US20220200320A1 - Charging system for an energy storage in a vehicle and a method for controlling the charging system - Google Patents

Charging system for an energy storage in a vehicle and a method for controlling the charging system Download PDF

Info

Publication number
US20220200320A1
US20220200320A1 US17/644,239 US202117644239A US2022200320A1 US 20220200320 A1 US20220200320 A1 US 20220200320A1 US 202117644239 A US202117644239 A US 202117644239A US 2022200320 A1 US2022200320 A1 US 2022200320A1
Authority
US
United States
Prior art keywords
charging
resistance
current
contactor
switch unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/644,239
Other languages
English (en)
Inventor
Victor Sandgren
Mikaela ÖHMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Truck Corp
Original Assignee
Volvo Truck Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Truck Corp filed Critical Volvo Truck Corp
Assigned to VOLVO TRUCK CORPORATION reassignment VOLVO TRUCK CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ÖHMAN, Mikaela, SANDGREN, Victor
Publication of US20220200320A1 publication Critical patent/US20220200320A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication

Definitions

  • the invention relates to a charging system for controlling charging of an energy storage in an electrical or hybrid vehicle and to a method for controlling such a charging system.
  • the invention can be applied in heavy-duty vehicles, such as trucks, buses and construction equipment. Although the invention will be described with respect to a truck, the invention is not restricted to this particular vehicle, but may also be used in other applications comprising an energy storage.
  • a charging system for an energy storage in a vehicle.
  • the charging system comprises: a plurality of parallelly arranged charging switch units, each charging switch unit having an input terminal configured to be connected to a common charging port, and an output terminal configured to be connected to the energy storage, wherein each charging switch unit comprises a contactor configured to control a flow of current from the charging port to the energy storage, the contactor being configured to have a controllable contact force and wherein the resistance of the contactor depends on the contact force; for each charging switch unit, a measurement device configured to determine a parameter indicative of a resistance in a current path through the charging switch unit; and a charging control unit connected to each of the charging switch units and configured to, if a difference in resistance between any two of the plurality of current paths is higher than a predetermined difference threshold value, control the contact force of a contactor in a charging switch unit in a current path having a deviating resistance to balance the resistances of the current paths.
  • the charging switch units provide a plurality of parallel charging paths between a charging port and one or more energy storages, thereby allowing a higher power to be provided to the battery compared to if only one charging switch unit would be used.
  • the parallelly arranged charging switch units makes for a modular system where conventional components can be used, and where the total capabilities of the charging system can be easily modified by adjusting the number of parallelly arranged charging switch units.
  • the charging switch units may be provided as separate physical unit but it is equally possible to arrange two or more charging switch units in a single package or module.
  • the common charging port is a charging port of the vehicle which is configured to be connected to external charging infrastructure, such as a charging station.
  • the present invention is based on the realization that in a charging system comprising parallel current paths between the charging port and the battery, it is desirable to be able to handle imbalances in the current paths to reduce uneven or exaggerated wear and/or or damage to components of the charging system.
  • An imbalance in the current flowing through the different current paths can lead to damage to the charging switch unit and/or to other components in the charging system and it is therefore important to both detect and mitigate such current imbalances.
  • a potentially harmful imbalance can be detected by observing a parameter indicative of resistance in the current path through a charging switch unit. Based on the observed parameter, a resistance in the current path can be estimated either directly by calculating the resistance or indirectly by employing a known relationship between the measured parameter and the resistance. To determine that there is an imbalance in the system, it is sufficient to detect a difference between any two of the plurality of current paths. Accordingly, in practice, current paths through all charging switch units are monitored and compared to each other. The predetermined difference threshold value is set based on the overall system configuration.
  • the contact force of the contactor can be controlled to balance the resistances.
  • the contactor in the current path having the lowest resistance, i.e. the highest current, the contactor can be controlled to increase the resistance, thereby balancing the currents through the charging switch units. By balancing the currents, damage to the charging switch unit or other components of the charging system can be prevented.
  • the contactor of a current path having the highest resistance can be controlled to decrease the resistance in order to balance the resistances of the plurality of current paths.
  • the contactor of the charging switch unit is of a type where the resistance of the contactor depends on the applied contact force. Moreover, the relation between contact force and contact resistance may be known so that the resistance of the contactor can be quantitatively controlled by controlling the contact force.
  • the contactor is an electromagnetic relay comprising a coil, the electromagnetic relay being configured to have a contact force proportional to a current through the coil.
  • the contact force, and thereby the resistance through the contactor can be controlled by controlling the current to the coil.
  • Different configurations of the contactor are feasible where the contact force is either increased or decreased with an increased current to the coil. It would for example be possible to use a spring loaded “normally-on” contactor to achieve a certain contact force with low or no applied voltage. Moreover, it is not always desirable to apply the highest possible contact force during normal operating conditions. Accordingly, the contactor can be configured in many different ways while still achieving the described functionality of a controllable contact force resulting in a controllable resistance.
  • the contactor comprises a stepper motor, and wherein the contact force is controllable by controlling a position of the stepper motor.
  • the contact force and thereby the resistance through the contactor can be controlled in discrete steps.
  • the measurement device configured to determine a parameter indicative of a resistance may be a current meter or a voltage meter.
  • the measurement device may also be a temperature sensor configured to determine a temperature of the charging switch unit.
  • the current meter may be a common current meter for all of the current paths configured to measure a current through each of the charging switch units, or each charging switch unit may comprise its own current meter and/or a temperature measuring unit.
  • the temperature measuring unit may be any device or unit capable of measuring the temperature of the charging switch unit and should not be limited to any particular temperature measuring technique. It should also be noted that the current meter does not have to be arranged within the charging switch unit as such, it is sufficient that the current meter is arranged to measure a current in the current path for a given charging switch unit.
  • the charging control unit is further configured to control the contact force of a contactor to reduce the current through any charging switch unit having a temperature above a predetermined threshold temperature. Thereby, it can be controlled that none of the charging switch units are above a threshold temperature.
  • the charging control unit is further configured to control the contact force of a contactor of a charging switch unit only if a current through the charging switch unit is above a predetermined current threshold value.
  • An imbalance in the currents through the charging switch units as such it not necessarily harmful unless the absolute current level reaches a certain level.
  • an imbalance can be allowed to persist if the absolute current level is sufficiently low.
  • measures can be taken to reduce the current through at least the charging switch unit having the highest current to prevent damage to the charging switch unit.
  • the charging control unit is further configured to determine a resistance for each current path through a charging switch unit, and if a resistance in any one current path is deviating from resistances in other current paths by more than a predetermined resistance threshold value, to control the contact force of a contactor in the one or more current path with the deviating resistance to equalize the resistance for all current paths.
  • a resistance in any one current path is deviating from resistances in other current paths by more than a predetermined resistance threshold value
  • the contactors may be set at a non-zero resistance value, in which case balancing could be achieved by decreasing the resistance if required.
  • balancing could be achieved by decreasing the resistance if required.
  • the charging control unit is further configured to select a resistance of one current path as a reference resistance and to compare resistances in the other current paths with the reference resistance.
  • the reference resistance may for example be the current path having the highest or lowest resistance, thereby ensuring that the maximum difference between two current paths can be determined.
  • the charging system comprises a plurality of parallelly arranged charging switch units, each charging switch unit having an input terminal configured to be connected to a common charging port, and an output terminal configured to be connected to an energy storage, wherein each charging switch unit comprises a contactor configured to control a flow of current in a current path from the charging port to the energy storage, the contactor being configured to have a controllable contact force and wherein the resistance of the contactor depends on the contact force.
  • the method comprises: determining a resistance for each current path; and if a difference in resistance between any two of the plurality of charging switch units is higher than a predetermined threshold value, controlling the contact force of a contactor in a charging switch unit in a current path having a deviating resistance to balance the resistances of the current paths.
  • controlling the contact force of the contactor comprises controlling the current supplied to a coil of an electromagnetic relay and/or controlling a position of a stepper motor in the contactor.
  • controlling the contact force and thereby the contact resistance of a charging switch unit may be known, or the resistance may be continuously determined so that a feedback control loop can be used to control the contact force to reach the desired resistance.
  • the method may further comprise:
  • the method may further comprise selecting a resistance of one current path as a reference resistance and comparing resistances in the other current paths with the reference resistance.
  • FIG. 1 is a schematic illustration of a charging system according to an embodiment of the invention
  • FIG. 2 is a schematic illustration of a charging switch unit of a charging system according to an embodiment of the invention
  • FIG. 3 is a schematic illustration of a charging switch unit of a charging system according to an embodiment of the invention.
  • FIG. 4 is a schematic illustration of a contactor of a charging switch unit in a charging system according to an embodiment of the invention
  • FIG. 5 is a flow chart outlining steps of a method according to an embodiment of the invention.
  • FIG. 6 is a schematic illustration of a vehicle comprising a charging system according to an embodiment of the invention.
  • a charging system for an energy storage in a vehicle is mainly discussed with reference to a charging system in a truck. It should however be noted that this by no means limits the scope of the present invention since the described invention is equally applicable in other types of vehicles such as cars, buses and construction vehicles.
  • the described charging system may also be used in marine applications such as boats and ships, and in other applications requiring charging at high power levels, for example of a high capacity battery.
  • FIG. 1 schematically illustrates a charging system 100 for an energy storage 102 in a vehicle.
  • the energy storage 102 may be a battery in a truck, and due to the high capacity batteries required to power heavy vehicles it may be required to provide a charging system capable of transferring a high charging power to reduce charging times and thereby increase the uptime of the vehicle.
  • the charging system 100 comprises a plurality of parallelly arranged charging switch units 104 a - d , each charging switch unit 104 a - d having an input terminal 106 a - d configured to be connected to a common charging port 108 , and an output terminal 110 a - d configured to be connected to the energy storage 102 .
  • a charging switch unit 104 is illustrated in further detail in FIG. 2 where it can be seen that the charging switch unit 104 comprises a contactor 200 configured to control a current flow from the charging port 108 to the energy storage 102 .
  • the charging switch units 104 a - d can be considered to be identical although it would in principle be possible to use charging switch units 104 having different properties. However, by using identical units, manufacturing, system assembly and maintenance is simplified since the number of unique components in the charging system 100 can be kept the same for systems having different power transfer capabilities.
  • the energy storage 102 is illustrated to comprise a plurality of inputs, one for each charging switch unit 104 a - d .
  • the different current paths via the respective charging switch units 104 a - d may equally well be connected to a single input of the energy storage 102 , depending on the configuration of the energy storage.
  • the connection to the energy storage can be configured to suit the specific energy storage used for a given application.
  • the charging system 100 further comprises at least one measurement device 202 configured to determine a parameter indicative of a resistance in a current path through each charging switch unit 104 a - d .
  • the measurement device 202 is illustrated as an ohmmeter 202 arranged to measure a resistance through the charging switch unit 104 .
  • the resistance may also be determined by measuring parameters such as current voltage and/or temperature as illustrate by the voltmeter 300 , current meter 302 and temperature sensing unit 304 of FIG. 3 .
  • the resistance of the wiring to and from the charging switch unit 104 is substantially constant, and that a notable change in resistance is due to a change in the charging switch unit 104 , and in particular due to heating of the charging switch unit 104 .
  • an imbalance can also occur as result of a change in the properties of a connection in the wiring, such as a connection coming loose or corroding.
  • the voltmeter 300 , the current meter 302 and/or the temperature sensing unit 204 may be integrated in the charging switch unit 104 , but it would also be possible to provide them separately from the charging switch unit 104 .
  • the current meter 202 in particular could be positioned anywhere between the charging port 108 and the energy storage 102 as long as it is possible to measure the current in each current path through a charging switch unit 104 a - d . If the relationship between the temperature of and current through the charging switch unit 104 is known, it is sufficient to measure the temperature.
  • the relationship between current and temperature may for example be based on a mathematical model or it may be known from a look-up table which is based on empirical data. Accordingly, there are a number of different ways in which the resistance of the charging switch unit 104 can be determined.
  • the charging system comprises a charging control unit 116 connected to each of the charging switch units 104 a - d .
  • the control unit 116 may include a microprocessor, microcontroller, programmable digital signal processor or another programmable device.
  • the control unit 116 may also, or instead, include an application specific integrated circuit, a programmable gate array or programmable array logic, a programmable logic device, or a digital signal processor.
  • the control unit 116 includes a programmable device such as the microprocessor, microcontroller or programmable digital signal processor mentioned above, the processor may further include computer executable code that controls operation of the programmable device.
  • the functionality of the control unit may also be distributed over a plurality of control units, or electronic control units (ECUs).
  • the charging control unit 116 is configured to, if an estimated difference in resistance between any two of the plurality of current paths is higher than a predetermined difference threshold value, control the contact force of a contactor 200 of a charging switch unit 104 a - d in a current path having a deviating resistance to balance the resistances of the current paths.
  • the current path is here described as a path from the common charging port 108 , through one charging switch unit 104 a - d and to the energy source. It should be noted that in an implementation having a different system configuration, the current path may be described as a path from the input port 104 a - d to a corresponding output port 110 a - d of the charging switch unit 104 a - d.
  • FIG. 4 schematically illustrates an example contactor 200 for two different contact forces.
  • the contact force is lower than in the second position 402 .
  • the contact area is smaller, and the resistance is consequently higher compared for a higher contact force 402 where the contact area is increased, and the contact resistance is thereby decreased.
  • the general relation for the described contact is that an increased contact force results in a decreased contact resistance.
  • each charging switch unit 104 a - d comprises an actuator for controlling the contact force of the contactor 200 .
  • the actuator may for example be a coil in an electromagnetic relay where the contact force is proportional to the current supplied to the coil or it may be a stepper motor where the contact force is proportional to the position of the motor.
  • Other types of contactors are also feasible as long as there is a controllable relation between an applied force and the contact resistance.
  • balancing the resistances of the current paths may for example comprise identifying a current path having a lower resistance than the other current paths, and increasing the resistance of that current path by decreasing the contact force of the contactor.
  • FIG. 5 is flow chart outlining the general steps of an embodiment of a method of controlling the charging system 100 according to an embodiment of the invention.
  • the method comprises determining 500 a resistance for each current path through a charging switch unit 104 a - d ; and if an estimated difference in resistance between any two of the plurality of current paths through charging switch units 104 a - d is higher than a predetermined difference threshold value, controlling 502 the contact force of a contactor 200 in a charging switch unit 104 in a current path having a deviating resistance to balance the resistances of the current paths.
  • the method can be performed by the control unit 116 of the charging system 100 .
  • FIG. 6 schematically illustrates a truck 600 comprising a charging system 100 according to any of the aforementioned embodiments.
  • the vehicle 600 is equipped with an externally accessible charging port 108 for connecting the charging system to a charging station or any other energy source capable of charging the vehicle battery.
  • Other charging types are also possible, such as wireless charging or contact charging e.g. by means of a pantograph mounted on the roof of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
US17/644,239 2020-12-21 2021-12-14 Charging system for an energy storage in a vehicle and a method for controlling the charging system Pending US20220200320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20216080.0 2020-12-21
EP20216080.0A EP4016786A1 (en) 2020-12-21 2020-12-21 A charging system for an energy storage in a vehicle and a method for controlling the charging system

Publications (1)

Publication Number Publication Date
US20220200320A1 true US20220200320A1 (en) 2022-06-23

Family

ID=73856184

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/644,239 Pending US20220200320A1 (en) 2020-12-21 2021-12-14 Charging system for an energy storage in a vehicle and a method for controlling the charging system

Country Status (3)

Country Link
US (1) US20220200320A1 (zh)
EP (1) EP4016786A1 (zh)
CN (1) CN114643893B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117507920B (zh) * 2024-01-04 2024-03-22 质子汽车科技有限公司 充电系统及充电方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265629A1 (en) * 2009-04-16 2010-10-21 Howard Beckerman Relay Coil Drive Circuit
CN103262198B (zh) * 2010-12-20 2016-01-13 西门子公司 用于电磁继电器的驱动电路
DE102011100151B4 (de) * 2011-04-29 2018-10-11 Thyssenkrupp System Engineering Gmbh Verfahren zum Abgleichen wenigstens zweier elektrischer Energiespeicherzellen und Abgleichvorrichtung
JP6828296B2 (ja) * 2016-08-09 2021-02-10 株式会社Gsユアサ 蓄電装置および蓄電装置の充電制御方法
DE102017210616B4 (de) * 2017-06-23 2021-08-12 Audi Ag Verfahren zum Betreiben einer Vielzahl von Nutzeinheiten für einen Verschleißangleich in einer Energieliefervorrichtung sowie Energieliefervorrichtung
JP2019118186A (ja) * 2017-12-27 2019-07-18 三菱自動車工業株式会社 バッテリーマネージメントシステム
CN209230815U (zh) * 2018-11-14 2019-08-09 厦门科华恒盛股份有限公司 充电枪温度检测电路及充电枪
WO2020104013A1 (en) * 2018-11-20 2020-05-28 Volvo Truck Corporation A battery system for a vehicle
CN112018844B (zh) * 2020-08-24 2022-04-22 维沃移动通信有限公司 充电参数检测电路、方法及充电器

Also Published As

Publication number Publication date
CN114643893B (zh) 2024-04-19
EP4016786A1 (en) 2022-06-22
CN114643893A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US11142217B2 (en) Method for monitoring the supply of power to a motor vehicle having an automated driving function
CN106662603B (zh) 具备分流电阻器的电流检测装置和电源装置
JP5654687B2 (ja) 継電器又は接触器の動作能力を予測する方法
JP4141444B2 (ja) 車載エンジン制御装置
US10107847B2 (en) Diagnostic method for contactor resistance failure
GB2546789A (en) Arrangement with battery system for providing electric energy to a vehicle
US7330046B2 (en) Circuits and methods for failure prediction of parallel MOSFETs
US9921270B2 (en) Battery system with cell voltage detecting units
US20220200320A1 (en) Charging system for an energy storage in a vehicle and a method for controlling the charging system
CN109795368B (zh) 电源控制系统和电源控制方法
WO2015098451A1 (ja) リレーの異常検出方法
JP2021532014A (ja) 自動車内のエネルギ供給を監視する方法
US20060149427A1 (en) Apparatus for monitoring a supply system, in particular a motor-vehicle electrical system, and method for monitoring a supply system for this type
KR20130033196A (ko) 배터리 관리 시스템 및 배터리 관리 방법
CN108973686A (zh) 控制机动车中间电路的预充电电路的方法及具有预充电电路的高压电池和机动车
CN112753148A (zh) 电源系统和管理装置
JP6853797B2 (ja) 電池監視装置および継電器状態の診断方法
US10115549B2 (en) Electrical storage system
CN113906302A (zh) 用于测定电的供应导线的电阻的方法
EP4015287A1 (en) A charging system for an energy storage in a vehicle and a method for controlling the charging system
EP4015296A1 (en) A charging system for a vehicle and a method for controlling the charging system
US9178383B2 (en) Control and diagnostics of multiple electrical generating machines using an external voltage regulator
US11500002B2 (en) Method for determining an electrical variable
WO2021250935A1 (ja) 継電器制御装置、および継電器制御装置の制御方法
KR20230034597A (ko) 차량의 배터리팩 용량 균등화 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOLVO TRUCK CORPORATION, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANDGREN, VICTOR;OEHMAN, MIKAELA;REEL/FRAME:058526/0517

Effective date: 20211217

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION