US20220120088A1 - Installation for covering a surface using orientatable blades that are translated flat - Google Patents

Installation for covering a surface using orientatable blades that are translated flat Download PDF

Info

Publication number
US20220120088A1
US20220120088A1 US17/434,118 US202017434118A US2022120088A1 US 20220120088 A1 US20220120088 A1 US 20220120088A1 US 202017434118 A US202017434118 A US 202017434118A US 2022120088 A1 US2022120088 A1 US 2022120088A1
Authority
US
United States
Prior art keywords
slats
slat
displacement
orientation
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/434,118
Other languages
English (en)
Inventor
Alexandre BYSZENSKI
Frédéric FORETTI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biossun SAS
Original Assignee
Biossun SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biossun SAS filed Critical Biossun SAS
Assigned to BIOSSUN reassignment BIOSSUN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Byszenski, Alexandre, FORETTI, Frédéric
Publication of US20220120088A1 publication Critical patent/US20220120088A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/08Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of a plurality of similar rigid parts, e.g. slabs, lamellae
    • E04F10/10Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of a plurality of similar rigid parts, e.g. slabs, lamellae collapsible or extensible; metallic Florentine blinds; awnings with movable parts such as louvres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/16Roof structures with movable roof parts
    • E04B7/163Roof structures with movable roof parts characterised by a pivoting movement of the movable roof parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/16Roof structures with movable roof parts
    • E04B7/166Roof structures with movable roof parts characterised by a translation movement of the movable roof part, with or without additional movements

Definitions

  • the present invention relates to the technical field of the installations for covering and uncovering a surface using orientable slats extending parallel to each other in order to constitute a screen for protecting or closing a surface in the general sense, these orientable slats having the possibility, in the deployed position relative to the surface, to be opened or closed depending in particular on whether conditions.
  • the object of the invention aims many applications to constitute particularly a cover of a roof forming part of pergolas or terraces for example, or a protective screen for doors or windows.
  • slats are moved in translation between a stowed position in which the slats are contiguous to each other in their open position and a deployed position in which the slats are deployed above the surface.
  • Sensors allow determining the orientation of the slats and the displacement of the slats.
  • These sensors, the displacement system and the orientation system are connected to a control device piloting the translation of the slats and the orientation of the slats.
  • the present invention aims to overcome the drawbacks of the prior art by proposing an installation for covering and uncovering a surface, using orientable slats, adapted to operate even in case of strong winds while remaining of simple design.
  • Another object of the invention aims to propose an installation that allows quickly covering the surface in case of rain showers.
  • the installation for covering and uncovering, using adjustable slats, a surface delimited by a bearing structure includes:
  • installation according to the invention may further include in combination at least either of the following additional characteristics:
  • FIG. 1 is a perspective view of one exemplary embodiment of an installation in accordance with the invention in which the slats are all stowed in the upright position.
  • FIG. 2 is a perspective view of one exemplary embodiment of an installation in accordance with the invention in which part of the slats is being deployed in the closed position and another part of the slats is still stowed in the closed upright position.
  • FIG. 3 is a sectional view of the installation showing one example of orientation of the slats in the deployed position.
  • FIGS. 4A to 4E are sectional elevation views showing the deployment of the head slat switching from a stowed position in an upright position to a closed deployed position.
  • FIGS. 5A to 5D are sectional elevation views showing the deployment of the second slat switching from a stowed position in an upright position to a closed deployed position.
  • FIG. 6 is a partial perspective view showing an exemplary embodiment of a slat displacement system and of a slat orientation system.
  • FIG. 7 is a sectional elevation view showing the displacement system illustrated in FIG. 6 .
  • FIG. 8 is a sectional elevation view showing more specifically the slat orientation system.
  • the object of the invention concerns an installation 1 for covering and uncovering a surface 2 by a series of orientable slats 3 extending one behind the other by being preferably all identical and parallel to each other along their longitudinal axis.
  • Each orientable slat 3 has a generally rectangular shape delimited by a first longitudinal edge 3 1 and a second longitudinal edge 3 2 parallel to each other and connected to each other by first and second end edges 3 3 and 3 4 also parallel to each other.
  • the number and dimensions of the orientable slats are adapted to the dimensions of the rectangular surface 2 to be covered.
  • the orientable slats 3 are able to form together a rectangular-shaped screen or curtain delimited on the one hand by the longitudinal edge 3 1 of the first slat 3 and by the longitudinal edge 3 2 of the last slat 3 and on the other hand by all of the first end edges 3 3 of the slats aligned together and by all of the second end edges 3 4 of the slats aligned together.
  • the slats 3 are provided with a pivot axis 4 at each of their end edges to allow particularly their orientation.
  • the installation 1 includes a mechanism I for orienting the slats 3 along their pivot axis 4 in order to ensure the pivoting of at least some of them and in general all of the slats 3 so that the longitudinal edges 3 1 , 3 2 of the neighboring slats are contiguous to close the corresponding surface or are non-contiguous to open the surface 2 .
  • the orientable slats 3 can take various angular positions.
  • the slats 3 occupy a closed or flat position to form a screen insofar as the longitudinal edges 3 1 , 3 2 of the slats are contiguous with the longitudinal edges of the neighboring slats.
  • the slats 3 are deployed above the surface by occupying an open upright position that is to say a vertical orientation offset by 90° from the closed or flat position.
  • FIG. 3 also shows, only by way of illustration, slats 3 in the open position in various orientations.
  • the installation according to the invention also includes a system II for moving the slats 3 between a stowed position ( FIG. 1 ) and a deployed position facing the surface 2 ( FIGS. 2 and 3 ).
  • the slats 3 are contiguous to each other between a head slat 3 a and a stowage edge 5 1 of a bearing structure or mount 5 .
  • the head slat 3 a is the first slat taken into consideration of the direction of deployment of the slats represented by the arrow F for which the slats switch from the stowed position to the deployed position.
  • the head slat 3 a is the slat moved first while all the slats are in the stowed position.
  • the displacement system II allows the successive deployment of the slats 3 after the exit of the head slat 3 a .
  • the next slat is moved of course with the continuation of the displacement of the head slat 3 a .
  • this second slat has been moved by a translational stroke equal to the spacing pitch, then the next slat is also moved with the continuation of the displacement of the head slat and of the second slat, and so on until the number of slats that must be deployed.
  • the slats are translated by being separated in pairs by a spacing pitch called closing center line E.
  • closing center line E a spacing pitch
  • the displacement system II also allows the displacement of the slats 3 along a stowage direction represented by the arrow F1, for which the slats 3 switch from the deployed position to the stowed position.
  • the slats 3 In the stowed position, the slats 3 cannot be oriented and the slats 3 occupy the open upright position, i.e. the slats are located in parallel planes substantially perpendicular to the surface 2 , namely vertical planes in the illustrated example.
  • the systems I and II ensure the displacement and orientation of the slats 3 so that they together form at least one protective screen which can be opened and closed at will.
  • this screen forms a roof or a protective shutter that can completely cover the surface 2 or only part of the surface 2 , with the possibility of orientation of the slats on demand when the slats are not in the stowed position.
  • the installation 1 also includes two guide tracks 8 ensuring the translational guidance for the slats 3 between a stowed position in which the slats are contiguous to each other ( FIG. 1 ) and a deployed position in which at least part or all of the slats 3 are deployed facing the surface 2 ( FIG. 3 ).
  • the guide tracks 8 are arranged on the bearing structure of the mount 5 made in any suitable manner depending on the intended applications and surrounding the surface 2 to be covered to advantageously form a frame.
  • This bearing structure 5 advantageously includes two longitudinal profiles 5 2 and 5 3 extending parallel to each other along two opposite sides of the surface 2 and parallel to the guide tracks 8 . These two longitudinal profiles 5 2 and 5 3 are connected to each other at their ends, by connecting profiles 5 1 and 5 4 together forming a frame delimiting the surface 2 .
  • One of the connecting profiles 5 4 delimits the abutment edge for the longitudinal edge 3 1 of the first slat, namely the head slat 3 a while the other profile 5 1 delimits the stowage edge for the longitudinal edge of the last slat 3 .
  • the first slat and the last slat are taken into consideration of the direction of deployment of the slats represented by the arrow F for which the slats switch from the stowed position to the deployed position.
  • the installation 1 according to the invention is intended to be fixed by any appropriate means on a bearing structure adapted to the intended application.
  • the bearing structure 5 includes posts 5 p supporting the frame formed by the connecting profiles and the longitudinal profiles.
  • orientation system I and the displacement system II for ensuring the displacement and orientation of the slats 3 can be made in any suitable manner using motorized systems for moving in translation and in rotation the slats 3 .
  • the following description uses the description of the systems described by the patent FR 3 027 334, but it is clear that the displacement and orientation systems can be different in order to comply, for example, with those described by the patent application WO 2017/178757.
  • Each slat 3 is supported at each of its ends more specifically by its pivot axes 4 , by a set of two carriages 10 1 , 10 2 guided in translation along the guide tracks 8 . As it emerges more specifically from FIGS. 6 to 8 , each slat 3 is therefore supported by its pivot axes 4 , using two carriages 10 1 , 10 2 moving in translation along the guide tracks between the stowed position and the deployed position. To this end, each carriage 10 1 , 10 2 is fitted to a guide bearing 11 cooperating with a guide track 8 .
  • the displacement system II includes, for each pair of carriages 10 1 , 10 2 equipping a slat, at least one displacement motor 12 embedded on a carriage and advantageously two displacement motors 12 each embedded on a carriage.
  • each slat 3 is advantageously motorized by two motors to balance the forces applied to the slats 3 .
  • the displacement motors 12 are electric motors, for example brush direct current motors connected to a power supply source via connection cables not represented.
  • the orientation system I includes for each pair of carriages fitted to a slat, at least one and in the illustrated example, a single orientation motor 14 embedded on one of the two carriages 10 1 and 10 2 fitted to a slat 3 .
  • Each orientation motor 14 is angularly connected with a pivot axis 4 to place the slat 3 in a determined upright angular (perpendicular of the surface 2 , namely vertical in the case of a pergola), closed (in a horizontal position) or intermediate position taken between these two vertical and horizontal positions.
  • each slat 3 is therefore supported, at one of its ends, by a first carriage 10 1 embedding only one displacement motor 12 and, at its opposite end, by a second carriage 10 2 fitted to a displacement motor 12 and an orientation motor 14 .
  • the second carriages 10 2 equipped with a displacement motor 12 and an orientation motor 14 on the one hand and the first carriages 10 1 equipped with a displacement motor 12 on the other hand are mounted alternately from one slat to the other on each side of the surface 2 to be covered or uncovered.
  • the first and second carriages are mounted alternately on each longitudinal side of the bearing structure.
  • Each carriage 10 1 , 10 2 has a main body 15 of generally elongated parallelepiped shape extending mainly along the pivot axis 4 .
  • the bodies 15 of the first and second carriages are not identical for precisely saving space in the stowed position.
  • the main body 15 of the second carriages 10 2 has a length taken along the direction of extension of the slats 3 shorter than that of the main body of the first carriages 10 1 .
  • the displacement motor 12 is mounted at the end of the main body 15 of the first carriages 10 1 , thus allowing this main body 15 to have a narrowed shape in order to receive the main body of a second carriage 10 2 .
  • the main bodies 15 of the first and second carriages are nested inside each other in a stowed position.
  • each displacement motor 12 is mounted in any suitable manner on the main body 15 of each carriage 10 1 , 10 2 .
  • Each displacement motor 12 drives in rotation a pinion 17 driving in translation a slat 3 .
  • Each pinion 17 cooperates with a rack 18 mounted on the bearing structure 5 along a direction parallel to the guide track 8 and along the entire length of the guide track to allow the translation of the slats between their stowed and deployed positions.
  • each rack 18 is made by a toothed belt fixed on the bearing structure 5 .
  • each rack 18 is mounted on the upper face of a central partition Sa presented by each longitudinal profile 5 2 , 5 3 .
  • each longitudinal profile 5 2 , 5 3 has a core 5 b extending horizontally and from which the central partition 5 a is raised and on either side, an outer flange 5 c and an inner flange 5 d .
  • the central partition 5 a is fitted to the guide track 8 made below the outer face receiving the rack 18 .
  • the guide track 8 is made by a circular profile rail extending partly in a housing arranged in the partition to allow the mounting of the bearing of the guidance 11 .
  • each longitudinal profile 5 2 , 5 3 is made by extrusion.
  • the profiles can be assembled end to end at will to adapt to the dimensions of the surface 2 to be covered.
  • the central partition 5 a and the inner flange 5 d delimit therebetween a gutter Se in line of which the end edges of the slats extend to possibly collect rainwater.
  • each guide bearing 11 is connected to the main body 15 of the carriages 10 1 , 10 2 by means of a connecting axis 20 preferably detachable in nature.
  • the connecting axis 20 extends substantially perpendicularly to the rail 8 .
  • the connecting axis 20 is mounted to pass through the main body 15 and the bearing 11 from one side bearing by a head 21 on the body 15 and by being blocked in translation by a blocking element 22 such as a nut bearing on the lower face of the guide bearing.
  • a spring 23 is engaged on the connecting axis 20 and interposed between the main body 15 and the guide bearing 11 to compensate for the manufacturing and mounting tolerances.
  • FIG. 7 illustrates more specifically an exemplary embodiment of the first carriages 10 1 each embedding only a displacement motor 12 .
  • Each first carriage 10 1 includes a central bore 30 fitted to a system 31 for guiding in rotation the pivot axis 4 of the slat.
  • the pivot axis 4 is driven in rotation by the displacement motor 12 whose output shaft cooperates with a toothed wheel 33 angularly fixed on the pivot axis 4 .
  • the pinion 17 is angularly linked to the pivot axis 4 and cooperates with the rack 18 .
  • the pivot axis 4 is freely engaged inside a housing 32 arranged in the slat 3 .
  • the rotation of the displacement motor 12 in one direction or the other allows moving in translation, along the guide track 8 , the carriage 10 1 by the pinion 17 /rack 18 connection.
  • the translation of the carriage 10 1 causes the displacement of the corresponding slat 3 , because of the translational connection between the pivot axis 4 and the slat 3 by the free engagement of the pivot axis 4 in the housing 32 of the slat.
  • Each pinion 17 cooperates directly with a pivot axis 4 (since they are secured to each other) so as to drive in translation the pivot axis 4 of the slat 3 , by the pivot connection made between the slat 3 and the pivot axis 4 .
  • FIGS. 7 and 8 illustrate more specifically an exemplary embodiment of the second carriages 10 2 embedding both a displacement motor 12 and an orientation motor 14 .
  • Each second carriage 10 2 includes a bore 40 fitted to a rotational guide system 41 for a tubular shaft 42 inside which a pivot axis 4 is freely engaged.
  • a pinion 17 which cooperates with the rack 18 is angularly linked to this tubular shaft 42 which is driven in rotation by a toothed wheel 44 fixed on the tubular shaft 42 and meshing with the output shaft of the displacement motor 12 .
  • the rotation of the tubular shaft 42 leads to the translation of the second carriage 10 2 causing the translation of the slat whose pivot axis 4 is pushed during the translation of the carriage.
  • Each pinion 17 cooperates indirectly with a pivot axis 4 to drive in translation the pivot axis 4 of the slat 3 , by the pivot connection made between the tubular shaft 42 and the pivot axis 4 .
  • the pivot axis 4 is driven in rotation by the orientation motor 14 whose output shaft cooperates with a toothed wheel 47 locked in rotation with the pivot axis 4 whose opposite end is engaged inside the housing 32 and angularly linked to the slat using, for example, connecting pins 48 .
  • the pivot pin 4 is thus mounted freely in rotation inside the tubular shaft 42 and can be oriented at will in a stable position determined using the orientation motor 14 .
  • the installation 1 also includes sensors 50 for detecting the position and displacement of the slats 3 .
  • sensors 50 allow knowing the position of each of the slats 3 at any time throughout their journey on the guide track.
  • Such position and displacement sensors 50 can be produced in any suitable manner.
  • the position and displacement sensors 50 include contact sensors each mounted on a carriage 10 1 , 10 2 and capable of being actuated by an abutment carried by the carriage located upstream in the exit direction of the slats or by the bearing structure for the carriage of the last slat in the exit direction. These contact sensors allow identifying the position of the slats and particularly in their stowed position.
  • the displacement sensor 50 also includes sensors (not represented) for measuring the rotation of the displacement motors 12 , such as encoders. These displacement sensors allow knowing the linear displacement of the carriages 10 1 , 10 2 along their guide track 8 .
  • the position and displacement sensors 50 also include sensors for measuring the rotation of the orientation motors 14 allowing knowing the angular orientation of the slats 3 .
  • the position and displacement sensors 50 also include sensors for detecting the direction of orientation of the slats.
  • the installation 1 also includes a control device 60 connected to the position and displacement sensors 50 , to the displacement system II and to the orientation system I allowing moving in translation at least part of the slats 3 and orienting said translated slats.
  • a control device 60 thus allows piloting the operation of the displacement motors 12 and of the orientation motors 14 so as to allow covering and uncovering one or more areas of the surface 2 either on demand or according to pre-recorded programs.
  • the control device 60 pilots the displacement system II and the orientation system I so that each slat, exiting its stowed position, can switch from its open upright position to its closed position, considering that this passage between its two orientation positions is made in a transition area Ev.
  • FIGS. 4A to 4E explain this operating mode when the head slat 3 a is deployed.
  • FIG. 4A illustrates by way of example four slats 3 in the stowed position oriented in the open upright position.
  • the control device 60 pilots the operation of the displacement motor 12 and of the orientation motor 14 fitted to this head slat 3 a to simultaneously ensure, as illustrated by FIGS.
  • the distance or center line Ei between the pivot axis 4 of the head slat 3 a and the pivot axis 4 of the neighboring row slat 3 changes during the stroke of the slat on the transition area Ev.
  • the distance Ei has a minimum spacing value while when the head slat 3 a reaches a closed position, the distance Ei has a maximum spacing value.
  • the distance Ei has a maximum spacing value equal to the closing center line E.
  • the closing center line E corresponds to the spacing between the axes of two deployed neighboring slats allowing these slats to be contiguous when they occupy the closed or flat position. As illustrated in FIG. 4E , the distance Ei is equal to the closing center line E when the head slat is in its closed position.
  • the control device 60 pilots the operation, on the one hand of the displacement motor 12 of the head slat 3 a so that this head slat 3 a continues its displacement in its closed position, and on the other hand of the displacement motor 12 and of the orientation motor 14 of the following slat in the stowed position.
  • the control device 60 pilots the operation of the displacement motor 12 and of the orientation motor 14 fitted to this second slat to ensure, as illustrated in FIGS. 5A to 5D , the translation of the slat 3 and its tilting in order to bring it into its closed position.
  • this second slat 3 has been translated on its transition area Ev.
  • the center line Ei between the pivot axis 4 of the second slat 3 stowed in the open upright position and the pivot axis 4 of the third neighboring stowed slat 3 changes on the transition area Ev between a minimum spacing value and a maximum spacing value advantageously equal to the closing center line E.
  • the second slat is distant from the third stowed slat, by a value equal to the closing center line. It should be noted that this second slat 3 always remains distant from the head slat 3 a by a distance equal to the closing center line E.
  • each of the slats occupying the stowed position is made successively according to the same principle described above in relation to the head slat and to the first slat.
  • the slats are thus translated into the closed position by being separated in pairs by the closing center line E.
  • the control device 60 stops the control of the displacement motors 12 so that the slats are deployed above the surface.
  • the control device 60 can then optionally control the orientation motors 14 fitted to the deployed slats to allow an individual orientation of said slats.
  • the slats can be kept oriented in the closed position to together form a screen or a closing shutter.
  • each slat exiting its stowed position is, at the end of its transition position, moved in flat translation up to its final position, each slat having reached its final position possibly being oriented along a determined angulation.
  • control device 60 pilots the orientation system I so as to place each deployed slat in the closed position before the translational displacement along the direction of stowage of said slats. Indeed, the stowage of the deployed slats is made only if the deployed slats occupy the closed or flat position.
  • control device 60 pilots the displacement system II, that is to say the displacement motors 12 for moving the slats deployed to ensure the translation of the slats along the direction of stowage while these slats are in the closed position.
  • control device 60 pilots the operation of the orientation motor 14 fitted to the deployed slat furthest from the head slat 3 a , to ensure at the start of the transition area Ev, its tilting and bring it into its open upright position at the end of the transition area Ev. Each next slat is successively stowed according to the same principle.
  • control device pilots the displacement system II and the orientation system I so that each slat in the transition area Ev follows a regular orientation stroke to switch from its open position to its closed position and conversely.
  • the displacement of the slats in the closed or flat position allows reducing the resistance to displacement relative to the wind.
  • the first of the slats stowed in the open upright position acts as a deflector for the wind.
  • the deployment of the slats in the closed or flat position allows a faster surface coverage compared to a deployment of the slats in the upright position followed by a pivoting of the deployed slats.
  • control device includes a calibration mode allowing the installation to position the slats 3 in a defined position in order to identify their position.
  • control system pilots the motors 12 , 14 before any first use in order to place the different slats 3 in the stowed position with an upright orientation.
  • the identification of the position of the slats 3 in the stowed position is ensured by the contact sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Blinds (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
US17/434,118 2019-02-28 2020-02-27 Installation for covering a surface using orientatable blades that are translated flat Pending US20220120088A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1902061A FR3093339B1 (fr) 2019-02-28 2019-02-28 Installation pour couvrir une surface à l’aide de lames orientables translatées à plat
FR1902061 2019-02-28
PCT/FR2020/050393 WO2020174195A1 (fr) 2019-02-28 2020-02-27 Installation pour couvrir une surface a l'aide de lames orientables translatees a plat

Publications (1)

Publication Number Publication Date
US20220120088A1 true US20220120088A1 (en) 2022-04-21

Family

ID=67262606

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/434,118 Pending US20220120088A1 (en) 2019-02-28 2020-02-27 Installation for covering a surface using orientatable blades that are translated flat

Country Status (4)

Country Link
US (1) US20220120088A1 (fr)
EP (1) EP3931408A1 (fr)
FR (1) FR3093339B1 (fr)
WO (1) WO2020174195A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1030819B1 (nl) * 2022-08-26 2024-03-25 Brustor Terrasoverkapping

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108166688B (zh) 2017-05-08 2019-11-05 宁波万汇休闲用品有限公司 遮蔽篷装置
EP3495582A1 (fr) 2017-12-08 2019-06-12 Activa Awning Inc. Appareil d'auvent
FR3138458A1 (fr) 2022-07-29 2024-02-02 Manufacture Sud Bourgogne Installation de protection contre le soleil ou les intempéries

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128307A (en) * 1976-06-22 1978-12-05 Plascon Ag. Device for controlling the incidence of heat and light radiation, particularly for greenhouses and the like
US4449563A (en) * 1982-05-26 1984-05-22 Rca Corporation Counterbalance system for sagging rotating element
US4527355A (en) * 1983-02-24 1985-07-09 Zeon Kasei Co., Ltd. Opening and closing type louver device
US5732507A (en) * 1993-11-04 1998-03-31 H.V. Aluminium Pty. Limited Louvre assembly
US5873202A (en) * 1997-07-07 1999-02-23 Parks; Charles Sherman Slidably adjustable rigid awning
US6202363B1 (en) * 1998-06-08 2001-03-20 Chao-Jen Chang Shielding canopy
EP1262624A1 (fr) * 2001-05-28 2002-12-04 Arthur Prib Méchanisme pour pivoter des lamelles d'une protection solaire
US20130056159A1 (en) * 2010-05-04 2013-03-07 Andrew Gray Louvre vane system
US20130118082A1 (en) * 2011-05-09 2013-05-16 Hunter Douglas, Inc. Shutter with field serviceable louvers
US8528621B2 (en) * 2012-02-01 2013-09-10 Murphy-Farrell Development L.L.L.P. Solar window shade
US20130248124A1 (en) * 2012-03-22 2013-09-26 Alcoa Inc. Adjustable light shelf
US8756873B1 (en) * 2011-12-05 2014-06-24 Mark Hire Transforming awning
US20140175240A1 (en) * 2012-11-15 2014-06-26 C. Scott Selzer Bracket for louvered roof systems
US9222264B1 (en) * 2013-10-02 2015-12-29 Luke S. Reid Retractable awning
US20150376901A1 (en) * 2013-02-20 2015-12-31 Orangebox Limited A ceiling panel
US20160032642A1 (en) * 2014-07-31 2016-02-04 Hunter Douglas Industries B.V. Shutter assembly
WO2016059344A1 (fr) * 2014-10-15 2016-04-21 Biossun Installation pour couvrir et decouvrir une surface a l'aide de lames orientables automotrices
US20160177575A1 (en) * 2014-12-20 2016-06-23 Michael Ivic Pergola Cover
US20180106046A1 (en) * 2015-04-24 2018-04-19 Jean-Louis Castel Modular multifunction shading device, particularly for a pergola
US20190145107A1 (en) * 2016-04-12 2019-05-16 Alexandre BYSZENSKI Apparatus for covering and uncovering a surface using coupled self-propelled adjustable slats
US11313130B2 (en) * 2017-10-30 2022-04-26 Advanced Design Innovations Pty. Ltd. Retractable roof/wall assembly

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128307A (en) * 1976-06-22 1978-12-05 Plascon Ag. Device for controlling the incidence of heat and light radiation, particularly for greenhouses and the like
US4449563A (en) * 1982-05-26 1984-05-22 Rca Corporation Counterbalance system for sagging rotating element
US4527355A (en) * 1983-02-24 1985-07-09 Zeon Kasei Co., Ltd. Opening and closing type louver device
US5732507A (en) * 1993-11-04 1998-03-31 H.V. Aluminium Pty. Limited Louvre assembly
US5873202A (en) * 1997-07-07 1999-02-23 Parks; Charles Sherman Slidably adjustable rigid awning
US6202363B1 (en) * 1998-06-08 2001-03-20 Chao-Jen Chang Shielding canopy
EP1262624A1 (fr) * 2001-05-28 2002-12-04 Arthur Prib Méchanisme pour pivoter des lamelles d'une protection solaire
US20130056159A1 (en) * 2010-05-04 2013-03-07 Andrew Gray Louvre vane system
US20130118082A1 (en) * 2011-05-09 2013-05-16 Hunter Douglas, Inc. Shutter with field serviceable louvers
US8756873B1 (en) * 2011-12-05 2014-06-24 Mark Hire Transforming awning
US8528621B2 (en) * 2012-02-01 2013-09-10 Murphy-Farrell Development L.L.L.P. Solar window shade
US20130248124A1 (en) * 2012-03-22 2013-09-26 Alcoa Inc. Adjustable light shelf
US20140175240A1 (en) * 2012-11-15 2014-06-26 C. Scott Selzer Bracket for louvered roof systems
US20150376901A1 (en) * 2013-02-20 2015-12-31 Orangebox Limited A ceiling panel
US9222264B1 (en) * 2013-10-02 2015-12-29 Luke S. Reid Retractable awning
US20160032642A1 (en) * 2014-07-31 2016-02-04 Hunter Douglas Industries B.V. Shutter assembly
WO2016059344A1 (fr) * 2014-10-15 2016-04-21 Biossun Installation pour couvrir et decouvrir une surface a l'aide de lames orientables automotrices
US20160177575A1 (en) * 2014-12-20 2016-06-23 Michael Ivic Pergola Cover
US20180106046A1 (en) * 2015-04-24 2018-04-19 Jean-Louis Castel Modular multifunction shading device, particularly for a pergola
US20190145107A1 (en) * 2016-04-12 2019-05-16 Alexandre BYSZENSKI Apparatus for covering and uncovering a surface using coupled self-propelled adjustable slats
US11015349B2 (en) * 2016-04-12 2021-05-25 Biossun Apparatus for covering and uncovering a surface using coupled self-propelled adjustable slats
US11313130B2 (en) * 2017-10-30 2022-04-26 Advanced Design Innovations Pty. Ltd. Retractable roof/wall assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1030819B1 (nl) * 2022-08-26 2024-03-25 Brustor Terrasoverkapping

Also Published As

Publication number Publication date
EP3931408A1 (fr) 2022-01-05
FR3093339B1 (fr) 2021-03-05
WO2020174195A1 (fr) 2020-09-03
FR3093339A1 (fr) 2020-09-04

Similar Documents

Publication Publication Date Title
US20220120088A1 (en) Installation for covering a surface using orientatable blades that are translated flat
US10280625B2 (en) Unit for covering and uncovering a surface using self-propelled adjustable slats
US11015349B2 (en) Apparatus for covering and uncovering a surface using coupled self-propelled adjustable slats
US8695281B2 (en) Roof reflector
US20050263257A1 (en) Extraction profile with adjustable centering mechanism
US5564234A (en) Building structure consisting of a framework of uprights and beams covered with a foil
EP2455561B1 (fr) Auvent/toit pliant de jardin d'hiver
US9828067B2 (en) Roof module, and vehicle having an accommodation facility comprising a roof module
AU2018360615A1 (en) Retractable roof/wall assembly
US3577691A (en) Movable roof window having a pyramidal frame construction
EP3591136B1 (fr) Système d'ombrage pour recouvrir un espace sous-jacent et methode pour recouvrir un espace sous-jacent
US20160290044A1 (en) Shutter rolling system and method
US11230883B2 (en) Tubular electromechanical actuator, home automation equipment comprising such an actuator and method for connecting such an actuator
US20140223826A1 (en) Coverings for Building Apertures or Surface Portions of Buildings and Drive System for such Coverings
KR101586399B1 (ko) 햇빛 차단 및 빗물 유입 방지용 루버가 구비된 창호
EP2336479B1 (fr) Systéme d'écran avec des lamelles mobiles
KR101930341B1 (ko) 천장, 경사면, 곡면 및 외부 차양용 블라인드 장치
DE202009005021U1 (de) Rolloeinrichtung im Zwischenraum einer Isolierglasscheibeneinheit
DE19840418C2 (de) Sonnenschutzvorrichtung
RU2563764C2 (ru) Намоточное устройство для закрывания отверстий в частях стены
US11413941B2 (en) Electric window shade apparatus for vehicle
PL199492B1 (pl) Urządzenie zasłaniające okno oraz urządzenie do montażu i równoległego prowadzenia urządzenia zasłaniającego okno
CN206874123U (zh) 智能开合装置
EP2138673A1 (fr) Installation de protection solaire dotée d'un dispositif de retournement d'urgence
EP4183967B1 (fr) Couverture mobile pour un élément de construction

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOSSUN, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BYSZENSKI, ALEXANDRE;FORETTI, FREDERIC;REEL/FRAME:058395/0148

Effective date: 20211208

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED