US20220010399A1 - High-strength steel with excellent durability and method for manufacturing same - Google Patents

High-strength steel with excellent durability and method for manufacturing same Download PDF

Info

Publication number
US20220010399A1
US20220010399A1 US17/294,250 US201917294250A US2022010399A1 US 20220010399 A1 US20220010399 A1 US 20220010399A1 US 201917294250 A US201917294250 A US 201917294250A US 2022010399 A1 US2022010399 A1 US 2022010399A1
Authority
US
United States
Prior art keywords
cooling
hot
phase
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/294,250
Other languages
English (en)
Inventor
Sung-il Kim
Hyun-taek NA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Assigned to POSCO reassignment POSCO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SUNG-IL, NA, Hyun-taek
Publication of US20220010399A1 publication Critical patent/US20220010399A1/en
Assigned to POSCO HOLDINGS INC. reassignment POSCO HOLDINGS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: POSCO
Assigned to POSCO CO., LTD reassignment POSCO CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POSCO HOLDINGS INC.
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • members of chassis parts and wheel discs of commercial vehicles have used high-strength steel plates having a thickness of 5 mm or more and a yield strength of 450 to 600 MPa in order to secure high rigidity due to characteristics of the vehicles.
  • high-strength steel materials having a tensile strength of 650 MPa or more are currently used therein.
  • a high-strength steel material having excellent durability includes, by weight, carbon (C): 0.05 to 0.15%, silicon (Si): 0.01 to 1.0%, manganese (Mn): 1.0 to 2.3%, aluminum (Al): 0.01 to 0.1%, chromium (Cr): 0.005 to 1.0%, phosphorus (P): 0.001 to 0.05%, sulfur (S): 0.001 to 0.01%, nitrogen (N): 0.001 to 0.01%, niobium (Nb): 0.005 to 0.07%, titanium (Ti): 0.005 to 0.11%, a balance of Fe, and other inevitable impurities,
  • a sum of a fraction of a ferrite phase and a fraction of a bainite phase in a microstructure is 90% or more, and a fraction of a crystal grain, in which an aspect ratio (a ratio of short side/long side) of the crystal grain in a central portion (a portion ranging from a t/4 point to a t/2 point in a thickness direction) is 0.3 or less, is less than 50%, and a length of a grain boundary observed in a unit area (1 mm 2 ) in the central portion is 700 mm or more.
  • a method of manufacturing a high-strength steel material having excellent durability includes heating a steel slab satisfying the above-described alloy composition in a temperature within a range of 1200 to 1350° C.; hot-rolling the heated steel slab to prepare a hot-rolled steel sheet; cooling the hot-rolled steel sheet to a temperature within a range of 400 to 500° C. and then coiling (CT); and air-cooling to a temperature within a range of room temperature to 200° C. after the coiling,
  • CT coiling
  • Mn may be included in an amount of 1.0 to 2.3%, and, more advantageously, may be included in an amount of 1.1 to 2.0%.
  • Aluminum (Al) may be an element mainly added for deoxidation. When an amount thereof is less than 0.01%, an effect of the addition may not be sufficiently obtained. When an amount thereof exceeds 0.1%, it may be easy to cause corner cracks in a slab during a continuous casting process by combining with nitrogen (N) in steel to form AlN, and there may be a risk of generating defects due to formation of inclusions.
  • Phosphorus (P) may be an element simultaneously promoting solid solution strengthening and ferrite transformation.
  • manufacturing costs may be excessive, which may be economically disadvantageous, and it may be difficult to secure a target level of strength.
  • an amount of P exceeds 0.05% brittleness may occur due to grain boundary segregation, and fine cracks tend to occur during forming, to greatly deteriorate shear formability and durability.
  • N may be included in an amount of 0.001 to 0.01%.
  • the remainder of the present disclosure may be iron (Fe).
  • Fe iron
  • the impurities may not be excluded. All of these impurities are not specifically mentioned in this specification, as they are known to anyone of ordinary skill in the manufacturing process.
  • a temperature of the heating is less than 1200° C.
  • a precipitate may not be sufficiently re-dissolved, to decrease formation of a precipitate in a process after hot-rolling, and there may be a problem that coarse TiN remains.
  • a temperature of the heating exceeds 1350° C., strength may decrease due to abnormal grain growth of austenite grains, which is not allowable.
  • FDT denotes a temperature at an finishing hot-rolling (a hot-rolling end temperature)
  • CT denotes a coiling temperature
  • AR0.3 denotes a ratio (an area fraction) of crystal grains having an aspect ratio of 0.3 or less, and shows results obtained by observing at 1000 magnification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
US17/294,250 2018-11-26 2019-11-26 High-strength steel with excellent durability and method for manufacturing same Pending US20220010399A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2018-0147124 2018-11-26
KR1020180147124A KR102131527B1 (ko) 2018-11-26 2018-11-26 내구성이 우수한 고강도 강재 및 이의 제조방법
PCT/KR2019/016299 WO2020111702A1 (ko) 2018-11-26 2019-11-26 내구성이 우수한 고강도 강재 및 이의 제조방법

Publications (1)

Publication Number Publication Date
US20220010399A1 true US20220010399A1 (en) 2022-01-13

Family

ID=70852967

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/294,250 Pending US20220010399A1 (en) 2018-11-26 2019-11-26 High-strength steel with excellent durability and method for manufacturing same

Country Status (6)

Country Link
US (1) US20220010399A1 (ko)
EP (1) EP3889298A4 (ko)
JP (1) JP7244723B2 (ko)
KR (1) KR102131527B1 (ko)
CN (1) CN113166893B (ko)
WO (1) WO2020111702A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397583B1 (ko) 2020-09-25 2022-05-13 주식회사 포스코 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
KR102409896B1 (ko) * 2020-10-23 2022-06-20 주식회사 포스코 성형성이 우수한 고강도 후물 강판 및 그 제조방법
KR102403648B1 (ko) * 2020-11-17 2022-05-30 주식회사 포스코 고강도 열연강판, 열연 도금강판 및 이들의 제조방법
CN113084453B (zh) * 2021-03-18 2022-04-29 湖南三一路面机械有限公司 耐磨钢轮、钢轮制造方法、钢轮焊接方法和压路机
KR20230072050A (ko) 2021-11-17 2023-05-24 주식회사 포스코 냉간 성형 후 내충격성이 우수한 고항복비형 고강도강 및 그 제조방법
KR20240098898A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 열연강판 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140161659A1 (en) * 2011-08-17 2014-06-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel sheet
WO2018026014A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188787B2 (ja) * 1993-04-07 2001-07-16 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度熱延鋼板の製造方法
JP3455567B2 (ja) * 1993-08-17 2003-10-14 日新製鋼株式会社 加工性に優れた高強度溶融Znめっき鋼板の製造方法
JP3477955B2 (ja) 1995-11-17 2003-12-10 Jfeスチール株式会社 極微細組織を有する高張力熱延鋼板の製造方法
JP3858551B2 (ja) * 1999-02-09 2006-12-13 Jfeスチール株式会社 焼付硬化性、耐疲労性、耐衝撃性および耐常温時効性に優れた高張力熱延鋼板およびその製造方法
JP4306078B2 (ja) * 2000-02-15 2009-07-29 Jfeスチール株式会社 焼付け硬化性および耐衝撃性に優れた高張力熱延鋼板およびその製造方法
JP3888128B2 (ja) 2000-10-31 2007-02-28 Jfeスチール株式会社 材質均一性に優れた高成形性高張力熱延鋼板ならびにその製造方法および加工方法
TWI290177B (en) * 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
BRPI0621704B1 (pt) * 2006-05-16 2014-08-19 Jfe Steel Corp Chapa de aço de alta resistência laminada a quente e método para produção da mesma
JP5124866B2 (ja) * 2007-09-03 2013-01-23 新日鐵住金株式会社 ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
JP5195469B2 (ja) * 2009-01-30 2013-05-08 Jfeスチール株式会社 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
JP4978741B2 (ja) * 2010-05-31 2012-07-18 Jfeスチール株式会社 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP5126326B2 (ja) * 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP5724267B2 (ja) 2010-09-17 2015-05-27 Jfeスチール株式会社 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
TWI463018B (zh) * 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp 具優異裂縫阻滯性之高強度厚鋼板
KR101568519B1 (ko) * 2013-12-24 2015-11-11 주식회사 포스코 전단변형부 성형이방성 및 내피로특성이 우수한 열연강판 및 그 제조방법
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140161659A1 (en) * 2011-08-17 2014-06-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel sheet
WO2018026014A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板
US20190226061A1 (en) * 2016-08-05 2019-07-25 Nippon Steel & Sumitomo Metal Corporation Steel sheet and plated steel sheet

Also Published As

Publication number Publication date
EP3889298A1 (en) 2021-10-06
CN113166893B (zh) 2022-10-04
KR20200062422A (ko) 2020-06-04
KR102131527B1 (ko) 2020-07-08
EP3889298A4 (en) 2021-12-29
WO2020111702A1 (ko) 2020-06-04
JP2022509655A (ja) 2022-01-21
CN113166893A (zh) 2021-07-23
JP7244723B2 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
US20220010399A1 (en) High-strength steel with excellent durability and method for manufacturing same
CA2941202C (en) Method for producing a high-strength flat steel product
RU2557035C1 (ru) Высокопрочный холоднокатаный стальной лист и способ его изготовления
KR20140099544A (ko) 고강도 박강판 및 그의 제조 방법
US11981975B2 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
US20240337003A1 (en) High-strength steel having high yield ratio and excellent durability, and method for manufacturing same
JP6769576B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
EP4219784A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
JP7431325B2 (ja) 耐久性に優れた厚物複合組織鋼及びその製造方法
CN113692456B (zh) 剪切加工性优异的超高强度钢板及其制造方法
WO2020209149A1 (ja) 冷延鋼板及びその製造方法
JPH10251794A (ja) プレス成形性と表面性状に優れた構造用熱延鋼板およびその 製造方法
US20230357880A1 (en) High-strength steel sheet having excellent thermal stability, and method for manufacturing same
KR102307927B1 (ko) 내구성 및 연신율이 우수한 후물 변태조직강 및 그 제조방법
US20230392229A1 (en) High-strength steel strip having excellent workability, and method for manufacturing same
JP7193044B1 (ja) 高強度鋼板およびその製造方法、ならびに、部材
KR20240075905A (ko) 후강판 및 그의 제조 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: POSCO, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SUNG-IL;NA, HYUN-TAEK;REEL/FRAME:056255/0095

Effective date: 20210319

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: POSCO HOLDINGS INC., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:POSCO;REEL/FRAME:061561/0730

Effective date: 20220302

AS Assignment

Owner name: POSCO CO., LTD, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POSCO HOLDINGS INC.;REEL/FRAME:061777/0937

Effective date: 20221019

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION