US20220325776A1 - Internal combustion engine including a mass differential gear including two balance shafts - Google Patents

Internal combustion engine including a mass differential gear including two balance shafts Download PDF

Info

Publication number
US20220325776A1
US20220325776A1 US17/607,992 US202017607992A US2022325776A1 US 20220325776 A1 US20220325776 A1 US 20220325776A1 US 202017607992 A US202017607992 A US 202017607992A US 2022325776 A1 US2022325776 A1 US 2022325776A1
Authority
US
United States
Prior art keywords
gear
bearing
crankshaft
crankcase
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/607,992
Other versions
US11971080B2 (en
Inventor
Joachim Joisten-Pieritz
Toni Kleinschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutz AG
Original Assignee
Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutz AG filed Critical Deutz AG
Publication of US20220325776A1 publication Critical patent/US20220325776A1/en
Assigned to DEUTZ AKTIENGESELLSCHAFT reassignment DEUTZ AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLEINSCHMIDT, TONI, JOISTEN-PIERITZ, JOACHIM
Application granted granted Critical
Publication of US11971080B2 publication Critical patent/US11971080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/26Compensation of inertia forces of crankshaft systems using solid masses, other than the ordinary pistons, moving with the system, i.e. masses connected through a kinematic mechanism or gear system
    • F16F15/264Rotating balancer shafts
    • F16F15/267Rotating balancer shafts characterised by bearing support of balancer shafts; Lubrication arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • F01M2011/028Arrangements of lubricant conduits for lubricating balance shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/02Rotary

Definitions

  • the present disclosure relates to an internal combustion engine including a crankcase in which a crankshaft is rotatably mounted, to which at least one connecting rod carrying a piston is linked, the piston being movable in a cylinder covered by a cylinder head, forming a combustion chamber, and gas exchange valves being situated in the cylinder head, which are actuated by at least one camshaft connected via a gear mechanism to a gear train gear wheel situated on the crankshaft, a mass differential gear including two balance shafts being present.
  • mass differential gears are driven via gear wheels mounted on the crank webs.
  • these gear wheels are very large and difficult to mount.
  • This complex and cost-intensive drive variant is determined by a drastically limited installation space.
  • Lubricating oil pumps are partially driven via idler gear bearings attached in the crankcase. This results in higher tolerance chains and the problem of an unfavorable lubricating oil supply of the idler gear bearings.
  • both systems have to be installed at the same time to be able to simultaneously drive the oil pump and a mass differential gear.
  • Such an internal combustion engine is furthermore known from DE 41 28 432 A1.
  • a mass differential gear is installed, which is directly integrated into the crankcase of the internal combustion engine.
  • a mass differential gear is only required as needed, in particular in internal combustion engines which are used as industrial engines, commercial vehicle engines or construction equipment engines. In the event that no mass differential gear is required, at least the machining of the bearing positions for the mass differential gear in the crankcase represents additional efforts which incur additional costs.
  • a device is known from DE 102 40 713 A1 for balancing the mass forces for an internal combustion engine including two balance shafts which are operated in opposite directions at twice the crankshaft speed and which are situated beneath the crankshaft within the oil pan attached beneath the crankcase.
  • the present disclosure provides that the mass differential gear, which is situated in a gear frame, is attached to the crankcase beneath the crankshaft and is driven by a driving gear wheel situated on the crankshaft.
  • an idler gear bearing for driving a lubricating oil pump and/or a mass differential gear is advantageously integrated into the main bearing block, making it possible for an oil pump and/or a mass differential gear to be driven with only limited available installation space.
  • the necessary amount of oil is provided by the main bearing block.
  • the idler gear is equipped with a rolling bearing, so that no active lubricant supply from the bearing block is necessary. Another advantage is that both angle errors of the gear wheels and the flank clearance with respect to the driving gear wheel present on the crankshaft are minimized.
  • Another advantageous refinement provides for the lubricating oil supply of the idler gear bearing to be covered from the lubricating oil supply of the main bearing on the crankcase side.
  • One variant provides for the supply borehole of the crankcase-side bearing block to be partially drilled and the idler gear bearing integrated into the main bearing cover is forwarded.
  • Another variant provides for the oil supply of the idler gear bearing to be implemented by a bearing shell installed on the crankcase side, including an integrated rear-side oil supply groove.
  • Another variant provides for one of the main bearing screw pipes to be supplied with compressed oil for supplying oil to the idler gear bearing, the oil being fed into the bearing pin for lubricating the idler gear.
  • two balance shaft gear wheels meshing with one another are provided, and a driving gear wheel, which is engaged with the mass drive wheel via a balance shaft idler gear, is situated axially next to a balance shaft gear wheel.
  • This combination allows the gear ratio which is to be set to be implemented and, on the other hand, the center distance between the crankshaft and the two balance shafts is bridged by the balance shaft idler gear.
  • an oil pump gear wheel is directly engaged with the gear train gear wheel.
  • FIG. 1 a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a rolling bearing-supported idler gear;
  • FIG. 1 b shows a cross-sectional view along A-A in FIG. 1 a;
  • FIG. 2 a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear;
  • FIG. 2 b shows a cross-sectional view along B-B in FIG. 2 a;
  • FIG. 2 c shows a cross-sectional view along C-C in FIG. 2 a;
  • FIG. 3 a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a rolling bearing-supported idler gear;
  • FIG. 3 b shows a cross-sectional view along A-A in FIG. 1 a;
  • FIG. 4 a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear;
  • FIG. 4 b shows a cross-sectional view along B-B in FIG. 4 a ;
  • FIG. 4 c shows a cross-sectional view along C-C in FIG. 4 a.
  • a gear train gear wheel and a mass shaft drive wheel are non-rotatably attached on the extension of the crankshaft, as is shown in FIG. 1 a .
  • the gear train gear wheel is engaged with a stepped gear wheel, which in turn meshes with a camshaft gear wheel.
  • An oil pump gear wheel which is an integral part of an oil pump situated in the gear train housing, is also driven by the gear train gear wheel.
  • Crankshaft gear wheel 1 is attached to the crankshaft 19 and is operatively connected to mass balance shafts 4 with the aid of the idler gear screwed onto bearing cover 2 .
  • a centering receptacle 5 is situated in the bearing cover at bearing cover 2 .
  • crankshaft gear wheel 1 attached at the crankshaft is operatively connected to the idler gear of oil pump 6 , which is in turn operatively connected to the drive wheel of the oil pump 7 .
  • the screwed-on bearing pin 8 accommodates a rolling bearing-supported idler gear 3 including screw 16 and rolling bearing 15 screwed onto bearing cover 2 .
  • FIG. 2 a a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear is shown.
  • the mass differential gear is driven via a balance shaft idler gear, which in turn drives a drive wheel situated axially upstream from a balance shaft gear wheel, which is engaged with a second balance shaft gear wheel.
  • crankshaft gear wheel 1 is attached to the crankshaft and is operatively connected to mass balance shafts 4 with the aid of idler gear 3 screwed onto bearing cover 2 .
  • crankshaft gear wheel 1 attached to the crankshaft is operatively connected to idler gear 3 , which is in turn operatively connected to the drive wheel of the oil pump 7 .
  • the cast-on bearing pin 9 accommodates a friction bearing-supported idler gear 3 , and which is screwed onto bearing cover 2 using thrust washer 10 and screw 16 .
  • the annular gap for oil supply 11 is supplied with oil for oil supply 13 of friction bearing 14 from annular gap 11 with the aid of oil flow 12 from bearing block borehole into the annular gap.
  • FIG. 3 a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a rolling bearing-supported idler gear 3 .
  • Crankshaft gear wheel 1 is attached to the crankshaft and is operatively connected to mass balance shafts 4 with the aid of the idler gear screwed onto bearing cover 2 .
  • a centering receptacle 5 is situated in the bearing cover at bearing cover 2 .
  • crankshaft gear wheel 1 attached to the crankshaft is operatively connected to the idler gear of oil pump 6 , which is in turn operatively connected to the drive wheel of the oil pump 7 .
  • the screwed-on bearing pin 8 accommodates a rolling bearing-supported idler gear 3 , including screw 16 and rolling bearing 15 screwed onto bearing cover 2 .
  • FIG. 4 a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear 3 .
  • Crankshaft gear wheel 1 is attached to the crankshaft and is operatively connected to mass balance shafts 4 with the aid of idler gear 3 screwed onto bearing cover 2 .
  • crankshaft gear wheel 1 attached to the crankshaft is operatively connected to idler gear 3 , which is in turn operatively connected to the drive wheel of oil pump 7 .
  • the cast-on bearing pin 9 accommodates a friction bearing-supported idler gear 3 which is screwed onto bearing cover 2 with the aid of thrust washer 10 and screw 16 .
  • the annular gap for oil supply 11 is supplied with oil for oil supply 13 of friction bearing 14 from annular gap 11 with the aid of oil flow 12 from bearing block borehole into the annular gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Gear Transmission (AREA)

Abstract

An internal combustion engine includes a crankcase in which a crankshaft is rotatably mounted in bearings including bearing covers, to which at least one connecting rod carrying a piston is linked. The piston is movable in a cylinder covered by a cylinder head forming a combustion chamber and gas exchange valves are arranged in the cylinder head, which are actuated by at least one camshaft, which is connected to a gear train gear wheel situated on the crankshaft via a differential gear. A mass differential gear including two balance shafts is present. The mass differential gear is situated in a gear frame and attached to the crankcase below the crankshaft and driven by a mass shaft drive gear situated on the crankshaft, which is arranged axially essentially next to the gear train gear wheel/idler gear. The gear train gear wheel/idler gear is arranged on the main bearing cover.

Description

  • The present disclosure relates to an internal combustion engine including a crankcase in which a crankshaft is rotatably mounted, to which at least one connecting rod carrying a piston is linked, the piston being movable in a cylinder covered by a cylinder head, forming a combustion chamber, and gas exchange valves being situated in the cylinder head, which are actuated by at least one camshaft connected via a gear mechanism to a gear train gear wheel situated on the crankshaft, a mass differential gear including two balance shafts being present.
  • BACKGROUND
  • Presently, mass differential gears are driven via gear wheels mounted on the crank webs. By virtue of the system, these gear wheels are very large and difficult to mount. This complex and cost-intensive drive variant is determined by a drastically limited installation space. Lubricating oil pumps are partially driven via idler gear bearings attached in the crankcase. This results in higher tolerance chains and the problem of an unfavorable lubricating oil supply of the idler gear bearings. In some instances, both systems have to be installed at the same time to be able to simultaneously drive the oil pump and a mass differential gear.
  • Such an internal combustion engine is furthermore known from DE 41 28 432 A1. In this internal combustion engine, a mass differential gear is installed, which is directly integrated into the crankcase of the internal combustion engine. On the one hand, this yields the option of manufacturing the bearing positions for the balance shafts of the mass differential gear during the machining of the crankcase in a shared operation, while the bearing positions for, for example, the crankshaft, idler gears and camshaft are being machined or manufactured. In this way, it is possible to maintain the distances of the individual bearing positions with respect to one another with great precision. On the other hand, a mass differential gear is only required as needed, in particular in internal combustion engines which are used as industrial engines, commercial vehicle engines or construction equipment engines. In the event that no mass differential gear is required, at least the machining of the bearing positions for the mass differential gear in the crankcase represents additional efforts which incur additional costs.
  • A device is known from DE 102 40 713 A1 for balancing the mass forces for an internal combustion engine including two balance shafts which are operated in opposite directions at twice the crankshaft speed and which are situated beneath the crankshaft within the oil pan attached beneath the crankcase.
  • The disadvantage of this is that the described variants are bulky and expensive.
  • SUMMARY
  • It is an object of the present disclosure to provide an internal combustion engine which represents an installation space-optimized and cost-effective drive variant for driving a lubricating oil pump or a mass differential gear, or both, in an internal combustion engine.
  • The present disclosure provides that the mass differential gear, which is situated in a gear frame, is attached to the crankcase beneath the crankshaft and is driven by a driving gear wheel situated on the crankshaft. As a result of this design, initially no unnecessary machining processes are required on the crankcase, apart from attachment threads for the gear frame which may be manufactured with little complexity.
  • Here, an idler gear bearing for driving a lubricating oil pump and/or a mass differential gear is advantageously integrated into the main bearing block, making it possible for an oil pump and/or a mass differential gear to be driven with only limited available installation space. For lubricating the idler gear, the necessary amount of oil is provided by the main bearing block. In one alternative refinement, it is provided that the idler gear is equipped with a rolling bearing, so that no active lubricant supply from the bearing block is necessary. Another advantage is that both angle errors of the gear wheels and the flank clearance with respect to the driving gear wheel present on the crankshaft are minimized. Another advantageous refinement provides for the lubricating oil supply of the idler gear bearing to be covered from the lubricating oil supply of the main bearing on the crankcase side. One variant provides for the supply borehole of the crankcase-side bearing block to be partially drilled and the idler gear bearing integrated into the main bearing cover is forwarded. Another variant provides for the oil supply of the idler gear bearing to be implemented by a bearing shell installed on the crankcase side, including an integrated rear-side oil supply groove. Another variant provides for one of the main bearing screw pipes to be supplied with compressed oil for supplying oil to the idler gear bearing, the oil being fed into the bearing pin for lubricating the idler gear.
  • In one refinement of the present invention disclosure, two balance shaft gear wheels meshing with one another are provided, and a driving gear wheel, which is engaged with the mass drive wheel via a balance shaft idler gear, is situated axially next to a balance shaft gear wheel. This combination, on the one hand, allows the gear ratio which is to be set to be implemented and, on the other hand, the center distance between the crankshaft and the two balance shafts is bridged by the balance shaft idler gear.
  • In another embodiment of the present disclosure, an oil pump gear wheel is directly engaged with the gear train gear wheel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further advantageous embodiments of the present disclosure may be derived from the description of the drawings, in which an exemplary embodiment shown in the figures is described in greater detail:
  • FIG. 1a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a rolling bearing-supported idler gear;
  • FIG. 1b shows a cross-sectional view along A-A in FIG. 1 a;
  • FIG. 2a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear;
  • FIG. 2b shows a cross-sectional view along B-B in FIG. 2 a;
  • FIG. 2c shows a cross-sectional view along C-C in FIG. 2 a;
  • FIG. 3a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a rolling bearing-supported idler gear;
  • FIG. 3b shows a cross-sectional view along A-A in FIG. 1 a;
  • FIG. 4a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear;
  • FIG. 4b shows a cross-sectional view along B-B in FIG. 4a ; and
  • FIG. 4c shows a cross-sectional view along C-C in FIG. 4 a.
  • DETAILED DESCRIPTION
  • A gear train gear wheel and a mass shaft drive wheel are non-rotatably attached on the extension of the crankshaft, as is shown in FIG. 1a . The gear train gear wheel is engaged with a stepped gear wheel, which in turn meshes with a camshaft gear wheel. An oil pump gear wheel, which is an integral part of an oil pump situated in the gear train housing, is also driven by the gear train gear wheel.
  • Crankshaft gear wheel 1 is attached to the crankshaft 19 and is operatively connected to mass balance shafts 4 with the aid of the idler gear screwed onto bearing cover 2. A centering receptacle 5 is situated in the bearing cover at bearing cover 2. Furthermore, crankshaft gear wheel 1 attached at the crankshaft is operatively connected to the idler gear of oil pump 6, which is in turn operatively connected to the drive wheel of the oil pump 7. The screwed-on bearing pin 8 accommodates a rolling bearing-supported idler gear 3 including screw 16 and rolling bearing 15 screwed onto bearing cover 2.
  • In the view according to FIG. 2a , a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear is shown.
  • The mass differential gear is driven via a balance shaft idler gear, which in turn drives a drive wheel situated axially upstream from a balance shaft gear wheel, which is engaged with a second balance shaft gear wheel.
  • These two balance shaft gear wheels are connected to the mass balance shafts 20 (FIG. 1a ) mounted in gear frame 17 of the mass differential gear. This gear frame is screwed directly to the underside of the crankcase 18 (FIG. 1a ). Crankshaft gear wheel 1 is attached to the crankshaft and is operatively connected to mass balance shafts 4 with the aid of idler gear 3 screwed onto bearing cover 2. Furthermore, crankshaft gear wheel 1 attached to the crankshaft is operatively connected to idler gear 3, which is in turn operatively connected to the drive wheel of the oil pump 7. The cast-on bearing pin 9 accommodates a friction bearing-supported idler gear 3, and which is screwed onto bearing cover 2 using thrust washer 10 and screw 16. The annular gap for oil supply 11 is supplied with oil for oil supply 13 of friction bearing 14 from annular gap 11 with the aid of oil flow 12 from bearing block borehole into the annular gap.
  • The representation in FIG. 3a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a rolling bearing-supported idler gear 3. Crankshaft gear wheel 1 is attached to the crankshaft and is operatively connected to mass balance shafts 4 with the aid of the idler gear screwed onto bearing cover 2. A centering receptacle 5 is situated in the bearing cover at bearing cover 2. Furthermore, crankshaft gear wheel 1 attached to the crankshaft is operatively connected to the idler gear of oil pump 6, which is in turn operatively connected to the drive wheel of the oil pump 7. The screwed-on bearing pin 8 accommodates a rolling bearing-supported idler gear 3, including screw 16 and rolling bearing 15 screwed onto bearing cover 2.
  • FIG. 4a shows a front view of the internal combustion engine including a partially mounted gear train including a differential gear and a friction bearing-supported idler gear 3. Crankshaft gear wheel 1 is attached to the crankshaft and is operatively connected to mass balance shafts 4 with the aid of idler gear 3 screwed onto bearing cover 2. Furthermore, crankshaft gear wheel 1 attached to the crankshaft is operatively connected to idler gear 3, which is in turn operatively connected to the drive wheel of oil pump 7. The cast-on bearing pin 9 accommodates a friction bearing-supported idler gear 3 which is screwed onto bearing cover 2 with the aid of thrust washer 10 and screw 16. The annular gap for oil supply 11 is supplied with oil for oil supply 13 of friction bearing 14 from annular gap 11 with the aid of oil flow 12 from bearing block borehole into the annular gap.
  • LIST OF REFERENCE NUMERALS
    • 1 crankshaft gear wheel
    • 2 bearing cover
    • 3 idler gear screwed onto bearing cover
    • 4 mass balance shafts
    • 5 centering receptacle in bearing cover
    • 6 oil pump idler gear
    • 7 drive wheel of oil pump
    • 8 bearing pin screwed on
    • 9 bearing pin cast onto bearing cover
    • 10 thrust washer
    • 11 annular gap for oil supply
    • 12 oil flow from bearing block borehole into annular gap
    • 13 oil supply of friction bearing from annular gap
    • 14 friction bearing of idler gear
    • 15 rolling bearing of idler gear
    • 16 screw
    • 17 gear frame
    • 18 crankcase
    • 19 crankshaft
    • 20 mass balance shafts

Claims (12)

What is claimed is:
1-4. (canceled)
5. An internal combustion engine including a crankcase in which a crankshaft is rotatably mounted in bearings including bearing covers, to which at least one connecting rod carrying a piston is linked, the piston being movable in a cylinder covered by a cylinder head, forming a combustion chamber, and gas exchange valves being situated in the cylinder head, which are actuated by at least one camshaft connected via a gear mechanism to a gear train gear wheel situated on the crankshaft, the internal combustion engine further comprising:
a mass differential gear including two balance shafts being present, that the mass differential gear, situated in a gear frame, being attached to the crankcase beneath the crankshaft and driven by a mass shaft drive gear situated on the crankshaft, which is axially situated next to the gear train gear wheel/an idler gear, and the gear train gear wheel/the idler gear being situated at a main bearing cover.
6. The internal combustion engine as recited in claim 5, wherein an lubricating oil supply of an idler gear bearing is tapped from a lubricating oil supply of a main bearing on a crankcase-side in such a way that a supply borehole of a crankcase-side bearing block is partially drilled by which oil is forwarded to the idler gear.
7. The internal combustion engine as recited in claim 5, wherein a lubricating oil supply of an idler gear bearing is tapped from a lubricating oil supply of a main bearing on a crankcase-side in such a way that the oil supply of the idler gear bearing takes place by a bearing shell which is installed on the crankcase-side and includes an integrated rear-side oil supply groove.
8. A method for operating the internal combustion engine as recited in claim 5 comprising:
driving the mass differential gear via the mass shaft drive gear situated on the crankshaft.
9. An internal combustion engine comprising:
a crankcase;
a crankshaft is rotatably mounted in the crankcase;
a crankshaft gear situated on the crankshaft;
a gear frame fixed to a bottom of the crankcase;
a mass differential gear situated in a gear frame beneath the crankshaft gear;
an intermediate gear; and
a bearing cover, the mass differential gear being driven by the crankshaft gear via the intermediate gear, the intermediate gear being situated at the bearing cover.
10. The internal combustion engine as recited in claim 9 wherein the intermediate gear is an idler gear fastened to the bearing cover by a fastener held in the bearing cover.
11. The internal combustion engine as recited in claim 9 wherein the idler gear includes a bearing pin fixed to the bearing cover by the fastener and at least one bearing for rotatably coupling the idler gear to the bearing cover.
12. The internal combustion engine as recited in claim 9 further comprising a drive wheel of an oil pump operatively connected to the crankshaft gear.
13. The internal combustion engine as recited in claim 9 wherein the bearing cover includes an oil supply for suppling oil to a bearing of the intermediate gear.
14. The internal combustion engine as recited in claim 9, wherein the intermediate gear is an idler gear and a lubricating oil supply of an idler gear bearing of the idler gear is tapped from a lubricating oil supply of a main bearing on a crankcase-side in such a way that a supply borehole of a crankcase-side bearing block is partially drilled by which oil is forwarded to the idler gear.
15. The internal combustion engine as recited in claim 9, wherein the intermediate gear is an idler gear and a lubricating oil supply of an idler gear bearing of the idler gear is tapped from a lubricating oil supply of a main bearing on a crankcase-side in such a way that the oil supply of the idler gear bearing takes place by a bearing shell which is installed on the crankcase-side and includes an integrated rear-side oil supply groove.
US17/607,992 2019-05-09 2020-04-14 Internal combustion engine including a mass differential gear including two balance shafts Active US11971080B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019003288.8A DE102019003288A1 (en) 2019-05-09 2019-05-09 Internal combustion engine with mass balancing gear with two balance shafts
DE102019003288.8 2019-05-09
PCT/EP2020/000083 WO2020224796A1 (en) 2019-05-09 2020-04-14 Internal combustion engine having a mass balancing transmission with two balancing shafts

Publications (2)

Publication Number Publication Date
US20220325776A1 true US20220325776A1 (en) 2022-10-13
US11971080B2 US11971080B2 (en) 2024-04-30

Family

ID=70391061

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/607,992 Active US11971080B2 (en) 2019-05-09 2020-04-14 Internal combustion engine including a mass differential gear including two balance shafts

Country Status (6)

Country Link
US (1) US11971080B2 (en)
EP (1) EP3966470A1 (en)
JP (1) JP7432191B2 (en)
CN (1) CN113785138B (en)
DE (1) DE102019003288A1 (en)
WO (1) WO2020224796A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094190A (en) * 1960-06-08 1963-06-18 Gen Motors Corp Internal combustion engine
US3710774A (en) * 1970-10-26 1973-01-16 Allis Chalmers Mfg Co Lube oil pump drive for balancer
US5107802A (en) * 1990-05-28 1992-04-28 Honda Giken Kogyo Kabushiki Kaisha Valve driving mechanism for internal combustion engines
KR20040034834A (en) * 2002-10-17 2004-04-29 현대자동차주식회사 balancer installing structure of an engine
US20100132654A1 (en) * 2008-12-03 2010-06-03 Hyundai Motor Company Balance shaft module for vehicle
DE102012001043A1 (en) * 2012-01-20 2012-08-16 Daimler Ag Method for producing crankshaft of gear train for reciprocating piston internal combustion engine of motor vehicle e.g. passenger car, involves mounting drive wheels on bearing element, for driving the balancer shafts
US8418669B2 (en) * 2010-02-12 2013-04-16 Honda Motor Co., Ltd. Internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637155Y2 (en) * 1978-03-29 1981-09-01
JPS5820750U (en) 1981-08-03 1983-02-08 石川島芝浦機械株式会社 Secondary balancer device for internal combustion engine
DE4128432C2 (en) 1991-08-27 2000-04-27 Deutz Ag Wheel drive
JPH0616748U (en) 1992-08-07 1994-03-04 株式会社クボタ Balancer case assembly device for multi-cylinder engine
DE19750286A1 (en) * 1997-11-13 1999-05-20 Bayerische Motoren Werke Ag Drive arrangement for a second-order compensation device for a reciprocating piston internal combustion engine
DE19936103C2 (en) * 1999-07-31 2001-12-20 Daimler Chrysler Ag Internal combustion engine
JP2001280422A (en) 2000-03-31 2001-10-10 Aisin Seiki Co Ltd Mounting structure of engine balancer
GB0118478D0 (en) 2001-07-28 2001-09-19 Cummins Engine Co Ltd Balancer shaft assembly
JP3845321B2 (en) * 2002-03-11 2006-11-15 本田技研工業株式会社 Engine balancer equipment
DE10240713B4 (en) 2002-09-04 2013-06-06 Deutz Ag Mass-balancing device
JP2007239521A (en) 2006-03-07 2007-09-20 Hitachi Ltd Balancer device of internal combustion engine, and method for assembling the balancer
JP2011144701A (en) 2010-01-12 2011-07-28 Honda Motor Co Ltd Lubricating oil supply device for internal combustion engine
JP5820750B2 (en) 2011-03-14 2015-11-24 株式会社Ihi Tomography apparatus and tomography measurement method
DE102011075897A1 (en) 2011-05-16 2012-11-22 Schaeffler Technologies AG & Co. KG Mass balancing transmission of an internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3094190A (en) * 1960-06-08 1963-06-18 Gen Motors Corp Internal combustion engine
US3710774A (en) * 1970-10-26 1973-01-16 Allis Chalmers Mfg Co Lube oil pump drive for balancer
US5107802A (en) * 1990-05-28 1992-04-28 Honda Giken Kogyo Kabushiki Kaisha Valve driving mechanism for internal combustion engines
KR20040034834A (en) * 2002-10-17 2004-04-29 현대자동차주식회사 balancer installing structure of an engine
US20100132654A1 (en) * 2008-12-03 2010-06-03 Hyundai Motor Company Balance shaft module for vehicle
US8418669B2 (en) * 2010-02-12 2013-04-16 Honda Motor Co., Ltd. Internal combustion engine
DE102012001043A1 (en) * 2012-01-20 2012-08-16 Daimler Ag Method for producing crankshaft of gear train for reciprocating piston internal combustion engine of motor vehicle e.g. passenger car, involves mounting drive wheels on bearing element, for driving the balancer shafts

Also Published As

Publication number Publication date
CN113785138B (en) 2024-04-26
DE102019003288A1 (en) 2020-11-12
CN113785138A (en) 2021-12-10
EP3966470A1 (en) 2022-03-16
US11971080B2 (en) 2024-04-30
WO2020224796A1 (en) 2020-11-12
JP2022531086A (en) 2022-07-06
JP7432191B2 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US9422872B2 (en) Variable compression ratio internal combustion engine
US4836156A (en) Timing transmission device for an internal combustion engine
EP1477635B1 (en) Engine valve moving device
JP4272536B2 (en) Engine lubrication equipment
US3961614A (en) Lubricating system for internal combustion engines
JP3316006B2 (en) Internal combustion engine
US7748292B2 (en) Bearing system and balancer
US6904884B2 (en) Balance device for engines
US20220325776A1 (en) Internal combustion engine including a mass differential gear including two balance shafts
US6334422B1 (en) Lubricating oil feed passage structure in crank shaft
US7293756B2 (en) Engine fastening structure
JPS6223514A (en) Lubricating device for engine
JP4234015B2 (en) Engine lubrication equipment
US7104241B2 (en) Engine fastening structure
GB2221260A (en) Gear driven reciprocating compressors
CN218624359U (en) Mounting structure of engine camshaft
US6736023B1 (en) Torque transmitting device
CN108980193B (en) Eccentric positioning engine idler gear shaft structure
CN108915814B (en) Cam shaft driving device of common rail diesel engine
JP2003247409A (en) Lubrication system for four-cycle engine
US1747504A (en) Compressor mounting for automotive vehicles
GB2026107A (en) An engine-driven compressor crankshaft seal
JP2000282827A (en) Oil passage structure of engine

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

AS Assignment

Owner name: DEUTZ AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOISTEN-PIERITZ, JOACHIM;KLEINSCHMIDT, TONI;SIGNING DATES FROM 20211007 TO 20211011;REEL/FRAME:065109/0146

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE