US20210325752A1 - Array substrate, liquid crystal display panel, and liquid crystal display device - Google Patents

Array substrate, liquid crystal display panel, and liquid crystal display device Download PDF

Info

Publication number
US20210325752A1
US20210325752A1 US16/627,815 US201916627815A US2021325752A1 US 20210325752 A1 US20210325752 A1 US 20210325752A1 US 201916627815 A US201916627815 A US 201916627815A US 2021325752 A1 US2021325752 A1 US 2021325752A1
Authority
US
United States
Prior art keywords
metal wires
substrate
liquid crystal
wires
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/627,815
Other versions
US11150531B1 (en
Inventor
Xin Zhang
Lixuan Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Assigned to SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD. reassignment SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, Lixuan, ZHANG, XIN
Application granted granted Critical
Publication of US11150531B1 publication Critical patent/US11150531B1/en
Publication of US20210325752A1 publication Critical patent/US20210325752A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes

Definitions

  • the present invention claims the priority of a China patent application No. 201910772710.9 with a subject title of the invention “ARRAY SUBSTRATE, LIQUID CRYSTAL DISPLAY PANEL, AND LIQUID CRYSTAL DISPLAY DEVICE”, which is filed on Aug. 21, 2019 with the China National Intellectual Property Administration (CNIPA), and contents of China patent application are integrated in the present invention by referring thereto.
  • CNIPA China National Intellectual Property Administration
  • the present invention relates to a field of display technologies, especially relates to an array substrate, a liquid crystal display panel, and a liquid crystal display device.
  • a liquid crystal display panel is a primary element of a liquid crystal display device, and the liquid crystal display panel comprises an array substrate, a color filter substrate, a liquid crystal layer, and a polarizer. Inner sides of the color filter substrate and the array substrate are disposed with transparent electrodes. The transparent electrodes emit an electrical field toward the liquid crystal layer. The liquid crystal display panel controls orientation of liquid crystal in the liquid crystal layer by the electrical field of the transparent electrodes to further control a polarization status of light extending through the liquid crystal layer to perform penetration of light and block to light by a polarizer to achieve an objective of display.
  • Criss-cross metal wires such as data lines and gate electrode lines and metal electrodes are disposed in an array substrate.
  • Such metal wires are not transparent and therefore light can only pass through gaps among the metal wires.
  • the edges and corners of the metal wires affect a polarizing direction of light. If a polarizing direction of light is changed, such light with the changed polarizing direction causes light leakage when passing through the polarizer. Therefore, a bright spot occur when the liquid crystal display panel presents a dark image, i.e., “bright spot in a dark image state”.
  • the corners of the metal wires has greatest influence to the polarizing direction of light so an issue of occurrence of “bright spots in a dark image state” is worst in the corner regions of the metal wires.
  • Edges and corners of metal wires of an array substrate change a polarizing direction of light passing nearby, and result in bright spots when liquid crystal display panel present dark images, i.e., a “bright spot in a dark image state”, which influences visual effect and product quality of the liquid crystal display panel.
  • the present invention provides an array substrate, comprising:
  • first metal wires disposed on the substrate, wherein the first metal wires comprise transverse wires and longitudinal wires;
  • pixel electrodes disposed on a side of the substrate disposed with the first metal wires, wherein the pixel electrodes are located in regions enclosed by the transverse wires and the longitudinal wires;
  • second metal wires disposed on the side of the substrate disposed with the first metal wires, wherein the second metal wires are insulated from the first metal wires, and a projection region of the second metal wires on the substrate covers a projection region of the longitudinal wires on the substrate;
  • thin film transistors disposed on the side of the substrate disposed with the first metal wires, wherein a gate electrode of each of the thin film transistors is connected to one of the first metal wires, a drain electrode of the thin film transistors is connected to one of the pixel electrodes, the and a source electrode of the thin film transistors is connected to one of the second metal wires.
  • the second metal wires and the longitudinal wires are disposed parallelly.
  • a width of each of the second metal wires is greater than a width of each of the longitudinal wires.
  • an insulation layer is disposed between the first metal wires and the second metal wires.
  • the pixel electrodes are insulated from the first metal wires.
  • an insulation layer is disposed in intersecting portions between the pixel electrodes and the first metal wires and in intersecting portions between the pixel electrodes and the second metal wires.
  • material of the first metal wires and the second metal wires is copper.
  • the pixel electrodes are transparent metal oxide electrodes.
  • the pixel electrodes are indium tin oxide electrodes.
  • the present invention also provides a liquid crystal display panel, comprising:
  • a color filter substrate disposed on a side of the array substrate disposed with the first metal wires, and disposed opposite to the array substrate;
  • liquid crystal layer disposed between the array substrate and the color filter substrate
  • the color filter substrate comprises a color resist array including a plurality of color resist blocks and a black matrix disposed among the color resist blocks, a projection region of the black matrix on the substrate covers a projection region of the second metal wires on the substrate.
  • the second metal wires and the longitudinal wires are disposed parallelly.
  • a width of the second metal wires is greater than a width of the longitudinal wires.
  • an insulation layer is disposed between the first metal wires and the second metal wires.
  • an insulation layer is disposed in intersecting portions between the pixel electrodes and the first metal wires and in intersecting portions between the pixel electrodes and the second metal wires.
  • a projection region of the black matrix on the substrate covers a projection region of the transverse wires on the substrate.
  • a projection region of the black matrix on the substrate covers a projection region of the thin film transistors on the substrate.
  • the color resist blocks at least comprise red, green, and blue color resist blocks.
  • the present invention provides another liquid crystal display device, comprising:
  • a backlight module disposed on a side of the array substrate away from the first metal wires, and providing the liquid crystal display panel with backlight.
  • the second metal wires and the longitudinal wires are disposed parallelly, a width of the second metal wires is greater than a width of the longitudinal wires, and a projection region of the black matrix on the substrate covers a projection region of the transverse wires and the thin film transistors on the substrate.
  • the array substrate is disposed on an upper layer of the backlight module, the liquid crystal layer is disposed on an upper layer of the array substrate, and the color filter substrate is disposed on an upper layer of the liquid crystal layer.
  • the present invention by using the second metal wires to shield edge and corner regions of the first metal wires, and by using the black matrix to shield the edges of the first metal wires and the second metal wires, is able to remove the “bright spot in the dark image state” due to light leakage of edge and corner regions of the first metal wires and second metal wires to improve quality of displayed images of the display panel.
  • FIG. 1 is a schematic partial structural view of an array substrate provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a liquid crystal display panel provided by an embodiment of the present invention.
  • FIG. 3 is a schematic partial structural view of a color filter substrate provided by an embodiment of the present invention.
  • FIG. 4 is a schematic view of a projection of first metal wires, second metal wires, and thin film transistors in FIG. 1 on a substrate, and a projection of a black matrix in FIG. 3 on the substrate;
  • FIG. 5 is a schematic structural view of a liquid crystal display device provided by an embodiment of the present invention.
  • An embodiment of the present invention provides an array substrate applied to a liquid crystal display panel.
  • the array substrate comprises first metal wires and second metal wires.
  • the second metal wires can shield periphery and corner regions of the first metal wires to prevent light leakage from occurring in periphery and corner regions of the first metal wires to obviate a “bright spot in a dark image state” due to light leakage of the periphery and corner regions of the first metal wires.
  • FIG. 1 is a schematic partial structural view of an array substrate provided by an embodiment of the present invention.
  • the array substrate 10 comprises a substrate 11 , first metal wires 12 , pixel electrodes 13 , second metal wires 14 and thin film transistors 15 .
  • the first metal wires 12 , the pixel electrodes 13 , the second metal wires 14 , and the thin film transistors 15 are disposed on a same side of the substrate 11 .
  • the first metal wires 12 comprises transverse wires 121 and longitudinal wires 122 . Corner regions 12 p are formed in intersecting portions between the transverse wires 121 and the longitudinal wires 122 .
  • material of the first metal wires 12 can be copper or other metal with excellent conductivity to ensure the conducting ability of the first metal wires 12 .
  • the pixel electrodes 13 are disposed in regions enclosed by the transverse wires 121 and the longitudinal wires 122 .
  • the pixel electrodes 13 are insulated from the first metal wires 12 .
  • the pixel electrodes 13 provides the liquid crystal display panel with an electrical field to control liquid crystal in the liquid crystal display panel to rotate.
  • the pixel electrodes can be transparent metal oxide electrodes such as indium tin oxide (ITO) electrodes.
  • the second metal wires 14 are insulated from the first metal wires 12 and are insulated from the pixel electrodes 13 .
  • an insulation layer is disposed between the first metal wires 12 and the second metal wires 14 .
  • An insulation layer is disposed in intersecting portions between the pixel electrodes 13 and the first metal wires 12 and in intersecting portions between the pixel electrodes 13 and the second metal wires 14 .
  • a projection region 14 a of the second metal wires 14 on the substrate 11 covers a projection region 122 a of the longitudinal wires 122 on the substrate 11 .
  • the second metal wires 14 and the longitudinal wires 122 are disposed parallelly, and a width of each of the second metal wires 14 is greater than a width of each of the longitudinal wires 122 .
  • the second metal wires 14 can shield the periphery and corner regions 12 p of the longitudinal wires 122 .
  • material of the second metal wires 14 can be copper or other metal with excellent conductivity to ensure conductive ability of the second metal wires 14 .
  • a gate electrode 151 of each of the thin film transistors 15 is connected to one of the first metal wires 12
  • a drain electrode 152 of each of the thin film transistors 15 is connected to one of the pixel electrodes 13
  • a source electrode 153 of each of the thin film transistors 15 is connected to one of the second metal wires 14 . Therefore, the first metal wires 12 can control the second metal wires 14 to be connected to or disconnected from the pixel electrodes 13 through the thin film transistors 15 .
  • an external control circuit transmits control signals toward the first metal wires 12
  • an external data circuit transmits data signals toward the second metal wires
  • the thin film transistors 15 under effect of the control signals controls and transports the data signals toward the pixel electrodes 13 to further control rotation of liquid crystal in the liquid crystal display panel such that the liquid crystal display panel displays images.
  • the substrate 11 can be a transparent glass substrate top guarantee a transmittance and an aperture rate of the array substrate 10 .
  • the array substrate provided by the embodiment of the present invention, sets a width of each of the second metal wires to be greater than a width of each of the longitudinal wires such that the second metal wires shields the periphery and corner regions of the first metal wires to solve the issue of light leakage of the periphery and corner regions of the first metal wires.
  • the liquid crystal display panel 01 comprises the array substrate 10 of the above embodiment and a color filter substrate 20 disposed opposite to the array substrate 10 .
  • the color filter substrate 20 is disposed on a side of the array substrate 10 disposed with the first metal wires.
  • a liquid crystal layer 30 is disposed between the array substrate 10 and the color filter substrate 20 , and the liquid crystal layer 30 comprises liquid crystal.
  • FIG. 3 is a schematic partial structural view of a color filter substrate 20 provided by an embodiment of the present invention.
  • the color filter substrate 20 comprises a color resist array including a plurality of color resist blocks 211 and a black matrix 22 disposed among the color resist blocks 211 .
  • the black matrix 22 is configured to shield boundary regions each of which is between adjacent two of the color resist blocks 211 to prevent lights emitted from the boundary regions among the color resist blocks 211 from interfering with one another to cause abnormal display of the liquid crystal display panel.
  • FIG. 4 is a schematic view of a projection of first metal wires 12 , second metal wires 14 , and thin film transistors 15 in FIG. 1 on a substrate 11 , and a projection of a black matrix 22 in FIG. 3 on the substrate 11 .
  • a projection region of the first metal wires 12 on the substrate 11 is marked with a reference character 12 a
  • a projection region of the second metal wires 14 on the substrate 11 is marked with a reference character 14 a
  • a projection region of the thin film transistors 15 on the substrate 11 is marked with a reference character 15 a
  • a projection region of the black matrix 22 on the substrate 11 is marked with a reference character 22 a.
  • a projection region 22 a of the black matrix 22 on the substrate 11 covers a projection region 14 a of the second metal wires 14 on the substrate 11 .
  • the liquid crystal display panel emits light and display, light passes sequentially through the array substrate 10 , the liquid crystal layer 30 , and the color filter substrate 20 and then presents different images.
  • the black matrix 22 shields light extending through edges of the second metal wires 14 and obviates the “bright spot in the dark image state” due to light leakage of the edges of the second metal wires 14 .
  • the projection region 22 a of the black matrix 22 on the substrate 11 covers a projection region 121 a of the transverse wires 121 on the substrate 11 .
  • the transverse wires 121 would affect a polarizing direction of light passing through edges thereof to cause light leakage on the edges of the transverse wires 121 . Because shielding effect of the black matrix 22 to the transverse wires 121 , the light leakage can be shielded to obviate the “bright spot in the dark image state” on the edges of the transverse wires 121 .
  • the projection region 22 a of the black matrix 22 on the substrate 11 covers a projection region 15 a of the thin film transistors 15 on the substrate 11 such that the black matrix 22 shields the thin film transistors 15 to prevent abnormal display of the display panel caused by light reflection of surfaces of the thin film transistors 15 .
  • the color resist blocks 211 comprises at least red, green, and blue color resist blocks.
  • the color resist blocks 211 are configured to filter incident light to emit light with colors the same to those of the color resist blocks 211 .
  • the red color resist blocks only allow red light to pass therethrough such that the light passing through the red color resist blocks is red light.
  • the liquid crystal display panel provided by the embodiment of the present invention uses the second metal wires to shield the edges of the longitudinal wires and the corners of the longitudinal wires and the transverse wires to obviate the “bright spot in the dark image state” on the edges of the longitudinal wires and the corners of the longitudinal wires and the transverse wires corners.
  • the black matrix is used to shield the edges of the second metal wires and the transverse wires to obviate the bright spot in the dark image state on the edges of the second metal wires and the transverse wires. Therefore, the liquid crystal display panel provided by the embodiment of the present invention can effectively obviate the “bright spot in the dark image state” due to light leakage on the edges and the corners of the metal wires.
  • the liquid crystal display device comprises a liquid crystal display panel 01 provided by the above embodiment.
  • the liquid crystal display device comprises an array substrate 10 , a color filter substrate 20 , and a liquid crystal layer 30 .
  • the liquid crystal display device further comprises a backlight module 40 , and the backlight module 40 is disposed on a side of the array substrate 10 away from the first metal wires 12 (with reference to FIG. 1 ).
  • the backlight module 40 provides the liquid crystal display panel 01 with backlight.
  • the liquid crystal display panel 01 uses backlight provided by the backlight module 40 to display images.
  • the liquid crystal display device provided by the embodiment of the present invention because of including the liquid crystal display panel of the embodiment of the present invention, has advantages of the liquid crystal display panel provided by the embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides an array substrate, a liquid crystal display panel, and a liquid crystal display device. The array substrate includes a substrate and first metal wires, pixel electrodes, second metal wires, and thin film transistors disposed on the substrate. The first metal wires include transverse and longitudinal wires. Intersecting portions of the transverse and longitudinal wires form corner regions. The second metal wires can shield the longitudinal wires edges and the corner regions to prevent “bright spot in a dark image state” due to light leakage of edges of the longitudinal wires and the corner regions. The liquid crystal display panel and display device include color filter substrate, the color filter substrate comprises a black matrix, and the black matrix shield light leakage of the first metal wires and the second metal wires edges to further achieve removal of the “bright spot in the dark image state”.

Description

  • The present invention claims the priority of a China patent application No. 201910772710.9 with a subject title of the invention “ARRAY SUBSTRATE, LIQUID CRYSTAL DISPLAY PANEL, AND LIQUID CRYSTAL DISPLAY DEVICE”, which is filed on Aug. 21, 2019 with the China National Intellectual Property Administration (CNIPA), and contents of China patent application are integrated in the present invention by referring thereto.
  • FIELD OF INVENTION
  • The present invention relates to a field of display technologies, especially relates to an array substrate, a liquid crystal display panel, and a liquid crystal display device.
  • BACKGROUND OF INVENTION
  • A liquid crystal display panel is a primary element of a liquid crystal display device, and the liquid crystal display panel comprises an array substrate, a color filter substrate, a liquid crystal layer, and a polarizer. Inner sides of the color filter substrate and the array substrate are disposed with transparent electrodes. The transparent electrodes emit an electrical field toward the liquid crystal layer. The liquid crystal display panel controls orientation of liquid crystal in the liquid crystal layer by the electrical field of the transparent electrodes to further control a polarization status of light extending through the liquid crystal layer to perform penetration of light and block to light by a polarizer to achieve an objective of display.
  • Criss-cross metal wires such as data lines and gate electrode lines and metal electrodes are disposed in an array substrate. Such metal wires are not transparent and therefore light can only pass through gaps among the metal wires. When light extends through edges of the metal wires, the edges and corners of the metal wires affect a polarizing direction of light. If a polarizing direction of light is changed, such light with the changed polarizing direction causes light leakage when passing through the polarizer. Therefore, a bright spot occur when the liquid crystal display panel presents a dark image, i.e., “bright spot in a dark image state”. The corners of the metal wires has greatest influence to the polarizing direction of light so an issue of occurrence of “bright spots in a dark image state” is worst in the corner regions of the metal wires.
  • SUMMARY OF INVENTION Technical Issue
  • Edges and corners of metal wires of an array substrate change a polarizing direction of light passing nearby, and result in bright spots when liquid crystal display panel present dark images, i.e., a “bright spot in a dark image state”, which influences visual effect and product quality of the liquid crystal display panel.
  • Technical Solution
  • To solve the above technical issue, the present invention provides solutions as follows:
  • The present invention provides an array substrate, comprising:
  • a substrate;
  • first metal wires disposed on the substrate, wherein the first metal wires comprise transverse wires and longitudinal wires;
  • pixel electrodes disposed on a side of the substrate disposed with the first metal wires, wherein the pixel electrodes are located in regions enclosed by the transverse wires and the longitudinal wires;
  • second metal wires disposed on the side of the substrate disposed with the first metal wires, wherein the second metal wires are insulated from the first metal wires, and a projection region of the second metal wires on the substrate covers a projection region of the longitudinal wires on the substrate; and
  • thin film transistors disposed on the side of the substrate disposed with the first metal wires, wherein a gate electrode of each of the thin film transistors is connected to one of the first metal wires, a drain electrode of the thin film transistors is connected to one of the pixel electrodes, the and a source electrode of the thin film transistors is connected to one of the second metal wires.
  • In the array substrate of the present invention, the second metal wires and the longitudinal wires are disposed parallelly.
  • In the array substrate of the present invention, a width of each of the second metal wires is greater than a width of each of the longitudinal wires.
  • In the array substrate of the present invention, an insulation layer is disposed between the first metal wires and the second metal wires.
  • In the array substrate of the present invention, the pixel electrodes are insulated from the first metal wires.
  • In the array substrate of the present invention, an insulation layer is disposed in intersecting portions between the pixel electrodes and the first metal wires and in intersecting portions between the pixel electrodes and the second metal wires.
  • In the array substrate of the present invention, material of the first metal wires and the second metal wires is copper.
  • In the array substrate of the present invention, the pixel electrodes are transparent metal oxide electrodes.
  • In the array substrate of the present invention, the pixel electrodes are indium tin oxide electrodes.
  • The present invention also provides a liquid crystal display panel, comprising:
  • the array substrate as claimed in claim 1; and
  • a color filter substrate disposed on a side of the array substrate disposed with the first metal wires, and disposed opposite to the array substrate;
  • a liquid crystal layer disposed between the array substrate and the color filter substrate;
  • wherein the color filter substrate comprises a color resist array including a plurality of color resist blocks and a black matrix disposed among the color resist blocks, a projection region of the black matrix on the substrate covers a projection region of the second metal wires on the substrate.
  • In the liquid crystal display panel of the present invention, in the array substrate, the second metal wires and the longitudinal wires are disposed parallelly.
  • In the liquid crystal display panel of the present invention, a width of the second metal wires is greater than a width of the longitudinal wires.
  • In the liquid crystal display panel of the present invention, an insulation layer is disposed between the first metal wires and the second metal wires.
  • In the liquid crystal display panel of the present invention, an insulation layer is disposed in intersecting portions between the pixel electrodes and the first metal wires and in intersecting portions between the pixel electrodes and the second metal wires.
  • In the liquid crystal display panel of the present invention, a projection region of the black matrix on the substrate covers a projection region of the transverse wires on the substrate.
  • In the liquid crystal display panel of the present invention, a projection region of the black matrix on the substrate covers a projection region of the thin film transistors on the substrate.
  • In the liquid crystal display panel of the present invention, the color resist blocks at least comprise red, green, and blue color resist blocks.
  • the present invention provides another liquid crystal display device, comprising:
  • the liquid crystal display panel as claimed in claim 6; and
  • a backlight module disposed on a side of the array substrate away from the first metal wires, and providing the liquid crystal display panel with backlight.
  • In the liquid crystal display device of the present invention, the second metal wires and the longitudinal wires are disposed parallelly, a width of the second metal wires is greater than a width of the longitudinal wires, and a projection region of the black matrix on the substrate covers a projection region of the transverse wires and the thin film transistors on the substrate.
  • In the liquid crystal display device of the present invention, the array substrate is disposed on an upper layer of the backlight module, the liquid crystal layer is disposed on an upper layer of the array substrate, and the color filter substrate is disposed on an upper layer of the liquid crystal layer.
  • Advantages
  • The present invention, by using the second metal wires to shield edge and corner regions of the first metal wires, and by using the black matrix to shield the edges of the first metal wires and the second metal wires, is able to remove the “bright spot in the dark image state” due to light leakage of edge and corner regions of the first metal wires and second metal wires to improve quality of displayed images of the display panel.
  • DESCRIPTION OF DRAWINGS
  • To more clearly elaborate on the technical solutions of embodiments of the present invention or prior art, appended figures necessary for describing the embodiments of the present invention or prior art will be briefly introduced as follows. Apparently, the following appended figures are merely some embodiments of the present invention. A person of ordinary skill in the art may acquire other figures according to the appended figures without any creative effort.
  • FIG. 1 is a schematic partial structural view of an array substrate provided by an embodiment of the present invention;
  • FIG. 2 is a schematic structural view of a liquid crystal display panel provided by an embodiment of the present invention;
  • FIG. 3 is a schematic partial structural view of a color filter substrate provided by an embodiment of the present invention;
  • FIG. 4 is a schematic view of a projection of first metal wires, second metal wires, and thin film transistors in FIG. 1 on a substrate, and a projection of a black matrix in FIG. 3 on the substrate; and
  • FIG. 5 is a schematic structural view of a liquid crystal display device provided by an embodiment of the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Each of the following embodiments is described with appending figures to illustrate specific embodiments of the present invention that are applicable. The terminologies of direction mentioned in the present invention, such as “upper”, “lower”, “front”, “rear”, “left”, “right”, “inner”, “outer”, “side surface”, etc., only refer to the directions of the appended figures. Therefore, the terminologies of direction are used for explanation and comprehension of the present invention, instead of limiting the present invention. In the figures, units with similar structures are marked with the same reference characters.
  • An embodiment of the present invention provides an array substrate applied to a liquid crystal display panel. The array substrate comprises first metal wires and second metal wires. The second metal wires can shield periphery and corner regions of the first metal wires to prevent light leakage from occurring in periphery and corner regions of the first metal wires to obviate a “bright spot in a dark image state” due to light leakage of the periphery and corner regions of the first metal wires.
  • With reference to FIG. 1, FIG. 1 is a schematic partial structural view of an array substrate provided by an embodiment of the present invention. The array substrate 10 comprises a substrate 11, first metal wires 12, pixel electrodes 13, second metal wires 14 and thin film transistors 15. The first metal wires 12, the pixel electrodes 13, the second metal wires 14, and the thin film transistors 15 are disposed on a same side of the substrate 11.
  • The first metal wires 12 comprises transverse wires 121 and longitudinal wires 122. Corner regions 12p are formed in intersecting portions between the transverse wires 121 and the longitudinal wires 122. Optionally, material of the first metal wires 12 can be copper or other metal with excellent conductivity to ensure the conducting ability of the first metal wires 12.
  • The pixel electrodes 13 are disposed in regions enclosed by the transverse wires 121 and the longitudinal wires 122. Optionally, the pixel electrodes 13 are insulated from the first metal wires 12. When the array substrate 10 is applied in the liquid crystal display panel, the pixel electrodes 13 provides the liquid crystal display panel with an electrical field to control liquid crystal in the liquid crystal display panel to rotate. Optionally, the pixel electrodes can be transparent metal oxide electrodes such as indium tin oxide (ITO) electrodes.
  • The second metal wires 14 are insulated from the first metal wires 12 and are insulated from the pixel electrodes 13. Optionally, an insulation layer is disposed between the first metal wires 12 and the second metal wires 14. An insulation layer is disposed in intersecting portions between the pixel electrodes 13 and the first metal wires 12 and in intersecting portions between the pixel electrodes 13 and the second metal wires 14. With reference to FIGS. 1 and 4, a projection region 14 a of the second metal wires 14 on the substrate 11 covers a projection region 122 a of the longitudinal wires 122 on the substrate 11. Optionally, the second metal wires 14 and the longitudinal wires 122 are disposed parallelly, and a width of each of the second metal wires 14 is greater than a width of each of the longitudinal wires 122. The second metal wires 14 can shield the periphery and corner regions 12 p of the longitudinal wires 122. When the array substrate 10 is applied to the liquid crystal display panel, light leakage in the periphery and corner regions 12 p of the longitudinal wires 122 can be shielded by the second metal wires 14 to remove the “bright spot in the dark image state”. Optionally, material of the second metal wires 14 can be copper or other metal with excellent conductivity to ensure conductive ability of the second metal wires 14.
  • According to an embodiment of the present invention, a gate electrode 151 of each of the thin film transistors 15 is connected to one of the first metal wires 12, a drain electrode 152 of each of the thin film transistors 15 is connected to one of the pixel electrodes 13, and a source electrode 153 of each of the thin film transistors 15 is connected to one of the second metal wires 14. Therefore, the first metal wires 12 can control the second metal wires 14 to be connected to or disconnected from the pixel electrodes 13 through the thin film transistors 15. When the array substrate 10 is applied to the liquid crystal display panel, an external control circuit transmits control signals toward the first metal wires 12, an external data circuit transmits data signals toward the second metal wires, the thin film transistors 15 under effect of the control signals controls and transports the data signals toward the pixel electrodes 13 to further control rotation of liquid crystal in the liquid crystal display panel such that the liquid crystal display panel displays images.
  • Optionally, the substrate 11 can be a transparent glass substrate top guarantee a transmittance and an aperture rate of the array substrate 10.
  • The array substrate provided by the embodiment of the present invention, sets a width of each of the second metal wires to be greater than a width of each of the longitudinal wires such that the second metal wires shields the periphery and corner regions of the first metal wires to solve the issue of light leakage of the periphery and corner regions of the first metal wires.
  • Another embodiment of the present invention provides a liquid crystal display panel, with reference to FIG. 2, the liquid crystal display panel 01 comprises the array substrate 10 of the above embodiment and a color filter substrate 20 disposed opposite to the array substrate 10. The color filter substrate 20 is disposed on a side of the array substrate 10 disposed with the first metal wires. A liquid crystal layer 30 is disposed between the array substrate 10 and the color filter substrate 20, and the liquid crystal layer 30 comprises liquid crystal.
  • With reference to FIG. 3, FIG. 3 is a schematic partial structural view of a color filter substrate 20 provided by an embodiment of the present invention. The color filter substrate 20 comprises a color resist array including a plurality of color resist blocks 211 and a black matrix 22 disposed among the color resist blocks 211. The black matrix 22 is configured to shield boundary regions each of which is between adjacent two of the color resist blocks 211 to prevent lights emitted from the boundary regions among the color resist blocks 211 from interfering with one another to cause abnormal display of the liquid crystal display panel.
  • FIG. 4 is a schematic view of a projection of first metal wires 12, second metal wires 14, and thin film transistors 15 in FIG. 1 on a substrate 11, and a projection of a black matrix 22 in FIG. 3 on the substrate 11. A projection region of the first metal wires 12 on the substrate 11 is marked with a reference character 12 a, a projection region of the second metal wires 14 on the substrate 11 is marked with a reference character 14 a, a projection region of the thin film transistors 15 on the substrate 11 is marked with a reference character 15 a, and a projection region of the black matrix 22 on the substrate 11 is marked with a reference character 22 a.
  • With reference to FIGS. 1 to 4, a projection region 22 a of the black matrix 22 on the substrate 11 covers a projection region 14 a of the second metal wires 14 on the substrate 11. When the liquid crystal display panel emits light and display, light passes sequentially through the array substrate 10, the liquid crystal layer 30, and the color filter substrate 20 and then presents different images. The black matrix 22 shields light extending through edges of the second metal wires 14 and obviates the “bright spot in the dark image state” due to light leakage of the edges of the second metal wires 14.
  • With reference to FIGS. 1 to 4, the projection region 22 a of the black matrix 22 on the substrate 11 covers a projection region 121 a of the transverse wires 121 on the substrate 11. The transverse wires 121 would affect a polarizing direction of light passing through edges thereof to cause light leakage on the edges of the transverse wires 121. Because shielding effect of the black matrix 22 to the transverse wires 121, the light leakage can be shielded to obviate the “bright spot in the dark image state” on the edges of the transverse wires 121.
  • With reference to FIGS. 1 to 4, the projection region 22 a of the black matrix 22 on the substrate 11 covers a projection region 15 a of the thin film transistors 15 on the substrate 11 such that the black matrix 22 shields the thin film transistors 15 to prevent abnormal display of the display panel caused by light reflection of surfaces of the thin film transistors 15.
  • According to an embodiment of the present invention, as shown in FIG. 3, the color resist blocks 211 comprises at least red, green, and blue color resist blocks. The color resist blocks 211 are configured to filter incident light to emit light with colors the same to those of the color resist blocks 211. For example, the red color resist blocks only allow red light to pass therethrough such that the light passing through the red color resist blocks is red light.
  • The liquid crystal display panel provided by the embodiment of the present invention uses the second metal wires to shield the edges of the longitudinal wires and the corners of the longitudinal wires and the transverse wires to obviate the “bright spot in the dark image state” on the edges of the longitudinal wires and the corners of the longitudinal wires and the transverse wires corners. In the meantime, the black matrix is used to shield the edges of the second metal wires and the transverse wires to obviate the bright spot in the dark image state on the edges of the second metal wires and the transverse wires. Therefore, the liquid crystal display panel provided by the embodiment of the present invention can effectively obviate the “bright spot in the dark image state” due to light leakage on the edges and the corners of the metal wires.
  • Another embodiment of the present invention provides a liquid crystal display device, as shown in FIG. 5, the liquid crystal display device comprises a liquid crystal display panel 01 provided by the above embodiment. In other words, the liquid crystal display device comprises an array substrate 10, a color filter substrate 20, and a liquid crystal layer 30. The liquid crystal display device further comprises a backlight module 40, and the backlight module 40 is disposed on a side of the array substrate 10 away from the first metal wires 12 (with reference to FIG. 1). The backlight module 40 provides the liquid crystal display panel 01 with backlight. The liquid crystal display panel 01 uses backlight provided by the backlight module 40 to display images.
  • The liquid crystal display device provided by the embodiment of the present invention, because of including the liquid crystal display panel of the embodiment of the present invention, has advantages of the liquid crystal display panel provided by the embodiment of the present invention.
  • Although the preferred embodiments of the present invention have been disclosed as above, the aforementioned preferred embodiments are not used to limit the present invention. The person of ordinary skill in the art may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the claims.

Claims (20)

What is claimed is:
1. An array substrate, comprising:
a substrate;
first metal wires disposed on the substrate, wherein the first metal wires comprise transverse wires and longitudinal wires;
pixel electrodes disposed on a side of the substrate disposed with the first metal wires, wherein the pixel electrodes are located in regions enclosed by the transverse wires and the longitudinal wires;
second metal wires disposed on the side of the substrate disposed with the first metal wires, wherein the second metal wires are insulated from the first metal wires, and a projection region of the second metal wires on the substrate covers a projection region of the longitudinal wires on the substrate; and
thin film transistors disposed on the side of the substrate disposed with the first metal wires, wherein a gate electrode of each of the thin film transistors is connected to one of the first metal wires, a drain electrode of the thin film transistors is connected to one of the pixel electrodes, the and a source electrode of the thin film transistors is connected to one of the second metal wires.
2. The array substrate as claimed in claim 1, wherein the second metal wires and the longitudinal wires are disposed parallelly.
3. The array substrate as claimed in claim 2, wherein a width of each of the second metal wires is greater than a width of each of the longitudinal wires.
4. The array substrate as claimed in claim 1, wherein an insulation layer is disposed between the first metal wires and the second metal wires.
5. The array substrate as claimed in claim 1, wherein the pixel electrodes are insulated from the first metal wires.
6. The array substrate as claimed in claim 1, wherein an insulation layer is disposed in intersecting portions between the pixel electrodes and the first metal wires and in intersecting portions between the pixel electrodes and the second metal wires.
7. The array substrate as claimed in claim 1, wherein material of the first metal wires and the second metal wires is copper.
8. The array substrate as claimed in claim 1, wherein the pixel electrodes are transparent metal oxide electrodes.
9. The array substrate as claimed in claim 8, wherein the pixel electrodes are indium tin oxide electrodes.
10. A liquid crystal display panel, comprising:
the array substrate as claimed in claim 1; and
a color filter substrate disposed on a side of the array substrate disposed with the first metal wires, and disposed opposite to the array substrate;
a liquid crystal layer disposed between the array substrate and the color filter substrate;
wherein the color filter substrate comprises a color resist array including a plurality of color resist blocks and a black matrix disposed among the color resist blocks, a projection region of the black matrix on the substrate covers a projection region of the second metal wires on the substrate.
11. The liquid crystal display panel as claimed in claim 10, wherein in the array substrate, the second metal wires and the longitudinal wires are disposed parallelly.
12. The liquid crystal display panel as claimed in claim 11, wherein a width of the second metal wires is greater than a width of the longitudinal wires.
13. The liquid crystal display panel as claimed in claim 10, wherein an insulation layer is disposed between the first metal wires and the second metal wires.
14. The liquid crystal display panel as claimed in claim 10, wherein an insulation layer is disposed in intersecting portions between the pixel electrodes and the first metal wires and in intersecting portions between the pixel electrodes and the second metal wires.
15. The liquid crystal display panel as claimed in claim 10, wherein a projection region of the black matrix on the substrate covers a projection region of the transverse wires on the substrate.
16. The liquid crystal display panel as claimed in claim 10, wherein a projection region of the black matrix on the substrate covers a projection region of the thin film transistors on the substrate.
17. The liquid crystal display panel as claimed in claim 10, wherein the color resist blocks at least comprise red, green, and blue color resist blocks.
18. A liquid crystal display device, comprising:
the liquid crystal display panel as claimed in claim 6; and
a backlight module disposed on a side of the array substrate away from the first metal wires, and providing the liquid crystal display panel with backlight.
19. The liquid crystal display device as claimed in claim 18, wherein the second metal wires and the longitudinal wires are disposed parallelly, a width of the second metal wires is greater than a width of the longitudinal wires, and a projection region of the black matrix on the substrate covers a projection region of the transverse wires and the thin film transistors on the substrate.
20. The liquid crystal display device as claimed in claim 18, wherein the array substrate is disposed on an upper layer of the backlight module, the liquid crystal layer is disposed on an upper layer of the array substrate, and the color filter substrate is disposed on an upper layer of the liquid crystal layer.
US16/627,815 2019-08-21 2019-11-27 Array substrate, liquid crystal display panel, and liquid crystal display device Active 2040-05-25 US11150531B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910772710.9A CN110488546A (en) 2019-08-21 2019-08-21 Array substrate, liquid crystal display panel and liquid crystal display
CN201910772710.9 2019-08-21
PCT/CN2019/121370 WO2021031443A1 (en) 2019-08-21 2019-11-27 Array substrate, liquid crystal display panel, and liquid crystal display device

Publications (2)

Publication Number Publication Date
US11150531B1 US11150531B1 (en) 2021-10-19
US20210325752A1 true US20210325752A1 (en) 2021-10-21

Family

ID=68552613

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/627,815 Active 2040-05-25 US11150531B1 (en) 2019-08-21 2019-11-27 Array substrate, liquid crystal display panel, and liquid crystal display device

Country Status (3)

Country Link
US (1) US11150531B1 (en)
CN (1) CN110488546A (en)
WO (1) WO2021031443A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488546A (en) * 2019-08-21 2019-11-22 深圳市华星光电半导体显示技术有限公司 Array substrate, liquid crystal display panel and liquid crystal display
CN111025750A (en) * 2019-12-09 2020-04-17 Tcl华星光电技术有限公司 Display panel and display device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065076B2 (en) * 1999-03-11 2008-03-19 三洋電機株式会社 Display device
JP4789369B2 (en) 2001-08-08 2011-10-12 株式会社半導体エネルギー研究所 Display device and electronic device
KR100905472B1 (en) 2002-12-17 2009-07-02 삼성전자주식회사 Thin film transistor array panel and liquid crystal display including the panel
KR20070014668A (en) * 2005-07-29 2007-02-01 엘지.필립스 엘시디 주식회사 In-plane switching liquid crystal display device and the fabrication method
KR101255307B1 (en) * 2006-06-19 2013-04-15 엘지디스플레이 주식회사 A liquid crystal display device and a method for fabricating the same
KR101623581B1 (en) * 2009-07-24 2016-05-23 엘지디스플레이 주식회사 Liquid Crystal Display Device and Driving Method Thereof
KR101993283B1 (en) * 2012-12-17 2019-06-26 엘지디스플레이 주식회사 Array substrate for narrow bezel type liquid crystal display device
CN103117283B (en) * 2013-01-25 2015-03-25 京东方科技集团股份有限公司 Array substrate and manufacturing method thereof and display device
CN104678629B (en) * 2013-11-26 2017-11-10 群创光电股份有限公司 Display panel
TWI548913B (en) * 2014-04-01 2016-09-11 群創光電股份有限公司 Fringe field switching liquid crystal display panel and display device
CN104238207A (en) * 2014-08-22 2014-12-24 京东方科技集团股份有限公司 Array substrate and preparation method thereof as well as display device
CN104777933B (en) * 2015-04-09 2018-02-06 上海天马微电子有限公司 A kind of array base palte, touch-control display panel and display device
CN105954919A (en) * 2016-07-11 2016-09-21 京东方科技集团股份有限公司 Liquid crystal display panel, manufacturing method thereof and display apparatus
CN106019750A (en) * 2016-08-10 2016-10-12 京东方科技集团股份有限公司 Liquid crystal display panel and display device
WO2018082003A1 (en) * 2016-11-04 2018-05-11 Boe Technology Group Co., Ltd. Display substrate, liquid crystal display panel and fabricating method thereof, and liquid crystal display apparatus
CN206258658U (en) * 2016-12-21 2017-06-16 信利半导体有限公司 A kind of tft array substrate and semi-transparent semi-reflecting liquid crystal display
CN106773423B (en) * 2017-02-23 2020-05-19 深圳市华星光电技术有限公司 Pixel structure, array substrate and liquid crystal display panel
CN107450245B (en) * 2017-09-18 2020-02-14 深圳市华星光电技术有限公司 Array substrate and display panel
CN107741675B (en) * 2017-11-30 2020-11-27 武汉天马微电子有限公司 Display panel and display device
CN107976849A (en) * 2017-12-29 2018-05-01 深圳市华星光电技术有限公司 Array base palte and preparation method thereof
CN108646515A (en) * 2018-04-27 2018-10-12 深圳市华星光电技术有限公司 A kind of mask plate, array substrate
CN109143774A (en) * 2018-07-18 2019-01-04 深圳市华星光电半导体显示技术有限公司 The production method of mask plate and metal wire
CN109557736B (en) * 2018-12-13 2021-06-29 Tcl华星光电技术有限公司 Array substrate, display panel and display device
CN109976058A (en) * 2019-04-17 2019-07-05 深圳市华星光电半导体显示技术有限公司 Ultra-narrow frame liquid crystal display and electronic device
CN109976060A (en) * 2019-04-30 2019-07-05 深圳市华星光电技术有限公司 Array substrate and preparation method thereof
CN110488546A (en) * 2019-08-21 2019-11-22 深圳市华星光电半导体显示技术有限公司 Array substrate, liquid crystal display panel and liquid crystal display

Also Published As

Publication number Publication date
US11150531B1 (en) 2021-10-19
CN110488546A (en) 2019-11-22
WO2021031443A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP6542986B2 (en) VA type COA liquid crystal display panel
CN108196406B (en) Array substrate, manufacturing method of array substrate, display panel, operating method of display panel and electronic device
US9207478B2 (en) Liquid crystal display module and array substrate
TWI581043B (en) Pixel structure
WO2019085057A1 (en) Liquid crystal display panel and liquid crystal display device
US20210364871A1 (en) Substrate and liquid crystal display panel
US11561442B2 (en) Method for manufacturing display panel, display panel, and display device
US10209583B2 (en) Display panel and display apparatus
TWI753527B (en) Display device
US11150531B1 (en) Array substrate, liquid crystal display panel, and liquid crystal display device
US20230361130A1 (en) Array substrate, display panel and display device
KR20040062119A (en) In plane switching mode liquid crystal display device
KR102000648B1 (en) Array substrate, display device and manufacturing method of the array substrate
KR20130131692A (en) Liquid crystal display device
US11460743B2 (en) Array substrate, light control panel, and display device
JP2010139975A (en) Liquid crystal display apparatus
KR20130143336A (en) A patterned retarder type stereoscopic image display device and method for manufacturing the same
US20210223642A1 (en) Display panel
US11953795B2 (en) Pixel unit of a display panel and display panel
JP5769989B2 (en) Display device
WO2017049702A1 (en) Pixel structure, liquid crystal display, and electronic device
US20030103183A1 (en) Liquid crystal display
US10054812B2 (en) Liquid crystal display device
US20150042912A1 (en) Liquid crystal display apparatus
TWI771244B (en) Display device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, XIN;CHEN, LIXUAN;REEL/FRAME:051551/0679

Effective date: 20190618

STCF Information on status: patent grant

Free format text: PATENTED CASE