
  • the remaining gas mixture ( 39 a ) from the RWGS was supplied to a CO 2 separation ( 8 ).
  • the CO 2 separation was effected by amine scrubbing, wherein the separated CO 2 ( 31 b ) was recycled to the RWGS.
  • the energy for the CO 2 separation from the CO 2 -amine complex formed was obtained from the separation of water ( 7 ) from the RWGS gases ( 39 ).
  • the gas freed of CO 2 ( 39 b ) was supplied to the H 2 /CO separation ( 9 ).
  • H 2 /CO separation For the H 2 /CO separation, a so-called cold box was employed, in which the H 2 /CO gas mixture was cooled and hydrogen and CO were separated. The separated hydrogen ( 29 c ) was returned to the RWGS ( 6 ). 11.35 t/h of CO from the H 2 /CO separation ( 9 ) was supplied to a phosgene synthesis ( 1 ). Here the CO reacted with 29.79 t/h of chlorine taken from an HCl diaphragm electrolysis ( 17 ).
  • the hydrogen was purified and supplied to the RWGS.
  • the toluene diisocyanate ( 24 ) obtained was reacted in a conventional manner with polyether polyols ( 35 a ) or polyester polyols ( 35 b ) to form polyurethane material ( 37 ).
  • the polyurethane material waste ( 38 ) After use of the polyurethane material in various commercial applications ( 80 ), it can be collected and recycled ( 90 ) in order to burn ( 10 b ) the polyurethane material waste ( 38 ) resulting therefrom. Burning was here realized with oxygen ( 27 ) from the water electrolysis ( 5 ), resulting in the formation of a highly concentrated CO 2 offgas stream ( 31 ). This CO 2 stream ( 31 ) was supplied to a CO 2 purification ( 4 ) in which water originating from combustion and nitrogen oxides and sulfur oxides were removed. 17.84 t/h CO 2 was thereafter supplied to the RWGS ( 6 ).
  • the hydrogen ( 29 ) was generated in a water electrolysis with a power of 45 MW in which renewable energy was used.
  • the water electrolysis ( 5 ) was an alkaline water electrolysis operated with a current density of 8 kA/m 2 and a cell voltage of 2 V per electrolysis element. Supplied to this were 45 MW and 21.86 t/h of water plus 7.3 t/h of water from H 2 O separation ( 7 ). 3.24 t/h of H 2 was taken from the water electrolysis.
  • the RWGS was operated at 802° C., the temperature was generated by burning bio-natural gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
US17/774,163 2019-11-06 2020-11-05 Method for isocyanate and polyurethane production with improved sustainability Pending US20220389150A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19207406.0 2019-11-06
EP19207406.0A EP3819259A1 (de) 2019-11-06 2019-11-06 Verfahren zur isocyanat- und polyurethan-herstellung mit verbesserter nachhaltigkeit
PCT/EP2020/081202 WO2021089737A1 (de) 2019-11-06 2020-11-05 Verfahren zur isocyanat- und polyurethan-herstellung mit verbesserter nachhaltigkeit

Publications (1)

Publication Number Publication Date
US20220389150A1 true US20220389150A1 (en) 2022-12-08

Family

ID=68470353

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/774,163 Pending US20220389150A1 (en) 2019-11-06 2020-11-05 Method for isocyanate and polyurethane production with improved sustainability

Country Status (6)

Country Link
US (1) US20220389150A1 (de)
EP (2) EP3819259A1 (de)
JP (1) JP2023500262A (de)
KR (1) KR20220098137A (de)
CN (1) CN114599635A (de)
WO (1) WO2021089737A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022201519A1 (de) * 2022-02-14 2023-08-17 Volkswagen Aktiengesellschaft Verfahren zur gekoppelten Herstellung von Polyurethanen mit verringertem CO2-Fußabdruck
EP4234491A1 (de) * 2022-02-24 2023-08-30 Covestro Deutschland AG Verfahren zur gasifikation polymerer wertstoffmaterialien für die emissionsarme bereitstellung von für die herstellung von phosgen nutzbarem kohlenmonoxid
EP4310224A1 (de) 2022-07-19 2024-01-24 Covestro Deutschland AG Nachhaltige herstellung organischer aminoverbindungen für die produktion organischer isocyanate
EP4345094A1 (de) * 2022-09-30 2024-04-03 Covestro Deutschland AG Verfahren zur phosgen-herstellung mit rückführung von kohlendioxid aus wertstoffrecycling

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1284072B1 (it) 1996-06-26 1998-05-08 De Nora Spa Cella elettrochimica a membrana provvista di elettrodi a diffusione gassosa contattati da portacorrente metallici lisci e porosi a
DE19956787A1 (de) 1999-11-25 2001-05-31 Bayer Ag Elektrolyseplatte
DE10148600A1 (de) 2001-10-02 2003-04-10 Bayer Ag Einbau einer Gasdiffusionselektrode in einen Elektrolyseur
DE102005032663A1 (de) * 2005-07-13 2007-01-18 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten
ITMI20071375A1 (it) 2007-07-10 2009-01-11 Uhdenora Spa Collettore di corrente elastico per celle elettrochimiche
RU2487116C2 (ru) * 2008-11-26 2013-07-10 Хантсмэн Интернэшнл Ллс Способ производства изоцианатов
DE102010039735A1 (de) 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
US8845875B2 (en) * 2012-07-26 2014-09-30 Liquid Light, Inc. Electrochemical reduction of CO2 with co-oxidation of an alcohol
CN104918882B (zh) * 2012-12-21 2019-03-01 巴斯夫欧洲公司 平行制备氢气、一氧化碳和含碳产物的方法

Also Published As

Publication number Publication date
KR20220098137A (ko) 2022-07-11
JP2023500262A (ja) 2023-01-05
EP4054975A1 (de) 2022-09-14
CN114599635A (zh) 2022-06-07
WO2021089737A1 (de) 2021-05-14
EP3819259A1 (de) 2021-05-12

Similar Documents

Publication Publication Date Title
US20220389150A1 (en) Method for isocyanate and polyurethane production with improved sustainability
US20220227701A1 (en) Method for the recycling of polyurethane material waste for producing chemical feedstock for the production of isocyanates and polyurethanes
US20140272734A1 (en) Electrochemical device for syngas and liquid fuels production
EP2637991B1 (de) Verfahren und vorrichtung für methanolsynthese auf kohlendioxidbasis
US20100261938A1 (en) Rendering natural gas as an environmentally carbon dioxide neutral fuel and a regenerative carbon source
US11840668B2 (en) Gasification process
US8461218B2 (en) Rendering petroleum oil as an environmentally carbon dioxide neutral source material for fuels, derived products and as a regenerative carbon source
EP2268774A2 (de) Verfahren zur herstellung von syngas und methanol aus organischen abfällen
WO2022167387A1 (de) Verfahren zur herstellung von kohlenmonoxid als rohstoff zur isocyanatherstellung mit verringertem co2 fussabdruck
AU2021281029A1 (en) Circular carbon process
Majchrzak-Kucęba et al. CCU technologies in the green economy
Galusnyak et al. Assessment of CO2 Utilization Technologies Into Valuable C1 Organic Chemicals: a Modelling and Simulation Analysis
WO2024068685A1 (de) Verfahren zur phosgen-herstellung mit rückführung von kohlendioxid aus wertstoffrecycling
CN113272410B (zh) 由废弃物生产生物甲烷的方法和设备
CN117642486A (zh) 合成燃料的制造方法
JP2023011306A (ja) 合成燃料の製造方法
WO2024017890A2 (de) Nachhaltige herstellung organischer aminoverbindungen für die produktion organischer isocyanate
WO2023281426A1 (en) Method and plant for the treatment of carbon-based waste

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BULAN, ANDREAS;WEBER, RAINER;SIGNING DATES FROM 20220401 TO 20220405;REEL/FRAME:059805/0705

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION