US20220130905A1 - 3d semiconductor device and structure with transistors - Google Patents
3d semiconductor device and structure with transistors Download PDFInfo
- Publication number
- US20220130905A1 US20220130905A1 US17/572,550 US202217572550A US2022130905A1 US 20220130905 A1 US20220130905 A1 US 20220130905A1 US 202217572550 A US202217572550 A US 202217572550A US 2022130905 A1 US2022130905 A1 US 2022130905A1
- Authority
- US
- United States
- Prior art keywords
- single crystal
- channel
- transistors
- layer
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 239000013078 crystal Substances 0.000 claims abstract description 157
- 238000000034 method Methods 0.000 claims description 114
- 230000008569 process Effects 0.000 claims description 60
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- 238000012546 transfer Methods 0.000 claims description 19
- 238000001459 lithography Methods 0.000 claims description 16
- 239000010410 layer Substances 0.000 description 243
- 230000015654 memory Effects 0.000 description 117
- 235000012431 wafers Nutrition 0.000 description 76
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 60
- 239000010703 silicon Substances 0.000 description 59
- 229910052710 silicon Inorganic materials 0.000 description 57
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 47
- 238000005516 engineering process Methods 0.000 description 43
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 30
- 229920005591 polysilicon Polymers 0.000 description 28
- 230000002093 peripheral effect Effects 0.000 description 22
- 239000001257 hydrogen Substances 0.000 description 19
- 229910052739 hydrogen Inorganic materials 0.000 description 19
- 229910052814 silicon oxide Inorganic materials 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 230000008859 change Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 239000002070 nanowire Substances 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000002955 isolation Methods 0.000 description 11
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 11
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 238000007667 floating Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 239000007943 implant Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H01L27/2481—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/84—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8221—Three dimensional integrated circuits stacked in different levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823871—Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
- H01L21/845—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
- H01L27/0694—Integrated circuits having a three-dimensional layout comprising components formed on opposite sides of a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H01L27/10802—
-
- H01L27/10897—
-
- H01L27/11—
-
- H01L27/11529—
-
- H01L27/11551—
-
- H01L27/11578—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
- H01L27/1211—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H01L27/228—
-
- H01L27/2436—
-
- H01L27/249—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7841—Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/20—DRAM devices comprising floating-body transistors, e.g. floating-body cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/50—Peripheral circuit region structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/41—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/84—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
- H10B63/845—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L2029/7857—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET of the accumulation type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2007—Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823475—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/6834—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/6835—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68368—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/105—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
- H01L29/42392—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
- H10B12/056—Making the transistor the transistor being a FinFET
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/36—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being a FinFET
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/823—Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Definitions
- This invention describes applications of monolithic 3D integration to at least semiconductor chips performing logic and memory functions.
- CMOS Complimentary Metal Oxide Semiconductor
- 3D stacking of semiconductor chips is one avenue to tackle issues with wires.
- transistors By arranging transistors in 3 dimensions instead of 2 dimensions (as was the case in the 1990s), one can place transistors in ICs closer to each other. This reduces wire lengths and keeps wiring delay low.
- barriers to practical implementation of 3D stacked chips include:
- 3D stacked memory In the NAND flash memory industry, several organizations have attempted to construct 3D stacked memory. These attempts predominantly use transistors constructed with poly-Si or selective epi technology as well as charge-trap concepts. References that describe these attempts to 3D stacked memory include “Integrated Interconnect Technologies for 3D Nanoelectronic Systems”, Artech House, 2009 by Bakir and Meindl (“Bakir”), “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory”, Symp. VLSI Technology Tech. Dig. pp. 14-15, 2007 by H. Tanaka, M. Kido, K. Yahashi, et al.
- the invention may be directed to at least multilayer or Three Dimensional Integrated Circuit (3D IC) devices, structures, and fabrication methods.
- 3D IC Three Dimensional Integrated Circuit
- a method for producing a 3D memory device including: providing a first level including a single crystal layer and first alignment marks; forming memory control circuits including first single crystal transistors, where the first single crystal transistors include portions of the single crystal layer; forming at least one second level above the first level; performing a first lithographic step over the at least one second level aligned to the first alignment marks; forming at least one third level above the at least one second level; performing a second lithographic step over the third level; performing a first etch step including etching holes within the third level defined by the second lithographic step; performing a third lithographic step over the at least one third level; performing a second etch step including etching holes within the at least one third level and the at least one second level defined by the third lithographic step; and performing additional processing steps to form a plurality of first memory cells within the at least one second level and a plurality of second memory cells within the at least one third level, where each of the plurality of first memory cells include one
- a method for producing a 3D memory device including: providing a first level including a single crystal layer and first alignment marks; forming memory control circuits including first single crystal transistors, where the first single crystal transistors include portions of the single crystal layer; forming at least one second level above the first level; performing a first etch step including etching lithography windows within the at least one second level; performing a first lithographic step over the at least one second level aligned to the first alignment marks; forming at least one third level above the at least one second level; performing a second lithographic step over the at least one third level; performing a second etch step including etching holes within the at least one third level defined by the second lithographic step; performing a third lithographic step over the at least one third level; performing a third etch step including etching holes within the at least one third level and the at least one second level defined by the third lithographic step; and performing additional processing steps to form a plurality of first memory cells within the at least one second level
- a method for producing a 3D memory device including: providing a first level including a single crystal layer and first alignment marks; forming memory control circuits including first single crystal transistors, where the first single crystal transistors include portions of the single crystal layer; forming at least one second level above the first level; performing a first etch step including etching lithography windows within the at least one second level; performing a first lithographic step over the at least one second level aligned to the first alignment marks; and performing additional processing steps to form a plurality of first memory cells within the at last one second level, where each of the plurality of first memory cells include one of a plurality of second transistors, and where the plurality of second transistors are aligned to the first alignment marks with a less than 40 nm alignment error.
- a 3D semiconductor device including: a first level including a first single crystal layer and first transistors, where the first transistors each include a single crystal channel; first metal layers interconnecting at least the first transistors; and a second level including a second single crystal layer and second transistors, where the second level overlays the first level, where the second transistors are horizontally oriented and include replacement gate, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
- a 3D semiconductor device including: a first level including a first single crystal layer and alignment marks; first transistors overlaying the first single crystal layer; and second transistors overlaying the first transistors, where the first transistors and the second transistors are self-aligned, being processed following the same lithography step, where the second transistors include replacement gate, being processed to replace a poly silicon gate to a metal based gate, where the first level includes third transistors disposed below the first transistor, where the third transistors are aligned to the alignment marks, and where the third transistors each include a single crystal channel.
- a 3D semiconductor device including: a first level including a first single crystal layer, first transistors, and second transistors, where the second transistors are overlaying the first transistors, and where the first transistors and the second transistors are self-aligned, being processed following the same lithography step; and a second level including a second single crystal layer and third transistors, where the second level overlays the first level, where the third transistors are horizontally oriented and include replacement gate, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
- a 3D semiconductor device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, and where the fourth single crystal channel is disposed above the third single crystal channel; and at least one region of oxide to oxide bonds.
- a 3D semiconductor device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, where the fourth single crystal channel is disposed above the third single crystal channel; and at least one region of oxide to oxide bonds, where the at least one region of oxide to oxide bonds is disposed underneath the third single crystal channel and above the second single crystal channel.
- a 3D semiconductor device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, where the fourth single crystal channel is disposed above the third single crystal channel; and a layer of oxide to oxide bonds; and a single crystal substrate.
- a 3D semiconductor device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a second single crystal source, channel, and drain, where the second single crystal source, channel, and drain is disposed above the first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a third single crystal source, channel, and drain, where the third single crystal source, channel, and drain is disposed above the second single crystal source, channel, and drain, where at least one of the plurality of transistors includes a fourth single crystal source, channel, and drain, and where the fourth single crystal source, channel, and drain is disposed above the third single crystal source, channel, and drain; and an ohmic connection between the first single crystal source or drain and the second single crystal source or drain.
- a 3D semiconductor device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a second single crystal source, channel, and drain, where the second single crystal source, channel, and drain is disposed above the first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a third single crystal source, channel, and drain, where the third single crystal source, channel, and drain is disposed above the second single crystal source, channel, and drain, where at least one of the plurality of transistors includes a fourth single crystal source, channel, and drain, and where the first single crystal source or drain, and the second single crystal source or drain each include n+ doped regions.
- a 3D semiconductor device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, where the fourth single crystal channel is disposed above the third single crystal channel, and where formation of the fourth single crystal channel includes a layer transfer process.
- FIGS. 1A-1C show different types of junction-less transistors (JLT) that could be utilized for 3D stacking
- FIGS. 2A-2K show a zero-mask per layer 3D floating body DRAM
- FIGS. 3A-3J show a zero-mask per layer 3D resistive memory with a junction-less transistor
- FIGS. 4A-4K show an alternative zero-mask per layer 3D resistive memory
- FIGS. 5A-5G show a zero-mask per layer 3D charge-trap memory
- FIGS. 6A-6B show periphery on top of memory layers
- FIGS. 8A-8F show polysilicon select devices for 3D memory and peripheral circuits at the top according to some embodiments of the current invention
- FIGS. 9A-9F illustrate a process flow for 3D integrated circuits with gate-last high-k metal gate transistors and face-up layer transfer
- FIGS. 11A-11G illustrate using a carrier wafer for layer transfer
- FIGS. 12A-12K illustrate constructing chips with nMOS and pMOS devices on either side of the wafer
- FIG. 13 illustrates constructing transistors with front gates and back gates on either side of the semiconductor layer
- FIG. 14A-14I show process flows for constructing 3D stacked logic chips using four-side gated junction-less transistors as switches.
- FIGS. 1-14 illustrate the subject matter not to scale or to measure.
- Many figures describe process flows for building devices. These process flows, which are essentially a sequence of steps for building a device, have many structures, numerals and labels that are common between two or more adjacent steps. In such cases, some labels, numerals and structures used for a certain step's figure may have been described in previous steps' figures.
- FIG. 1A-1D shows that JLTs that can be 3D stacked fall into four categories based on the number of gates they use: One-side gated JLTs as shown in FIG. 1A , two-side gated JLTs as shown in FIG. 1B , three-side gated JLTs as shown in FIG. 1C , and gate-all-around JLTs as shown in FIG. 1D .
- the JLTS shown may include n+Si 102 , gate dielectric 104 , gate electrode 106 , n+ source region 108 , n+ drain region 110 , and n+ region under gate 112 .
- the gate gets more control of the channel, thereby reducing leakage of the JLT at 0V.
- the enhanced gate control can be traded-off for higher doping (which improves contact resistance to source-drain regions) or bigger JLT cross-sectional areas (which is easier from a process integration standpoint).
- adding more gates typically increases process complexity.
- Some embodiments of this invention may involve floating body DRAM. Background information on floating body DRAM and its operation is given in “Floating Body RAM Technology and its Scalability to 32 nm Node and Beyond,” Electron Devices Meeting, 2006 . IEDM ' 06 . International , vol., no., pp. 1-4, 11-13 Dec. 2006 by T. Shino, N. Kusunoki, T.
- FIG. 2A-K describe a process flow to construct a horizontally-oriented monolithic 3D DRAM.
- This monolithic 3D DRAM utilizes the floating body effect and double-gate transistors.
- No mask is utilized on a “per-memory-layer” basis for the monolithic 3D DRAM concept shown in FIG. 2A-K , and all other masks are shared between different layers.
- the process flow may include several steps in the following sequence.
- FIG. 2A shows a drawing illustration after Step (A).
- a wafer of p ⁇ Silicon 208 has an oxide layer 206 grown or deposited above it.
- hydrogen is implanted into the p ⁇ Silicon wafer at a certain depth indicated by 214 .
- some other atomic species such as Helium could be (co-)implanted.
- This hydrogen implanted p ⁇ Silicon wafer 208 forms the top layer 210 .
- the bottom layer 212 may include the peripheral circuits 202 with oxide layer 204 .
- FIG. 2C illustrates the structure after Step (C).
- the stack of top and bottom wafers after Step (B) is cleaved at the hydrogen plane 3014 using either a anneal or a sideways mechanical force or other means.
- a CMP process is then conducted.
- a layer of silicon oxide 218 is then deposited atop the p ⁇ Silicon layer 216 .
- a single-crystal p ⁇ Si layer 216 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
- Step (F) p ⁇ regions not covered by the gate are implanted to form n+ silicon regions 228 .
- Spacers are utilized during this multi-step implantation process and layers of silicon present in different layers of the stack have different spacer widths to account for lateral straggle of buried layer implants. Bottom layers could have larger spacer widths than top layers.
- a thermal annealing step such as a RTA or spike anneal or laser anneal or flash anneal, is then conducted to activate n+ doped regions.
- a silicon oxide layer 230 is then deposited and planarized.
- FIG. 2K shows cross-sectional views of the array for clarity. Double-gated transistors may be utilized along with the floating body effect for storing information. A floating-body DRAM has thus been constructed, with (1) horizontally-oriented transistors—i.e.
- transistor channels (2) some of the memory cell control lines, e.g., source-lines SL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates simultaneously deposited over multiple memory layers, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut.
- some of the memory cell control lines e.g., source-lines SL, constructed of heavily doped silicon and embedded in the memory cell layer
- side gates simultaneously deposited over multiple memory layers and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut.
- resistive-memory types include phase change memory, Metal Oxide memory, resistive RAM (RRAM), memristors, solid-electrolyte memory, ferroelectric RAM, MRAM, etc. Background information on these resistive-memory types is given in “Overview of candidate device technologies for storage-class memory,” IBM Journal of Research and Development , vol. 52, no. 4.5, pp. 449-464, July 2008 by Burr, G. W.; Kurdi, B. N.; Scott, J. C.; Lam, C. H.; Gopalakrishnan, K.; Shenoy, R. S.
- FIGS. 3A-3J describe a novel memory architecture for resistance-based memories, and a procedure for its construction.
- the memory architecture utilizes junction-less transistors and has a resistance-based memory element in series with a transistor selector. No mask is utilized on a “per-memory-layer” basis for the monolithic 3D resistance change memory (or resistive memory) concept shown in FIG. 3A-J , and all other masks are shared between different layers.
- the process flow may include several steps that occur in the following sequence.
- the stack of top and bottom wafers after Step (B) is cleaved at the hydrogen plane 314 using either an anneal or a sideways mechanical force or other means.
- a CMP process is then conducted.
- a layer of silicon oxide 318 is then deposited atop the n+ Silicon layer 316 .
- a single-crystal n+Si layer 316 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
- FIG. 4A shows a drawing illustration after Step (A).
- a wafer of p ⁇ Silicon 408 has an oxide layer 406 grown or deposited above it. Following this, hydrogen is implanted into the p ⁇ Silicon wafer at a certain depth indicated by 414 . Alternatively, some other atomic species such as Helium could be (co-)implanted. This hydrogen implanted p ⁇ Silicon wafer 408 forms the top layer 410 .
- the bottom layer 412 may include the peripheral circuits 402 with oxide layer 404 .
- the stack of top and bottom wafers after Step (B) is cleaved at the hydrogen plane 414 using either a anneal or a sideways mechanical force or other means.
- a CMP process is then conducted.
- a layer of silicon oxide 418 is then deposited atop the p ⁇ Silicon layer 416 .
- a single-crystal p ⁇ Si layer 416 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
- FIG. 5A shows a drawing illustration after Step (A).
- a wafer of n+ Silicon 508 has an oxide layer 506 grown or deposited above it. Following this, hydrogen is implanted into the n+ Silicon wafer at a certain depth indicated by 514 . Alternatively, some other atomic species such as Helium could be implanted. This hydrogen implanted n+ Silicon wafer 508 forms the top layer 510 .
- the bottom layer 512 may include the peripheral circuits 502 with oxide layer 504 .
- FIGS. 6A-6B show it is not the only option for the architecture to have the peripheral transistors, such as periphery 602 , below the memory layers, including, for example, memory layer 604 , memory layer 606 , and/or memory layer 608 .
- Peripheral transistors such as periphery 610 , could also be constructed above the memory layers, including, for example, memory layer 604 , memory layer 606 , and/or memory layer 608 , and substrate or memory layer 612 , as shown in FIG. 6B .
- This periphery layer would utilize technologies described in this application; parent application and incorporated references, and could utilize transistors, for example, junction-less transistors or recessed channel transistors.
- FIG. 8A-F show another embodiment of the current invention, where polysilicon junction-less transistors are used to form a 3D resistance-based memory.
- the utilized junction-less transistors can have either positive or negative threshold voltages.
- the process may include the following steps occurring in sequence:
- RTA Rapid Thermal Anneal
- Step (C) The polysilicon region obtained after Step (C) is indicated as 810 . Since there are no circuits under these layers of polysilicon, very high temperatures (such as 1400° C.) can be used for the anneal process, leading to very good quality polysilicon with few grain boundaries and very high mobilities approaching those of single crystal silicon. Alternatively, a laser anneal could be conducted, either for all layers 806 at the same time or layer by layer at different times. Step (D): This is illustrated in FIG. 8D . Procedures similar to those described in FIG. 32E-H of incorporated parent reference U.S. Pat. No.
- FIG. 8D which has multiple levels of junctionless transistor selectors for resistive memory devices.
- the resistance change memory is indicated as 836 while its electrode and contact to the BL is indicated as 840 .
- the WL is indicated as 832 , while the SL is indicated as 834 .
- Gate dielectric of the junction-less transistor is indicated as 826 while the gate electrode of the junction-less transistor is indicated as 824 , this gate electrode also serves as part of the WL 832 .
- Silicon oxide is indicated as 830 Step (E): This is illustrated in FIG. 8E .
- Bit lines (indicated as BL 838 ) are constructed. Contacts are then made to peripheral circuits and various parts of the memory array as described in embodiments described previously.
- materials for memory layer transistors and memory layer wires e.g., by using tungsten and other materials that withstand high temperature processing for
- Section 1 of incorporated parent reference U.S. Pat. No. 8,026,521, described the formation of 3D stacked semiconductor circuits and chips with sub-400° C. processing temperatures to build transistors and high density of vertical connections.
- this section an alternative method is explained, in which a transistor is built with any replacement gate (or gate-last) scheme that is utilized widely in the industry. This method allows for high temperatures (above 400 C) to build the transistors.
- This method utilizes a combination of three concepts:
- FIG. 9A-9F The method mentioned in the previous paragraph is described in FIG. 9A-9F .
- the procedure may include several steps as described in the following sequence:
- This temporary carrier wafer 2512 could be constructed of glass. Alternatively, it could be constructed of silicon.
- the temporary bonding adhesive 2514 could be a polymer material, such as a polyimide.
- a anneal or a sideways mechanical force is utilized to cleave the wafer at the hydrogen plane 2510 .
- a CMP process is then conducted.
- FIG. 9D illustrates the structure after Step (D).
- FIG. 9F illustrates the structure after Step (F). The remainder of the transistor, contact, and wiring layers are then constructed.
- FIG. 10A illustrates the structure after Step (A).
- FIG. 10B illustrates the structure after Step (B).
- FIG. 10D illustrates the structure after Step (D). Following this, other process steps in the fabrication flow proceed as usual.
- FIGS. 11A-11G illustrate using a carrier wafer for layer transfer.
- FIG. 11A illustrates the first step of preparing transistors with dummy gates 4602 on first donor wafer (or top wafer) 4606 . This completes the first phase of transistor formation.
- FIG. 11B illustrates forming a cleave line 4608 by implant 4616 of atomic particles such as H+.
- FIG. 11C illustrates permanently bonding the first donor wafer 4606 to a second donor wafer 4626 .
- the permanent bonding may be oxide to oxide wafer bonding as described previously.
- FIG. 11D illustrates the second donor wafer 4626 acting as a carrier wafer after cleaving the first donor wafer off potentially at face 4632 ; leaving a thin layer 4606 with the now buried dummy gate transistors 4602 .
- FIG. 11E illustrates forming a second cleave line 4618 in the second donor wafer 4626 by implant 4646 of atomic species such as H+.
- FIG. 11F illustrates the second layer transfer step to bring the dummy gate transistors 4602 ready to be permanently bonded on top of the bottom layer of transistors and wires 4601 .
- FIG. 11G illustrates the bottom layer of transistors and wires 4601 with the dummy gate transistor 4602 on top after cleaving off the second donor wafer and removing the layers on top of the dummy gate transistors. Now we can proceed and replace the dummy gates with the final gates, form the metal interconnection layers, and continue the 3D fabrication process.
- an SOI (Silicon On Insulator) donor (or top) wafer 4700 may be processed in the normal state of the art high k metal gate gate-last manner with adjusted thermal cycles to compensate for later thermal processing up to the step prior to where CMP exposure of the polysilicon dummy gates 4704 takes place.
- FIG. 12A an SOI (Silicon On Insulator) donor (or top) wafer 4700 may be processed in the normal state of the art high k metal gate gate-last manner with adjusted thermal cycles to compensate for later thermal processing up to the step prior to where CMP exposure of the polysilicon dummy gates 4704 takes place.
- FIG. 12A illustrates a cross section of the SOI donor wafer substrate 4700 , the buried oxide (BOX) 4701 , the thin silicon layer 4702 of the SOI wafer, the isolation 4703 between transistors, the polysilicon 4704 and gate oxide 4705 of n-type CMOS transistors with dummy gates, their associated source and drains 4706 for NMOS, NMOS transistor channel regions 4707 , and the NMOS interlayer dielectric (ILD) 4708 .
- the PMOS device may be constructed at this stage. This completes the first phase of transistor formation.
- an implant of an atomic species 4710 is done to prepare the cleaving plane 4712 in the bulk of the donor substrate, as illustrated in FIG. 12B .
- the SOI donor wafer 4700 is now permanently bonded to a carrier wafer 4720 that has been prepared with an oxide layer 4716 for oxide to oxide bonding to the donor wafer surface 4714 as illustrated in FIG. 12C .
- the details have been described previously.
- the donor wafer 4700 may then be cleaved at the cleaving plane 4712 and may be thinned by chemical mechanical polishing (CMP) and surface 4722 may be prepared for transistor formation.
- CMP chemical mechanical polishing
- the donor wafer layer 4700 at surface 4722 may be processed in the normal state of the art gate last processing to form the PMOS transistors with dummy gates. During processing the wafer is flipped so that surface 4722 is on top, but for illustrative purposes this is not shown in the subsequent FIGS. 12E-12G .
- FIG. 12E illustrates the cross section with the buried oxide (BOX) 4701 , the now thin silicon layer 4700 of the SOI substrate, the isolation 4733 between transistors, the polysilicon 4734 and gate oxide 4735 of p-type CMOS dummy gates, their associated source and drains 4736 for PMOS, PMOS transistor channel regions 4737 and the PMOS interlayer dielectric (ILD) 4738 .
- the PMOS transistors may be precisely aligned at state of the art tolerances to the NMOS transistors due to the shared substrate 4700 possessing the same alignment marks.
- the wafer could be put into high temperature cycle to activate both the dopants in the NMOS and the PMOS source drain regions.
- an implant of an atomic species 4740 such as H+, may prepare the cleaving plane 4721 in the bulk of the carrier wafer substrate 4720 for layer transfer suitability, as illustrated in FIG. 12F .
- the PMOS transistors are now ready for normal state of the art gate-last transistor formation completion.
- the inter layer dielectric 4738 may be chemical mechanically polished to expose the top of the polysilicon dummy gates 4734 .
- the dummy polysilicon gates 4734 may then be removed by etch and the PMOS hi-k gate dielectric 4740 and the PMOS specific work function metal gate 4741 may be deposited.
- An aluminum fill 4742 may be performed on the PMOS gates and the metal CMP′ed.
- a dielectric layer 4739 may be deposited and the normal gate 4743 and source/drain 4744 contact formation and metallization.
- the PMOS layer to NMOS layer via 4747 and metallization may be partially formed as illustrated in FIG. 12G and an oxide layer 4748 is deposited to prepare for bonding.
- the carrier wafer and two sided n/p layer is then permanently bonded to bottom wafer having transistors and wires 4799 with associated metal landing strip 4750 as illustrated in FIG. 12H .
- the oxide layer 4716 and the NMOS inter layer dielectric 4708 may be chemical mechanically polished to expose the top of the NMOS polysilicon dummy gates 4704 .
- the dummy polysilicon gates 4704 may then be removed by etch and the NMOS hi-k gate dielectric 4760 and the NMOS specific work function metal gate 4761 may be deposited.
- An aluminum fill 4762 may be performed on the NMOS gates and the metal CMP′ed.
- a dielectric layer 4769 may be deposited and the normal gate 4763 and source/drain 4764 contact formation and metallization.
- the NMOS layer to PMOS layer via 4767 to connect to 4747 and metallization may be formed.
- the layer-to-layer contacts 4772 to the landing pads in the base wafer are now made.
- This same contact etch could be used to make the connections 4773 between the NMOS and PMOS layer as well, instead of using the two step ( 4747 and 4767 ) method in FIG. 12H .
- FIG. 13 where a transistor is constructed with front gate 4902 and back gate 4904 .
- the back gate could be utilized for many purposes such as threshold voltage control, reduction of variability, increase of drive current and other purposes.
- FIG. 14A-14J describes a process flow for forming four-side gated JLTs in 3D stacked circuits and chips.
- Four-side gated JLTs can also be referred to as gate-all around JLTs or silicon nanowire JLTs. They offer excellent electrostatic control of the channel and provide high-quality I-V curves with low leakage and high drive currents.
- the process flow in FIG. 14A-14J may include several steps in the following sequence:
- the Si and SiGe layers are carefully engineered in terms of thickness and stoichiometry to keep defect density due to lattice mismatch between Si and SiGe low. Some techniques for achieving this include keeping thickness of SiGe layers below the critical thickness for forming defects.
- a silicon dioxide layer 912 is deposited above the stack.
- FIG. 14A illustrates the structure after Step (A) is completed.
- FIG. 14B illustrates the structure after Step (B) is completed.
- FIG. 14C illustrates the structure after Step (C) is completed.
- FIG. 14D illustrates the structure after Step (D) is completed.
- Step (E) Using litho and etch, Si 918 and SiGe 916 regions are defined to be in locations where transistors are required. Oxide 920 is deposited to form isolation regions and to cover the Si/SiGe regions 916 and 918 .
- a CMP process is conducted.
- FIG. 14E illustrates the structure after Step (E) is completed.
- FIG. 14D illustrates the structure after Step (D) is completed.
- Step (E) Using litho and etch, Si 918 and SiGe 916 regions are defined to be in locations where transistors are required. Oxide 920 is deposited to form isolation regions and to cover the Si/SiGe regions 916 and 918 .
- Step (G) SiGe regions 916 in channel of the JLT are etched using an etching recipe that does not attack Si regions 918 .
- etching recipes are described in “High performance 5 nm radius twin silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability,” in Proc. IEDM Tech. Dig., 2005, pp. 717-720 by S. D. Suk, S.-Y. Lee, S.-M. Kim, et al. (“Suk”).
- FIG. 14G illustrates the structure after Step (G) is completed.
- Step (H) This is an optional step where a hydrogen anneal can be utilized to reduce surface roughness of fabricated nanowires. The hydrogen anneal can also reduce thickness of nanowires. Following the hydrogen anneal, another optional step of oxidation (using plasma enhanced thermal oxidation) and etch-back of the produced silicon dioxide can be used. This process thins down the silicon nanowire further.
- FIG. 14H illustrates the structure after Step (H) is completed.
- FIG. 14I illustrates the structure after Step (I) is completed.
- FIG. 14J shows a cross-sectional view of structures after Step (I). It is clear that two nanowires are present for each transistor in the figure. It is possible to have one nanowire per transistor or more than two nanowires per transistor by changing the number of stacked Si/SiGe layers. Note that top-level transistors are formed well-aligned to bottom-level wiring and transistor layers. Since the top-level transistor layers are very thin (preferably less than 200 nm), the top transistors can be aligned to features in the bottom-level. While the process flow shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Semiconductor Memories (AREA)
Abstract
A semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a second single crystal source, channel, and drain, where the second single crystal source, channel, and drain is disposed above the first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a third single crystal source, channel, and drain, where the third single crystal source, channel, and drain is disposed above the second single crystal source, channel, and drain, where at least one of the plurality of transistors includes a fourth single crystal source, channel, and drain, and where the first single crystal source or drain, and the second single crystal source or drain each include n+ doped regions.
Description
- This application is a continuation in part of U.S. patent application Ser. No. 17/542,490, which was filed on Dec. 5, 2021, which is a continuation in part of U.S. patent application Ser. No. 17/402,526, which was filed on Aug. 14, 2021, and now is U.S. Pat. No. 11,227,897 issued on Jan. 18, 2022, which is a continuation in part of U.S. patent application Ser. No. 17/223,822, which was filed on Apr. 6, 2021, and now is U.S. Pat. No. 11,133,351 issued on Sep. 28, 2021, which is a continuation in part of U.S. patent application Ser. No. 17/114,155, which was filed on Dec. 7, 2020, and now is U.S. Pat. No. 11,018,191 issued on May 25, 2021, which is a continuation in part of U.S. patent application Ser. No. 17/013,823, which was filed on Sep. 7, 2020, and now is U.S. Pat. No. 10,896,931 issued on Jan. 19, 2021, which is a continuation in part of U.S. patent application Ser. No. 16/409,813, which was filed on May 11, 2019, and now is U.S. Pat. No. 10,825,864 issued on Nov. 3, 2020, which is a continuation in part of U.S. patent application Ser. No. 15/803,732, which was filed on Nov. 3, 2017, and now is U.S. Pat. No. 10,290,682 issued on May 14, 2019, which is a continuation in part of U.S. patent application Ser. No. 14/555,494, which was filed on Nov. 26, 2014, and now is U.S. Pat. No. 9,818,800 issued on Nov. 14, 2017, which is a continuation of U.S. patent application Ser. No. 13/246,157, which was filed on Sep. 27, 2011 and now is U.S. Pat. No. 8,956,959 issued on Feb. 17, 2015, which is a continuation of U.S. patent application Ser. No. 13/173,999, which was filed on Jun. 30, 2011 and now is U.S. Pat. No. 8,203,148 issued on Jun. 19, 2012, which is a continuation of U.S. patent application Ser. No. 12/901,890, which was filed on Oct. 11, 2010, and now is U.S. Pat. No. 8,026,521 issued on Sep. 27, 2011, the entire contents of the foregoing are incorporated by reference herein.
- This invention describes applications of monolithic 3D integration to at least semiconductor chips performing logic and memory functions.
- Over the past 40 years, one has seen a dramatic increase in functionality and performance of Integrated Circuits (ICs). This has largely been due to the phenomenon of “scaling” i.e. component sizes within ICs have been reduced (“scaled”) with every successive generation of technology. There are two main classes of components in Complimentary Metal Oxide Semiconductor (CMOS) ICs, namely transistors and wires. With “scaling”, transistor performance and density typically improve and this has contributed to the previously-mentioned increases in IC performance and functionality. However, wires (interconnects) that connect together transistors degrade in performance with “scaling”. The situation today is that wires dominate performance, functionality and power consumption of ICs.
- 3D stacking of semiconductor chips is one avenue to tackle issues with wires. By arranging transistors in 3 dimensions instead of 2 dimensions (as was the case in the 1990s), one can place transistors in ICs closer to each other. This reduces wire lengths and keeps wiring delay low. However, there are many barriers to practical implementation of 3D stacked chips. These include:
-
- Constructing transistors in ICs typically require high temperatures (higher than ˜700° C.) while wiring levels are constructed at low temperatures (lower than ˜400° C.). Copper or Aluminum wiring levels, in fact, can get damaged when exposed to temperatures higher than ˜400° C. If one would like to arrange transistors in 3 dimensions along with wires, it has the challenge described below. For example, let us consider a 2 layer stack of transistors and wires i.e. Bottom Transistor Layer, above it Bottom Wiring Layer, above it Top Transistor Layer and above it Top Wiring Layer. When the Top Transistor Layer is constructed using Temperatures higher than 700° C., it can damage the Bottom Wiring Layer.
- Due to the above mentioned problem with forming transistor layers above wiring layers at temperatures lower than 400° C., the semiconductor industry has largely explored alternative architectures for 3D stacking. In these alternative architectures, Bottom Transistor Layers, Bottom Wiring Layers and Contacts to the Top Layer are constructed on one silicon wafer. Top Transistor Layers, Top Wiring Layers and Contacts to the Bottom Layer are constructed on another silicon wafer. These two wafers are bonded to each other and contacts are aligned, bonded and connected to each other as well. Unfortunately, the size of Contacts to the other Layer is large and the number of these Contacts is small. In fact, prototypes of 3D stacked chips today utilize as few as 10,000 connections between two layers, compared to billions of connections within a layer. This low connectivity between layers is because of two reasons: (i) Landing pad size needs to be relatively large due to alignment issues during wafer bonding. These could be due to many reasons, including bowing of wafers to be bonded to each other, thermal expansion differences between the two wafers, and lithographic or placement misalignment. This misalignment between two wafers limits the minimum contact landing pad area for electrical connection between two layers; (ii) The contact size needs to be relatively large. Forming contacts to another stacked wafer typically involves having a Through-Silicon Via (TSV) on a chip. Etching deep holes in silicon with small lateral dimensions and filling them with metal to form TSVs is not easy. This places a restriction on lateral dimensions of TSVs, which in turn impacts TSV density and contact density to another stacked layer. Therefore, connectivity between two wafers is limited.
- It is highly desirable to circumvent these issues and build 3D stacked semiconductor chips with a high-density of connections between layers. To achieve this goal, it is sufficient that one of three requirements must be met: (1) A technology to construct high-performance transistors with processing temperatures below ˜400° C.; (2) A technology where standard transistors are fabricated in a pattern, which allows for high density connectivity despite the misalignment between the two bonded wafers; and (3) A chip architecture where process temperature increase beyond 400° C. for the transistors in the top layer does not degrade the characteristics or reliability of the bottom transistors and wiring appreciably. This patent application describes approaches to address options (1), (2) and (3) in the detailed description section. In the rest of this section, background art that has previously tried to address options (1), (2) and (3) will be described.
- There are many techniques to construct 3D stacked integrated circuits or chips including:
-
- Through-silicon via (TSV) technology: Multiple layers of transistors (with or without wiring levels) can be constructed separately. Following this, they can be bonded to each other and connected to each other with through-silicon vias (TSVs).
- Monolithic 3D technology: With this approach, multiple layers of transistors and wires can be monolithically constructed. Some monolithic 3D and 3DIC approaches are described in U.S. Pat. Nos. 8,273,610, 8,298,875, 8,362,482, 8,378,715, 8,379,458, 8,450,804, 8,557,632, 8,574,929, 8,581,349, 8,642,416, 8,669,778, 8,674,470, 8,687,399, 8,742,476, 8,803,206, 8,836,073, 8,902,663, 8,994,404, 9,023,688, 9,029,173, 9,030,858, 9,117,749, 9,142,553, 9,219,005, 9,385,058, 9,406,670, 9,460,978, 9,509,313, 9,640,531, 9,691,760, 9,711,407, 9,721,927, 9,799,761, 9,871,034, 9,953,870, 9,953,994, 10,014,292, 10,014,318, 10,515,981, 10,892,016; and pending U.S. patent Application Publications and applications, Ser. Nos. 14/642,724, 15/150,395, 15/173,686, 16/337,665, 16/558,304, 16/649,660, 16/836,659, 17/151,867, 62/651,722; 62/681,249, 62/713,345, 62/770,751, 62/952,222, 62/824,288, 63/075,067, 63/091,307, 63/115,000, 63/220,443, 2021/0242189, 2020/0013791, 16/558,304; and PCT Applications (and Publications): PCT/US2010/052093, PCT/US2011/042071 (WO2012/015550), PCT/US2016/52726 (WO2017053329), PCT/US2017/052359 (WO2018/071143), PCT/US2018/016759 (WO2018144957), PCT/US2018/52332 (WO 2019/060798), and PCT/US2021/44110. The entire contents of the foregoing patents, publications, and applications are incorporated herein by reference.
- Electro-Optics: There is also work done for integrated monolithic 3D including layers of different crystals, such as U.S. Pat. Nos. 8,283,215, 8,163,581, 8,753,913, 8,823,122, 9,197,804, 9,419,031, 9,941,319, 10,679,977, 10,943,934, 10,998,374, 11,063,071, and 11,133,344. The entire contents of the foregoing patents, publications, and applications are incorporated by reference herein.
- In addition, the entire contents of U.S. Pat. Nos. 8,026,521, 8,203,148, 8,956,959, 9,818,800, 10,290,682, and 10,825,864, U.S. patent application publication N/A, and U.S. patent application Ser. No. 17/013,823 are incorporated herein by reference.
- U.S. Pat. No. 7,052,941 from Sang-Yun Lee (“S-Y Lee”) describes methods to construct vertical transistors above wiring layers at less than 400° C. In these single crystal Si transistors, current flow in the transistor's channel region is in the vertical direction. Unfortunately, however, almost all semiconductor devices in the market today (logic, DRAM, flash memory) utilize horizontal (or planar) transistors due to their many advantages, and it is difficult to convince the industry to move to vertical transistor technology.
- A paper from IBM at the Intl. Electron Devices Meeting in 2005 describes a method to construct transistors for the top stacked layer of a 2 chip 3D stack on a separate wafer. This paper is “Enabling SOI-Based Assembly Technology for Three-Dimensional (3D) Integrated Circuits (ICs),” IEDM Tech. Digest, p. 363 (2005) by A. W. Topol, D. C. La Tulipe, L. Shi, et al. (“Topol”). A process flow is utilized to transfer this top transistor layer atop the bottom wiring and transistor layers at temperatures less than 400° C. Unfortunately, since transistors are fully formed prior to bonding, this scheme suffers from misalignment issues. While Topol describes techniques to reduce misalignment errors in the above paper, the techniques of Topol still suffer from misalignment errors that limit contact dimensions between two chips in the stack to >130 nm.
- The textbook “Integrated Interconnect Technologies for 3D Nanoelectronic Systems” by Bakir and Meindl (“Bakir”) describes a 3D stacked DRAM concept with horizontal (i.e. planar) transistors. Silicon for stacked transistors is produced using selective epitaxy technology or laser recrystallization. Unfortunately, however, these technologies have higher defect density compared to standard single crystal silicon. This higher defect density degrades transistor performance.
- In the NAND flash memory industry, several organizations have attempted to construct 3D stacked memory. These attempts predominantly use transistors constructed with poly-Si or selective epi technology as well as charge-trap concepts. References that describe these attempts to 3D stacked memory include “Integrated Interconnect Technologies for 3D Nanoelectronic Systems”, Artech House, 2009 by Bakir and Meindl (“Bakir”), “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory”, Symp. VLSI Technology Tech. Dig. pp. 14-15, 2007 by H. Tanaka, M. Kido, K. Yahashi, et al. (“Tanaka”), “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010 by W. Kim, S. Choi, et al. (“W. Kim”), “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010 by Hang-Ting Lue, et al. (“Lue”) and “Sub-50 nm Dual-Gate Thin-Film Transistors for Monolithic 3-D Flash”, IEEE Trans. Elect. Dev., vol. 56, pp. 2703-2710, November 2009 by A. J. Walker (“Walker”). An architecture and technology that utilizes single crystal Silicon using epi growth is described in “A Stacked SONOS Technology, Up to 4 Levels and 6 nm Crystalline Nanowires, with Gate-All-Around or Independent Gates (DFlash), Suitable for Full 3D Integration”, International Electron Devices Meeting, 2009 by A. Hubert, et al (“Hubert”). However, the approach described by Hubert has some challenges including use of difficult-to-manufacture nanowire transistors, higher defect densities due to formation of Si and SiGe layers atop each other, high temperature processing for long times, difficult manufacturing, etc.
- It is clear based on the background art mentioned above that invention of novel technologies for 3D stacked layer and chips will be useful.
- The invention may be directed to at least multilayer or Three Dimensional Integrated Circuit (3D IC) devices, structures, and fabrication methods.
- In one aspect, a method for producing a 3D memory device, the method including: providing a first level including a single crystal layer and first alignment marks; forming memory control circuits including first single crystal transistors, where the first single crystal transistors include portions of the single crystal layer; forming at least one second level above the first level; performing a first lithographic step over the at least one second level aligned to the first alignment marks; forming at least one third level above the at least one second level; performing a second lithographic step over the third level; performing a first etch step including etching holes within the third level defined by the second lithographic step; performing a third lithographic step over the at least one third level; performing a second etch step including etching holes within the at least one third level and the at least one second level defined by the third lithographic step; and performing additional processing steps to form a plurality of first memory cells within the at least one second level and a plurality of second memory cells within the at least one third level, where each of the plurality of first memory cells include one second transistor, and where each of the plurality of second memory cells include one third transistor.
- In another aspect, a method for producing a 3D memory device, the method including: providing a first level including a single crystal layer and first alignment marks; forming memory control circuits including first single crystal transistors, where the first single crystal transistors include portions of the single crystal layer; forming at least one second level above the first level; performing a first etch step including etching lithography windows within the at least one second level; performing a first lithographic step over the at least one second level aligned to the first alignment marks; forming at least one third level above the at least one second level; performing a second lithographic step over the at least one third level; performing a second etch step including etching holes within the at least one third level defined by the second lithographic step; performing a third lithographic step over the at least one third level; performing a third etch step including etching holes within the at least one third level and the at least one second level defined by the third lithographic step; and performing additional processing steps to form a plurality of first memory cells within the at least one second level and a plurality of second memory cells within the at least one third level, where each of the plurality of first memory cells include one second transistor, and where each of the plurality of second memory cells include one third transistor.
- In another aspect, a method for producing a 3D memory device, the method including: providing a first level including a single crystal layer and first alignment marks; forming memory control circuits including first single crystal transistors, where the first single crystal transistors include portions of the single crystal layer; forming at least one second level above the first level; performing a first etch step including etching lithography windows within the at least one second level; performing a first lithographic step over the at least one second level aligned to the first alignment marks; and performing additional processing steps to form a plurality of first memory cells within the at last one second level, where each of the plurality of first memory cells include one of a plurality of second transistors, and where the plurality of second transistors are aligned to the first alignment marks with a less than 40 nm alignment error.
- In another aspect, a 3D semiconductor device, the device including: a first level including a first single crystal layer and first transistors, where the first transistors each include a single crystal channel; first metal layers interconnecting at least the first transistors; and a second level including a second single crystal layer and second transistors, where the second level overlays the first level, where the second transistors are horizontally oriented and include replacement gate, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
- In another aspect, a 3D semiconductor device, the device including: a first level including a first single crystal layer and alignment marks; first transistors overlaying the first single crystal layer; and second transistors overlaying the first transistors, where the first transistors and the second transistors are self-aligned, being processed following the same lithography step, where the second transistors include replacement gate, being processed to replace a poly silicon gate to a metal based gate, where the first level includes third transistors disposed below the first transistor, where the third transistors are aligned to the alignment marks, and where the third transistors each include a single crystal channel.
- In another aspect, a 3D semiconductor device, the device including: a first level including a first single crystal layer, first transistors, and second transistors, where the second transistors are overlaying the first transistors, and where the first transistors and the second transistors are self-aligned, being processed following the same lithography step; and a second level including a second single crystal layer and third transistors, where the second level overlays the first level, where the third transistors are horizontally oriented and include replacement gate, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
- In another aspect, a 3D semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, and where the fourth single crystal channel is disposed above the third single crystal channel; and at least one region of oxide to oxide bonds.
- In another aspect, a 3D semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, where the fourth single crystal channel is disposed above the third single crystal channel; and at least one region of oxide to oxide bonds, where the at least one region of oxide to oxide bonds is disposed underneath the third single crystal channel and above the second single crystal channel.
- In another aspect, a 3D semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, where the fourth single crystal channel is disposed above the third single crystal channel; and a layer of oxide to oxide bonds; and a single crystal substrate.
- In another aspect, a 3D semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a second single crystal source, channel, and drain, where the second single crystal source, channel, and drain is disposed above the first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a third single crystal source, channel, and drain, where the third single crystal source, channel, and drain is disposed above the second single crystal source, channel, and drain, where at least one of the plurality of transistors includes a fourth single crystal source, channel, and drain, and where the fourth single crystal source, channel, and drain is disposed above the third single crystal source, channel, and drain; and an ohmic connection between the first single crystal source or drain and the second single crystal source or drain.
- In another aspect, a 3D semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a second single crystal source, channel, and drain, where the second single crystal source, channel, and drain is disposed above the first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a third single crystal source, channel, and drain, where the third single crystal source, channel, and drain is disposed above the second single crystal source, channel, and drain, where at least one of the plurality of transistors includes a fourth single crystal source, channel, and drain, and where the first single crystal source or drain, and the second single crystal source or drain each include n+ doped regions.
- In another aspect, a 3D semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal channel, where at least one of the plurality of transistors includes a second single crystal channel, where the second single crystal channel is disposed above the first single crystal channel, where at least one of the plurality of transistors includes a third single crystal channel, where the third single crystal channel is disposed above the second single crystal channel, where at least one of the plurality of transistors includes a fourth single crystal channel, where the fourth single crystal channel is disposed above the third single crystal channel, and where formation of the fourth single crystal channel includes a layer transfer process.
- Various embodiments of the invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
-
FIGS. 1A-1C show different types of junction-less transistors (JLT) that could be utilized for 3D stacking; -
FIGS. 2A-2K show a zero-mask per layer 3D floating body DRAM; -
FIGS. 3A-3J show a zero-mask per layer 3D resistive memory with a junction-less transistor; -
FIGS. 4A-4K show an alternative zero-mask per layer 3D resistive memory; -
FIGS. 5A-5G show a zero-mask per layer 3D charge-trap memory; -
FIGS. 6A-6B show periphery on top of memory layers; -
FIGS. 7A-7E show polysilicon select devices for 3D memory and peripheral circuits at the bottom according to some embodiments of the current invention; -
FIGS. 8A-8F show polysilicon select devices for 3D memory and peripheral circuits at the top according to some embodiments of the current invention; -
FIGS. 9A-9F illustrate a process flow for 3D integrated circuits with gate-last high-k metal gate transistors and face-up layer transfer; -
FIGS. 10A-10D depict a process flow for constructing 3D integrated chips and circuits with misalignment tolerance techniques and repeating pattern in one direction; -
FIGS. 11A-11G illustrate using a carrier wafer for layer transfer; -
FIGS. 12A-12K illustrate constructing chips with nMOS and pMOS devices on either side of the wafer; -
FIG. 13 illustrates constructing transistors with front gates and back gates on either side of the semiconductor layer; and -
FIG. 14A-14I show process flows for constructing 3D stacked logic chips using four-side gated junction-less transistors as switches. - Embodiments of the present invention are now described with reference to
FIGS. 1-14 , it being appreciated that the figures illustrate the subject matter not to scale or to measure. Many figures describe process flows for building devices. These process flows, which are essentially a sequence of steps for building a device, have many structures, numerals and labels that are common between two or more adjacent steps. In such cases, some labels, numerals and structures used for a certain step's figure may have been described in previous steps' figures. -
FIG. 1A-1D shows that JLTs that can be 3D stacked fall into four categories based on the number of gates they use: One-side gated JLTs as shown inFIG. 1A , two-side gated JLTs as shown inFIG. 1B , three-side gated JLTs as shown inFIG. 1C , and gate-all-around JLTs as shown inFIG. 1D . The JLTS shown may include n+Si 102,gate dielectric 104,gate electrode 106,n+ source region 108,n+ drain region 110, and n+ region undergate 112. As the number of JLT gates increases, the gate gets more control of the channel, thereby reducing leakage of the JLT at 0V. Furthermore, the enhanced gate control can be traded-off for higher doping (which improves contact resistance to source-drain regions) or bigger JLT cross-sectional areas (which is easier from a process integration standpoint). However, adding more gates typically increases process complexity. - Some embodiments of this invention may involve floating body DRAM. Background information on floating body DRAM and its operation is given in “Floating Body RAM Technology and its Scalability to 32 nm Node and Beyond,” Electron Devices Meeting, 2006. IEDM '06. International, vol., no., pp. 1-4, 11-13 Dec. 2006 by T. Shino, N. Kusunoki, T. Higashi, et al., Overview and future challenges of floating body RAM (FBRAM) technology for 32 nm technology node and beyond, Solid-State Electronics, Volume 53, Issue 7, Papers Selected from the 38th European Solid-State Device Research Conference—ESSDERC '08, July 2009, Pages 676-683, ISSN 0038-1101, DOI: 10.1016/j.sse.2009.03.010 by Takeshi Hamamoto, Takashi Ohsawa, et al., “New Generation of Z-RAM,” Electron Devices Meeting, 2007. IEDM 2007. IEEE International, vol., no., pp. 925-928, 10-12 Dec. 2007 by Okhonin, S.; Nagoga, M.; Carman, E, et al. The above publications are incorporated herein by reference.
-
FIG. 2A-K describe a process flow to construct a horizontally-oriented monolithic 3D DRAM. This monolithic 3D DRAM utilizes the floating body effect and double-gate transistors. No mask is utilized on a “per-memory-layer” basis for the monolithic 3D DRAM concept shown inFIG. 2A-K , and all other masks are shared between different layers. The process flow may include several steps in the following sequence. - Step (A): Peripheral circuits with
tungsten wiring 202 are first constructed and above this a layer ofsilicon dioxide 204 is deposited.FIG. 2A shows a drawing illustration after Step (A).
Step (B):FIG. 2B illustrates the structure after Step (B). A wafer of p−Silicon 208 has anoxide layer 206 grown or deposited above it. Following this, hydrogen is implanted into the p− Silicon wafer at a certain depth indicated by 214. Alternatively, some other atomic species such as Helium could be (co-)implanted. This hydrogen implanted p−Silicon wafer 208 forms thetop layer 210. Thebottom layer 212 may include theperipheral circuits 202 withoxide layer 204. Thetop layer 210 is flipped and bonded to thebottom layer 212 using oxide-to-oxide bonding.
Step (C):FIG. 2C illustrates the structure after Step (C). The stack of top and bottom wafers after Step (B) is cleaved at the hydrogen plane 3014 using either a anneal or a sideways mechanical force or other means. A CMP process is then conducted. A layer ofsilicon oxide 218 is then deposited atop the p− Silicon layer 216. At the end of this step, a single-crystal p− Si layer 216 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
Step (D):FIG. 2D illustrates the structure after Step (D). Using methods similar to Step (B) and (C), multiple p−silicon layers 220 are formed with silicon oxide layers in between.
Step (E):FIG. 2E illustrates the structure after Step (E). Lithography and etch processes are then utilized to make a structure as shown in the figure, including layer regions of p−silicon 221 and associated isolation/bonding oxides 222.
Step (F):FIG. 2F illustrates the structure after Step (F).Gate dielectric 226 andgate electrode 224 are then deposited following which a CMP is done to planarize thegate electrode 224 regions. Lithography and etch are utilized to define gate regions.
Step (G):FIG. 2G illustrates the structure after Step (G). Using the hard mask defined in Step (F), p− regions not covered by the gate are implanted to formn+ silicon regions 228. Spacers are utilized during this multi-step implantation process and layers of silicon present in different layers of the stack have different spacer widths to account for lateral straggle of buried layer implants. Bottom layers could have larger spacer widths than top layers. A thermal annealing step, such as a RTA or spike anneal or laser anneal or flash anneal, is then conducted to activate n+ doped regions.
Step (H):FIG. 2H illustrates the structure after Step (H). Asilicon oxide layer 230 is then deposited and planarized. For clarity, the silicon oxide layer is shown transparent, along with word-line (WL) 232 and source-line (SL) 234 regions.
Step (I):FIG. 2I illustrates the structure after Step (I). Bit-line (BL)contacts 236 are formed by etching and deposition. These BL contacts are shared among all layers of memory.
Step (J):FIG. 2J illustrates the structure after Step (J).BLs 238 are then constructed. Contacts are made to BLs, WLs and SLs of the memory array at its edges. SL contacts can be made into stair-like structures using techniques described in “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on, vol., no., pp. 14-15, 12-14 Jun. 2007 by Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; et al., following which contacts can be constructed to them. Formation of stair-like structures for SLs could be done in steps prior to Step (J) as well.
FIG. 2K shows cross-sectional views of the array for clarity. Double-gated transistors may be utilized along with the floating body effect for storing information.
A floating-body DRAM has thus been constructed, with (1) horizontally-oriented transistors—i.e. current flowing in substantially the horizontal direction in transistor channels (2) some of the memory cell control lines, e.g., source-lines SL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates simultaneously deposited over multiple memory layers, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut. - With the explanations for the formation of monolithic 3D DRAM with ion-cut in this section, it is clear to one skilled in the art that alternative implementations are possible. BL and SL nomenclature has been used for two terminals of the 3D DRAM array, and this nomenclature can be interchanged. Each gate of the double gate 3D DRAM can be independently controlled for better control of the memory cell. To implement these changes, the process steps in
FIG. 2 may be modified. Moreover, selective epi technology or laser recrystallization technology could be utilized for implementing structures shown inFIG. 2A-K . Various other types of layer transfer schemes that have been described in Section 1.3.4 of the parent application (Ser. No. 12/901,890, U.S. Pat. No. 8,026,521) can be utilized for construction of various 3D DRAM structures. Furthermore, buried wiring, i.e. where wiring for memory arrays is below the memory layers but above the periphery, may also be used. In addition, other variations of the monolithic 3D DRAM concepts are possible. - While many of today's memory technologies rely on charge storage, several companies are developing non-volatile memory technologies based on resistance of a material changing. Examples of these resistance-based memories include phase change memory, Metal Oxide memory, resistive RAM (RRAM), memristors, solid-electrolyte memory, ferroelectric RAM, MRAM, etc. Background information on these resistive-memory types is given in “Overview of candidate device technologies for storage-class memory,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 449-464, July 2008 by Burr, G. W.; Kurdi, B. N.; Scott, J. C.; Lam, C. H.; Gopalakrishnan, K.; Shenoy, R. S.
-
FIGS. 3A-3J describe a novel memory architecture for resistance-based memories, and a procedure for its construction. The memory architecture utilizes junction-less transistors and has a resistance-based memory element in series with a transistor selector. No mask is utilized on a “per-memory-layer” basis for the monolithic 3D resistance change memory (or resistive memory) concept shown inFIG. 3A-J , and all other masks are shared between different layers. The process flow may include several steps that occur in the following sequence. - Step (A):
Peripheral circuits 302 are first constructed and above this a layer ofsilicon dioxide 304 is deposited.FIG. 3A shows a drawing illustration after Step (A).
Step (B):FIG. 3B illustrates the structure after Step (B). A wafer ofn+ Silicon 308 has anoxide layer 306 grown or deposited above it. Following this, hydrogen is implanted into the n+ Silicon wafer at a certain depth indicated by 314. Alternatively, some other atomic species such as Helium could be (co-)implanted. This hydrogen implantedn+ Silicon wafer 308 forms thetop layer 310. Thebottom layer 312 may include theperipheral circuits 302 withoxide layer 304. Thetop layer 310 is flipped and bonded to thebottom layer 312 using oxide-to-oxide bonding.
Step (C):FIG. 3C illustrates the structure after Step (C). The stack of top and bottom wafers after Step (B) is cleaved at thehydrogen plane 314 using either an anneal or a sideways mechanical force or other means. A CMP process is then conducted. A layer ofsilicon oxide 318 is then deposited atop then+ Silicon layer 316. At the end of this step, a single-crystal n+Si layer 316 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
Step (D):FIG. 3D illustrates the structure after Step (D). Using methods similar to Step (B) and (C), multiple n+ silicon layers 320 are formed with silicon oxide layers in between.
Step (E):FIG. 3E illustrates the structure after Step (E). Lithography and etch processes are then utilized to make a structure as shown in the figure, including layer regions ofn+ silicon 321 and associated bonding/isolation oxides 322.
Step (F):FIG. 3F illustrates the structure after Step (F).Gate dielectric 326 andgate electrode 324 are then deposited following which a CMP is performed to planarize thegate electrode 324 regions. Lithography and etch are utilized to define gate regions.
Step (G):FIG. 3G illustrates the structure after Step (G). Asilicon oxide layer 330 is then deposited and planarized. The silicon oxide layer is shown transparent in the figure for clarity, along with word-line (WL) 332 and source-line (SL) 334 regions.
Step (H):FIG. 3H illustrates the structure after Step (H). Vias are etched through multiple layers of silicon and silicon dioxide as shown in the figure. A resistancechange memory material 336 is then deposited (preferably with atomic layer deposition (ALD)). Examples of such a material include hafnium oxide, well known to change resistance by applying voltage. An electrode for the resistance change memory element is then deposited (preferably using ALD) and is shown as electrode/BL contact 340. A CMP process is then conducted to planarize the surface. It can be observed that multiple resistance change memory elements in series with junctionless transistors are created after this step.
Step (I):FIG. 3I illustrates the structure after Step (I).BLs 338 are then constructed. Contacts are made to BLs, WLs and SLs of the memory array at its edges. SL contacts can be made into stair-like structures using techniques described in in “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on, vol., no., pp. 14-15, 12-14 Jun. 2007 by Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; et al., following which contacts can be constructed to them. Formation of stair-like structures for SLs could be achieved in steps prior to Step (I) as well.
FIG. 3J shows cross-sectional views of the array for clarity.
A 3D resistance change memory has thus been constructed, with (1) horizontally-oriented transistors—i.e. current flowing in substantially the horizontal direction in transistor channels, (2) some of the memory cell control lines, e.g., source-lines SL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates that are simultaneously deposited over multiple memory layers for transistors, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut. -
FIGS. 4A-4K describe an alternative process flow to construct a horizontally-oriented monolithic 3D resistive memory array. This embodiment has a resistance-based memory element in series with a transistor selector. No mask is utilized on a “per-memory-layer” basis for the monolithic 3D resistance change memory (or resistive memory) concept shown inFIGS. 4A-4K , and all other masks are shared between different layers. The process flow may include several steps as described in the following sequence. - Step (A): Peripheral circuits with
tungsten wiring 402 are first constructed and above this a layer ofsilicon dioxide 404 is deposited.FIG. 4A shows a drawing illustration after Step (A).
Step (B):FIG. 4B illustrates the structure after Step (B). A wafer of p− Silicon 408 has an oxide layer 406 grown or deposited above it. Following this, hydrogen is implanted into the p− Silicon wafer at a certain depth indicated by 414. Alternatively, some other atomic species such as Helium could be (co-)implanted. This hydrogen implanted p− Silicon wafer 408 forms the top layer 410. The bottom layer 412 may include theperipheral circuits 402 withoxide layer 404. The top layer 410 is flipped and bonded to the bottom layer 412 using oxide-to-oxide bonding.
Step (C):FIG. 4C illustrates the structure after Step (C). The stack of top and bottom wafers after Step (B) is cleaved at the hydrogen plane 414 using either a anneal or a sideways mechanical force or other means. A CMP process is then conducted. A layer ofsilicon oxide 418 is then deposited atop the p− Silicon layer 416. At the end of this step, a single-crystal p− Si layer 416 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
Step (D):FIG. 4D illustrates the structure after Step (D). Using methods similar to Step (B) and (C), multiple p−silicon layers 420 are formed with silicon oxide layers in between.
Step (E):FIG. 4E illustrates the structure after Step (E). Lithography and etch processes are then utilized to make a structure as shown in the figure, including layer regions of p−silicon 421 and associated bonding/isolation oxide 422.
Step (F):FIG. 4F illustrates the structure on after Step (F).Gate dielectric 426 andgate electrode 424 are then deposited following which a CMP is done to planarize thegate electrode 424 regions. Lithography and etch are utilized to define gate regions.
Step (G):FIG. 4G illustrates the structure after Step (G). Using the hard mask defined in Step (F), p− regions not covered by the gate are implanted to formn+ silicon regions 428. Spacers are utilized during this multi-step implantation process and layers of silicon present in different layers of the stack have different spacer widths to account for lateral straggle of buried layer implants. Bottom layers could have larger spacer widths than top layers. A thermal annealing step, such as a RTA or spike anneal or laser anneal or flash anneal, is then conducted to activate n+ doped regions.
Step (H):FIG. 4H illustrates the structure after Step (H). Asilicon oxide layer 430 is then deposited and planarized. The silicon oxide layer is shown transparent in the figure for clarity, along with word-line (WL) 432 and source-line (SL) 434 regions.
Step (I):FIG. 4I illustrates the structure after Step (I). Vias are etched through multiple layers of silicon and silicon dioxide as shown in the figure. A resistancechange memory material 436 is then deposited (preferably with atomic layer deposition (ALD)). Examples of such a material include hafnium oxide, which is well known to change resistance by applying voltage. An electrode for the resistance change memory element is then deposited (preferably using ALD) and is shown as electrode/BL contact 440. A CMP process is then conducted to planarize the surface. It can be observed that multiple resistance change memory elements in series with transistors are created after this step.
Step (J):FIG. 4J illustrates the structure after Step (J).BLs 438 are then constructed. Contacts are made to BLs, WLs and SLs of the memory array at its edges. SL contacts can be made into stair-like structures using techniques described in “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on, vol., no., pp. 14-15, 12-14 Jun. 2007 by Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; et al., following which contacts can be constructed to them. Formation of stair-like structures for SLs could be done in steps prior to Step (I) as well.
FIG. 4K shows cross-sectional views of the array for clarity.
A 3D resistance change memory has thus been constructed, with (1) horizontally-oriented transistors—i.e. current flowing in substantially the horizontal direction in transistor channels, (2) some of the memory cell control lines—e.g., source-lines SL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates simultaneously deposited over multiple memory layers for transistors, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut. - While explanations have been given for formation of monolithic 3D resistive memories with ion-cut in this section, it is clear to one skilled in the art that alternative implementations are possible. BL and SL nomenclature has been used for two terminals of the 3D resistive memory array, and this nomenclature can be interchanged. Moreover, selective epi technology or laser recrystallization technology could be utilized for implementing structures shown in
FIG. 3A-3J andFIG. 4A-4K . Various other types of layer transfer schemes that have been described in Section 1.3.4 of the parent application can be utilized for construction of various 3D resistive memory structures. One could also use buried wiring, i.e. where wiring for memory arrays is below the memory layers but above the periphery. Other variations of the monolithic 3D resistive memory concepts are possible. - While resistive memories described previously form a class of non-volatile memory, others classes of non-volatile memory exist. NAND flash memory forms one of the most common non-volatile memory types. It can be constructed of two main types of devices: floating-gate devices where charge is stored in a floating gate and charge-trap devices where charge is stored in a charge-trap layer such as Silicon Nitride. Background information on charge-trap memory can be found in “Integrated Interconnect Technologies for 3D Nanoelectronic Systems”, Artech House, 2009 by Bakir and Meindl (“Bahr”) and “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010 by Hang-Ting Lue, et al. The architectures shown in
FIG. 5A-5G are relevant for any type of charge-trap memory. -
FIGS. 5A-5G describes a memory architecture for single-crystal 3D charge-trap memories, and a procedure for its construction. It utilizes junction-less transistors. No mask is utilized on a “per-memory-layer” basis for the monolithic 3D charge-trap memory concept shown inFIG. 5A-5G , and all other masks are shared between different layers. The process flow may include several steps as described in the following sequence. - Step (A):
Peripheral circuits 502 are first constructed and above this a layer ofsilicon dioxide 504 is deposited.FIG. 5A shows a drawing illustration after Step (A).
Step (B):FIG. 5B illustrates the structure after Step (B). A wafer ofn+ Silicon 508 has anoxide layer 506 grown or deposited above it. Following this, hydrogen is implanted into the n+ Silicon wafer at a certain depth indicated by 514. Alternatively, some other atomic species such as Helium could be implanted. This hydrogen implantedn+ Silicon wafer 508 forms thetop layer 510. Thebottom layer 512 may include theperipheral circuits 502 withoxide layer 504. Thetop layer 510 is flipped and bonded to thebottom layer 512 using oxide-to-oxide bonding.
Step (C):FIG. 5C illustrates the structure after Step (C). The stack of top and bottom wafers after Step (B) is cleaved at thehydrogen plane 514 using either a anneal or a sideways mechanical force or other means. A CMP process is then conducted. A layer ofsilicon oxide 518 is then deposited atop then+ Silicon layer 516. At the end of this step, a single-crystal n+Si layer 516 exists atop the peripheral circuits, and this has been achieved using layer-transfer techniques.
Step (D):FIG. 5D illustrates the structure after Step (D). Using methods similar to Step (B) and (C), multiple n+ silicon layers 520 are formed with silicon oxide layers in between.
Step (E):FIG. 5E illustrates the structure after Step (E). Lithography and etch processes are then utilized to make a structure as shown in the figure.
Step (F):FIG. 5F illustrates the structure after Step (F).Gate dielectric 526 andgate electrode 524 are then deposited following which a CMP is done to planarize thegate electrode 524 regions. Lithography and etch are utilized to define gate regions. Gates of theNAND string 536 as well gates of select gates of theNAND string 538 are defined.
Step (G):FIG. 5G illustrates the structure after Step (G). Asilicon oxide layer 530 is then deposited and planarized. It is shown transparent in the figure for clarity. Word-lines, bit-lines and source-lines are defined as shown in the figure. Contacts are formed to various regions/wires at the edges of the array as well. SL contacts can be made into stair-like structures using techniques described in “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Technology, 2007 IEEE Symposium on, vol., no., pp. 14-15, 12-14 Jun. 2007 by Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; et al., following which contacts can be constructed to them. Formation of stair-like structures for SLs could be performed in steps prior to Step (G) as well.
A 3D charge-trap memory has thus been constructed, with (1) horizontally-oriented transistors—i.e. current flowing in substantially the horizontal direction in transistor channels, (2) some of the memory cell control lines—e.g., bit lines BL, constructed of heavily doped silicon and embedded in the memory cell layer, (3) side gates simultaneously deposited over multiple memory layers for transistors, and (4) monocrystalline (or single-crystal) silicon layers obtained by layer transfer techniques such as ion-cut. This use of single-crystal silicon obtained with ion-cut is a key differentiator from past work on 3D charge-trap memories such as “A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device,” Symposium on VLSI Technology, 2010 by Hang-Ting Lue, et al. that used polysilicon. - While
FIGS. 5A-5G give two examples of how single-crystal silicon layers with ion-cut can be used to produce 3D charge-trap memories, the ion-cut technique for 3D charge-trap memory is fairly general. It could be utilized to produce any horizontally-oriented 3D monocrystalline-silicon charge-trap memory. - While the 3D DRAM and 3D resistive memory implementations in
Section 3 andSection 4 have been described with single crystal silicon constructed with ion-cut technology, other options exist. One could construct them with selective epi technology. Procedures for doing these will be clear to those skilled in the art. -
FIGS. 6A-6B show it is not the only option for the architecture to have the peripheral transistors, such as periphery 602, below the memory layers, including, for example, memory layer 604, memory layer 606, and/ormemory layer 608. Peripheral transistors, such as periphery 610, could also be constructed above the memory layers, including, for example, memory layer 604, memory layer 606, and/ormemory layer 608, and substrate ormemory layer 612, as shown inFIG. 6B . This periphery layer would utilize technologies described in this application; parent application and incorporated references, and could utilize transistors, for example, junction-less transistors or recessed channel transistors. - The monolithic 3D integration concepts described in this patent application can lead to novel embodiments of poly-silicon-based memory architectures as well. Poly silicon based architectures could potentially be cheaper than single crystal silicon based architectures when a large number of memory layers need to be constructed. While the below concepts are explained by using resistive memory architectures as an example, it will be clear to one skilled in the art that similar concepts can be applied to NAND flash memory and DRAM architectures described previously in this patent application.
-
FIGS. 7A-7E show one embodiment of the current invention, where polysilicon junction-less transistors are used to form a 3D resistance-based memory. The utilized junction-less transistors can have either positive or negative threshold voltages. The process may include the following steps as described in the following sequence: - Step (A): As illustrated in
FIG. 7A ,peripheral circuits 702 are constructed above which a layer ofsilicon dioxide 704 is made.
Step (B): As illustrated inFIG. 7B , multiple layers of n+ doped amorphous silicon orpolysilicon 706 are deposited with layers ofsilicon dioxide 708 in between. The amorphous silicon orpolysilicon layers 706 could be deposited using a chemical vapor deposition process, such as LPCVD or PECVD.
Step (C): As illustrated inFIG. 7C , a Rapid Thermal Anneal (RTA) is conducted to crystallize the layers of polysilicon or amorphous silicon deposited in Step (B). Temperatures during this RTA could be as high as 700° C. or more, and could even be as high as 800° C. The polysilicon region obtained after Step (C) is indicated as 710. Alternatively, a laser anneal could be conducted, either for alllayers 706 at the same time or layer by layer. The thickness of theoxide 704 would need to be optimized if that process were conducted.
Step (D): As illustrated inFIG. 7D , procedures similar to those described inFIGS. 3E-3H are utilized to construct the structure shown. The structure inFIG. 7D has multiple levels of junction-less transistor selectors for resistive memory devices. The resistance change memory is indicated as 736 while its electrode and contact to the BL is indicated as 740. The WL is indicated as 732, while the SL is indicated as 734. Gate dielectric of the junction-less transistor is indicated as 726 while the gate electrode of the junction-less transistor is indicated as 724, this gate electrode also serves as part of theWL 732. Silicon oxide is indicated as 730.
Step (E): As illustrated inFIG. 7E , bit lines (indicated as BL 738) are constructed. Contacts are then made to peripheral circuits and various parts of the memory array as described in embodiments described previously. -
FIG. 8A-F show another embodiment of the current invention, where polysilicon junction-less transistors are used to form a 3D resistance-based memory. The utilized junction-less transistors can have either positive or negative threshold voltages. The process may include the following steps occurring in sequence: - Step (A): As illustrated in
FIG. 8A , a layer ofsilicon dioxide 804 is deposited or grown above a silicon substrate withoutcircuits 802.
Step (B): As illustrated inFIG. 8B , multiple layers of n+ doped amorphous silicon orpolysilicon 806 are deposited with layers ofsilicon dioxide 808 in between. The amorphous silicon orpolysilicon layers 806 could be deposited using a chemical vapor deposition process, such as LPCVD or PECVD abbreviated as above.
Step (C): As illustrated inFIG. 8C , a Rapid Thermal Anneal (RTA) or standard anneal is conducted to crystallize the layers of polysilicon or amorphous silicon deposited in Step (B). Temperatures during this RTA could be as high as 700° C. or more, and could even be as high as 1400° C. The polysilicon region obtained after Step (C) is indicated as 810. Since there are no circuits under these layers of polysilicon, very high temperatures (such as 1400° C.) can be used for the anneal process, leading to very good quality polysilicon with few grain boundaries and very high mobilities approaching those of single crystal silicon. Alternatively, a laser anneal could be conducted, either for alllayers 806 at the same time or layer by layer at different times.
Step (D): This is illustrated inFIG. 8D . Procedures similar to those described inFIG. 32E-H of incorporated parent reference U.S. Pat. No. 8,026,521, are utilized to obtain the structure shown inFIG. 8D which has multiple levels of junctionless transistor selectors for resistive memory devices. The resistance change memory is indicated as 836 while its electrode and contact to the BL is indicated as 840. The WL is indicated as 832, while the SL is indicated as 834. Gate dielectric of the junction-less transistor is indicated as 826 while the gate electrode of the junction-less transistor is indicated as 824, this gate electrode also serves as part of theWL 832. Silicon oxide is indicated as 830
Step (E): This is illustrated inFIG. 8E . Bit lines (indicated as BL 838) are constructed. Contacts are then made to peripheral circuits and various parts of the memory array as described in embodiments described previously.
Step (F): Using procedures described in Section 1 and Section 2 of this patent application's parent, peripheral circuits 898 (with transistors and wires) could be formed well aligned to the multiple memory layers shown in Step (E). For the periphery, one could use the process flow shown in Section 2 where replacement gate processing is used, or one could use sub-400° C. processed transistors such as junction-less transistors or recessed channel transistors. Alternatively, one could use laser anneals for peripheral transistors' source-drain processing. Various other procedures described in Section 1 and Section 2 could also be used. Connections can then be formed between the multiple memory layers and peripheral circuits. By proper choice of materials for memory layer transistors and memory layer wires (e.g., by using tungsten and other materials that withstand high temperature processing for wiring), even standard transistors processed at high temperatures (>1000° C.) for the periphery could be used. - Section 1, of incorporated parent reference U.S. Pat. No. 8,026,521, described the formation of 3D stacked semiconductor circuits and chips with sub-400° C. processing temperatures to build transistors and high density of vertical connections. In this section an alternative method is explained, in which a transistor is built with any replacement gate (or gate-last) scheme that is utilized widely in the industry. This method allows for high temperatures (above 400 C) to build the transistors. This method utilizes a combination of three concepts:
-
- Replacement gate (or gate-last) high k/metal gate fabrication
- Face-up layer transfer using a carrier wafer
- Misalignment tolerance techniques that utilize regular or repeating layouts. In these repeating layouts, transistors could be arranged in substantially parallel bands.
A very high density of vertical connections is possible with this method. Single crystal silicon (or monocrystalline silicon) layers that are transferred are less than 2 um thick, or could even be thinner than 0.4 um or 0.2 um.
- The method mentioned in the previous paragraph is described in
FIG. 9A-9F . The procedure may include several steps as described in the following sequence: - Step (A): After creating isolation regions using a shallow-trench-isolation (STI) process 2504,
dummy gates 2502 are constructed with silicon dioxide and poly silicon. The term “dummy gates” is used since these gates will be replaced by high k gate dielectrics and metal gates later in the process flow, according to the standard replacement gate (or gate-last) process. Further details of replacement gate processes are described in “A 45 nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193 nm Dry Patterning, and 100% Pb-free Packaging,” IEDM Tech. Dig., pp. 247-250, 2007 by K. Mistry, et al. and “Ultralow-EOT (5 Å) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization,” IEDM Tech. Dig., pp. 663-666, 2009 by L. Ragnarsson, et al.FIG. 9A illustrates the structure after Step (A). - Step (B): Rest of the transistor fabrication flow proceeds with formation of source-
drain regions 2506, strain enhancement layers to improve mobility, high temperature anneal to activate source-drain regions 2506, formation of inter-layer dielectric (ILD) 2508, etc.FIG. 9B illustrates the structure after Step (B). - Step (C): Hydrogen is implanted into the wafer at the dotted line regions indicated by 2510.
FIG. 9C illustrates the structure after Step (C). - Step (D): The wafer after step (C) is bonded to a
temporary carrier wafer 2512 using atemporary bonding adhesive 2514. Thistemporary carrier wafer 2512 could be constructed of glass. Alternatively, it could be constructed of silicon. The temporary bonding adhesive 2514 could be a polymer material, such as a polyimide. A anneal or a sideways mechanical force is utilized to cleave the wafer at thehydrogen plane 2510. A CMP process is then conducted.FIG. 9D illustrates the structure after Step (D). - Step (E): An
oxide layer 2520 is deposited onto the bottom of the wafer shown in Step (D). The wafer is then bonded to the bottom layer of wires andtransistors 2522 using oxide-to-oxide bonding. The bottom layer of wires andtransistors 2522 could also be called a base wafer. Thetemporary carrier wafer 2512 is then removed by shining a laser onto the temporary bonding adhesive 2514 through the temporary carrier wafer 2512 (which could be constructed of glass). Alternatively, an anneal could be used to remove thetemporary bonding adhesive 2514. Through-silicon connections 2516 with a non-conducting (e.g. oxide)liner 2515 to thelanding pads 2518 in the base wafer could be constructed at a very high density using special alignment methods described in at leastFIG. 26A-D andFIG. 27A-F of incorporated parent reference U.S. Pat. No. 8,026,521.FIG. 9E illustrates the structure after Step (E). - Step (F):
Dummy gates 2502 are etched away, followed by the construction of a replacement with highk gate dielectrics 2524 andmetal gates 2526. Essentially, partially-formed high performance transistors are layer transferred atop the base wafer (may also be called target wafer) followed by the completion of the transistor processing with a low (sub 400° C.) process.FIG. 9F illustrates the structure after Step (F). The remainder of the transistor, contact, and wiring layers are then constructed. - It will be obvious to someone skilled in the art that alternative versions of this flow are possible with various methods to attach temporary carriers and with various versions of the gate-last process flow.
-
FIGS. 10A-10D (andFIG. 45A-D of incorporated parent reference U.S. Pat. No. 8,026,521) show an alternative procedure for forming CMOS circuits with a high density of connections between stacked layers. The process utilizes a repeating pattern in one direction for the top layer of transistors. The procedure may include several steps in the following sequence: - Step (A): Using procedures similar to
FIG. 9A-F , a top layer oftransistors 4404 is transferred atop a bottom layer of transistors andwires 4402.Landing pads 4406 are utilized on the bottom layer of transistors andwires 4402.Dummy gates FIG. 9A-F and this structure is the layout of oxide isolation regions between transistors.FIG. 10A illustrates the structure after Step (A). - Step (B): Through-
silicon connections 4412 are formed well-aligned to the bottom layer of transistors andwires 4402. Alignment schemes to be described inFIG. 45A-D of incorporated parent reference U.S. Pat. No. 8,026,521 are utilized for this purpose. All features constructed in future steps are also formed well-aligned to the bottom layer of transistors andwires 4402.FIG. 10B illustrates the structure after Step (B). - Step (C):
Oxide isolation regions 4414 are formed between adjacent transistors to be defined. These isolation regions are formed by lithography and etch of gate and silicon regions and then fill with oxide.FIG. 10C illustrates the structure after Step (C). - Step (D): The
dummy gates replacement gates FIG. 10D illustrates the structure after Step (D). Following this, other process steps in the fabrication flow proceed as usual. -
FIGS. 11A-11G illustrate using a carrier wafer for layer transfer.FIG. 11A illustrates the first step of preparing transistors withdummy gates 4602 on first donor wafer (or top wafer) 4606. This completes the first phase of transistor formation. -
FIG. 11B illustrates forming acleave line 4608 byimplant 4616 of atomic particles such as H+.FIG. 11C illustrates permanently bonding thefirst donor wafer 4606 to asecond donor wafer 4626. The permanent bonding may be oxide to oxide wafer bonding as described previously. -
FIG. 11D illustrates thesecond donor wafer 4626 acting as a carrier wafer after cleaving the first donor wafer off potentially atface 4632; leaving athin layer 4606 with the now burieddummy gate transistors 4602.FIG. 11E illustrates forming asecond cleave line 4618 in thesecond donor wafer 4626 byimplant 4646 of atomic species such as H+. -
FIG. 11F illustrates the second layer transfer step to bring thedummy gate transistors 4602 ready to be permanently bonded on top of the bottom layer of transistors andwires 4601. For the simplicity of the explanation we left out the now obvious steps of surface layer preparation done for each of these bonding steps. -
FIG. 11G illustrates the bottom layer of transistors andwires 4601 with thedummy gate transistor 4602 on top after cleaving off the second donor wafer and removing the layers on top of the dummy gate transistors. Now we can proceed and replace the dummy gates with the final gates, form the metal interconnection layers, and continue the 3D fabrication process. - An interesting alternative is available when using the carrier wafer flow described in
FIG. 11A-11G . In this flow we can use the two sides of the transferred layer to build NMOS on one side and PMOS on the other side. Timing properly the replacement gate step such flow could enable full performance transistors properly aligned to each other. As illustrated inFIG. 12A , an SOI (Silicon On Insulator) donor (or top)wafer 4700 may be processed in the normal state of the art high k metal gate gate-last manner with adjusted thermal cycles to compensate for later thermal processing up to the step prior to where CMP exposure of thepolysilicon dummy gates 4704 takes place.FIG. 12A illustrates a cross section of the SOIdonor wafer substrate 4700, the buried oxide (BOX) 4701, thethin silicon layer 4702 of the SOI wafer, theisolation 4703 between transistors, thepolysilicon 4704 andgate oxide 4705 of n-type CMOS transistors with dummy gates, their associated source and drains 4706 for NMOS, NMOStransistor channel regions 4707, and the NMOS interlayer dielectric (ILD) 4708. Alternatively, the PMOS device may be constructed at this stage. This completes the first phase of transistor formation. - At this step, or alternatively just after a CMP of
layer 4708 to expose thepolysilicon dummy gates 4704 or to planarize theoxide layer 4708 and not expose thedummy gates 4704, an implant of anatomic species 4710, such as H+, is done to prepare the cleavingplane 4712 in the bulk of the donor substrate, as illustrated inFIG. 12B . - The
SOI donor wafer 4700 is now permanently bonded to acarrier wafer 4720 that has been prepared with anoxide layer 4716 for oxide to oxide bonding to thedonor wafer surface 4714 as illustrated inFIG. 12C . The details have been described previously. Thedonor wafer 4700 may then be cleaved at the cleavingplane 4712 and may be thinned by chemical mechanical polishing (CMP) andsurface 4722 may be prepared for transistor formation. Thedonor wafer layer 4700 atsurface 4722 may be processed in the normal state of the art gate last processing to form the PMOS transistors with dummy gates. During processing the wafer is flipped so thatsurface 4722 is on top, but for illustrative purposes this is not shown in the subsequentFIGS. 12E-12G . -
FIG. 12E illustrates the cross section with the buried oxide (BOX) 4701, the nowthin silicon layer 4700 of the SOI substrate, theisolation 4733 between transistors, thepolysilicon 4734 andgate oxide 4735 of p-type CMOS dummy gates, their associated source and drains 4736 for PMOS, PMOStransistor channel regions 4737 and the PMOS interlayer dielectric (ILD) 4738. The PMOS transistors may be precisely aligned at state of the art tolerances to the NMOS transistors due to the sharedsubstrate 4700 possessing the same alignment marks. At this step, or alternatively just after a CMP oflayer 4738 to expose the PMOS polysilicon dummy gates or to planarize theoxide layer 4738 and not expose the dummy gates, the wafer could be put into high temperature cycle to activate both the dopants in the NMOS and the PMOS source drain regions. - Then an implant of an
atomic species 4740, such as H+, may prepare the cleavingplane 4721 in the bulk of thecarrier wafer substrate 4720 for layer transfer suitability, as illustrated inFIG. 12F . The PMOS transistors are now ready for normal state of the art gate-last transistor formation completion. - As illustrated in
FIG. 12G , the inter layer dielectric 4738 may be chemical mechanically polished to expose the top of thepolysilicon dummy gates 4734. Thedummy polysilicon gates 4734 may then be removed by etch and the PMOS hi-k gate dielectric 4740 and the PMOS specific workfunction metal gate 4741 may be deposited. Analuminum fill 4742 may be performed on the PMOS gates and the metal CMP′ed. Adielectric layer 4739 may be deposited and thenormal gate 4743 and source/drain 4744 contact formation and metallization. - The PMOS layer to NMOS layer via 4747 and metallization may be partially formed as illustrated in
FIG. 12G and anoxide layer 4748 is deposited to prepare for bonding. - The carrier wafer and two sided n/p layer is then permanently bonded to bottom wafer having transistors and
wires 4799 with associatedmetal landing strip 4750 as illustrated inFIG. 12H . - The
carrier wafer 4720 may then be cleaved at the cleavingplane 4721 and may be thinned by chemical mechanical polishing (CMP) tooxide layer 4716 as illustrated inFIG. 12I . - The NMOS transistors are now ready for normal state of the art gate-last transistor formation completion. As illustrated in
FIG. 12J , theoxide layer 4716 and the NMOS inter layer dielectric 4708 may be chemical mechanically polished to expose the top of the NMOSpolysilicon dummy gates 4704. Thedummy polysilicon gates 4704 may then be removed by etch and the NMOS hi-k gate dielectric 4760 and the NMOS specific workfunction metal gate 4761 may be deposited. Analuminum fill 4762 may be performed on the NMOS gates and the metal CMP′ed. Adielectric layer 4769 may be deposited and thenormal gate 4763 and source/drain 4764 contact formation and metallization. The NMOS layer to PMOS layer via 4767 to connect to 4747 and metallization may be formed. - As illustrated in
FIG. 12K , the layer-to-layer contacts 4772 to the landing pads in the base wafer are now made. This same contact etch could be used to make theconnections 4773 between the NMOS and PMOS layer as well, instead of using the two step (4747 and 4767) method inFIG. 12H . - Using procedures similar to
FIG. 12A-K , it is possible to construct structures such asFIG. 13 where a transistor is constructed withfront gate 4902 and backgate 4904. The back gate could be utilized for many purposes such as threshold voltage control, reduction of variability, increase of drive current and other purposes. -
FIG. 14A-14J describes a process flow for forming four-side gated JLTs in 3D stacked circuits and chips. Four-side gated JLTs can also be referred to as gate-all around JLTs or silicon nanowire JLTs. They offer excellent electrostatic control of the channel and provide high-quality I-V curves with low leakage and high drive currents. The process flow inFIG. 14A-14J may include several steps in the following sequence: - Step (A): On a p−
Si wafer 902, multiple n+Si layers 904 and 908 and multiple n+ SiGe layers 906 and 910 are epitaxially grown. The Si and SiGe layers are carefully engineered in terms of thickness and stoichiometry to keep defect density due to lattice mismatch between Si and SiGe low. Some techniques for achieving this include keeping thickness of SiGe layers below the critical thickness for forming defects. Asilicon dioxide layer 912 is deposited above the stack.FIG. 14A illustrates the structure after Step (A) is completed.
Step (B): Hydrogen is implanted at a certain depth in the p− wafer, to form acleave plane 920 after bonding to bottom wafer of the two-chip stack. Alternatively, some other atomic species such as He can be used.FIG. 14B illustrates the structure after Step (B) is completed.
Step (C): The structure after Step (B) is flipped and bonded to another wafer on which bottom layers of transistors andwires 914 are constructed. Bonding occurs with an oxide-to-oxide bonding process.FIG. 14C illustrates the structure after Step (C) is completed.
Step (D): A cleave process occurs at the hydrogen plane using a sideways mechanical force. Alternatively, an anneal could be used for cleaving purposes. A CMP process is conducted till one reaches the n+Si layer 904.FIG. 14D illustrates the structure after Step (D) is completed.
Step (E): Using litho and etch,Si 918 andSiGe 916 regions are defined to be in locations where transistors are required.Oxide 920 is deposited to form isolation regions and to cover the Si/SiGe regions FIG. 14E illustrates the structure after Step (E) is completed.
Step (F): Using litho and etch,Oxide regions 920 are removed in locations where a gate needs to be present. It is clear thatSi regions 918 andSiGe regions 916 are exposed in the channel region of the JLT.FIG. 14F illustrates the structure after Step (F) is completed.
Step (G):SiGe regions 916 in channel of the JLT are etched using an etching recipe that does not attackSi regions 918. Such etching recipes are described in “High performance 5 nm radius twin silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability,” in Proc. IEDM Tech. Dig., 2005, pp. 717-720 by S. D. Suk, S.-Y. Lee, S.-M. Kim, et al. (“Suk”).FIG. 14G illustrates the structure after Step (G) is completed.
Step (H): This is an optional step where a hydrogen anneal can be utilized to reduce surface roughness of fabricated nanowires. The hydrogen anneal can also reduce thickness of nanowires. Following the hydrogen anneal, another optional step of oxidation (using plasma enhanced thermal oxidation) and etch-back of the produced silicon dioxide can be used. This process thins down the silicon nanowire further.FIG. 14H illustrates the structure after Step (H) is completed.
Step (I): Gate dielectric and gate electrode regions are deposited or grown. Examples of gate dielectrics include hafnium oxide, silicon dioxide, etc. Examples of gate electrodes include polysilicon, TiN, TaN, etc. A CMP is conducted after gate electrode deposition. Following this, rest of the process flow for forming transistors, contacts and wires for the top layer continues.FIG. 14I illustrates the structure after Step (I) is completed.
FIG. 14J shows a cross-sectional view of structures after Step (I). It is clear that two nanowires are present for each transistor in the figure. It is possible to have one nanowire per transistor or more than two nanowires per transistor by changing the number of stacked Si/SiGe layers.
Note that top-level transistors are formed well-aligned to bottom-level wiring and transistor layers. Since the top-level transistor layers are very thin (preferably less than 200 nm), the top transistors can be aligned to features in the bottom-level. While the process flow shown inFIG. 14A-14J gives the key steps involved in forming a four-side gated JLT with 3D stacked components, it is conceivable to one skilled in the art that changes to the process can be made. For example, process steps and additional materials/regions to add strain to junctionless transistors can be added. Furthermore, more than two layers of chips or circuits can be 3D stacked. Also, there are many methods to construct silicon nanowire transistors and these are described in “High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling,” Electron Devices Meeting (IEDM), 2009 IEEE International, vol., no., pp. 1-4, 7-9 Dec. 2009 by Bangsaruntip, S.; Cohen, G. M.; Majumdar, A.; et al. (“Bangsaruntip”) and in “High performance 5 nm radius twin silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics, and reliability,” in Proc. IEDM Tech. Dig., 2005, pp. 717-720 by S. D. Suk, S.-Y. Lee, S.-M. Kim, et al. (“Suk”). Contents of these publications are incorporated herein by reference. Techniques described in these publications can be utilized for fabricating four-side gated JLTs without junctions as well. - It will also be appreciated by persons of ordinary skill in the art that the invention is not limited to what has been particularly shown and described hereinabove. For example, drawings or illustrations may not show n or p wells for clarity in illustration. Further, combinations and sub-combinations of the various features described hereinabove may be utilized to form a 3D IC based system. Rather, the scope of the invention includes both combinations and sub-combinations of the various features described hereinabove as well as modifications and variations which would occur to such skilled persons upon reading the foregoing description. Thus the invention is to be limited only by the appended claims.
Claims (20)
1. A semiconductor device, the device comprising:
a plurality of transistors,
wherein at least one of said plurality of transistors comprises a first single crystal source, channel, and drain,
wherein at least one of said plurality of transistors comprises a second single crystal source, channel, and drain,
wherein said second single crystal source, channel, and drain is disposed above said first single crystal source, channel, and drain,
wherein at least one of said plurality of transistors comprises a third single crystal source, channel, and drain,
wherein said third single crystal source, channel, and drain is disposed above said second single crystal source, channel, and drain,
wherein at least one of said plurality of transistors comprises a fourth single crystal source, channel, and drain, and
wherein said fourth single crystal source, channel, and drain is disposed above said third single crystal source, channel, and drain; and
an ohmic connection between said first single crystal source or drain and said second single crystal source or drain.
2. The device according to claim 1 ,
wherein said first single crystal channel is self-aligned to said second single crystal channel being processed following the same lithography step.
3. The device according to claim 1 , further comprising:
at least one region of oxide to oxide bonds.
4. The device according to claim 1 ,
wherein at least one of said plurality of transistors comprises two side gates.
5. The device according to claim 1 ,
wherein at least one of said plurality of transistors comprises a gate all around structure.
6. The device according to claim 1 , further comprising:
a first gate structure, and
wherein said first gate structure controls at least one of said first single crystal channels and at least one of said second single crystal channels.
7. The device according to claim 1 , further comprising:
a first gate structure, and
wherein said first gate structure controls at least one of said first single crystal channels and at least one of said third single crystal channels.
8. A semiconductor device, the device comprising:
a plurality of transistors,
wherein at least one of said plurality of transistors comprises a first single crystal source, channel, and drain,
wherein at least one of said plurality of transistors comprises a second single crystal source, channel, and drain,
wherein said second single crystal source, channel, and drain is disposed above said first single crystal source, channel, and drain,
wherein at least one of said plurality of transistors comprises a third single crystal source, channel, and drain,
wherein said third single crystal source, channel, and drain is disposed above said second single crystal source, channel, and drain,
wherein at least one of said plurality of transistors comprises a fourth single crystal source, channel, and drain, and
wherein said first single crystal source or drain, and said second single crystal source or drain each comprise n+ doped regions.
9. The device according to claim 8 ,
wherein said first single crystal channel is self-aligned to said second single crystal channel being processed following the same lithography step.
10. The device according to claim 8 , further comprising:
at least one region of oxide to oxide bonds.
11. The device according to claim 8 ,
wherein at least one of said plurality of transistors comprises two side gates.
12. The device according to claim 8 ,
wherein at least one of said plurality of transistors comprises a gate all around structure.
13. The device according to claim 8 , further comprising:
a first gate structure,
wherein said first gate structure controls at least one of said first single crystal channels and at least one of said second single crystal channels.
14. The device according to claim 8 , further comprising:
a first gate structure,
wherein said first gate structure controls at least one of said first single crystal channels and at least one of said third single crystal channels.
15. A semiconductor device, the device comprising:
a plurality of transistors,
wherein at least one of said plurality of transistors comprises a first single crystal channel,
wherein at least one of said plurality of transistors comprises a second single crystal channel,
wherein said second single crystal channel is disposed above said first single crystal channel,
wherein at least one of said plurality of transistors comprises a third single crystal channel,
wherein said third single crystal channel is disposed above said second single crystal channel,
wherein at least one of said plurality of transistors comprises a fourth single crystal channel,
wherein said fourth single crystal channel is disposed above said third single crystal channel, and
wherein formation of said fourth single crystal channel comprises a layer transfer process.
16. The device according to claim 15 ,
wherein said first single crystal channel is self-aligned to said second single crystal channel being processed following the same lithography step.
17. The device according to claim 15 , further comprising:
regions of oxide to oxide bonds.
18. The device according to claim 15 ,
wherein at least one of said plurality of transistors comprises a gate all around structure.
19. The device according to claim 15 , further comprising:
a first gate structure,
wherein said first gate structure controls at least one of said first single crystal channels and at least one of said second single crystal channels.
20. The device according to claim 15 , further comprising:
a first gate structure,
wherein said first gate structure controls at least one of said first single crystal channels and at least one of said third single crystal channels.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/572,550 US11315980B1 (en) | 2010-10-11 | 2022-01-10 | 3D semiconductor device and structure with transistors |
US17/683,322 US11335731B1 (en) | 2010-10-11 | 2022-02-28 | 3D semiconductor device and structure with transistors |
US17/718,932 US11469271B2 (en) | 2010-10-11 | 2022-04-12 | Method to produce 3D semiconductor devices and structures with memory |
US17/850,840 US11462586B1 (en) | 2010-10-11 | 2022-06-27 | Method to produce 3D semiconductor devices and structures with memory |
US17/898,475 US11600667B1 (en) | 2010-10-11 | 2022-08-29 | Method to produce 3D semiconductor devices and structures with memory |
US18/105,041 US11793005B2 (en) | 2010-10-11 | 2023-02-02 | 3D semiconductor devices and structures |
US18/234,368 US11956976B2 (en) | 2010-10-11 | 2023-08-15 | 3D semiconductor devices and structures with transistors |
US18/596,623 US20240215267A1 (en) | 2010-10-11 | 2024-03-06 | Method for producing 3d semiconductor devices and structures with transistors and memory cells |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/901,890 US8026521B1 (en) | 2010-10-11 | 2010-10-11 | Semiconductor device and structure |
US13/173,999 US8203148B2 (en) | 2010-10-11 | 2011-06-30 | Semiconductor device and structure |
US13/246,157 US8956959B2 (en) | 2010-10-11 | 2011-09-27 | Method of manufacturing a semiconductor device with two monocrystalline layers |
US14/555,494 US9818800B2 (en) | 2010-10-11 | 2014-11-26 | Self aligned semiconductor device and structure |
US15/803,732 US10290682B2 (en) | 2010-10-11 | 2017-11-03 | 3D IC semiconductor device and structure with stacked memory |
US16/409,813 US10825864B2 (en) | 2010-10-11 | 2019-05-11 | 3D semiconductor device and structure |
US17/013,823 US10896931B1 (en) | 2010-10-11 | 2020-09-07 | 3D semiconductor device and structure |
US17/114,155 US11018191B1 (en) | 2010-10-11 | 2020-12-07 | 3D semiconductor device and structure |
US17/223,822 US11133351B2 (en) | 2010-10-11 | 2021-04-06 | 3D semiconductor device and structure |
US17/402,526 US11227897B2 (en) | 2010-10-11 | 2021-08-14 | Method for producing a 3D semiconductor memory device and structure |
US17/542,490 US11257867B1 (en) | 2010-10-11 | 2021-12-05 | 3D semiconductor device and structure with oxide bonds |
US17/572,550 US11315980B1 (en) | 2010-10-11 | 2022-01-10 | 3D semiconductor device and structure with transistors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/542,490 Continuation-In-Part US11257867B1 (en) | 2010-10-11 | 2021-12-05 | 3D semiconductor device and structure with oxide bonds |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/683,322 Continuation-In-Part US11335731B1 (en) | 2010-10-11 | 2022-02-28 | 3D semiconductor device and structure with transistors |
Publications (2)
Publication Number | Publication Date |
---|---|
US11315980B1 US11315980B1 (en) | 2022-04-26 |
US20220130905A1 true US20220130905A1 (en) | 2022-04-28 |
Family
ID=81257556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/572,550 Active US11315980B1 (en) | 2010-10-11 | 2022-01-10 | 3D semiconductor device and structure with transistors |
Country Status (1)
Country | Link |
---|---|
US (1) | US11315980B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11793005B2 (en) * | 2010-10-11 | 2023-10-17 | Monolithic 3D Inc. | 3D semiconductor devices and structures |
US11956976B2 (en) * | 2010-10-11 | 2024-04-09 | Monolithic 3D Inc. | 3D semiconductor devices and structures with transistors |
Family Cites Families (797)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3007090A (en) | 1957-09-04 | 1961-10-31 | Ibm | Back resistance control for junction semiconductor devices |
US3819959A (en) | 1970-12-04 | 1974-06-25 | Ibm | Two phase charge-coupled semiconductor device |
US4009483A (en) | 1974-04-04 | 1977-02-22 | Motorola, Inc. | Implementation of surface sensitive semiconductor devices |
US4197555A (en) | 1975-12-29 | 1980-04-08 | Fujitsu Limited | Semiconductor device |
US4213139A (en) | 1978-05-18 | 1980-07-15 | Texas Instruments Incorporated | Double level polysilicon series transistor cell |
US4400715A (en) | 1980-11-19 | 1983-08-23 | International Business Machines Corporation | Thin film semiconductor device and method for manufacture |
JPS58164219A (en) | 1982-03-25 | 1983-09-29 | Agency Of Ind Science & Technol | Manufacture of laminated semiconductor device |
DE3211761A1 (en) | 1982-03-30 | 1983-10-06 | Siemens Ag | METHOD FOR MANUFACTURING INTEGRATED MOS FIELD EFFECT TRANSISTOR CIRCUITS IN SILICON GATE TECHNOLOGY WITH SILICIDE-COVERED DIFFUSION AREAS AS LOW-RESISTANT CONDUCTORS |
JPS593950A (en) | 1982-06-30 | 1984-01-10 | Fujitsu Ltd | Gate array chip |
US4522657A (en) | 1983-10-20 | 1985-06-11 | Westinghouse Electric Corp. | Low temperature process for annealing shallow implanted N+/P junctions |
JPS6130059A (en) | 1984-07-20 | 1986-02-12 | Nec Corp | Manufacture of semiconductor device |
JPS61256663A (en) | 1985-05-09 | 1986-11-14 | Agency Of Ind Science & Technol | Semiconductor device |
EP0208795A1 (en) | 1985-07-12 | 1987-01-21 | International Business Machines Corporation | Method of fabricating a self-aligned metal-semiconductor FET |
KR900008647B1 (en) | 1986-03-20 | 1990-11-26 | 후지쓰 가부시끼가이샤 | A method for manufacturing three demensional i.c. |
US4829018A (en) | 1986-06-27 | 1989-05-09 | Wahlstrom Sven E | Multilevel integrated circuits employing fused oxide layers |
US4704785A (en) | 1986-08-01 | 1987-11-10 | Texas Instruments Incorporated | Process for making a buried conductor by fusing two wafers |
US4887134A (en) | 1986-09-26 | 1989-12-12 | Canon Kabushiki Kaisha | Semiconductor device having a semiconductor region in which either the conduction or valence band remains flat while bandgap is continuously graded |
US4732312A (en) | 1986-11-10 | 1988-03-22 | Grumman Aerospace Corporation | Method for diffusion bonding of alloys having low solubility oxides |
US4721885A (en) | 1987-02-11 | 1988-01-26 | Sri International | Very high speed integrated microelectronic tubes |
US4854986A (en) | 1987-05-13 | 1989-08-08 | Harris Corporation | Bonding technique to join two or more silicon wafers |
JP2606857B2 (en) | 1987-12-10 | 1997-05-07 | 株式会社日立製作所 | Method for manufacturing semiconductor memory device |
US5032007A (en) | 1988-04-07 | 1991-07-16 | Honeywell, Inc. | Apparatus and method for an electronically controlled color filter for use in information display applications |
US5354695A (en) | 1992-04-08 | 1994-10-11 | Leedy Glenn J | Membrane dielectric isolation IC fabrication |
US4866304A (en) | 1988-05-23 | 1989-09-12 | Motorola, Inc. | BICMOS NAND gate |
US4956307A (en) | 1988-11-10 | 1990-09-11 | Texas Instruments, Incorporated | Thin oxide sidewall insulators for silicon-over-insulator transistors |
JPH0344067A (en) | 1989-07-11 | 1991-02-25 | Nec Corp | Laminating method of semiconductor substrate |
JP2617798B2 (en) | 1989-09-22 | 1997-06-04 | 三菱電機株式会社 | Stacked semiconductor device and method of manufacturing the same |
US5217916A (en) | 1989-10-03 | 1993-06-08 | Trw Inc. | Method of making an adaptive configurable gate array |
US5012153A (en) | 1989-12-22 | 1991-04-30 | Atkinson Gary M | Split collector vacuum field effect transistor |
EP0449524B1 (en) | 1990-03-24 | 1997-05-28 | Canon Kabushiki Kaisha | Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer |
JPH0636413B2 (en) | 1990-03-29 | 1994-05-11 | 信越半導体株式会社 | Manufacturing method of semiconductor element forming substrate |
US5063171A (en) | 1990-04-06 | 1991-11-05 | Texas Instruments Incorporated | Method of making a diffusionless virtual drain and source conductor/oxide semiconductor field effect transistor |
US5541441A (en) | 1994-10-06 | 1996-07-30 | Actel Corporation | Metal to metal antifuse |
US5047979A (en) | 1990-06-15 | 1991-09-10 | Integrated Device Technology, Inc. | High density SRAM circuit with ratio independent memory cells |
JPH0478123A (en) | 1990-07-20 | 1992-03-12 | Fujitsu Ltd | Manufacture of semiconductor device |
ATE217447T1 (en) | 1990-08-03 | 2002-05-15 | Canon Kk | METHOD FOR PRODUCING A SEMICONDUCTOR BODY |
US5206749A (en) | 1990-12-31 | 1993-04-27 | Kopin Corporation | Liquid crystal display having essentially single crystal transistors pixels and driving circuits |
US5861929A (en) | 1990-12-31 | 1999-01-19 | Kopin Corporation | Active matrix color display with multiple cells and connection through substrate |
US5701027A (en) | 1991-04-26 | 1997-12-23 | Quicklogic Corporation | Programmable interconnect structures and programmable integrated circuits |
KR930006732B1 (en) | 1991-05-08 | 1993-07-23 | 재단법인 한국전자통신연구소 | Semiconductor substrate having the structure assembly varied and method of the same |
US5258643A (en) | 1991-07-25 | 1993-11-02 | Massachusetts Institute Of Technology | Electrically programmable link structures and methods of making same |
TW211621B (en) | 1991-07-31 | 1993-08-21 | Canon Kk | |
JPH05198739A (en) | 1991-09-10 | 1993-08-06 | Mitsubishi Electric Corp | Laminated semiconductor device and its manufacture |
FR2681472B1 (en) | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL. |
JPH0793363B2 (en) | 1991-09-25 | 1995-10-09 | 株式会社半導体エネルギー研究所 | Semiconductor integrated circuit and manufacturing method thereof |
US5266511A (en) | 1991-10-02 | 1993-11-30 | Fujitsu Limited | Process for manufacturing three dimensional IC's |
JP3112106B2 (en) | 1991-10-11 | 2000-11-27 | キヤノン株式会社 | Manufacturing method of semiconductor substrate |
JP3261685B2 (en) | 1992-01-31 | 2002-03-04 | キヤノン株式会社 | Semiconductor element substrate and method of manufacturing the same |
JP3237888B2 (en) | 1992-01-31 | 2001-12-10 | キヤノン株式会社 | Semiconductor substrate and method of manufacturing the same |
US5308782A (en) | 1992-03-02 | 1994-05-03 | Motorola | Semiconductor memory device and method of formation |
US5371431A (en) | 1992-03-04 | 1994-12-06 | Mcnc | Vertical microelectronic field emission devices including elongate vertical pillars having resistive bottom portions |
US5265047A (en) | 1992-03-09 | 1993-11-23 | Monolithic System Technology | High density SRAM circuit with single-ended memory cells |
US6714625B1 (en) | 1992-04-08 | 2004-03-30 | Elm Technology Corporation | Lithography device for semiconductor circuit pattern generation |
US6355976B1 (en) | 1992-05-14 | 2002-03-12 | Reveo, Inc | Three-dimensional packaging technology for multi-layered integrated circuits |
US5646547A (en) | 1994-04-28 | 1997-07-08 | Xilinx, Inc. | Logic cell which can be configured as a latch without static one's problem |
US5535342A (en) | 1992-11-05 | 1996-07-09 | Giga Operations Corporation | Pld connector for module having configuration of either first PLD or second PLD and reconfigurable bus for communication of two different bus protocols |
JPH06318864A (en) | 1993-05-07 | 1994-11-15 | Toshiba Corp | Field programmable gate array |
EP0721662A1 (en) | 1993-09-30 | 1996-07-17 | Kopin Corporation | Three-dimensional processor using transferred thin film circuits |
US5485031A (en) | 1993-11-22 | 1996-01-16 | Actel Corporation | Antifuse structure suitable for VLSI application |
TW330313B (en) | 1993-12-28 | 1998-04-21 | Canon Kk | A semiconductor substrate and process for producing same |
US5817574A (en) | 1993-12-29 | 1998-10-06 | Intel Corporation | Method of forming a high surface area interconnection structure |
JP3514500B2 (en) | 1994-01-28 | 2004-03-31 | 株式会社ルネサステクノロジ | Semiconductor device and manufacturing method thereof |
US5554870A (en) | 1994-02-04 | 1996-09-10 | Motorola, Inc. | Integrated circuit having both vertical and horizontal devices and process for making the same |
US7148119B1 (en) | 1994-03-10 | 2006-12-12 | Canon Kabushiki Kaisha | Process for production of semiconductor substrate |
JP3352340B2 (en) | 1995-10-06 | 2002-12-03 | キヤノン株式会社 | Semiconductor substrate and method of manufacturing the same |
US5682107A (en) | 1994-04-01 | 1997-10-28 | Xilinx, Inc. | FPGA architecture with repeatable tiles including routing matrices and logic matrices |
US5627106A (en) | 1994-05-06 | 1997-05-06 | United Microelectronics Corporation | Trench method for three dimensional chip connecting during IC fabrication |
US5424560A (en) | 1994-05-31 | 1995-06-13 | Motorola, Inc. | Integrated multicolor organic led array |
US5594563A (en) | 1994-05-31 | 1997-01-14 | Honeywell Inc. | High resolution subtractive color projection system |
MY114888A (en) | 1994-08-22 | 2003-02-28 | Ibm | Method for forming a monolithic electronic module by stacking planar arrays of integrated circuit chips |
DE4433845A1 (en) | 1994-09-22 | 1996-03-28 | Fraunhofer Ges Forschung | Method of manufacturing a three-dimensional integrated circuit |
DE4433833A1 (en) | 1994-09-22 | 1996-03-28 | Fraunhofer Ges Forschung | Method for producing a three-dimensional integrated circuit while achieving high system yields |
US5527423A (en) | 1994-10-06 | 1996-06-18 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers |
WO1996011498A1 (en) | 1994-10-11 | 1996-04-18 | International Business Machines Corporation | Monolithic array of light emitting diodes for the generation of light at multiple wavelengths and its use for multicolor display applications |
FR2726126A1 (en) | 1994-10-24 | 1996-04-26 | Mitsubishi Electric Corp | LED device mfr. by thermally bonding LEDs |
TW358907B (en) | 1994-11-22 | 1999-05-21 | Monolithic System Tech Inc | A computer system and a method of using a DRAM array as a next level cache memory |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US6548956B2 (en) | 1994-12-13 | 2003-04-15 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US6358631B1 (en) | 1994-12-13 | 2002-03-19 | The Trustees Of Princeton University | Mixed vapor deposited films for electroluminescent devices |
US5707745A (en) | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5586291A (en) | 1994-12-23 | 1996-12-17 | Emc Corporation | Disk controller with volatile and non-volatile cache memories |
US5737748A (en) | 1995-03-15 | 1998-04-07 | Texas Instruments Incorporated | Microprocessor unit having a first level write-through cache memory and a smaller second-level write-back cache memory |
US5478762A (en) | 1995-03-16 | 1995-12-26 | Taiwan Semiconductor Manufacturing Company | Method for producing patterning alignment marks in oxide |
US5937312A (en) | 1995-03-23 | 1999-08-10 | Sibond L.L.C. | Single-etch stop process for the manufacture of silicon-on-insulator wafers |
US5789758A (en) | 1995-06-07 | 1998-08-04 | Micron Technology, Inc. | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
FR2738671B1 (en) | 1995-09-13 | 1997-10-10 | Commissariat Energie Atomique | PROCESS FOR PRODUCING THIN FILMS WITH SEMICONDUCTOR MATERIAL |
US5583350A (en) | 1995-11-02 | 1996-12-10 | Motorola | Full color light emitting diode display assembly |
US5583349A (en) | 1995-11-02 | 1996-12-10 | Motorola | Full color light emitting diode display |
US5781031A (en) | 1995-11-21 | 1998-07-14 | International Business Machines Corporation | Programmable logic array |
US5617991A (en) | 1995-12-01 | 1997-04-08 | Advanced Micro Devices, Inc. | Method for electrically conductive metal-to-metal bonding |
US5748161A (en) | 1996-03-04 | 1998-05-05 | Motorola, Inc. | Integrated electro-optical package with independent menu bar |
FR2747506B1 (en) | 1996-04-11 | 1998-05-15 | Commissariat Energie Atomique | PROCESS FOR OBTAINING A THIN FILM OF SEMICONDUCTOR MATERIAL INCLUDING IN PARTICULAR ELECTRONIC COMPONENTS |
FR2748851B1 (en) | 1996-05-15 | 1998-08-07 | Commissariat Energie Atomique | PROCESS FOR PRODUCING A THIN FILM OF SEMICONDUCTOR MATERIAL |
US6424016B1 (en) | 1996-05-24 | 2002-07-23 | Texas Instruments Incorporated | SOI DRAM having P-doped polysilicon gate for a memory pass transistor |
KR100486803B1 (en) | 1996-06-18 | 2005-06-16 | 소니 가부시끼 가이샤 | Selfluminous display device |
US5977961A (en) | 1996-06-19 | 1999-11-02 | Sun Microsystems, Inc. | Method and apparatus for amplitude band enabled addressing arrayed elements |
US6027958A (en) | 1996-07-11 | 2000-02-22 | Kopin Corporation | Transferred flexible integrated circuit |
EP1744365B1 (en) | 1996-08-27 | 2009-04-15 | Seiko Epson Corporation | Exfoliating method and transferring method of thin film device |
US5770881A (en) | 1996-09-12 | 1998-06-23 | International Business Machines Coproration | SOI FET design to reduce transient bipolar current |
JP3584635B2 (en) | 1996-10-04 | 2004-11-04 | 株式会社デンソー | Semiconductor device and manufacturing method thereof |
US5770483A (en) | 1996-10-08 | 1998-06-23 | Advanced Micro Devices, Inc. | Multi-level transistor fabrication method with high performance drain-to-gate connection |
US5835396A (en) | 1996-10-17 | 1998-11-10 | Zhang; Guobiao | Three-dimensional read-only memory |
US6020263A (en) | 1996-10-31 | 2000-02-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of recovering alignment marks after chemical mechanical polishing of tungsten |
US7470142B2 (en) | 2004-06-21 | 2008-12-30 | Sang-Yun Lee | Wafer bonding method |
US7052941B2 (en) * | 2003-06-24 | 2006-05-30 | Sang-Yun Lee | Method for making a three-dimensional integrated circuit structure |
US7470598B2 (en) | 2004-06-21 | 2008-12-30 | Sang-Yun Lee | Semiconductor layer structure and method of making the same |
US8779597B2 (en) | 2004-06-21 | 2014-07-15 | Sang-Yun Lee | Semiconductor device with base support structure |
US8058142B2 (en) | 1996-11-04 | 2011-11-15 | Besang Inc. | Bonded semiconductor structure and method of making the same |
US7800199B2 (en) | 2003-06-24 | 2010-09-21 | Oh Choonsik | Semiconductor circuit |
US7888764B2 (en) | 2003-06-24 | 2011-02-15 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
US7633162B2 (en) | 2004-06-21 | 2009-12-15 | Sang-Yun Lee | Electronic circuit with embedded memory |
US20050280155A1 (en) | 2004-06-21 | 2005-12-22 | Sang-Yun Lee | Semiconductor bonding and layer transfer method |
US8018058B2 (en) | 2004-06-21 | 2011-09-13 | Besang Inc. | Semiconductor memory device |
US5872029A (en) | 1996-11-07 | 1999-02-16 | Advanced Micro Devices, Inc. | Method for forming an ultra high density inverter using a stacked transistor arrangement |
CA2225131C (en) | 1996-12-18 | 2002-01-01 | Canon Kabushiki Kaisha | Process for producing semiconductor article |
US5812708A (en) | 1996-12-31 | 1998-09-22 | Intel Corporation | Method and apparatus for distributing an optical clock in an integrated circuit |
US6331722B1 (en) | 1997-01-18 | 2001-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Hybrid circuit and electronic device using same |
US5893721A (en) | 1997-03-24 | 1999-04-13 | Motorola, Inc. | Method of manufacture of active matrix LED array |
US6551857B2 (en) | 1997-04-04 | 2003-04-22 | Elm Technology Corporation | Three dimensional structure integrated circuits |
US5915167A (en) | 1997-04-04 | 1999-06-22 | Elm Technology Corporation | Three dimensional structure memory |
US6191007B1 (en) | 1997-04-28 | 2001-02-20 | Denso Corporation | Method for manufacturing a semiconductor substrate |
US6155909A (en) | 1997-05-12 | 2000-12-05 | Silicon Genesis Corporation | Controlled cleavage system using pressurized fluid |
US5877070A (en) | 1997-05-31 | 1999-03-02 | Max-Planck Society | Method for the transfer of thin layers of monocrystalline material to a desirable substrate |
US6111260A (en) | 1997-06-10 | 2000-08-29 | Advanced Micro Devices, Inc. | Method and apparatus for in situ anneal during ion implant |
JP4032454B2 (en) | 1997-06-27 | 2008-01-16 | ソニー株式会社 | Manufacturing method of three-dimensional circuit element |
US6207523B1 (en) | 1997-07-03 | 2001-03-27 | Micron Technology, Inc. | Methods of forming capacitors DRAM arrays, and monolithic integrated circuits |
US6072209A (en) | 1997-07-08 | 2000-06-06 | Micro Technology, Inc. | Four F2 folded bit line DRAM cell structure having buried bit and word lines |
GB2343550A (en) | 1997-07-29 | 2000-05-10 | Silicon Genesis Corp | Cluster tool method and apparatus using plasma immersion ion implantation |
US5882987A (en) | 1997-08-26 | 1999-03-16 | International Business Machines Corporation | Smart-cut process for the production of thin semiconductor material films |
US6201629B1 (en) | 1997-08-27 | 2001-03-13 | Microoptical Corporation | Torsional micro-mechanical mirror system |
US6009496A (en) | 1997-10-30 | 1999-12-28 | Winbond Electronics Corp. | Microcontroller with programmable embedded flash memory |
US6376337B1 (en) | 1997-11-10 | 2002-04-23 | Nanodynamics, Inc. | Epitaxial SiOx barrier/insulation layer |
US6232643B1 (en) | 1997-11-13 | 2001-05-15 | Micron Technology, Inc. | Memory using insulator traps |
US6429481B1 (en) | 1997-11-14 | 2002-08-06 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
US5952681A (en) | 1997-11-24 | 1999-09-14 | Chen; Hsing | Light emitting diode emitting red, green and blue light |
US6271542B1 (en) | 1997-12-08 | 2001-08-07 | International Business Machines Corporation | Merged logic and memory combining thin film and bulk Si transistors |
US6369410B1 (en) | 1997-12-15 | 2002-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the semiconductor device |
US6052498A (en) | 1997-12-19 | 2000-04-18 | Intel Corporation | Method and apparatus providing an optical input/output bus through the back side of an integrated circuit die |
JP3501642B2 (en) | 1997-12-26 | 2004-03-02 | キヤノン株式会社 | Substrate processing method |
TW406419B (en) | 1998-01-15 | 2000-09-21 | Siemens Ag | Memory-cells arrangement and its production method |
US6071795A (en) | 1998-01-23 | 2000-06-06 | The Regents Of The University Of California | Separation of thin films from transparent substrates by selective optical processing |
SG78332A1 (en) | 1998-02-04 | 2001-02-20 | Canon Kk | Semiconductor substrate and method of manufacturing the same |
US5943574A (en) | 1998-02-23 | 1999-08-24 | Motorola, Inc. | Method of fabricating 3D multilayer semiconductor circuits |
US6448615B1 (en) | 1998-02-26 | 2002-09-10 | Micron Technology, Inc. | Methods, structures, and circuits for transistors with gate-to-body capacitive coupling |
JP4126747B2 (en) | 1998-02-27 | 2008-07-30 | セイコーエプソン株式会社 | Manufacturing method of three-dimensional device |
US6153495A (en) | 1998-03-09 | 2000-11-28 | Intersil Corporation | Advanced methods for making semiconductor devices by low temperature direct bonding |
US5965875A (en) | 1998-04-24 | 1999-10-12 | Foveon, Inc. | Color separation in an active pixel cell imaging array using a triple-well structure |
US6057212A (en) | 1998-05-04 | 2000-05-02 | International Business Machines Corporation | Method for making bonded metal back-plane substrates |
US6331468B1 (en) | 1998-05-11 | 2001-12-18 | Lsi Logic Corporation | Formation of integrated circuit structure using one or more silicon layers for implantation and out-diffusion in formation of defect-free source/drain regions and also for subsequent formation of silicon nitride spacers |
US6229161B1 (en) | 1998-06-05 | 2001-05-08 | Stanford University | Semiconductor capacitively-coupled NDR device and its applications in high-density high-speed memories and in power switches |
JP2000012864A (en) | 1998-06-22 | 2000-01-14 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
US6125217A (en) | 1998-06-26 | 2000-09-26 | Intel Corporation | Clock distribution network |
US6054370A (en) | 1998-06-30 | 2000-04-25 | Intel Corporation | Method of delaminating a pre-fabricated transistor layer from a substrate for placement on another wafer |
US6423614B1 (en) | 1998-06-30 | 2002-07-23 | Intel Corporation | Method of delaminating a thin film using non-thermal techniques |
US6392253B1 (en) | 1998-08-10 | 2002-05-21 | Arjun J. Saxena | Semiconductor device with single crystal films grown on arrayed nucleation sites on amorphous and/or non-single crystal surfaces |
US6242778B1 (en) | 1998-09-22 | 2001-06-05 | International Business Machines Corporation | Cooling method for silicon on insulator devices |
JP2000132961A (en) | 1998-10-23 | 2000-05-12 | Canon Inc | Magnetic thin film memory, method for reading out magnetic thin film memory, and method for writing to magnetic thin film memory |
JP2000199827A (en) | 1998-10-27 | 2000-07-18 | Sony Corp | Optical wave guide device and its manufacture |
US6423613B1 (en) | 1998-11-10 | 2002-07-23 | Micron Technology, Inc. | Low temperature silicon wafer bond process with bulk material bond strength |
US5977579A (en) | 1998-12-03 | 1999-11-02 | Micron Technology, Inc. | Trench dram cell with vertical device and buried word lines |
US6965165B2 (en) | 1998-12-21 | 2005-11-15 | Mou-Shiung Lin | Top layers of metal for high performance IC's |
US6245634B1 (en) | 1999-10-28 | 2001-06-12 | Easic Corporation | Method for design and manufacture of semiconductors |
US6331733B1 (en) | 1999-08-10 | 2001-12-18 | Easic Corporation | Semiconductor device |
EP1041624A1 (en) | 1999-04-02 | 2000-10-04 | Interuniversitair Microelektronica Centrum Vzw | Method of transferring ultra-thin substrates and application of the method to the manufacture of a multilayer thin film device |
US6430734B1 (en) | 1999-04-15 | 2002-08-06 | Sycon Design, Inc. | Method for determining bus line routing for components of an integrated circuit |
JP2001006370A (en) | 1999-06-17 | 2001-01-12 | Nec Corp | Sram circuit |
JP2001007698A (en) | 1999-06-25 | 2001-01-12 | Mitsubishi Electric Corp | Data pll circuit |
US6355980B1 (en) | 1999-07-15 | 2002-03-12 | Nanoamp Solutions Inc. | Dual die memory |
US6242324B1 (en) | 1999-08-10 | 2001-06-05 | The United States Of America As Represented By The Secretary Of The Navy | Method for fabricating singe crystal materials over CMOS devices |
US6294018B1 (en) | 1999-09-15 | 2001-09-25 | Lucent Technologies | Alignment techniques for epitaxial growth processes |
US6653209B1 (en) | 1999-09-30 | 2003-11-25 | Canon Kabushiki Kaisha | Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device |
US6500694B1 (en) | 2000-03-22 | 2002-12-31 | Ziptronix, Inc. | Three dimensional device integration method and integrated device |
US6322903B1 (en) | 1999-12-06 | 2001-11-27 | Tru-Si Technologies, Inc. | Package of integrated circuits and vertical integration |
US6261935B1 (en) | 1999-12-13 | 2001-07-17 | Chartered Semiconductor Manufacturing Ltd. | Method of forming contact to polysilicon gate for MOS devices |
US6701071B2 (en) | 2000-01-11 | 2004-03-02 | Minolta Co., Ltd. | Lens barrel with built-in blur correction mechanism |
US6281102B1 (en) | 2000-01-13 | 2001-08-28 | Integrated Device Technology, Inc. | Cobalt silicide structure for improving gate oxide integrity and method for fabricating same |
SE0000148D0 (en) | 2000-01-17 | 2000-01-17 | Forskarpatent I Syd Ab | Manufacturing method for IR detector matrices |
US6614109B2 (en) | 2000-02-04 | 2003-09-02 | International Business Machines Corporation | Method and apparatus for thermal management of integrated circuits |
US6871396B2 (en) | 2000-02-09 | 2005-03-29 | Matsushita Electric Industrial Co., Ltd. | Transfer material for wiring substrate |
JP3735855B2 (en) | 2000-02-17 | 2006-01-18 | 日本電気株式会社 | Semiconductor integrated circuit device and driving method thereof |
US6756811B2 (en) | 2000-03-10 | 2004-06-29 | Easic Corporation | Customizable and programmable cell array |
US6331790B1 (en) | 2000-03-10 | 2001-12-18 | Easic Corporation | Customizable and programmable cell array |
US6544837B1 (en) | 2000-03-17 | 2003-04-08 | International Business Machines Corporation | SOI stacked DRAM logic |
JP2001284360A (en) | 2000-03-31 | 2001-10-12 | Hitachi Ltd | Semiconductor device |
AU2001262953A1 (en) | 2000-04-28 | 2001-11-12 | Matrix Semiconductor, Inc. | Three-dimensional memory array and method of fabrication |
US6420215B1 (en) | 2000-04-28 | 2002-07-16 | Matrix Semiconductor, Inc. | Three-dimensional memory array and method of fabrication |
US6635588B1 (en) | 2000-06-12 | 2003-10-21 | Ultratech Stepper, Inc. | Method for laser thermal processing using thermally induced reflectivity switch |
US6635552B1 (en) | 2000-06-12 | 2003-10-21 | Micron Technology, Inc. | Methods of forming semiconductor constructions |
US6404043B1 (en) | 2000-06-21 | 2002-06-11 | Dense-Pac Microsystems, Inc. | Panel stacking of BGA devices to form three-dimensional modules |
KR100372639B1 (en) | 2000-06-21 | 2003-02-17 | 주식회사 하이닉스반도체 | Method of manufacturing mosfet device |
JP4424830B2 (en) | 2000-06-30 | 2010-03-03 | Okiセミコンダクタ株式会社 | Semiconductor device |
US6429484B1 (en) | 2000-08-07 | 2002-08-06 | Advanced Micro Devices, Inc. | Multiple active layer structure and a method of making such a structure |
US6580124B1 (en) | 2000-08-14 | 2003-06-17 | Matrix Semiconductor Inc. | Multigate semiconductor device with vertical channel current and method of fabrication |
US6534851B1 (en) | 2000-08-21 | 2003-03-18 | Agere Systems, Inc. | Modular semiconductor substrates |
US6331943B1 (en) | 2000-08-28 | 2001-12-18 | Motorola, Inc. | MTJ MRAM series-parallel architecture |
US6537891B1 (en) | 2000-08-29 | 2003-03-25 | Micron Technology, Inc. | Silicon on insulator DRAM process utilizing both fully and partially depleted devices |
US6600173B2 (en) | 2000-08-30 | 2003-07-29 | Cornell Research Foundation, Inc. | Low temperature semiconductor layering and three-dimensional electronic circuits using the layering |
US6476636B1 (en) | 2000-09-02 | 2002-11-05 | Actel Corporation | Tileable field-programmable gate array architecture |
US7015719B1 (en) | 2000-09-02 | 2006-03-21 | Actel Corporation | Tileable field-programmable gate array architecture |
JP3744825B2 (en) | 2000-09-08 | 2006-02-15 | セイコーエプソン株式会社 | Semiconductor device |
US6479821B1 (en) | 2000-09-11 | 2002-11-12 | Ultratech Stepper, Inc. | Thermally induced phase switch for laser thermal processing |
US20020090758A1 (en) | 2000-09-19 | 2002-07-11 | Silicon Genesis Corporation | Method and resulting device for manufacturing for double gated transistors |
US6355501B1 (en) | 2000-09-21 | 2002-03-12 | International Business Machines Corporation | Three-dimensional chip stacking assembly |
JP2002134374A (en) | 2000-10-25 | 2002-05-10 | Mitsubishi Electric Corp | Semiconductor wafer and its manufacturing method and device |
FR2816445B1 (en) | 2000-11-06 | 2003-07-25 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A STACKED STRUCTURE COMPRISING A THIN LAYER ADHERING TO A TARGET SUBSTRATE |
FR2817395B1 (en) | 2000-11-27 | 2003-10-31 | Soitec Silicon On Insulator | METHOD FOR MANUFACTURING A SUBSTRATE, IN PARTICULAR FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND SUBSTRATE OBTAINED THEREBY |
US6377504B1 (en) | 2000-12-12 | 2002-04-23 | Tachuon Semiconductor Corp | High-density memory utilizing multiplexers to reduce bit line pitch constraints |
US6507115B2 (en) | 2000-12-14 | 2003-01-14 | International Business Machines Corporation | Multi-chip integrated circuit module |
US7094667B1 (en) | 2000-12-28 | 2006-08-22 | Bower Robert W | Smooth thin film layers produced by low temperature hydrogen ion cut |
US6774010B2 (en) | 2001-01-25 | 2004-08-10 | International Business Machines Corporation | Transferable device-containing layer for silicon-on-insulator applications |
JP3768819B2 (en) | 2001-01-31 | 2006-04-19 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
US6475869B1 (en) | 2001-02-26 | 2002-11-05 | Advanced Micro Devices, Inc. | Method of forming a double gate transistor having an epitaxial silicon/germanium channel region |
US6887753B2 (en) | 2001-02-28 | 2005-05-03 | Micron Technology, Inc. | Methods of forming semiconductor circuitry, and semiconductor circuit constructions |
EP1244142A1 (en) | 2001-03-23 | 2002-09-25 | Universite Catholique De Louvain | Fabrication method of SOI semiconductor devices |
JP2002353245A (en) | 2001-03-23 | 2002-12-06 | Seiko Epson Corp | Electro-optic substrate device, its manufacturing method, electro-optic device, electronic apparatus, and method for manufacturing substrate device |
JP2002299575A (en) | 2001-03-29 | 2002-10-11 | Toshiba Corp | Semiconductor memory |
US6526559B2 (en) | 2001-04-13 | 2003-02-25 | Interface & Control Systems, Inc. | Method for creating circuit redundancy in programmable logic devices |
US7151307B2 (en) | 2001-05-08 | 2006-12-19 | The Boeing Company | Integrated semiconductor circuits on photo-active Germanium substrates |
JP2002343564A (en) | 2001-05-18 | 2002-11-29 | Sharp Corp | Transfer film and manufacturing method of organic electroluminescence element using the same |
US7955972B2 (en) | 2001-05-22 | 2011-06-07 | Novellus Systems, Inc. | Methods for growing low-resistivity tungsten for high aspect ratio and small features |
TW498470B (en) | 2001-05-25 | 2002-08-11 | Siliconware Precision Industries Co Ltd | Semiconductor packaging with stacked chips |
DE10125967C1 (en) | 2001-05-29 | 2002-07-11 | Infineon Technologies Ag | DRAM cell arrangement used for a semiconductor storage device comprises a matrix arrangement of storage cells stacked over each other as layers, and a capacitor connected to the MOS transistor |
US6483707B1 (en) | 2001-06-07 | 2002-11-19 | Loctite Corporation | Heat sink and thermal interface having shielding to attenuate electromagnetic interference |
US6580289B2 (en) | 2001-06-08 | 2003-06-17 | Viasic, Inc. | Cell architecture to reduce customization in a semiconductor device |
DE60234095D1 (en) | 2001-06-11 | 2009-12-03 | Basf Se | OXIM ESTER PHOTOINITIATORS WITH COMBINED STRUCTURE |
US6759282B2 (en) | 2001-06-12 | 2004-07-06 | International Business Machines Corporation | Method and structure for buried circuits and devices |
GB0114317D0 (en) | 2001-06-13 | 2001-08-01 | Kean Thomas A | Method of protecting intellectual property cores on field programmable gate array |
TWI230392B (en) | 2001-06-18 | 2005-04-01 | Innovative Silicon Sa | Semiconductor device |
US20020190232A1 (en) | 2001-06-18 | 2002-12-19 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices for detecting smoke |
US7211828B2 (en) | 2001-06-20 | 2007-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic apparatus |
JP2003023138A (en) | 2001-07-10 | 2003-01-24 | Toshiba Corp | Memory chip, coc device using the same, and their manufacturing method |
US7067849B2 (en) | 2001-07-17 | 2006-06-27 | Lg Electronics Inc. | Diode having high brightness and method thereof |
DE10135870C1 (en) | 2001-07-24 | 2003-02-20 | Infineon Technologies Ag | Production of an integrated semiconductor circuit comprises depositing layer sequence, anisotropically etching, oxidizing the lowermost layer of the layer sequence, depositing further layer sequence on substrate, and isotropically etching |
JP5057619B2 (en) | 2001-08-01 | 2012-10-24 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
US6841813B2 (en) | 2001-08-13 | 2005-01-11 | Matrix Semiconductor, Inc. | TFT mask ROM and method for making same |
FR2828762B1 (en) | 2001-08-14 | 2003-12-05 | Soitec Silicon On Insulator | METHOD FOR OBTAINING A THIN FILM OF A SEMICONDUCTOR MATERIAL SUPPORTING AT LEAST ONE ELECTRONIC COMPONENT AND / OR CIRCUIT |
US6806171B1 (en) | 2001-08-24 | 2004-10-19 | Silicon Wafer Technologies, Inc. | Method of producing a thin layer of crystalline material |
US6861757B2 (en) | 2001-09-03 | 2005-03-01 | Nec Corporation | Interconnecting substrate for carrying semiconductor device, method of producing thereof and package of semiconductor device |
TW522534B (en) | 2001-09-11 | 2003-03-01 | Hsiu-Hen Chang | Light source of full color LED using die bonding and packaging technology |
US7420147B2 (en) | 2001-09-12 | 2008-09-02 | Reveo, Inc. | Microchannel plate and method of manufacturing microchannel plate |
US6875671B2 (en) | 2001-09-12 | 2005-04-05 | Reveo, Inc. | Method of fabricating vertical integrated circuits |
US6815781B2 (en) | 2001-09-25 | 2004-11-09 | Matrix Semiconductor, Inc. | Inverted staggered thin film transistor with salicided source/drain structures and method of making same |
JP2003098225A (en) | 2001-09-25 | 2003-04-03 | Toshiba Corp | Semiconductor integrated circuit |
JP4166455B2 (en) | 2001-10-01 | 2008-10-15 | 株式会社半導体エネルギー研究所 | Polarizing film and light emitting device |
US7459763B1 (en) | 2001-10-02 | 2008-12-02 | Actel Corporation | Reprogrammable metal-to-metal antifuse employing carbon-containing antifuse material |
US6717222B2 (en) | 2001-10-07 | 2004-04-06 | Guobiao Zhang | Three-dimensional memory |
JP2003133441A (en) | 2001-10-22 | 2003-05-09 | Nec Corp | Semiconductor device |
TWI264121B (en) | 2001-11-30 | 2006-10-11 | Semiconductor Energy Lab | A display device, a method of manufacturing a semiconductor device, and a method of manufacturing a display device |
US6967351B2 (en) | 2001-12-04 | 2005-11-22 | International Business Machines Corporation | Finfet SRAM cell using low mobility plane for cell stability and method for forming |
US7126214B2 (en) | 2001-12-05 | 2006-10-24 | Arbor Company Llp | Reconfigurable processor module comprising hybrid stacked integrated circuit die elements |
US6627985B2 (en) | 2001-12-05 | 2003-09-30 | Arbor Company Llp | Reconfigurable processor module comprising hybrid stacked integrated circuit die elements |
FR2834123B1 (en) | 2001-12-21 | 2005-02-04 | Soitec Silicon On Insulator | SEMICONDUCTOR THIN FILM DELIVERY METHOD AND METHOD FOR OBTAINING A DONOR WAFER FOR SUCH A DELAYING METHOD |
US6756633B2 (en) | 2001-12-27 | 2004-06-29 | Silicon Storage Technology, Inc. | Semiconductor memory array of floating gate memory cells with horizontally oriented floating gate edges |
DE10200399B4 (en) | 2002-01-08 | 2008-03-27 | Advanced Micro Devices, Inc., Sunnyvale | A method for producing a three-dimensionally integrated semiconductor device and a three-dimensionally integrated semiconductor device |
FR2835097B1 (en) | 2002-01-23 | 2005-10-14 | OPTIMIZED METHOD FOR DEFERRING A THIN LAYER OF SILICON CARBIDE ON A RECEPTACLE SUBSTRATE | |
US6661085B2 (en) | 2002-02-06 | 2003-12-09 | Intel Corporation | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack |
US6645832B2 (en) | 2002-02-20 | 2003-11-11 | Intel Corporation | Etch stop layer for silicon (Si) via etch in three-dimensional (3-D) wafer-to-wafer vertical stack |
US6762076B2 (en) | 2002-02-20 | 2004-07-13 | Intel Corporation | Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices |
JP3975395B2 (en) | 2002-02-26 | 2007-09-12 | フジノン株式会社 | Camera system |
WO2003084065A1 (en) | 2002-04-03 | 2003-10-09 | Sony Corporation | Integrated circuit, integrated circuit device, method for structuring integrated circuit device, and method for manufacturing integrated circuit device |
EP1357603A3 (en) | 2002-04-18 | 2004-01-14 | Innovative Silicon SA | Semiconductor device |
EP1355316B1 (en) | 2002-04-18 | 2007-02-21 | Innovative Silicon SA | Data storage device and refreshing method for use with such device |
FR2838866B1 (en) | 2002-04-23 | 2005-06-24 | St Microelectronics Sa | METHOD FOR MANUFACTURING ELECTRONIC COMPONENTS AND ELECTRONIC PRODUCT INCORPORATING A COMPONENT THUS OBTAINED |
DE10223945B4 (en) | 2002-05-29 | 2006-12-21 | Advanced Micro Devices, Inc., Sunnyvale | Method for improving the production of damascene metal structures |
US6995430B2 (en) | 2002-06-07 | 2006-02-07 | Amberwave Systems Corporation | Strained-semiconductor-on-insulator device structures |
US7193893B2 (en) | 2002-06-21 | 2007-03-20 | Micron Technology, Inc. | Write once read only memory employing floating gates |
US6992503B2 (en) | 2002-07-08 | 2006-01-31 | Viciciv Technology | Programmable devices with convertibility to customizable devices |
US7112994B2 (en) | 2002-07-08 | 2006-09-26 | Viciciv Technology | Three dimensional integrated circuits |
US7312109B2 (en) | 2002-07-08 | 2007-12-25 | Viciciv, Inc. | Methods for fabricating fuse programmable three dimensional integrated circuits |
US7064579B2 (en) | 2002-07-08 | 2006-06-20 | Viciciv Technology | Alterable application specific integrated circuit (ASIC) |
US20040004251A1 (en) | 2002-07-08 | 2004-01-08 | Madurawe Raminda U. | Insulated-gate field-effect thin film transistors |
US20040007376A1 (en) | 2002-07-09 | 2004-01-15 | Eric Urdahl | Integrated thermal vias |
US7043106B2 (en) | 2002-07-22 | 2006-05-09 | Applied Materials, Inc. | Optical ready wafers |
US7110629B2 (en) | 2002-07-22 | 2006-09-19 | Applied Materials, Inc. | Optical ready substrates |
US7016569B2 (en) | 2002-07-31 | 2006-03-21 | Georgia Tech Research Corporation | Back-side-of-die, through-wafer guided-wave optical clock distribution networks, method of fabrication thereof, and uses thereof |
AU2003255254A1 (en) | 2002-08-08 | 2004-02-25 | Glenn J. Leedy | Vertical system integration |
US7358121B2 (en) | 2002-08-23 | 2008-04-15 | Intel Corporation | Tri-gate devices and methods of fabrication |
US20070076509A1 (en) | 2002-08-28 | 2007-04-05 | Guobiao Zhang | Three-Dimensional Mask-Programmable Read-Only Memory |
US7508034B2 (en) | 2002-09-25 | 2009-03-24 | Sharp Kabushiki Kaisha | Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device |
US8643162B2 (en) | 2007-11-19 | 2014-02-04 | Raminda Udaya Madurawe | Pads and pin-outs in three dimensional integrated circuits |
JP4297677B2 (en) | 2002-10-29 | 2009-07-15 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
US6777288B1 (en) | 2002-11-06 | 2004-08-17 | National Semiconductor Corporation | Vertical MOS transistor |
US7138685B2 (en) | 2002-12-11 | 2006-11-21 | International Business Machines Corporation | Vertical MOSFET SRAM cell |
US6953956B2 (en) | 2002-12-18 | 2005-10-11 | Easic Corporation | Semiconductor device having borderless logic array and flexible I/O |
US7354798B2 (en) | 2002-12-20 | 2008-04-08 | International Business Machines Corporation | Three-dimensional device fabrication method |
WO2004061961A1 (en) | 2002-12-31 | 2004-07-22 | Massachusetts Institute Of Technology | Multi-layer integrated semiconductor structure having an electrical shielding portion |
US20100133695A1 (en) | 2003-01-12 | 2010-06-03 | Sang-Yun Lee | Electronic circuit with embedded memory |
US7799675B2 (en) | 2003-06-24 | 2010-09-21 | Sang-Yun Lee | Bonded semiconductor structure and method of fabricating the same |
US6938226B2 (en) | 2003-01-17 | 2005-08-30 | Infineon Technologies Ag | 7-tracks standard cell library |
FR2850390B1 (en) | 2003-01-24 | 2006-07-14 | Soitec Silicon On Insulator | METHOD FOR REMOVING A PERIPHERAL GLUE ZONE WHEN MANUFACTURING A COMPOSITE SUBSTRATE |
JP4502173B2 (en) | 2003-02-03 | 2010-07-14 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
TWI235469B (en) | 2003-02-07 | 2005-07-01 | Siliconware Precision Industries Co Ltd | Thermally enhanced semiconductor package with EMI shielding |
US6812504B2 (en) | 2003-02-10 | 2004-11-02 | Micron Technology, Inc. | TFT-based random access memory cells comprising thyristors |
JP4574118B2 (en) | 2003-02-12 | 2010-11-04 | 株式会社半導体エネルギー研究所 | Semiconductor device and manufacturing method thereof |
US7176528B2 (en) | 2003-02-18 | 2007-02-13 | Corning Incorporated | Glass-based SOI structures |
JP4167513B2 (en) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | Nonvolatile semiconductor memory device |
US6917219B2 (en) | 2003-03-12 | 2005-07-12 | Xilinx, Inc. | Multi-chip programmable logic device having configurable logic circuitry and configuration data storage on different dice |
US6841883B1 (en) | 2003-03-31 | 2005-01-11 | Micron Technology, Inc. | Multi-dice chip scale semiconductor components and wafer level methods of fabrication |
JP4509488B2 (en) | 2003-04-02 | 2010-07-21 | 株式会社Sumco | Manufacturing method of bonded substrate |
JP2004342833A (en) | 2003-05-15 | 2004-12-02 | Seiko Epson Corp | Manufacturing method of semiconductor device, electro-optical device, integrated circuit and electronic apparatus |
KR100471173B1 (en) | 2003-05-15 | 2005-03-10 | 삼성전자주식회사 | Transistor having multi channel and method of fabricating the same |
US7109092B2 (en) | 2003-05-19 | 2006-09-19 | Ziptronix, Inc. | Method of room temperature covalent bonding |
US7256104B2 (en) | 2003-05-21 | 2007-08-14 | Canon Kabushiki Kaisha | Substrate manufacturing method and substrate processing apparatus |
US7183611B2 (en) | 2003-06-03 | 2007-02-27 | Micron Technology, Inc. | SRAM constructions, and electronic systems comprising SRAM constructions |
US7291878B2 (en) | 2003-06-03 | 2007-11-06 | Hitachi Global Storage Technologies Netherlands B.V. | Ultra low-cost solid-state memory |
CN100483612C (en) | 2003-06-04 | 2009-04-29 | 刘明哲 | Method of fabricating vertical structure compound semiconductor devices |
US6943407B2 (en) | 2003-06-17 | 2005-09-13 | International Business Machines Corporation | Low leakage heterojunction vertical transistors and high performance devices thereof |
US20050003592A1 (en) | 2003-06-18 | 2005-01-06 | Jones A. Brooke | All-around MOSFET gate and methods of manufacture thereof |
US7045401B2 (en) | 2003-06-23 | 2006-05-16 | Sharp Laboratories Of America, Inc. | Strained silicon finFET device |
US7867822B2 (en) | 2003-06-24 | 2011-01-11 | Sang-Yun Lee | Semiconductor memory device |
US7863748B2 (en) | 2003-06-24 | 2011-01-04 | Oh Choonsik | Semiconductor circuit and method of fabricating the same |
US7632738B2 (en) | 2003-06-24 | 2009-12-15 | Sang-Yun Lee | Wafer bonding method |
US20100190334A1 (en) | 2003-06-24 | 2010-07-29 | Sang-Yun Lee | Three-dimensional semiconductor structure and method of manufacturing the same |
US8471263B2 (en) | 2003-06-24 | 2013-06-25 | Sang-Yun Lee | Information storage system which includes a bonded semiconductor structure |
US8071438B2 (en) | 2003-06-24 | 2011-12-06 | Besang Inc. | Semiconductor circuit |
US7456476B2 (en) | 2003-06-27 | 2008-11-25 | Intel Corporation | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication |
US20040262772A1 (en) | 2003-06-30 | 2004-12-30 | Shriram Ramanathan | Methods for bonding wafers using a metal interlayer |
US7068072B2 (en) | 2003-06-30 | 2006-06-27 | Xilinx, Inc. | Integrated circuit with interface tile for coupling to a stacked-die second integrated circuit |
JP2005026413A (en) | 2003-07-01 | 2005-01-27 | Renesas Technology Corp | Semiconductor wafer, semiconductor device, and its manufacturing method |
US7111149B2 (en) | 2003-07-07 | 2006-09-19 | Intel Corporation | Method and apparatus for generating a device ID for stacked devices |
GB2403842A (en) | 2003-07-10 | 2005-01-12 | Ocuity Ltd | Alignment of elements of a display apparatus |
US6921982B2 (en) | 2003-07-21 | 2005-07-26 | International Business Machines Corporation | FET channel having a strained lattice structure along multiple surfaces |
JP4356542B2 (en) | 2003-08-27 | 2009-11-04 | 日本電気株式会社 | Semiconductor device |
US7115460B2 (en) | 2003-09-04 | 2006-10-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Standard cell back bias architecture |
JP4651924B2 (en) | 2003-09-18 | 2011-03-16 | シャープ株式会社 | Thin film semiconductor device and method for manufacturing thin film semiconductor device |
TWI255669B (en) | 2003-09-19 | 2006-05-21 | Sony Corp | Display device, manufacturing method thereof, organic light emitting device, and manufacturing method thereof |
JP4130163B2 (en) | 2003-09-29 | 2008-08-06 | 三洋電機株式会社 | Semiconductor light emitting device |
US6821826B1 (en) | 2003-09-30 | 2004-11-23 | International Business Machines Corporation | Three dimensional CMOS integrated circuits having device layers built on different crystal oriented wafers |
US6970373B2 (en) | 2003-10-02 | 2005-11-29 | Intel Corporation | Method and apparatus for improving stability of a 6T CMOS SRAM cell |
US20050082526A1 (en) | 2003-10-15 | 2005-04-21 | International Business Machines Corporation | Techniques for layer transfer processing |
JP2005150686A (en) | 2003-10-22 | 2005-06-09 | Sharp Corp | Semiconductor device and its manufacturing method |
US6962843B2 (en) | 2003-11-05 | 2005-11-08 | International Business Machines Corporation | Method of fabricating a finfet |
US7098502B2 (en) | 2003-11-10 | 2006-08-29 | Freescale Semiconductor, Inc. | Transistor having three electrically isolated electrodes and method of formation |
US7304327B1 (en) | 2003-11-12 | 2007-12-04 | T-Ram Semiconductor, Inc. | Thyristor circuit and approach for temperature stability |
US6967149B2 (en) | 2003-11-20 | 2005-11-22 | Hewlett-Packard Development Company, L.P. | Storage structure with cleaved layer |
US7019557B2 (en) | 2003-12-24 | 2006-03-28 | Viciciv Technology | Look-up table based logic macro-cells |
US7030651B2 (en) | 2003-12-04 | 2006-04-18 | Viciciv Technology | Programmable structured arrays |
KR20050054788A (en) | 2003-12-06 | 2005-06-10 | 삼성전자주식회사 | Fabrication method of poly-crystalline si thin film and transistor thereby |
FR2863771B1 (en) | 2003-12-10 | 2007-03-02 | Soitec Silicon On Insulator | PROCESS FOR PROCESSING A MULTILAYER WAFER HAVING A DIFFERENTIAL OF THERMAL CHARACTERISTICS |
FR2864336B1 (en) | 2003-12-23 | 2006-04-28 | Commissariat Energie Atomique | METHOD FOR SEALING TWO PLATES WITH FORMATION OF AN OHMIC CONTACT BETWEEN THEM |
US7105390B2 (en) | 2003-12-30 | 2006-09-12 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
DE102004004765A1 (en) | 2004-01-29 | 2005-09-01 | Rwe Space Solar Power Gmbh | Active Zones Semiconductor Structure |
US7030554B2 (en) | 2004-02-06 | 2006-04-18 | Eastman Kodak Company | Full-color organic display having improved blue emission |
US7112815B2 (en) | 2004-02-25 | 2006-09-26 | Micron Technology, Inc. | Multi-layer memory arrays |
US6995456B2 (en) | 2004-03-12 | 2006-02-07 | International Business Machines Corporation | High-performance CMOS SOI devices on hybrid crystal-oriented substrates |
DE102004014472B4 (en) | 2004-03-24 | 2012-05-03 | Infineon Technologies Ag | Application specific semiconductor integrated circuit |
US7180238B2 (en) | 2004-04-08 | 2007-02-20 | Eastman Kodak Company | Oled microcavity subpixels and color filter elements |
US7180379B1 (en) | 2004-05-03 | 2007-02-20 | National Semiconductor Corporation | Laser powered clock circuit with a substantially reduced clock skew |
KR101368748B1 (en) | 2004-06-04 | 2014-03-05 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | Methods and devices for fabricating and assembling printable semiconductor elements |
US20090115042A1 (en) | 2004-06-04 | 2009-05-07 | Zycube Co., Ltd. | Semiconductor device having three-dimensional stacked structure and method of fabricating the same |
DE102004027489B4 (en) | 2004-06-04 | 2017-03-02 | Infineon Technologies Ag | A method of arranging chips of a first substrate on a second substrate |
US7337425B2 (en) | 2004-06-04 | 2008-02-26 | Ami Semiconductor, Inc. | Structured ASIC device with configurable die size and selectable embedded functions |
JP4814498B2 (en) | 2004-06-18 | 2011-11-16 | シャープ株式会社 | Manufacturing method of semiconductor substrate |
US7378702B2 (en) | 2004-06-21 | 2008-05-27 | Sang-Yun Lee | Vertical memory device structures |
US7098507B2 (en) | 2004-06-30 | 2006-08-29 | Intel Corporation | Floating-body dynamic random access memory and method of fabrication in tri-gate technology |
US7091069B2 (en) | 2004-06-30 | 2006-08-15 | International Business Machines Corporation | Ultra thin body fully-depleted SOI MOSFETs |
US7271420B2 (en) | 2004-07-07 | 2007-09-18 | Cao Group, Inc. | Monolitholic LED chip to emit multiple colors |
US7223612B2 (en) | 2004-07-26 | 2007-05-29 | Infineon Technologies Ag | Alignment of MTJ stack to conductive lines in the absence of topography |
US7463062B2 (en) | 2004-07-27 | 2008-12-09 | Easic Corporation | Structured integrated circuit device |
US7098691B2 (en) | 2004-07-27 | 2006-08-29 | Easic Corporation | Structured integrated circuit device |
KR100555567B1 (en) | 2004-07-30 | 2006-03-03 | 삼성전자주식회사 | Method for manufacturing multibridge-channel MOSFET |
DE102004037089A1 (en) | 2004-07-30 | 2006-03-16 | Advanced Micro Devices, Inc., Sunnyvale | A technique for making a passivation layer prior to depositing a barrier layer in a copper metallization layer |
US7442624B2 (en) | 2004-08-02 | 2008-10-28 | Infineon Technologies Ag | Deep alignment marks on edge chips for subsequent alignment of opaque layers |
WO2006013373A2 (en) | 2004-08-04 | 2006-02-09 | Cambridge Display Technology Limited | Organic electroluminescent device |
US7312487B2 (en) | 2004-08-16 | 2007-12-25 | International Business Machines Corporation | Three dimensional integrated circuit |
JP4878028B2 (en) | 2004-08-18 | 2012-02-15 | チバ ホールディング インコーポレーテッド | Oxime ester photoinitiator |
TW200610059A (en) | 2004-09-01 | 2006-03-16 | Au Optronics Corp | Semiconductor device and method of fabricating an LTPS layer |
US7390710B2 (en) | 2004-09-02 | 2008-06-24 | Micron Technology, Inc. | Protection of tunnel dielectric using epitaxial silicon |
JP2006073939A (en) | 2004-09-06 | 2006-03-16 | Toshiba Corp | Nonvolatile semiconductor memory and manufacturing method thereof |
US7459772B2 (en) | 2004-09-29 | 2008-12-02 | Actel Corporation | Face-to-face bonded I/O circuit die and functional logic circuit die system |
US7566974B2 (en) | 2004-09-29 | 2009-07-28 | Sandisk 3D, Llc | Doped polysilicon via connecting polysilicon layers |
US20060067122A1 (en) | 2004-09-29 | 2006-03-30 | Martin Verhoeven | Charge-trapping memory cell |
KR100604903B1 (en) | 2004-09-30 | 2006-07-28 | 삼성전자주식회사 | Semiconductor wafer with improved step coverage and fabrication method of the same |
US7268049B2 (en) | 2004-09-30 | 2007-09-11 | International Business Machines Corporation | Structure and method for manufacturing MOSFET with super-steep retrograded island |
US7284226B1 (en) | 2004-10-01 | 2007-10-16 | Xilinx, Inc. | Methods and structures of providing modular integrated circuits |
JP4467398B2 (en) | 2004-10-05 | 2010-05-26 | 新光電気工業株式会社 | Automatic wiring determination device |
FR2876841B1 (en) | 2004-10-19 | 2007-04-13 | Commissariat Energie Atomique | PROCESS FOR PRODUCING MULTILAYERS ON A SUBSTRATE |
US7476939B2 (en) | 2004-11-04 | 2009-01-13 | Innovative Silicon Isi Sa | Memory cell having an electrically floating body transistor and programming technique therefor |
US7342415B2 (en) | 2004-11-08 | 2008-03-11 | Tabula, Inc. | Configurable IC with interconnect circuits that also perform storage operations |
US7816721B2 (en) | 2004-11-11 | 2010-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Transmission/reception semiconductor device with memory element and antenna on same side of conductive adhesive |
KR100684875B1 (en) | 2004-11-24 | 2007-02-20 | 삼성전자주식회사 | Semiconductor Device And Method Of Fabricating The Same |
KR20060058573A (en) | 2004-11-25 | 2006-05-30 | 한국전자통신연구원 | Cmos image sensor |
JP2008521794A (en) | 2004-11-29 | 2008-06-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electronically controlled tablets and systems having at least one sensor for delivering at least one drug |
WO2006065698A2 (en) | 2004-12-13 | 2006-06-22 | William Kenneth Waller | Sense amplifier circuitry and architecture to write data into and/or read data from memory cells |
US7301803B2 (en) | 2004-12-22 | 2007-11-27 | Innovative Silicon S.A. | Bipolar reading technique for a memory cell having an electrically floating body transistor |
US7129748B1 (en) | 2004-12-29 | 2006-10-31 | Actel Corporation | Non-volatile look-up table for an FPGA |
WO2006072142A1 (en) | 2005-01-06 | 2006-07-13 | Justin Martin Spangaro | A reprogrammable integrated circuit |
US8125137B2 (en) | 2005-01-10 | 2012-02-28 | Cree, Inc. | Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same |
WO2006077596A2 (en) | 2005-01-21 | 2006-07-27 | Novatrans Group Sa | Electronic device and method for performing logic functions |
WO2006079865A1 (en) | 2005-01-27 | 2006-08-03 | Infineon Technologies Ag | Semiconductor package and method of assembling the same |
JP2006210828A (en) | 2005-01-31 | 2006-08-10 | Fujitsu Ltd | Semiconductor device and method for manufacturing the same |
US7217636B1 (en) | 2005-02-09 | 2007-05-15 | Translucent Inc. | Semiconductor-on-insulator silicon wafer |
US7374964B2 (en) | 2005-02-10 | 2008-05-20 | Micron Technology, Inc. | Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics |
KR100761755B1 (en) | 2005-02-28 | 2007-09-28 | 삼성전자주식회사 | Semiconductor memory device capable of controlling an input/output bit organization |
US7435659B2 (en) | 2005-02-28 | 2008-10-14 | Texas Instruments Incorporated | Method for manufacturing a semiconductor device having an alignment feature formed using an N-type dopant and a wet oxidation process |
KR100704784B1 (en) | 2005-03-07 | 2007-04-10 | 삼성전자주식회사 | Stacked semiconductor device and method of fabricating the same |
US7406761B2 (en) | 2005-03-21 | 2008-08-05 | Honeywell International Inc. | Method of manufacturing vibrating micromechanical structures |
KR100702012B1 (en) | 2005-03-22 | 2007-03-30 | 삼성전자주식회사 | Srams having buried layer patterns and methods of forming the same |
US8367524B2 (en) | 2005-03-29 | 2013-02-05 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
US20110143506A1 (en) | 2009-12-10 | 2011-06-16 | Sang-Yun Lee | Method for fabricating a semiconductor memory device |
US20110001172A1 (en) | 2005-03-29 | 2011-01-06 | Sang-Yun Lee | Three-dimensional integrated circuit structure |
EP2192624A1 (en) | 2005-04-04 | 2010-06-02 | Tohoku Techno Arch Co., Ltd. | Method For Growth Of GaN Single Crystal, Method For Preparation Of GaN Substrate, Process For producing GaN-Based Element, and GaN-Based Element |
US7687372B2 (en) | 2005-04-08 | 2010-03-30 | Versatilis Llc | System and method for manufacturing thick and thin film devices using a donee layer cleaved from a crystalline donor |
KR100684894B1 (en) | 2005-04-18 | 2007-02-20 | 삼성전자주식회사 | Method of forming a semiconductor device having stacked transisters |
KR100680291B1 (en) | 2005-04-22 | 2007-02-07 | 한국과학기술원 | Non-volatile memory having H-channel double-gate and method of manufacturing thereof and method of operating for multi-bits cell operation |
US20060249859A1 (en) | 2005-05-05 | 2006-11-09 | Eiles Travis M | Metrology system and method for stacked wafer alignment |
US7521806B2 (en) | 2005-06-14 | 2009-04-21 | John Trezza | Chip spanning connection |
JP4827144B2 (en) | 2005-06-14 | 2011-11-30 | ミツミ電機株式会社 | Biosensor device |
US8148713B2 (en) | 2008-04-04 | 2012-04-03 | The Regents Of The University Of California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
JP4507101B2 (en) | 2005-06-30 | 2010-07-21 | エルピーダメモリ株式会社 | Semiconductor memory device and manufacturing method thereof |
CN100454534C (en) | 2005-07-04 | 2009-01-21 | 崇贸科技股份有限公司 | Single-segment and multi-segment triggering type voltage-adjustable static-electricity discharging protection semiconductor structure |
US7471855B2 (en) | 2005-07-13 | 2008-12-30 | Alcatel-Lucent Usa Inc. | Monlithically coupled waveguide and phototransistor |
WO2007014293A1 (en) | 2005-07-25 | 2007-02-01 | The Regents Of The University Of California | Digital imaging system and method to produce mosaic images |
US7776715B2 (en) | 2005-07-26 | 2010-08-17 | Micron Technology, Inc. | Reverse construction memory cell |
US7526739B2 (en) | 2005-07-26 | 2009-04-28 | R3 Logic, Inc. | Methods and systems for computer aided design of 3D integrated circuits |
US7674687B2 (en) | 2005-07-27 | 2010-03-09 | Silicon Genesis Corporation | Method and structure for fabricating multiple tiled regions onto a plate using a controlled cleaving process |
US20090224330A1 (en) | 2005-07-28 | 2009-09-10 | Hong Chang Min | Semiconductor Memory Device and Method for Arranging and Manufacturing the Same |
US7978561B2 (en) | 2005-07-28 | 2011-07-12 | Samsung Electronics Co., Ltd. | Semiconductor memory devices having vertically-stacked transistors therein |
US7612411B2 (en) | 2005-08-03 | 2009-11-03 | Walker Andrew J | Dual-gate device and method |
US8138502B2 (en) | 2005-08-05 | 2012-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and manufacturing method thereof |
US7166520B1 (en) | 2005-08-08 | 2007-01-23 | Silicon Genesis Corporation | Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process |
US7485968B2 (en) | 2005-08-11 | 2009-02-03 | Ziptronix, Inc. | 3D IC method and device |
US7566855B2 (en) | 2005-08-25 | 2009-07-28 | Richard Ian Olsen | Digital camera with integrated infrared (IR) response |
WO2007029389A1 (en) | 2005-09-05 | 2007-03-15 | Sharp Kabushiki Kaisha | Semiconductor device, method for manufacturing same, and display |
US7355916B2 (en) | 2005-09-19 | 2008-04-08 | Innovative Silicon S.A. | Method and circuitry to generate a reference current for reading a memory cell, and device implementing same |
US20070090416A1 (en) | 2005-09-28 | 2007-04-26 | Doyle Brian S | CMOS devices with a single work function gate electrode and method of fabrication |
US7265059B2 (en) | 2005-09-30 | 2007-09-04 | Freescale Semiconductor, Inc. | Multiple fin formation |
US7439773B2 (en) | 2005-10-11 | 2008-10-21 | Casic Corporation | Integrated circuit communication techniques |
US7737003B2 (en) | 2005-10-11 | 2010-06-15 | International Business Machines Corporation | Method and structure for optimizing yield of 3-D chip manufacture |
US7296201B2 (en) | 2005-10-29 | 2007-11-13 | Dafca, Inc. | Method to locate logic errors and defects in digital circuits |
US8120060B2 (en) | 2005-11-01 | 2012-02-21 | Massachusetts Institute Of Technology | Monolithically integrated silicon and III-V electronics |
US7786460B2 (en) | 2005-11-15 | 2010-08-31 | Macronix International Co., Ltd. | Phase change memory device and manufacturing method |
US20070109831A1 (en) | 2005-11-15 | 2007-05-17 | Siva Raghuram | Semiconductor product and method for forming a semiconductor product |
JP4783381B2 (en) | 2005-11-24 | 2011-09-28 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US7688619B2 (en) | 2005-11-28 | 2010-03-30 | Macronix International Co., Ltd. | Phase change memory cell and manufacturing method |
ATE496027T1 (en) | 2005-12-01 | 2011-02-15 | Basf Se | OXIMESTER PHOTO INITIATORS |
US7209384B1 (en) | 2005-12-08 | 2007-04-24 | Juhan Kim | Planar capacitor memory cell and its applications |
US20070132049A1 (en) * | 2005-12-12 | 2007-06-14 | Stipe Barry C | Unipolar resistance random access memory (RRAM) device and vertically stacked architecture |
EP1960234A1 (en) | 2005-12-16 | 2008-08-27 | Mentor Graphics Corporation | Two-dimensional orthogonal wire harness representation |
KR100668350B1 (en) | 2005-12-20 | 2007-01-12 | 삼성전자주식회사 | Nand type multi-bit non-volatile memory device and method of fabricating the same |
KR100755368B1 (en) | 2006-01-10 | 2007-09-04 | 삼성전자주식회사 | Methods of manufacturing a semiconductor device having a three dimesional structure and semiconductor devices fabricated thereby |
JP5271541B2 (en) | 2006-01-16 | 2013-08-21 | パナソニック株式会社 | Semiconductor chip manufacturing method, field effect transistor and manufacturing method thereof |
US7671460B2 (en) | 2006-01-25 | 2010-03-02 | Teledyne Licensing, Llc | Buried via technology for three dimensional integrated circuits |
KR100699807B1 (en) | 2006-01-26 | 2007-03-28 | 삼성전자주식회사 | Stack chip and stack chip package comprising the same |
KR100796642B1 (en) | 2006-01-27 | 2008-01-22 | 삼성전자주식회사 | Highly Integrated Semiconductor Device And Method Of Fabricating The Same |
US20070194453A1 (en) | 2006-01-27 | 2007-08-23 | Kanad Chakraborty | Integrated circuit architecture for reducing interconnect parasitics |
US7354809B2 (en) | 2006-02-13 | 2008-04-08 | Wisconsin Alumi Research Foundation | Method for double-sided processing of thin film transistors |
US7542345B2 (en) | 2006-02-16 | 2009-06-02 | Innovative Silicon Isi Sa | Multi-bit memory cell having electrically floating body transistor, and method of programming and reading same |
US7362608B2 (en) | 2006-03-02 | 2008-04-22 | Infineon Technologies Ag | Phase change memory fabricated using self-aligned processing |
US7378309B2 (en) | 2006-03-15 | 2008-05-27 | Sharp Laboratories Of America, Inc. | Method of fabricating local interconnects on a silicon-germanium 3D CMOS |
US7514780B2 (en) | 2006-03-15 | 2009-04-07 | Hitachi, Ltd. | Power semiconductor device |
US7419844B2 (en) | 2006-03-17 | 2008-09-02 | Sharp Laboratories Of America, Inc. | Real-time CMOS imager having stacked photodiodes fabricated on SOI wafer |
JP5016832B2 (en) | 2006-03-27 | 2012-09-05 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
CN101401195B (en) | 2006-03-28 | 2010-11-03 | 夏普株式会社 | Method for transferring semiconductor element, method for manufacturing semiconductor device, and semiconductor device |
US7408798B2 (en) | 2006-03-31 | 2008-08-05 | International Business Machines Corporation | 3-dimensional integrated circuit architecture, structure and method for fabrication thereof |
US7684224B2 (en) | 2006-03-31 | 2010-03-23 | International Business Machines Corporation | Structure comprising 3-dimensional integrated circuit architecture, circuit structure, and instructions for fabrication thereof |
US7285480B1 (en) | 2006-04-07 | 2007-10-23 | International Business Machines Corporation | Integrated circuit chip with FETs having mixed body thicknesses and method of manufacture thereof |
US7492632B2 (en) | 2006-04-07 | 2009-02-17 | Innovative Silicon Isi Sa | Memory array having a programmable word length, and method of operating same |
US7608848B2 (en) | 2006-05-09 | 2009-10-27 | Macronix International Co., Ltd. | Bridge resistance random access memory device with a singular contact structure |
US20090321830A1 (en) | 2006-05-15 | 2009-12-31 | Carnegie Mellon University | Integrated circuit device, system, and method of fabrication |
US7670927B2 (en) | 2006-05-16 | 2010-03-02 | International Business Machines Corporation | Double-sided integrated circuit chips |
US7499352B2 (en) | 2006-05-19 | 2009-03-03 | Innovative Silicon Isi Sa | Integrated circuit having memory array including row redundancy, and method of programming, controlling and/or operating same |
JP4134199B2 (en) | 2006-05-25 | 2008-08-13 | エルピーダメモリ株式会社 | Manufacturing method of semiconductor device |
JP5010192B2 (en) | 2006-06-22 | 2012-08-29 | 株式会社東芝 | Nonvolatile semiconductor memory device |
US7385283B2 (en) | 2006-06-27 | 2008-06-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three dimensional integrated circuit and method of making the same |
KR100919433B1 (en) | 2006-06-29 | 2009-09-29 | 삼성전자주식회사 | Non volatile memory device and method for fabricating the same |
DE102006030267B4 (en) | 2006-06-30 | 2009-04-16 | Advanced Micro Devices, Inc., Sunnyvale | Nano embossing technique with increased flexibility in terms of adjustment and shaping of structural elements |
FR2904143A1 (en) | 2006-07-24 | 2008-01-25 | St Microelectronics Sa | IMAGE SENSOR FLASHING FROM THE REAR SIDE AT UNIFORM SUBSTRATE TEMPERATURE |
US7511536B2 (en) | 2006-08-03 | 2009-03-31 | Chipx, Inc. | Cells of a customizable logic array device having independently accessible circuit elements |
KR100810614B1 (en) | 2006-08-23 | 2008-03-06 | 삼성전자주식회사 | Semiconductor memory device having DRAM cell mode and non-volatile memory cell mode and operation method thereof |
US20080054359A1 (en) | 2006-08-31 | 2008-03-06 | International Business Machines Corporation | Three-dimensional semiconductor structure and method for fabrication thereof |
KR100895853B1 (en) | 2006-09-14 | 2009-05-06 | 삼성전자주식회사 | Stacked memory and method for forming the same |
US20080070340A1 (en) | 2006-09-14 | 2008-03-20 | Nicholas Francis Borrelli | Image sensor using thin-film SOI |
US20080072182A1 (en) | 2006-09-19 | 2008-03-20 | The Regents Of The University Of California | Structured and parameterized model order reduction |
TWI438827B (en) | 2006-09-20 | 2014-05-21 | Univ Illinois | Release strategies for making printable semiconductor structures, devices and device components |
JP2008078404A (en) | 2006-09-21 | 2008-04-03 | Toshiba Corp | Semiconductor memory and manufacturing method thereof |
KR100826979B1 (en) | 2006-09-30 | 2008-05-02 | 주식회사 하이닉스반도체 | Stack package and method for fabricating the same |
US7478359B1 (en) | 2006-10-02 | 2009-01-13 | Xilinx, Inc. | Formation of columnar application specific circuitry using a columnar programmable logic device |
US7949210B2 (en) | 2006-10-09 | 2011-05-24 | Colorado School Of Mines | Silicon-compatible surface plasmon optical elements |
JP5100080B2 (en) | 2006-10-17 | 2012-12-19 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
KR100815225B1 (en) | 2006-10-23 | 2008-03-19 | 삼성전기주식회사 | Vertically structured light emitting diode device and method of manufacturing the same |
US7388771B2 (en) | 2006-10-24 | 2008-06-17 | Macronix International Co., Ltd. | Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states |
US7781247B2 (en) | 2006-10-26 | 2010-08-24 | SemiLEDs Optoelectronics Co., Ltd. | Method for producing Group III-Group V vertical light-emitting diodes |
WO2008140585A1 (en) | 2006-11-22 | 2008-11-20 | Nexgen Semi Holding, Inc. | Apparatus and method for conformal mask manufacturing |
US7879711B2 (en) | 2006-11-28 | 2011-02-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Stacked structures and methods of fabricating stacked structures |
US7760548B2 (en) | 2006-11-29 | 2010-07-20 | Yuniarto Widjaja | Semiconductor memory having both volatile and non-volatile functionality and method of operating |
JP2008140912A (en) | 2006-11-30 | 2008-06-19 | Toshiba Corp | Nonvolatile semiconductor memory device |
US7928471B2 (en) | 2006-12-04 | 2011-04-19 | The United States Of America As Represented By The Secretary Of The Navy | Group III-nitride growth on silicon or silicon germanium substrates and method and devices therefor |
JP4995834B2 (en) | 2006-12-07 | 2012-08-08 | ルネサスエレクトロニクス株式会社 | Semiconductor memory device |
US7697316B2 (en) | 2006-12-07 | 2010-04-13 | Macronix International Co., Ltd. | Multi-level cell resistance random access memory with metal oxides |
US20080135949A1 (en) | 2006-12-08 | 2008-06-12 | Agency For Science, Technology And Research | Stacked silicon-germanium nanowire structure and method of forming the same |
JP2010512661A (en) | 2006-12-11 | 2010-04-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Growth of high performance nonpolar group III nitride optical devices by metal organic chemical vapor deposition (MOCVD) |
KR100801707B1 (en) | 2006-12-13 | 2008-02-11 | 삼성전자주식회사 | Floating-body memory and method of fabricating the same |
EP2122687A1 (en) | 2006-12-15 | 2009-11-25 | Nxp B.V. | Transistor device and method of manufacturing such a transistor device |
US8124429B2 (en) | 2006-12-15 | 2012-02-28 | Richard Norman | Reprogrammable circuit board with alignment-insensitive support for multiple component contact types |
US7932586B2 (en) | 2006-12-18 | 2011-04-26 | Mediatek Inc. | Leadframe on heat sink (LOHS) semiconductor packages and fabrication methods thereof |
JP2008159608A (en) | 2006-12-20 | 2008-07-10 | Fujitsu Ltd | Semiconductor device, method of manufacturing the same and device of designing the same |
CA2645774C (en) | 2006-12-22 | 2010-01-12 | Sidense Corp. | A power up detection system for a memory device |
KR100829616B1 (en) | 2006-12-27 | 2008-05-14 | 삼성전자주식회사 | Method for forming channel silicon layer and method for manufacturing stacked semiconductor device using the same |
KR100860466B1 (en) | 2006-12-27 | 2008-09-25 | 동부일렉트로닉스 주식회사 | CMOS Image Sensor and Method for Manufacturing thereof |
JP4945248B2 (en) | 2007-01-05 | 2012-06-06 | 株式会社東芝 | Memory system, semiconductor memory device and driving method thereof |
US20080165521A1 (en) | 2007-01-09 | 2008-07-10 | Kerry Bernstein | Three-dimensional architecture for self-checking and self-repairing integrated circuits |
JP5091491B2 (en) | 2007-01-23 | 2012-12-05 | 株式会社東芝 | Nonvolatile semiconductor memory device |
JP2008182058A (en) | 2007-01-25 | 2008-08-07 | Nec Electronics Corp | Semiconductor device and semiconductor device forming method |
US7485508B2 (en) | 2007-01-26 | 2009-02-03 | International Business Machines Corporation | Two-sided semiconductor-on-insulator structures and methods of manufacturing the same |
KR100891963B1 (en) | 2007-02-02 | 2009-04-08 | 삼성전자주식회사 | One transistor dram device and method of forming the same |
KR20080075405A (en) | 2007-02-12 | 2008-08-18 | 삼성전자주식회사 | Nonvolatible memory transistor having poly silicon fin, stacked nonvolatible memory device having the transistor, method of fabricating the transistor, and method of fabricating the device |
US20080194068A1 (en) | 2007-02-13 | 2008-08-14 | Qimonda Ag | Method of manufacturing a 3-d channel field-effect transistor and an integrated circuit |
US7666723B2 (en) | 2007-02-22 | 2010-02-23 | International Business Machines Corporation | Methods of forming wiring to transistor and related transistor |
KR100825808B1 (en) | 2007-02-26 | 2008-04-29 | 삼성전자주식회사 | Image sensor having backside illumination structure and method of the same image sensor |
KR20080080833A (en) | 2007-03-02 | 2008-09-05 | 삼성전자주식회사 | Methods of fabricating semiconductor wafer |
US7774735B1 (en) | 2007-03-07 | 2010-08-10 | Cadence Design Systems, Inc | Integrated circuit netlist migration |
US20080220558A1 (en) | 2007-03-08 | 2008-09-11 | Integrated Photovoltaics, Inc. | Plasma spraying for semiconductor grade silicon |
US7494846B2 (en) | 2007-03-09 | 2009-02-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Design techniques for stacking identical memory dies |
US8339844B2 (en) | 2007-03-13 | 2012-12-25 | Easic Corporation | Programmable vias for structured ASICs |
US7575973B2 (en) | 2007-03-27 | 2009-08-18 | Sandisk 3D Llc | Method of making three dimensional NAND memory |
US7848145B2 (en) | 2007-03-27 | 2010-12-07 | Sandisk 3D Llc | Three dimensional NAND memory |
JP2008251059A (en) | 2007-03-29 | 2008-10-16 | Toshiba Corp | Nonvolatile semiconductor memory device and its data erasing method |
US8569834B2 (en) | 2007-04-12 | 2013-10-29 | The Penn State Research Foundation | Accumulation field effect microelectronic device and process for the formation thereof |
US7732301B1 (en) | 2007-04-20 | 2010-06-08 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
US7512012B2 (en) | 2007-04-30 | 2009-03-31 | Macronix International Co., Ltd. | Non-volatile memory and manufacturing method and operating method thereof and circuit system including the non-volatile memory |
US7651939B2 (en) | 2007-05-01 | 2010-01-26 | Freescale Semiconductor, Inc | Method of blocking a void during contact formation |
ITMI20070933A1 (en) | 2007-05-08 | 2008-11-09 | St Microelectronics Srl | MULTI PIASTRINA ELECTRONIC SYSTEM |
US20080277778A1 (en) | 2007-05-10 | 2008-11-13 | Furman Bruce K | Layer Transfer Process and Functionally Enhanced Integrated Circuits Products Thereby |
KR100886429B1 (en) | 2007-05-14 | 2009-03-02 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
US7795669B2 (en) | 2007-05-30 | 2010-09-14 | Infineon Technologies Ag | Contact structure for FinFET device |
TW200913238A (en) | 2007-06-04 | 2009-03-16 | Sony Corp | Optical member, solid state imaging apparatus, and manufacturing method |
US7781306B2 (en) | 2007-06-20 | 2010-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor substrate and method for manufacturing the same |
US7585716B2 (en) | 2007-06-27 | 2009-09-08 | International Business Machines Corporation | High-k/metal gate MOSFET with reduced parasitic capacitance |
US8431451B2 (en) | 2007-06-29 | 2013-04-30 | Semicondutor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
WO2009009714A2 (en) | 2007-07-12 | 2009-01-15 | Aidi Corporation | Fiber array unit with integrated optical power monitor |
US20090026618A1 (en) | 2007-07-25 | 2009-01-29 | Samsung Electronics Co., Ltd. | Semiconductor device including interlayer interconnecting structures and methods of forming the same |
KR101258268B1 (en) | 2007-07-26 | 2013-04-25 | 삼성전자주식회사 | NAND-type resistive memory cell strings of a non-volatile memory device and methods of fabricating the same |
KR100881825B1 (en) | 2007-07-27 | 2009-02-03 | 주식회사 하이닉스반도체 | Semiconductor device and method for fabricating the same |
JP2009038072A (en) | 2007-07-31 | 2009-02-19 | Nec Electronics Corp | Semiconductor integrated circuit, and development method thereof |
US7902069B2 (en) | 2007-08-02 | 2011-03-08 | International Business Machines Corporation | Small area, robust silicon via structure and process |
CN103258762B (en) | 2007-08-10 | 2016-08-03 | 株式会社尼康 | Base Plate Lamination Device and method for bonding substrate |
US8035223B2 (en) | 2007-08-28 | 2011-10-11 | Research Triangle Institute | Structure and process for electrical interconnect and thermal management |
JP2009065161A (en) | 2007-09-07 | 2009-03-26 | Dongbu Hitek Co Ltd | Image sensor, and manufacturing method thereof |
US8042082B2 (en) | 2007-09-12 | 2011-10-18 | Neal Solomon | Three dimensional memory in a system on a chip |
US7692448B2 (en) | 2007-09-12 | 2010-04-06 | Neal Solomon | Reprogrammable three dimensional field programmable gate arrays |
US8136071B2 (en) | 2007-09-12 | 2012-03-13 | Neal Solomon | Three dimensional integrated circuits and methods of fabrication |
US7772880B2 (en) | 2007-09-12 | 2010-08-10 | Neal Solomon | Reprogrammable three dimensional intelligent system on a chip |
US7667293B2 (en) | 2007-09-13 | 2010-02-23 | Macronix International Co., Ltd. | Resistive random access memory and method for manufacturing the same |
US7876597B2 (en) | 2007-09-19 | 2011-01-25 | Micron Technology, Inc. | NAND-structured series variable-resistance material memories, processes of forming same, and methods of using same |
US7982250B2 (en) | 2007-09-21 | 2011-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8044464B2 (en) | 2007-09-21 | 2011-10-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US7939424B2 (en) | 2007-09-21 | 2011-05-10 | Varian Semiconductor Equipment Associates, Inc. | Wafer bonding activated by ion implantation |
US8022493B2 (en) | 2007-09-27 | 2011-09-20 | Dongbu Hitek Co., Ltd. | Image sensor and manufacturing method thereof |
JP2009094236A (en) | 2007-10-05 | 2009-04-30 | Toshiba Corp | Nonvolatile semiconductor storage device |
JP5244364B2 (en) | 2007-10-16 | 2013-07-24 | 株式会社半導体エネルギー研究所 | Semiconductor device and manufacturing method thereof |
US20090096009A1 (en) | 2007-10-16 | 2009-04-16 | Promos Technologies Pte. Ltd. | Nonvolatile memories which combine a dielectric, charge-trapping layer with a floating gate |
KR101320518B1 (en) | 2007-10-24 | 2013-12-19 | 삼성전자주식회사 | Integrated circuit semiconductor device having stacked level transistors portion and fabrication method thereof |
US20090128189A1 (en) | 2007-11-19 | 2009-05-21 | Raminda Udaya Madurawe | Three dimensional programmable devices |
JP5469851B2 (en) | 2007-11-27 | 2014-04-16 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
US20090144678A1 (en) | 2007-11-30 | 2009-06-04 | International Business Machines Corporation | Method and on-chip control apparatus for enhancing process reliability and process variability through 3d integration |
US20090144669A1 (en) | 2007-11-29 | 2009-06-04 | International Business Machines Corporation | Method and arrangement for enhancing process variability and lifetime reliability through 3d integration |
US8679861B2 (en) | 2007-11-29 | 2014-03-25 | International Business Machines Corporation | Semiconductor chip repair by stacking of a base semiconductor chip and a repair semiconductor chip |
US8130547B2 (en) | 2007-11-29 | 2012-03-06 | Zeno Semiconductor, Inc. | Method of maintaining the state of semiconductor memory having electrically floating body transistor |
US7993940B2 (en) | 2007-12-05 | 2011-08-09 | Luminus Devices, Inc. | Component attach methods and related device structures |
US8185685B2 (en) | 2007-12-14 | 2012-05-22 | Hitachi Global Storage Technologies Netherlands B.V. | NAND flash module replacement for DRAM module |
US7919845B2 (en) | 2007-12-20 | 2011-04-05 | Xilinx, Inc. | Formation of a hybrid integrated circuit device |
US8101447B2 (en) | 2007-12-20 | 2012-01-24 | Tekcore Co., Ltd. | Light emitting diode element and method for fabricating the same |
KR100909562B1 (en) | 2007-12-21 | 2009-07-27 | 주식회사 동부하이텍 | Semiconductor device and manufacturing method |
US8120958B2 (en) | 2007-12-24 | 2012-02-21 | Qimonda Ag | Multi-die memory, apparatus and multi-die memory stack |
KR100883026B1 (en) | 2007-12-27 | 2009-02-12 | 주식회사 동부하이텍 | Method for manufacturing an image sensor |
KR100855407B1 (en) | 2007-12-27 | 2008-08-29 | 주식회사 동부하이텍 | Image sensor and method for manufacturing thereof |
US20090174018A1 (en) | 2008-01-09 | 2009-07-09 | Micron Technology, Inc. | Construction methods for backside illuminated image sensors |
US7790524B2 (en) | 2008-01-11 | 2010-09-07 | International Business Machines Corporation | Device and design structures for memory cells in a non-volatile random access memory and methods of fabricating such device structures |
US7786535B2 (en) | 2008-01-11 | 2010-08-31 | International Business Machines Corporation | Design structures for high-voltage integrated circuits |
KR101373183B1 (en) | 2008-01-15 | 2014-03-14 | 삼성전자주식회사 | Semiconductor memory device with three-dimensional array structure and repair method thereof |
US8191021B2 (en) | 2008-01-28 | 2012-05-29 | Actel Corporation | Single event transient mitigation and measurement in integrated circuits |
US20090194829A1 (en) | 2008-01-31 | 2009-08-06 | Shine Chung | MEMS Packaging Including Integrated Circuit Dies |
US20090194152A1 (en) | 2008-02-04 | 2009-08-06 | National Taiwan University | Thin-film solar cell having hetero-junction of semiconductor and method for fabricating the same |
US7777330B2 (en) | 2008-02-05 | 2010-08-17 | Freescale Semiconductor, Inc. | High bandwidth cache-to-processing unit communication in a multiple processor/cache system |
US8014195B2 (en) | 2008-02-06 | 2011-09-06 | Micron Technology, Inc. | Single transistor memory cell |
US20090211622A1 (en) | 2008-02-21 | 2009-08-27 | Sunlight Photonics Inc. | Multi-layered electro-optic devices |
US7749813B2 (en) | 2008-02-27 | 2010-07-06 | Lumination Llc | Circuit board for direct flip chip attachment |
US20090218627A1 (en) | 2008-02-28 | 2009-09-03 | International Business Machines Corporation | Field effect device structure including self-aligned spacer shaped contact |
JP2009224612A (en) | 2008-03-17 | 2009-10-01 | Toshiba Corp | Nonvolatile semiconductor memory device and production method thereof |
US8507320B2 (en) | 2008-03-18 | 2013-08-13 | Infineon Technologies Ag | Electronic device including a carrier and a semiconductor chip attached to the carrier and manufacturing thereof |
JP2009238874A (en) | 2008-03-26 | 2009-10-15 | Toshiba Corp | Semiconductor memory and method for manufacturing the same |
US8068370B2 (en) | 2008-04-18 | 2011-11-29 | Macronix International Co., Ltd. | Floating gate memory device with interpoly charge trapping structure |
US7939389B2 (en) | 2008-04-18 | 2011-05-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US7692959B2 (en) | 2008-04-22 | 2010-04-06 | International Business Machines Corporation | Multilayer storage class memory using externally heated phase change material |
JP2009266944A (en) | 2008-04-23 | 2009-11-12 | Toshiba Corp | Three-dimensional stacked nonvolatile semiconductor memory |
US7732803B2 (en) | 2008-05-01 | 2010-06-08 | Bridgelux, Inc. | Light emitting device having stacked multiple LEDS |
US7749884B2 (en) | 2008-05-06 | 2010-07-06 | Astrowatt, Inc. | Method of forming an electronic device using a separation-enhancing species |
FR2932003B1 (en) | 2008-06-02 | 2011-03-25 | Commissariat Energie Atomique | SRAM MEMORY CELL WITH INTEGRATED TRANSISTOR ON SEVERAL LEVELS AND WHOSE VT THRESHOLD VOLTAGE IS ADJUSTABLE DYNAMICALLY |
FR2932005B1 (en) | 2008-06-02 | 2011-04-01 | Commissariat Energie Atomique | INTEGRATED TRANSISTOR CIRCUIT IN THREE DIMENSIONS HAVING DYNAMICALLY ADJUSTABLE VT THRESHOLD VOLTAGE |
JP2009295694A (en) | 2008-06-03 | 2009-12-17 | Toshiba Corp | Non-volatile semiconductor storage device and manufacturing method thereof |
KR101094902B1 (en) | 2008-06-05 | 2011-12-15 | 주식회사 하이닉스반도체 | Multi Bit Phase Change Random Access Memory Device |
US8716805B2 (en) | 2008-06-10 | 2014-05-06 | Toshiba America Research, Inc. | CMOS integrated circuits with bonded layers containing functional electronic devices |
US7915667B2 (en) | 2008-06-11 | 2011-03-29 | Qimonda Ag | Integrated circuits having a contact region and methods for manufacturing the same |
KR101480286B1 (en) | 2008-06-20 | 2015-01-09 | 삼성전자주식회사 | Highly integrated semiconductor device and method for manufacturing the same |
JP2010010215A (en) | 2008-06-24 | 2010-01-14 | Oki Semiconductor Co Ltd | Method of manufacturing semiconductor device |
US8334170B2 (en) | 2008-06-27 | 2012-12-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for stacking devices |
US8105853B2 (en) | 2008-06-27 | 2012-01-31 | Bridgelux, Inc. | Surface-textured encapsulations for use with light emitting diodes |
US7868442B2 (en) | 2008-06-30 | 2011-01-11 | Headway Technologies, Inc. | Layered chip package and method of manufacturing same |
CN101621008A (en) | 2008-07-03 | 2010-01-06 | 中芯国际集成电路制造(上海)有限公司 | TFT floating gate memory cell structure |
US7772096B2 (en) | 2008-07-10 | 2010-08-10 | International Machines Corporation | Formation of SOI by oxidation of silicon with engineered porosity gradient |
JP2010027870A (en) | 2008-07-18 | 2010-02-04 | Toshiba Corp | Semiconductor memory and manufacturing method thereof |
US8044448B2 (en) | 2008-07-25 | 2011-10-25 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
US8006212B2 (en) | 2008-07-30 | 2011-08-23 | Synopsys, Inc. | Method and system for facilitating floorplanning for 3D IC |
US7719876B2 (en) | 2008-07-31 | 2010-05-18 | Unity Semiconductor Corporation | Preservation circuit and methods to maintain values representing data in one or more layers of memory |
US8039314B2 (en) | 2008-08-04 | 2011-10-18 | International Business Machines Corporation | Metal adhesion by induced surface roughness |
US8125006B2 (en) | 2008-08-08 | 2012-02-28 | Qimonda Ag | Array of low resistive vertical diodes and method of production |
JP5279403B2 (en) | 2008-08-18 | 2013-09-04 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
US8129256B2 (en) | 2008-08-19 | 2012-03-06 | International Business Machines Corporation | 3D integrated circuit device fabrication with precisely controllable substrate removal |
JP5161702B2 (en) | 2008-08-25 | 2013-03-13 | キヤノン株式会社 | Imaging apparatus, imaging system, and focus detection method |
DE102008044986A1 (en) | 2008-08-29 | 2010-03-04 | Advanced Micro Devices, Inc., Sunnyvale | A 3-D integrated circuit device with an internal heat distribution function |
EP2161755A1 (en) | 2008-09-05 | 2010-03-10 | University College Cork-National University of Ireland, Cork | Junctionless Metal-Oxide-Semiconductor Transistor |
US8014166B2 (en) | 2008-09-06 | 2011-09-06 | Broadpak Corporation | Stacking integrated circuits containing serializer and deserializer blocks using through silicon via |
US7923350B2 (en) | 2008-09-09 | 2011-04-12 | Infineon Technologies Ag | Method of manufacturing a semiconductor device including etching to etch stop regions |
US7943515B2 (en) | 2008-09-09 | 2011-05-17 | Sandisk 3D Llc | Shared masks for x-lines and shared masks for y-lines for fabrication of 3D memory arrays |
US8106520B2 (en) | 2008-09-11 | 2012-01-31 | Micron Technology, Inc. | Signal delivery in stacked device |
US8230375B2 (en) | 2008-09-14 | 2012-07-24 | Raminda Udaya Madurawe | Automated metal pattern generation for integrated circuits |
KR101548173B1 (en) | 2008-09-18 | 2015-08-31 | 삼성전자주식회사 | Wafer temporary bonding method using Si direct bondingSDB and semiconductor device and fabricating method thereof using the same bonding method |
US7855455B2 (en) | 2008-09-26 | 2010-12-21 | International Business Machines Corporation | Lock and key through-via method for wafer level 3 D integration and structures produced |
US9064717B2 (en) | 2008-09-26 | 2015-06-23 | International Business Machines Corporation | Lock and key through-via method for wafer level 3D integration and structures produced thereby |
TWI394506B (en) | 2008-10-13 | 2013-04-21 | Unimicron Technology Corp | Multilayer three-dimensional circuit structure and manufacturing method thereof |
JP2010098067A (en) | 2008-10-15 | 2010-04-30 | Toshiba Corp | Semiconductor device |
US8030780B2 (en) | 2008-10-16 | 2011-10-04 | Micron Technology, Inc. | Semiconductor substrates with unitary vias and via terminals, and associated systems and methods |
US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US8907316B2 (en) | 2008-11-07 | 2014-12-09 | Macronix International Co., Ltd. | Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions |
US8241989B2 (en) | 2008-11-14 | 2012-08-14 | Qimonda Ag | Integrated circuit with stacked devices |
US7838337B2 (en) | 2008-12-01 | 2010-11-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming an interposer package with through silicon vias |
US20100140790A1 (en) | 2008-12-05 | 2010-06-10 | Seagate Technology Llc | Chip having thermal vias and spreaders of cvd diamond |
JP5160396B2 (en) | 2008-12-18 | 2013-03-13 | 株式会社日立製作所 | Semiconductor device |
KR101442177B1 (en) | 2008-12-18 | 2014-09-18 | 삼성전자주식회사 | Methods of fabricating a semiconductor device having a capacitor-less one transistor memory cell |
US20100157117A1 (en) | 2008-12-18 | 2010-06-24 | Yu Wang | Vertical stack of image sensors with cutoff color filters |
US8168490B2 (en) | 2008-12-23 | 2012-05-01 | Intersil Americas, Inc. | Co-packaging approach for power converters based on planar devices, structure and method |
US7943428B2 (en) | 2008-12-24 | 2011-05-17 | International Business Machines Corporation | Bonded semiconductor substrate including a cooling mechanism |
US8314635B2 (en) | 2009-01-22 | 2012-11-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for forming programmable transistor array comprising basic transistor units |
US20100193884A1 (en) | 2009-02-02 | 2010-08-05 | Woo Tae Park | Method of Fabricating High Aspect Ratio Transducer Using Metal Compression Bonding |
US8158515B2 (en) | 2009-02-03 | 2012-04-17 | International Business Machines Corporation | Method of making 3D integrated circuits |
CN102308241A (en) | 2009-02-18 | 2012-01-04 | 松下电器产业株式会社 | Imaging device |
JP4956598B2 (en) | 2009-02-27 | 2012-06-20 | シャープ株式会社 | Nonvolatile semiconductor memory device and manufacturing method thereof |
US8203187B2 (en) | 2009-03-03 | 2012-06-19 | Macronix International Co., Ltd. | 3D memory array arranged for FN tunneling program and erase |
TWI433302B (en) | 2009-03-03 | 2014-04-01 | Macronix Int Co Ltd | Integrated circuit self aligned 3d memory array and manufacturing method |
US8299583B2 (en) | 2009-03-05 | 2012-10-30 | International Business Machines Corporation | Two-sided semiconductor structure |
US8487444B2 (en) | 2009-03-06 | 2013-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional system-in-package architecture |
WO2010104918A1 (en) | 2009-03-10 | 2010-09-16 | Contour Semiconductor, Inc. | Three-dimensional memory array comprising vertical switches having three terminals |
WO2010116694A2 (en) | 2009-04-06 | 2010-10-14 | Canon Kabushiki Kaisha | Method of manufacturing semiconductor device |
US8552563B2 (en) | 2009-04-07 | 2013-10-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional semiconductor architecture |
US7983065B2 (en) | 2009-04-08 | 2011-07-19 | Sandisk 3D Llc | Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines |
US8174288B2 (en) | 2009-04-13 | 2012-05-08 | International Business Machines Corporation | Voltage conversion and integrated circuits with stacked voltage domains |
US9406561B2 (en) | 2009-04-20 | 2016-08-02 | International Business Machines Corporation | Three dimensional integrated circuit integration using dielectric bonding first and through via formation last |
US8508994B2 (en) | 2009-04-30 | 2013-08-13 | Micron Technology, Inc. | Semiconductor device with floating gate and electrically floating body |
US20100221867A1 (en) | 2009-05-06 | 2010-09-02 | International Business Machines Corporation | Low cost soi substrates for monolithic solar cells |
US7939369B2 (en) | 2009-05-14 | 2011-05-10 | International Business Machines Corporation | 3D integration structure and method using bonded metal planes |
US7960282B2 (en) | 2009-05-21 | 2011-06-14 | Globalfoundries Singapore Pte. Ltd. | Method of manufacture an integrated circuit system with through silicon via |
US8516408B2 (en) | 2009-05-26 | 2013-08-20 | Lsi Corporation | Optimization of circuits having repeatable circuit instances |
KR101623960B1 (en) | 2009-06-04 | 2016-05-25 | 삼성전자주식회사 | Optoelectronic shutter, method of operating the same and optical apparatus employing the optoelectronic shutter |
US8802477B2 (en) | 2009-06-09 | 2014-08-12 | International Business Machines Corporation | Heterojunction III-V photovoltaic cell fabrication |
US7948017B2 (en) | 2009-06-19 | 2011-05-24 | Carestream Health, Inc. | Digital radiography imager with buried interconnect layer in silicon-on-glass and method of fabricating same |
JP2011003833A (en) | 2009-06-22 | 2011-01-06 | Toshiba Corp | Nonvolatile semiconductor storage device and method of manufacturing the same |
JP2011009409A (en) | 2009-06-25 | 2011-01-13 | Toshiba Corp | Nonvolatile semiconductor memory device |
US20100330728A1 (en) | 2009-06-26 | 2010-12-30 | Mccarten John P | Method of aligning elements in a back-illuminated image sensor |
JP2011014817A (en) | 2009-07-06 | 2011-01-20 | Toshiba Corp | Nonvolatile semiconductor memory device |
EP2273545B1 (en) | 2009-07-08 | 2016-08-31 | Imec | Method for insertion bonding and kit of parts for use in said method |
JP5380190B2 (en) | 2009-07-21 | 2014-01-08 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
US8153520B1 (en) | 2009-08-03 | 2012-04-10 | Novellus Systems, Inc. | Thinning tungsten layer after through silicon via filling |
JP5482025B2 (en) | 2009-08-28 | 2014-04-23 | ソニー株式会社 | SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE |
FR2949904B1 (en) | 2009-09-07 | 2012-01-06 | Commissariat Energie Atomique | INTEGRATED CIRCUIT WITH ELECTROSTATICALLY COUPLED MOS TRANSISTORS AND METHOD FOR PRODUCING SUCH AN INTEGRATED CIRCUIT |
US8611388B2 (en) | 2009-10-13 | 2013-12-17 | Skorpios Technologies, Inc. | Method and system for heterogeneous substrate bonding of waveguide receivers |
US8630326B2 (en) | 2009-10-13 | 2014-01-14 | Skorpios Technologies, Inc. | Method and system of heterogeneous substrate bonding for photonic integration |
US8264065B2 (en) | 2009-10-23 | 2012-09-11 | Synopsys, Inc. | ESD/antenna diodes for through-silicon vias |
US8159060B2 (en) | 2009-10-29 | 2012-04-17 | International Business Machines Corporation | Hybrid bonding interface for 3-dimensional chip integration |
KR101761432B1 (en) | 2009-11-06 | 2017-07-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
US8138543B2 (en) | 2009-11-18 | 2012-03-20 | International Business Machines Corporation | Hybrid FinFET/planar SOI FETs |
KR101803254B1 (en) | 2009-11-27 | 2017-11-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
WO2011068028A1 (en) | 2009-12-04 | 2011-06-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element, semiconductor device, and method for manufacturing the same |
CN102088014A (en) | 2009-12-04 | 2011-06-08 | 中国科学院微电子研究所 | 3D integrated circuit structure, semiconductor device and forming method thereof |
US8107276B2 (en) | 2009-12-04 | 2012-01-31 | International Business Machines Corporation | Resistive memory devices having a not-and (NAND) structure |
CN102754185B (en) | 2009-12-11 | 2015-06-03 | 夏普株式会社 | Method for manufacturing semiconductor device, and semiconductor device |
US8507365B2 (en) | 2009-12-21 | 2013-08-13 | Alliance For Sustainable Energy, Llc | Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates |
US8129258B2 (en) | 2009-12-23 | 2012-03-06 | Xerox Corporation | Method for dicing a semiconductor wafer, a chip diced from a semiconductor wafer, and an array of chips diced from a semiconductor wafer |
US8048711B2 (en) | 2009-12-30 | 2011-11-01 | Omnivision Technologies, Inc. | Method for forming deep isolation in imagers |
KR101652826B1 (en) | 2010-01-08 | 2016-08-31 | 삼성전자주식회사 | Semiconductor Devices and Method of Driving the Same |
US8841777B2 (en) | 2010-01-12 | 2014-09-23 | International Business Machines Corporation | Bonded structure employing metal semiconductor alloy bonding |
US8455936B2 (en) | 2010-02-25 | 2013-06-04 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Configurable memory sheet and package assembly |
JP5144698B2 (en) | 2010-03-05 | 2013-02-13 | 株式会社東芝 | Semiconductor memory device and manufacturing method thereof |
JP2011187794A (en) | 2010-03-10 | 2011-09-22 | Toshiba Corp | Semiconductor storage device, and method of manufacturing the same |
US8547738B2 (en) | 2010-03-15 | 2013-10-01 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
US8437192B2 (en) | 2010-05-21 | 2013-05-07 | Macronix International Co., Ltd. | 3D two bit-per-cell NAND flash memory |
US8525342B2 (en) | 2010-04-12 | 2013-09-03 | Qualcomm Incorporated | Dual-side interconnected CMOS for stacked integrated circuits |
US8541305B2 (en) | 2010-05-24 | 2013-09-24 | Institute of Microelectronics, Chinese Academy of Sciences | 3D integrated circuit and method of manufacturing the same |
KR101688598B1 (en) | 2010-05-25 | 2017-01-02 | 삼성전자주식회사 | Three dimensional semiconductor memory device |
FR2961016B1 (en) | 2010-06-07 | 2013-06-07 | Commissariat Energie Atomique | INTEGRATED CIRCUIT WITH FET TYPE DEVICE WITHOUT JUNCTION AND DEPLETION |
KR20110135299A (en) | 2010-06-10 | 2011-12-16 | 삼성전자주식회사 | Semiconductor memory device |
JP2012009512A (en) | 2010-06-22 | 2012-01-12 | Toshiba Corp | Nonvolatile semiconductor memory device and method of manufacturing the same |
KR101193195B1 (en) | 2010-07-02 | 2012-10-19 | 삼성디스플레이 주식회사 | Organic light emitting display device |
KR101145074B1 (en) | 2010-07-02 | 2012-05-11 | 이상윤 | Method for fabricating a semiconductor substrate and Method for fabricating a semiconductor device by using the same |
US7969193B1 (en) | 2010-07-06 | 2011-06-28 | National Tsing Hua University | Differential sensing and TSV timing control scheme for 3D-IC |
KR20120006843A (en) | 2010-07-13 | 2012-01-19 | 삼성전자주식회사 | Semiconductor devices and methods of fabricating the same |
US8461017B2 (en) | 2010-07-19 | 2013-06-11 | Soitec | Methods of forming bonded semiconductor structures using a temporary carrier having a weakened ion implant region for subsequent separation along the weakened region |
JP2012028537A (en) | 2010-07-22 | 2012-02-09 | Toshiba Corp | Nonvolatile semiconductor storage device and manufacturing method thereof |
US8674510B2 (en) | 2010-07-29 | 2014-03-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional integrated circuit structure having improved power and thermal management |
KR20120020526A (en) | 2010-08-30 | 2012-03-08 | 삼성전자주식회사 | Substrate have buried conductive layer and formation method thereof, and fabricating method of semiconductor device using the same |
US20120063090A1 (en) | 2010-09-09 | 2012-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cooling mechanism for stacked die package and method of manufacturing the same |
JP5651415B2 (en) | 2010-09-21 | 2015-01-14 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
US20120074466A1 (en) | 2010-09-28 | 2012-03-29 | Seagate Technology Llc | 3d memory array with vertical transistor |
US9245760B2 (en) | 2010-09-30 | 2016-01-26 | Infineon Technologies Ag | Methods of forming epitaxial layers on a porous semiconductor layer |
US8440544B2 (en) | 2010-10-06 | 2013-05-14 | International Business Machines Corporation | CMOS structure and method of manufacture |
US8293578B2 (en) | 2010-10-26 | 2012-10-23 | International Business Machines Corporation | Hybrid bonding techniques for multi-layer semiconductor stacks |
FR2967294B1 (en) | 2010-11-10 | 2012-12-07 | Commissariat Energie Atomique | METHOD FOR FORMING A MULTILAYER STRUCTURE |
TWI423426B (en) | 2010-11-19 | 2014-01-11 | Univ Nat Chiao Tung | A structure and process of basic complementary logic gate made by junctionless transistors |
WO2012078765A2 (en) | 2010-12-07 | 2012-06-14 | Trustees Of Boston University | Self-cleaning solar panels and concentrators with transparent electrodynamic screens |
CN102754102B (en) | 2010-12-09 | 2016-02-03 | 松下电器产业株式会社 | The design support apparatus of three dimensional integrated circuits and design support method |
US8466054B2 (en) | 2010-12-13 | 2013-06-18 | Io Semiconductor, Inc. | Thermal conduction paths for semiconductor structures |
US9227456B2 (en) | 2010-12-14 | 2016-01-05 | Sandisk 3D Llc | Memories with cylindrical read/write stacks |
EP2731110B1 (en) | 2010-12-14 | 2016-09-07 | SanDisk Technologies LLC | Architecture for three dimensional non-volatile storage with vertical bit lines |
KR101755643B1 (en) | 2010-12-15 | 2017-07-10 | 삼성전자주식회사 | Three Dimensional Semiconductor Memory Device and Method of Forming the Same |
US8432751B2 (en) | 2010-12-22 | 2013-04-30 | Intel Corporation | Memory cell using BTI effects in high-k metal gate MOS |
US8481405B2 (en) | 2010-12-24 | 2013-07-09 | Io Semiconductor, Inc. | Trap rich layer with through-silicon-vias in semiconductor devices |
WO2012087580A2 (en) | 2010-12-24 | 2012-06-28 | Io Semiconductor, Inc. | Trap rich layer for semiconductor devices |
KR20120079393A (en) | 2011-01-04 | 2012-07-12 | (주)세미머티리얼즈 | A method for manufacturing semiconductor light emitting device |
US8432719B2 (en) | 2011-01-18 | 2013-04-30 | Macronix International Co., Ltd. | Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride |
US8630114B2 (en) | 2011-01-19 | 2014-01-14 | Macronix International Co., Ltd. | Memory architecture of 3D NOR array |
US8486791B2 (en) | 2011-01-19 | 2013-07-16 | Macronix International Co., Ltd. | Mufti-layer single crystal 3D stackable memory |
US20120193785A1 (en) | 2011-02-01 | 2012-08-02 | Megica Corporation | Multichip Packages |
KR101771619B1 (en) | 2011-02-09 | 2017-08-28 | 삼성전자주식회사 | Nonvolatile memory device and driving method thereof |
US8566762B2 (en) | 2011-03-09 | 2013-10-22 | Panasonic Corportion | Three-dimensional integrated circuit design device, three-dimensional integrated circuit design, method, and program |
US9001590B2 (en) | 2011-05-02 | 2015-04-07 | Macronix International Co., Ltd. | Method for operating a semiconductor structure |
JP5505367B2 (en) | 2011-05-11 | 2014-05-28 | 信越半導体株式会社 | Method for manufacturing bonded substrate having insulating layer on part of substrate |
US9564587B1 (en) | 2011-06-30 | 2017-02-07 | Crossbar, Inc. | Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects |
FR2978604B1 (en) | 2011-07-28 | 2018-09-14 | Soitec | METHOD FOR THE HEALING OF DEFECTS IN A SEMICONDUCTOR LAYER |
US8937309B2 (en) | 2011-08-08 | 2015-01-20 | Micron Technology, Inc. | Semiconductor die assemblies, semiconductor devices including same, and methods of fabrication |
KR101399338B1 (en) | 2011-08-08 | 2014-05-30 | (주)실리콘화일 | stacking substrate image sensor with dual sensing |
US8519735B2 (en) | 2011-08-25 | 2013-08-27 | International Business Machines Corporation | Programming the behavior of individual chips or strata in a 3D stack of integrated circuits |
JP2013065638A (en) | 2011-09-15 | 2013-04-11 | Elpida Memory Inc | Semiconductor device |
US8796741B2 (en) | 2011-10-04 | 2014-08-05 | Qualcomm Incorporated | Semiconductor device and methods of making semiconductor device using graphene |
US8689164B2 (en) | 2011-10-18 | 2014-04-01 | National Taiwan University | Method of analytical placement with weighted-average wirelength model |
US8431436B1 (en) | 2011-11-03 | 2013-04-30 | International Business Machines Corporation | Three-dimensional (3D) integrated circuit with enhanced copper-to-copper bonding |
US8687421B2 (en) | 2011-11-21 | 2014-04-01 | Sandisk Technologies Inc. | Scrub techniques for use with dynamic read |
JP2013150244A (en) | 2012-01-23 | 2013-08-01 | Nippon Dempa Kogyo Co Ltd | Temperature compensation oscillator |
FR2986371B1 (en) | 2012-01-31 | 2016-11-25 | St Microelectronics Sa | METHOD OF FORMING A VIA CONTACTING MULTIPLE LEVELS OF SEMICONDUCTOR LAYERS |
FR2986370B1 (en) | 2012-02-01 | 2014-11-21 | St Microelectronics Sa | 3D INTEGRATED CIRCUIT |
US8749029B2 (en) | 2012-02-15 | 2014-06-10 | Infineon Technologies Ag | Method of manufacturing a semiconductor device |
KR20140138817A (en) | 2012-02-29 | 2014-12-04 | 솔렉셀, 인크. | Structures and methods for high efficiency compound semiconductor solar cells |
CN103545275B (en) | 2012-07-12 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Silicon through hole encapsulating structure and formation method |
JP2014030110A (en) | 2012-07-31 | 2014-02-13 | Toshiba Corp | Reconfigurable integrated circuit device and method of writing to the same |
US20140048867A1 (en) | 2012-08-20 | 2014-02-20 | Globalfoundries Singapore Pte. Ltd. | Multi-time programmable memory |
US9024657B2 (en) | 2012-10-11 | 2015-05-05 | Easic Corporation | Architectural floorplan for a structured ASIC manufactured on a 28 NM CMOS process lithographic node or smaller |
US10192813B2 (en) | 2012-11-14 | 2019-01-29 | Qualcomm Incorporated | Hard macro having blockage sites, integrated circuit including same and method of routing through a hard macro |
US9064077B2 (en) | 2012-11-28 | 2015-06-23 | Qualcomm Incorporated | 3D floorplanning using 2D and 3D blocks |
US8984463B2 (en) | 2012-11-28 | 2015-03-17 | Qualcomm Incorporated | Data transfer across power domains |
US10403766B2 (en) | 2012-12-04 | 2019-09-03 | Conversant Intellectual Property Management Inc. | NAND flash memory with vertical cell stack structure and method for manufacturing same |
KR102015907B1 (en) | 2013-01-24 | 2019-08-29 | 삼성전자주식회사 | Semiconductor light emitting device |
US8773562B1 (en) | 2013-01-31 | 2014-07-08 | Apple Inc. | Vertically stacked image sensor |
US20140225218A1 (en) | 2013-02-12 | 2014-08-14 | Qualcomm Incorporated | Ion reduced, ion cut-formed three-dimensional (3d) integrated circuits (ic) (3dics), and related methods and systems |
US9536840B2 (en) | 2013-02-12 | 2017-01-03 | Qualcomm Incorporated | Three-dimensional (3-D) integrated circuits (3DICS) with graphene shield, and related components and methods |
US9041448B2 (en) | 2013-03-05 | 2015-05-26 | Qualcomm Incorporated | Flip-flops in a monolithic three-dimensional (3D) integrated circuit (IC) (3DIC) and related methods |
US9177890B2 (en) | 2013-03-07 | 2015-11-03 | Qualcomm Incorporated | Monolithic three dimensional integration of semiconductor integrated circuits |
US9029231B2 (en) | 2013-03-12 | 2015-05-12 | Globalfoundries Singapore Pte. Ltd. | Fin selector with gated RRAM |
US8913418B2 (en) | 2013-03-14 | 2014-12-16 | Intermolecular, Inc. | Confined defect profiling within resistive random memory access cells |
KR101456503B1 (en) | 2013-05-15 | 2014-11-03 | (주)실리콘화일 | Stack Memory |
US9087821B2 (en) | 2013-07-16 | 2015-07-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hybrid bonding with through substrate via (TSV) |
US9230973B2 (en) | 2013-09-17 | 2016-01-05 | Sandisk Technologies Inc. | Methods of fabricating a three-dimensional non-volatile memory device |
KR102154784B1 (en) | 2013-10-10 | 2020-09-11 | 삼성전자주식회사 | Semiconductor device and method of manufacturing the same |
US9627287B2 (en) | 2013-10-18 | 2017-04-18 | Infineon Technologies Ag | Thinning in package using separation structure as stop |
US9524920B2 (en) | 2013-11-12 | 2016-12-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus and method of three dimensional conductive lines |
KR20150056309A (en) | 2013-11-15 | 2015-05-26 | 삼성전자주식회사 | Three-dimensional semiconductor devices and fabricating methods thereof |
KR102140789B1 (en) | 2014-02-17 | 2020-08-03 | 삼성전자주식회사 | Evaluating apparatus for quality of crystal, and Apparatus and method for manufacturing semiconductor light emitting device which include the same |
JP2015159260A (en) | 2014-02-25 | 2015-09-03 | 株式会社東芝 | Semiconductor storage device and manufacturing method of the same |
US9806051B2 (en) | 2014-03-04 | 2017-10-31 | General Electric Company | Ultra-thin embedded semiconductor device package and method of manufacturing thereof |
US9269608B2 (en) | 2014-03-24 | 2016-02-23 | Qualcomm Switch Corp. | Bonded semiconductor structure with SiGeC/SiGeBC layer as etch stop |
US9105689B1 (en) | 2014-03-24 | 2015-08-11 | Silanna Semiconductor U.S.A., Inc. | Bonded semiconductor structure with SiGeC layer as etch stop |
US9704841B2 (en) | 2014-03-26 | 2017-07-11 | United Microelectronics Corp. | Method of packaging stacked dies on wafer using flip-chip bonding |
US9397110B2 (en) | 2014-05-21 | 2016-07-19 | Macronix International Co., Ltd. | 3D independent double gate flash memory |
KR102307487B1 (en) | 2014-06-23 | 2021-10-05 | 삼성전자주식회사 | Three-dimensional semiconductor memory device and method of fabricating the same |
US9620217B2 (en) | 2014-08-12 | 2017-04-11 | Macronix International Co., Ltd. | Sub-block erase |
KR102171263B1 (en) | 2014-08-21 | 2020-10-28 | 삼성전자 주식회사 | Integrated circuit device having single crystal silicon thin film and method of manufacturing the same |
US9530824B2 (en) | 2014-11-14 | 2016-12-27 | Sandisk Technologies Llc | Monolithic three dimensional memory arrays with staggered vertical bit line select transistors and methods therfor |
US9589979B2 (en) | 2014-11-19 | 2017-03-07 | Macronix International Co., Ltd. | Vertical and 3D memory devices and methods of manufacturing the same |
US9691804B2 (en) | 2015-04-17 | 2017-06-27 | Taiwan Semiconductor Manufacturing Company Ltd. | Image sensing device and manufacturing method thereof |
US9768149B2 (en) | 2015-05-19 | 2017-09-19 | Micron Technology, Inc. | Semiconductor device assembly with heat transfer structure formed from semiconductor material |
KR20170030307A (en) | 2015-09-09 | 2017-03-17 | 삼성전자주식회사 | Memory device with seperated capacitor |
US9589982B1 (en) | 2015-09-15 | 2017-03-07 | Macronix International Co., Ltd. | Structure and method of operation for improved gate capacity for 3D NOR flash memory |
US9842651B2 (en) | 2015-11-25 | 2017-12-12 | Sunrise Memory Corporation | Three-dimensional vertical NOR flash thin film transistor strings |
US10121553B2 (en) | 2015-09-30 | 2018-11-06 | Sunrise Memory Corporation | Capacitive-coupled non-volatile thin-film transistor NOR strings in three-dimensional arrays |
US9892800B2 (en) | 2015-09-30 | 2018-02-13 | Sunrise Memory Corporation | Multi-gate NOR flash thin-film transistor strings arranged in stacked horizontal active strips with vertical control gates |
US11120884B2 (en) | 2015-09-30 | 2021-09-14 | Sunrise Memory Corporation | Implementing logic function and generating analog signals using NOR memory strings |
KR102476764B1 (en) | 2015-12-23 | 2022-12-14 | 에스케이하이닉스 주식회사 | Isolation structure and method for manufacturing the same |
US20170278858A1 (en) | 2016-03-22 | 2017-09-28 | Schiltron Corporation | Monolithic 3-d dynamic memory and method |
US9673257B1 (en) | 2016-06-03 | 2017-06-06 | Sandisk Technologies Llc | Vertical thin film transistors with surround gates |
US9595530B1 (en) | 2016-07-07 | 2017-03-14 | Sandisk Technologies Llc | Methods and apparatus for vertical bit line structures in three-dimensional nonvolatile memory |
US10199354B2 (en) | 2016-12-20 | 2019-02-05 | Intel Corporation | Die sidewall interconnects for 3D chip assemblies |
US10559594B2 (en) | 2017-04-11 | 2020-02-11 | Ahmad Tarakji | Approach to the manufacturing of monolithic 3-dimensional high-rise integrated-circuits with vertically-stacked double-sided fully-depleted silicon-on-insulator transistors |
US10431596B2 (en) | 2017-08-28 | 2019-10-01 | Sunrise Memory Corporation | Staggered word line architecture for reduced disturb in 3-dimensional NOR memory arrays |
US10896916B2 (en) | 2017-11-17 | 2021-01-19 | Sunrise Memory Corporation | Reverse memory cell |
US10651153B2 (en) | 2018-06-18 | 2020-05-12 | Intel Corporation | Three-dimensional (3D) memory with shared control circuitry using wafer-to-wafer bonding |
WO2020014655A1 (en) | 2018-07-12 | 2020-01-16 | Sunrise Memory Corporation | Fabrication method for a 3-dimensional nor memory array |
US11069696B2 (en) | 2018-07-12 | 2021-07-20 | Sunrise Memory Corporation | Device structure for a 3-dimensional NOR memory array and methods for improved erase operations applied thereto |
US10651182B2 (en) | 2018-09-28 | 2020-05-12 | Intel Corporation | Three-dimensional ferroelectric NOR-type memory |
JP7425069B2 (en) | 2019-01-30 | 2024-01-30 | サンライズ メモリー コーポレイション | High-bandwidth, large-capacity memory embedded electronic device using substrate bonding |
-
2022
- 2022-01-10 US US17/572,550 patent/US11315980B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11315980B1 (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10217667B2 (en) | 3D semiconductor device, fabrication method and system | |
US10896931B1 (en) | 3D semiconductor device and structure | |
US8440542B2 (en) | Semiconductor device and structure | |
US8026521B1 (en) | Semiconductor device and structure | |
US11018191B1 (en) | 3D semiconductor device and structure | |
US11335731B1 (en) | 3D semiconductor device and structure with transistors | |
US9953870B2 (en) | 3D semiconductor device and system | |
US20200365463A1 (en) | 3d semiconductor device and structure | |
US11315980B1 (en) | 3D semiconductor device and structure with transistors | |
US11309292B2 (en) | 3D semiconductor device and structure with metal layers | |
US20180350686A1 (en) | 3d semiconductor device and system | |
US20190074222A1 (en) | 3d semiconductor device and system | |
US20180350689A1 (en) | 3d semiconductor device and system | |
US20180350688A1 (en) | 3d semiconductor device and system | |
US11133351B2 (en) | 3D semiconductor device and structure | |
US11424222B2 (en) | 3D semiconductor device and structure with metal layers | |
US11793005B2 (en) | 3D semiconductor devices and structures | |
US20190057903A1 (en) | 3d semiconductor device and system | |
US11600667B1 (en) | Method to produce 3D semiconductor devices and structures with memory | |
US11462586B1 (en) | Method to produce 3D semiconductor devices and structures with memory | |
US11257867B1 (en) | 3D semiconductor device and structure with oxide bonds | |
US10290682B2 (en) | 3D IC semiconductor device and structure with stacked memory | |
US11024673B1 (en) | 3D semiconductor device and structure | |
US11469271B2 (en) | Method to produce 3D semiconductor devices and structures with memory | |
US11227897B2 (en) | Method for producing a 3D semiconductor memory device and structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MONOLITHIC 3D INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OR-BACH, ZVI;SEKAR, DEEPAK;SIGNING DATES FROM 20220107 TO 20220109;REEL/FRAME:058612/0743 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |