US20210300558A1 - Power supply assembly - Google Patents

Power supply assembly Download PDF

Info

Publication number
US20210300558A1
US20210300558A1 US17/346,191 US202117346191A US2021300558A1 US 20210300558 A1 US20210300558 A1 US 20210300558A1 US 202117346191 A US202117346191 A US 202117346191A US 2021300558 A1 US2021300558 A1 US 2021300558A1
Authority
US
United States
Prior art keywords
remote control
mobile apparatus
control mobile
circuit board
mounting bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/346,191
Inventor
Yin Tang
Jiangang FENG
Guisheng NONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Priority to US17/346,191 priority Critical patent/US20210300558A1/en
Publication of US20210300558A1 publication Critical patent/US20210300558A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • B64C2201/024
    • B64C2201/027
    • B64C2201/042
    • B64C2201/127
    • B64C2201/18
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements

Definitions

  • the present disclosure relates to a power supply assembly, an unmanned aerial vehicle (UAV), and a remote control mobile apparatus thereof.
  • UAV unmanned aerial vehicle
  • a remote control mobile apparatus such as a UAV, a self-driving car, or the like, includes a main structural frame, also referred to as body-on-frame, and a control device, a power supply device, and a kinetic power device provided on the main structural frame.
  • the user utilizes a controller, e.g., a remote controller, to remotely control the control device, such that the control device controls the kinetic power device to impel the remote control mobile apparatus to move as a whole.
  • the power supply device is configured to provide electronic energy for the kinetic power device.
  • the main structural frame is configured to integrate as many functional circuits as possible in a circuit board and to arrange the circuit board inside the housing of the remote control mobile apparatus. However, since all the functional circuits are integrated in the circuit board, it is inconvenient to assemble, disassemble, or repair the main structural frame.
  • an unmanned aerial vehicle includes a fuselage and a power supply assembly arranged at the fuselage.
  • the power supply assembly includes a polyhedron mounting bracket arranged at the fuselage, a power supply device arranged at the fuselage, and at least two functional circuits arranged separately on different outer surfaces of the mounting bracket and electrically coupled to each other and to the power supply device.
  • FIG. 1 is a perspective view of an unmanned aerial vehicle (UVA) according to various exemplary embodiments of the disclosure.
  • UVA unmanned aerial vehicle
  • FIG. 2 is a partially exploded view of the UAV in FIG. 1 .
  • FIG. 3 is an exploded view of the UAV in FIG. 1 .
  • first assembly when a first assembly is referred to as “fixed to” a second assembly, it is intended that the first assembly may be directly attached to the second assembly or may be indirectly attached to the second assembly via another assembly.
  • first assembly when a first assembly is referred to as “connecting” to a second assembly, it is intended that the first assembly may be directly connected to the second assembly or may be indirectly connected to the second assembly via a third assembly between them.
  • the terms “perpendicular,” “horizontal,” “left,” “right,” and similar expressions used herein are merely intended for description.
  • a remote control mobile apparatus consistent with the disclosure includes, but is not limited to, an unmanned aerial vehicle (UAV), a self-driving car, a driverless boat, or the like.
  • FIG. 1 shows a UAV 1 as an example of the remote control mobile apparatus consistent with the disclosure.
  • the UAV 1 includes a fuselage 100 and a kinetic power device 300 provided on the fuselage 100 .
  • the kinetic power device 300 is configured to provide kinetic power for the UAV 1 .
  • the UAV 1 is configured to carry a gimbal camera 400 for aerial photography.
  • the gimbal camera 400 includes a gimbal 410 and an image acquisition device 430 provided on the gimbal 410 .
  • the fuselage 100 includes an upper housing assembly 20 , a lower housing assembly 40 , and landing stands 60 . As shown in FIG. 1 , the upper housing assembly 20 and the lower housing assembly 40 are interlocked with each other to form a housing of the UAV 1 .
  • the landing stands 60 are provided on the lower housing assembly 40 and are configured to support the UAV 1 when the UAV 1 is landed.
  • FIG. 3 is an exploded view of the UAV 1 .
  • the lower housing assembly 40 includes a lower housing 41 , one or more controlling devices 43 , and a heat radiator 45 .
  • the one or more controlling devices 43 and the heat radiator 45 are provided on the lower housing 41 and are arranged between the lower housing 41 and the upper housing assembly 20 .
  • the lower housing 41 has a concave-like shape in which a receiving cavity 42 is formed.
  • the lower housing 41 and the upper housing assembly 20 complement each other to accommodate some components of the UAV 1 .
  • the lower housing 41 includes a first housing member 411 and a second housing member 413 connected with the first housing member 411 .
  • a mounting hatch 4111 is provided approximately in the middle of the first housing member 411 and communicates with the receiving cavity 42 .
  • the second housing member 413 is provided at the mounting hatch 4111 and is configured to close the mounting hatch 4111 . By disassembling or assembling the second housing member 413 , the mounting hatch 4111 can be opened or closed to enable a user to check or maintain the components inside the fuselage 100 .
  • the second housing member 413 is also configured to mount the gimbal camera 400 .
  • the gimbal 410 of the gimbal camera 400 is provided on a side of the second housing member 413 facing away from the receiving cavity 42 , i.e., an outer side of the second housing member 413 , and the image acquisition device 430 is provided on the gimbal 410 .
  • the gimbal 410 may be omitted and the image acquisition device 430 may be directly connected to the second housing member 413 .
  • the one or more controlling devices 43 are provided on another side of the second housing member 413 facing towards the receiving cavity 42 , i.e., an inner side of the second housing member 413 .
  • the one or more controlling devices 43 are electrically coupled to the gimbal camera 400 and are configured to control the movement of the gimbal camera 400 for adjusting the image acquisition device 430 to a desired shot angle.
  • two controlling devices 43 are provided, i.e., a first controlling device 431 and a second controlling device 433 , each including a control circuit board.
  • the first controlling device 431 is fixedly stacked on the second housing member 413 and the second controlling device 433 is stacked on the first controlling device 431 .
  • the one or more controlling devices 43 may include one, three, four, or more control circuit boards.
  • the one or more controlling devices 43 may be directly mounted on the second housing member 413 of the lower housing 41 without additional mounting bracket dedicated to the one or more controlling devices 43 .
  • the interior structure of the fuselage 100 can be simplified, the remaining space can be relatively larger, and the overall weight of the fuselage 100 can be relatively lighter.
  • the heat radiator 45 is provided at a side of the one or more controlling devices 43 and is fixed to the second housing member 413 .
  • the heat radiator 45 may be a cooling fan for promoting air circulation inside the housing of the UAV 1 to prevent the UAV 1 from overheating during operation.
  • the landing stands 60 are provided on the first housing member 411 and are arranged on a side of the first housing member 411 facing away from the receiving cavity 42 , i.e., an outer side of the first housing member 411 . As shown in FIGS. 1 to 3 , the UAV 1 includes two landing stands 60 spaced apart from each other. In some embodiments, the landing stands 60 may be fixed landing stands. In some other embodiments, the landing stands 60 may be retractable landing stands.
  • the upper housing assembly 20 is provided on the first housing member 411 and is arranged on another side of the first housing member 411 facing away from the landing stands 60 , i.e., an inner side of the first housing member 411 .
  • the upper housing assembly 20 includes an upper housing 21 , a mounting bracket 23 , a power supply device 25 , functional circuits 27 , and a controller 28 .
  • the mounting bracket 23 is provided between the upper housing 21 and the first housing member 411 .
  • the power supply device 25 , the functional circuits 27 , and the controller 28 are arranged in the mounting bracket 23 .
  • the upper housing 21 has a concave-like shape and covers the lower housing 41 .
  • the upper housing 21 and the lower housing 41 complement each other to accommodate some components of the UAV 1 .
  • the mounting bracket 23 is provided between the upper housing 21 and the lower housing 41 and is connected to the upper housing 21 .
  • the mounting bracket 23 is arranged at a position corresponding to the position of the controlling device 43 .
  • the mounting bracket 23 is configured to accommodate the power supply device 25 and the functional circuits 27 .
  • the mounting bracket 23 includes a polyhedron mounting bracket.
  • the mounting bracket 23 includes a rectangle-shaped frame with a hollow structure.
  • the mounting bracket 23 is provided with a plurality of mounting members.
  • the plurality of mounting members include, but are not limited to, a first mounting member 231 , a second mounting member 233 , a third mounting member 235 , and a fourth mounting member 237 .
  • the first mounting member 231 and the second mounting member 233 are spaced apart from each other and are approximately parallel to each other.
  • the third mounting member 235 is provided at a side of the first mounting member 231 and a side of the second mounting member 233 that are close to the lower housing 41 , and two opposite side edges of the third mounting member 235 are connected to the first mounting member 231 and the second mounting member 233 , respectively.
  • the fourth mounting member 237 is provided at a side of the third mounting member 235 that is close to the upper housing 21 , i.e., an upper side of the third mounting member 235 , and three side edges of the fourth mounting member 237 are connected to the first mounting member 231 , the second mounting member 233 , and the third mounting member 235 , respectively.
  • the first mounting member 231 , the second mounting member 233 , the third mounting member 235 , and the fourth mounting member 237 are connected as described above to make the mounting bracket 23 a drawer-shaped structure and form a receiving space (not labeled) for accommodating the power supply device 25 .
  • the power supply device 25 includes a battery pack and is provided inside the receiving space of the mounting bracket 23 .
  • a plurality of functional circuits 27 are arranged separately on different outer surfaces of the mounting bracket 23 .
  • the plurality of functional circuits 27 are electrically coupled to the power supply device 25 and among each other.
  • the plurality of functional circuits 27 include three circuit boards, which are referred to as a first circuit board 271 , a second circuit board 273 , and a third circuit board 275 , respectively.
  • the first circuit board 271 , the second circuit board 273 , and the third circuit board 275 are mounted on the first mounting member 231 , the second mounting member 233 , and the third mounting member 235 , respectively.
  • FIG. 1 the first circuit board 271 , the second circuit board 273 , and the third circuit board 275 are mounted on the first mounting member 231 , the second mounting member 233 , and the third mounting member 235 , respectively.
  • the first circuit board 271 and the second circuit board 273 are stacked on the outer surfaces of opposite sides of the mounting bracket 23 , respectively.
  • the third circuit board 275 is provided on the outer surface of another side of the mounting bracket 23 that is different from the sides of the mounting bracket 23 , on which the first circuit board 271 and the second circuit board 273 are stacked. Two opposite side edges of the third circuit board 275 are adjacent to and apart from the first circuit board 271 and the second circuit board 273 , respectively.
  • the plurality of functional circuits 27 are configured to implement different functions.
  • the plurality of functional circuits 27 may include two, three, five, seven, or more circuit boards.
  • the plurality of functional circuits 27 may also be a combination of any two or more of: a speed sensing circuit, a gravity sensing circuit, a visual sensing circuit, a magnetic field sensing circuit, and a control circuit.
  • the controller 28 is provided on a side of the third circuit board 275 facing away from the mounting bracket 23 and is fixed to the mounting bracket 23 .
  • the length of the controller 28 is longer than the length of the third circuit board 275 .
  • Both ends of the controller 28 extend relative to the corresponding ends of the third circuit board 275 and are electrically coupled to the power supply device 25 .
  • the controller 28 includes a flight controller for controlling the UAV 1 to perform a flight task.
  • the upper housing assembly 20 further includes an adapter 29 , which is provided on a side of the mounting bracket 23 .
  • the adapter 29 is electrically coupled to the power supply device 25 .
  • the adapter 29 is stacked on the fourth mounting member 237 and is arranged on the outer side of the mounting bracket 23 .
  • the adapter 29 is provided with an interface 291 , which is electrically coupled to the power supply device 25 .
  • the interface 291 includes a standard data interface for transmitting electronic power and/or data. Two opposite side edges of the adapter 29 are adjacent to the first circuit board 271 and the second circuit board 273 , respectively.
  • the kinetic power device 300 is provided on the fuselage 100 .
  • the kinetic power device 300 may include a plurality of rotor assemblies.
  • the UAV 1 is a four-rotor aircraft, i.e., an aircraft with four rotor assemblies.
  • the kinetic power device 300 includes motors 310 and propellers (not shown) connected to the motors 310 , respectively.
  • the motors 310 can drive the propellers to rotate, which provides the kinetic power for the UAV 1 to flight.
  • the UAV 1 may be a six-rotor aircraft, an eight-rotor aircraft, a twelve-rotor aircraft, or the like.
  • the UAV 1 may be a single-rotor aircraft.
  • the UAV 1 may be a fixed-wing aircraft or a rotor-fixed wing hybrid aircraft.
  • the mounting bracket 23 , the power supply device 25 , and the functional circuits 27 can constitute the power supply assembly of the UAV 1 .
  • the mounting bracket 23 is a polyhedron-shaped mounting bracket, and the plurality of functional circuits 27 are provided separately on different sides of the mounting bracket 23 , such that the plurality of functional circuits 27 can be installed and debugged, respectively, thereby facilitating the installation, debugging, and disassembling of the power supply assembly.
  • the plurality of functional circuits 27 are arranged separately to properly utilize the inner cavity space of the fuselage 100 .
  • the structure of the power supply assembly is relatively more compact, which leaves more free space for the inner cavity of the fuselage 100 , thereby providing an effective airflow-channel and facilitating the heat dissipation of the UAV 1 .
  • the power supply assembly is detachably mounted on the upper housing 21 to constitute the upper housing assembly 20
  • the controlling device 43 and the heat radiator 45 are mounted on the lower housing 41 to constitute the lower housing assembly 40 .
  • the structure of the UAV 1 is more compact, which facilitates assembling, disassembling, and debugging of the components of the UAV 1 .
  • the controller, the power supply device, and the plurality of functional circuits of the UAV 1 are configured as separate parts and are arranged separately on the mounting bracket. As such, the layout of the power supply assembly may be more proper, and the overall volume of the UAV 1 may be reduced. The assembling, disassembling, or maintenance of the power supply assembly in the UAV 1 may be facilitated.
  • the structure of the mounting bracket 23 is not limited to the rectangle-shaped frame structure described above, but may also be another polyhedron-shaped structure.
  • the mounting bracket 23 may be a tetrahedron-shaped mounting structure, a hexahedron-shaped mounting structure, an octahedron-shaped mounting structure, or the like.
  • the plurality of functional circuits 27 may be provided separately on different sides of the mounting bracket 23 .
  • the UAV 1 may be used in fields other than aerial photography, such as ground mapping, disaster inspection, pesticides spraying, or the like. Accordingly, the UAV 1 may carry a load other than the gimbal camera 400 , such as a detector, spray equipment, or the like.
  • the remote control mobile apparatus may be a mobile apparatus other than a UAV.
  • the remote control mobile apparatus may be a self-driving car, of which the controller 28 may be a travel controller, the power supply device 25 may be a battery pack or a fuel assembly, and the kinetic power device 300 may be wheel assemblies.
  • the remote control mobile apparatus may be a driverless boat, an unmanned submarine, or the like.

Abstract

A remote control mobile apparatus includes a fuselage, a mounting bracket disposed at the fuselage. The mounting bracket is substantially polyhedron-shape and includes a receiving space. The remote control mobile apparatus further includes a power supply device received in the receiving space, and at least two functional circuits arranged separately on different outer surfaces of the mounting bracket. The at least two functional circuits are electrically coupled to each other and to the power supply device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. application Ser. No. 16/110,756, filed on Aug. 23, 2018, which is a continuation application of International Application No. PCT/CN2016/074915, filed on Feb. 29, 2016, the entire contents of both of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to a power supply assembly, an unmanned aerial vehicle (UAV), and a remote control mobile apparatus thereof.
  • BACKGROUND
  • A remote control mobile apparatus, such as a UAV, a self-driving car, or the like, includes a main structural frame, also referred to as body-on-frame, and a control device, a power supply device, and a kinetic power device provided on the main structural frame. The user utilizes a controller, e.g., a remote controller, to remotely control the control device, such that the control device controls the kinetic power device to impel the remote control mobile apparatus to move as a whole. The power supply device is configured to provide electronic energy for the kinetic power device. Because of the miniaturization requirement of the remote control mobile apparatus, the main structural frame is configured to integrate as many functional circuits as possible in a circuit board and to arrange the circuit board inside the housing of the remote control mobile apparatus. However, since all the functional circuits are integrated in the circuit board, it is inconvenient to assemble, disassemble, or repair the main structural frame.
  • SUMMARY
  • In accordance with the disclosure, there is provided an unmanned aerial vehicle (UAV) includes a fuselage and a power supply assembly arranged at the fuselage. The power supply assembly includes a polyhedron mounting bracket arranged at the fuselage, a power supply device arranged at the fuselage, and at least two functional circuits arranged separately on different outer surfaces of the mounting bracket and electrically coupled to each other and to the power supply device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an unmanned aerial vehicle (UVA) according to various exemplary embodiments of the disclosure.
  • FIG. 2 is a partially exploded view of the UAV in FIG. 1.
  • FIG. 3 is an exploded view of the UAV in FIG. 1.
  • Description of main components and labels
    UAV
    1
    fuselage 100
    upper housing assembly 20
    upper housing 21
    mounting bracket 23
    first mounting member 231
    second mounting member 233
    third mounting member 235
    fourth mounting member 237
    receiving space 239
    power supply device 25
    functional circuit 27
    first circuit board 271
    second circuit board 273
    third circuit board 275
    controller 28
    adapter 29
    interface 291
    lower housing assembly 40
    lower housing 41
    first housing member 411
    mounting hatch 4111
    second housing member 413
    receiving cavity 42
    controlling device 43
    first controlling device 431
    second controlling device 433
    heat radiator 45
    landing stands 60
    kinetic power device 300
    motor 310
    gimbal camera 400
    gimbal 410
    image acquisition device 430
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Technical solutions of the present disclosure will be described with reference to the drawings. It will be appreciated that the described embodiments are part rather than all of the embodiments of the present disclosure. Other embodiments conceived by those having ordinary skills in the art on the basis of the described embodiments without inventive efforts should fall within the scope of the present disclosure.
  • Exemplary embodiments will be described with reference to the accompanying drawings, in which the same numbers refer to the same or similar elements unless otherwise specified.
  • As used herein, when a first assembly is referred to as “fixed to” a second assembly, it is intended that the first assembly may be directly attached to the second assembly or may be indirectly attached to the second assembly via another assembly. When a first assembly is referred to as “connecting” to a second assembly, it is intended that the first assembly may be directly connected to the second assembly or may be indirectly connected to the second assembly via a third assembly between them. The terms “perpendicular,” “horizontal,” “left,” “right,” and similar expressions used herein are merely intended for description.
  • Unless otherwise defined, all the technical and scientific terms used herein have the same or similar meanings as generally understood by one of ordinary skill in the art. As described herein, the terms used in the specification of the present disclosure are intended to describe exemplary embodiments, instead of limiting the present disclosure. The term “and/or” used herein includes any suitable combination of one or more related items listed.
  • In the situation where the technical solutions described in the present disclosure are not conflicting, they can be combined.
  • A remote control mobile apparatus consistent with the disclosure includes, but is not limited to, an unmanned aerial vehicle (UAV), a self-driving car, a driverless boat, or the like. FIG. 1 shows a UAV 1 as an example of the remote control mobile apparatus consistent with the disclosure. As shown in FIG. 1, the UAV 1 includes a fuselage 100 and a kinetic power device 300 provided on the fuselage 100. The kinetic power device 300 is configured to provide kinetic power for the UAV 1. The UAV 1 is configured to carry a gimbal camera 400 for aerial photography. The gimbal camera 400 includes a gimbal 410 and an image acquisition device 430 provided on the gimbal 410.
  • The fuselage 100 includes an upper housing assembly 20, a lower housing assembly 40, and landing stands 60. As shown in FIG. 1, the upper housing assembly 20 and the lower housing assembly 40 are interlocked with each other to form a housing of the UAV 1. The landing stands 60 are provided on the lower housing assembly 40 and are configured to support the UAV 1 when the UAV 1 is landed.
  • FIG. 3 is an exploded view of the UAV 1. As shown in FIG. 3, the lower housing assembly 40 includes a lower housing 41, one or more controlling devices 43, and a heat radiator 45. The one or more controlling devices 43 and the heat radiator 45 are provided on the lower housing 41 and are arranged between the lower housing 41 and the upper housing assembly 20.
  • The lower housing 41 has a concave-like shape in which a receiving cavity 42 is formed. The lower housing 41 and the upper housing assembly 20 complement each other to accommodate some components of the UAV 1. As shown in FIG. 3, the lower housing 41 includes a first housing member 411 and a second housing member 413 connected with the first housing member 411. A mounting hatch 4111 is provided approximately in the middle of the first housing member 411 and communicates with the receiving cavity 42. The second housing member 413 is provided at the mounting hatch 4111 and is configured to close the mounting hatch 4111. By disassembling or assembling the second housing member 413, the mounting hatch 4111 can be opened or closed to enable a user to check or maintain the components inside the fuselage 100.
  • As shown in FIG. 3, the second housing member 413 is also configured to mount the gimbal camera 400. In some embodiments, the gimbal 410 of the gimbal camera 400 is provided on a side of the second housing member 413 facing away from the receiving cavity 42, i.e., an outer side of the second housing member 413, and the image acquisition device 430 is provided on the gimbal 410. In some embodiments, the gimbal 410 may be omitted and the image acquisition device 430 may be directly connected to the second housing member 413.
  • The one or more controlling devices 43 are provided on another side of the second housing member 413 facing towards the receiving cavity 42, i.e., an inner side of the second housing member 413. The one or more controlling devices 43 are electrically coupled to the gimbal camera 400 and are configured to control the movement of the gimbal camera 400 for adjusting the image acquisition device 430 to a desired shot angle. In the example shown in FIG. 3, two controlling devices 43 are provided, i.e., a first controlling device 431 and a second controlling device 433, each including a control circuit board. The first controlling device 431 is fixedly stacked on the second housing member 413 and the second controlling device 433 is stacked on the first controlling device 431.
  • In some other embodiments, the one or more controlling devices 43 may include one, three, four, or more control circuit boards. The one or more controlling devices 43 may be directly mounted on the second housing member 413 of the lower housing 41 without additional mounting bracket dedicated to the one or more controlling devices 43. As such, the interior structure of the fuselage 100 can be simplified, the remaining space can be relatively larger, and the overall weight of the fuselage 100 can be relatively lighter.
  • The heat radiator 45 is provided at a side of the one or more controlling devices 43 and is fixed to the second housing member 413. In some embodiments, the heat radiator 45 may be a cooling fan for promoting air circulation inside the housing of the UAV 1 to prevent the UAV 1 from overheating during operation.
  • The landing stands 60 are provided on the first housing member 411 and are arranged on a side of the first housing member 411 facing away from the receiving cavity 42, i.e., an outer side of the first housing member 411. As shown in FIGS. 1 to 3, the UAV 1 includes two landing stands 60 spaced apart from each other. In some embodiments, the landing stands 60 may be fixed landing stands. In some other embodiments, the landing stands 60 may be retractable landing stands.
  • The upper housing assembly 20 is provided on the first housing member 411 and is arranged on another side of the first housing member 411 facing away from the landing stands 60, i.e., an inner side of the first housing member 411. The upper housing assembly 20 includes an upper housing 21, a mounting bracket 23, a power supply device 25, functional circuits 27, and a controller 28. As shown in FIG. 3, the mounting bracket 23 is provided between the upper housing 21 and the first housing member 411. The power supply device 25, the functional circuits 27, and the controller 28 are arranged in the mounting bracket 23.
  • The upper housing 21 has a concave-like shape and covers the lower housing 41. The upper housing 21 and the lower housing 41 complement each other to accommodate some components of the UAV 1.
  • The mounting bracket 23 is provided between the upper housing 21 and the lower housing 41 and is connected to the upper housing 21. The mounting bracket 23 is arranged at a position corresponding to the position of the controlling device 43. The mounting bracket 23 is configured to accommodate the power supply device 25 and the functional circuits 27. In the example shown in FIG. 3, the mounting bracket 23 includes a polyhedron mounting bracket. In some embodiments, the mounting bracket 23 includes a rectangle-shaped frame with a hollow structure.
  • The mounting bracket 23 is provided with a plurality of mounting members. The plurality of mounting members include, but are not limited to, a first mounting member 231, a second mounting member 233, a third mounting member 235, and a fourth mounting member 237. In the example shown in FIG. 3, the first mounting member 231 and the second mounting member 233 are spaced apart from each other and are approximately parallel to each other. The third mounting member 235 is provided at a side of the first mounting member 231 and a side of the second mounting member 233 that are close to the lower housing 41, and two opposite side edges of the third mounting member 235 are connected to the first mounting member 231 and the second mounting member 233, respectively. The fourth mounting member 237 is provided at a side of the third mounting member 235 that is close to the upper housing 21, i.e., an upper side of the third mounting member 235, and three side edges of the fourth mounting member 237 are connected to the first mounting member 231, the second mounting member 233, and the third mounting member 235, respectively. The first mounting member 231, the second mounting member 233, the third mounting member 235, and the fourth mounting member 237 are connected as described above to make the mounting bracket 23 a drawer-shaped structure and form a receiving space (not labeled) for accommodating the power supply device 25.
  • In some embodiments, the power supply device 25 includes a battery pack and is provided inside the receiving space of the mounting bracket 23.
  • In some embodiments, a plurality of functional circuits 27 are arranged separately on different outer surfaces of the mounting bracket 23. The plurality of functional circuits 27 are electrically coupled to the power supply device 25 and among each other. In the example shown in FIG. 3, the plurality of functional circuits 27 include three circuit boards, which are referred to as a first circuit board 271, a second circuit board 273, and a third circuit board 275, respectively. The first circuit board 271, the second circuit board 273, and the third circuit board 275 are mounted on the first mounting member 231, the second mounting member 233, and the third mounting member 235, respectively. As shown in FIG. 3, the first circuit board 271 and the second circuit board 273 are stacked on the outer surfaces of opposite sides of the mounting bracket 23, respectively. The third circuit board 275 is provided on the outer surface of another side of the mounting bracket 23 that is different from the sides of the mounting bracket 23, on which the first circuit board 271 and the second circuit board 273 are stacked. Two opposite side edges of the third circuit board 275 are adjacent to and apart from the first circuit board 271 and the second circuit board 273, respectively.
  • Furthermore, the plurality of functional circuits 27 are configured to implement different functions. In some other embodiments, the plurality of functional circuits 27 may include two, three, five, seven, or more circuit boards. The plurality of functional circuits 27 may also be a combination of any two or more of: a speed sensing circuit, a gravity sensing circuit, a visual sensing circuit, a magnetic field sensing circuit, and a control circuit.
  • The controller 28 is provided on a side of the third circuit board 275 facing away from the mounting bracket 23 and is fixed to the mounting bracket 23. In the example shown in FIG. 3, the length of the controller 28 is longer than the length of the third circuit board 275. Both ends of the controller 28 extend relative to the corresponding ends of the third circuit board 275 and are electrically coupled to the power supply device 25. In some embodiments, the controller 28 includes a flight controller for controlling the UAV 1 to perform a flight task.
  • The upper housing assembly 20 further includes an adapter 29, which is provided on a side of the mounting bracket 23. The adapter 29 is electrically coupled to the power supply device 25. In some embodiments, the adapter 29 is stacked on the fourth mounting member 237 and is arranged on the outer side of the mounting bracket 23. The adapter 29 is provided with an interface 291, which is electrically coupled to the power supply device 25. In some embodiments, the interface 291 includes a standard data interface for transmitting electronic power and/or data. Two opposite side edges of the adapter 29 are adjacent to the first circuit board 271 and the second circuit board 273, respectively.
  • The kinetic power device 300 is provided on the fuselage 100. In some embodiments, the kinetic power device 300 may include a plurality of rotor assemblies. In the example shown in FIG. 3, the UAV 1 is a four-rotor aircraft, i.e., an aircraft with four rotor assemblies. The kinetic power device 300 includes motors 310 and propellers (not shown) connected to the motors 310, respectively. The motors 310 can drive the propellers to rotate, which provides the kinetic power for the UAV 1 to flight. In some other embodiments, the UAV 1 may be a six-rotor aircraft, an eight-rotor aircraft, a twelve-rotor aircraft, or the like. In some other embodiments, the UAV 1 may be a single-rotor aircraft. In some other embodiments, the UAV 1 may be a fixed-wing aircraft or a rotor-fixed wing hybrid aircraft.
  • According to the disclosure, the mounting bracket 23, the power supply device 25, and the functional circuits 27 can constitute the power supply assembly of the UAV 1. In the power supply assembly, the mounting bracket 23 is a polyhedron-shaped mounting bracket, and the plurality of functional circuits 27 are provided separately on different sides of the mounting bracket 23, such that the plurality of functional circuits 27 can be installed and debugged, respectively, thereby facilitating the installation, debugging, and disassembling of the power supply assembly. The plurality of functional circuits 27 are arranged separately to properly utilize the inner cavity space of the fuselage 100. As such, the structure of the power supply assembly is relatively more compact, which leaves more free space for the inner cavity of the fuselage 100, thereby providing an effective airflow-channel and facilitating the heat dissipation of the UAV 1.
  • Furthermore, the power supply assembly is detachably mounted on the upper housing 21 to constitute the upper housing assembly 20, and the controlling device 43 and the heat radiator 45 are mounted on the lower housing 41 to constitute the lower housing assembly 40. As such, the structure of the UAV 1 is more compact, which facilitates assembling, disassembling, and debugging of the components of the UAV 1.
  • Therefore, the controller, the power supply device, and the plurality of functional circuits of the UAV 1 are configured as separate parts and are arranged separately on the mounting bracket. As such, the layout of the power supply assembly may be more proper, and the overall volume of the UAV 1 may be reduced. The assembling, disassembling, or maintenance of the power supply assembly in the UAV 1 may be facilitated.
  • In some other embodiments, the structure of the mounting bracket 23 is not limited to the rectangle-shaped frame structure described above, but may also be another polyhedron-shaped structure. For example, the mounting bracket 23 may be a tetrahedron-shaped mounting structure, a hexahedron-shaped mounting structure, an octahedron-shaped mounting structure, or the like. The plurality of functional circuits 27 may be provided separately on different sides of the mounting bracket 23.
  • In some other embodiments, the UAV 1 may be used in fields other than aerial photography, such as ground mapping, disaster inspection, pesticides spraying, or the like. Accordingly, the UAV 1 may carry a load other than the gimbal camera 400, such as a detector, spray equipment, or the like.
  • In some other embodiments, the remote control mobile apparatus may be a mobile apparatus other than a UAV. For example, the remote control mobile apparatus may be a self-driving car, of which the controller 28 may be a travel controller, the power supply device 25 may be a battery pack or a fuel assembly, and the kinetic power device 300 may be wheel assemblies. In some other embodiments, the remote control mobile apparatus may be a driverless boat, an unmanned submarine, or the like.
  • The terms “first,” “second,” or the like in the specification, claims, and the drawings of the present disclosure are merely used to distinguish similar elements, and are not intended to describe a specified order or a sequence. In addition, the terms “including,” “comprising,” and variations thereof herein are open, non-limiting terminologies, which are meant to encompass a series of steps of processes and methods, or a series of units of systems, apparatuses, or devices listed thereafter and equivalents thereof as well as additional steps of the processes and methods or units of the systems, apparatuses, or devices.
  • Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as exemplary only and not to limit the scope of the disclosure, with a true scope and spirit of the invention being indicated by the following claims.

Claims (20)

What is claimed is:
1. A remote control mobile apparatus comprising:
a fuselage; and
a mounting bracket disposed at the fuselage, being substantially polyhedron-shape, and including a receiving space;
a power supply device received in the receiving space; and
at least two functional circuits arranged separately on different outer surfaces of the mounting bracket and electrically coupled to the power supply device.
2. The remote control mobile apparatus of claim 1, wherein:
the fuselage includes an upper housing and a lower housing interlocked with each other; and
the power supply assembly is arranged between the upper housing and the lower housing.
3. The remote control mobile apparatus of claim 2, further comprising:
one or more controlling devices arranged at the lower housing and corresponding to the mounting bracket.
4. The remote control mobile apparatus of claim 3, wherein:
the one or more controlling devices include a first controlling device fixedly stacked on the lower housing and the first controlling device includes a circuit board.
5. The remote control mobile apparatus of claim 4, wherein:
the one or more controlling devices further include a second controlling device stacked on the first controlling device and the second controlling device includes a circuit board.
6. The remote control mobile apparatus of claim 3, further comprising:
a heat radiator provided at the lower housing and adjacent to the one or more controlling devices.
7. The remote control mobile apparatus of claim 6, wherein:
the one or more controlling devices and the heat radiator are separately fixed on the lower housing to form a lower housing assembly with the lower housing; or
the lower housing includes:
a first housing member interlocked with the upper housing; and
a second housing member detachably coupled to the first housing member.
8. The remote control mobile apparatus of claim 6, wherein:
the one or more controlling devices and the heat radiator are separately fixed on the second housing member.
9. The remote control mobile apparatus of claim 2, wherein the lower housing includes:
a first housing member interlocked with the upper housing; and
a second housing member detachably coupled to the first housing member.
10. The remote control mobile apparatus of claim 9, wherein:
the first housing member includes a mounting hatch extending through the first housing member and communicating with a receiving cavity of the fuselage, and the second housing member is arranged at the mounting hatch; or
the remote control mobile apparatus carries an image acquisition device that is connected to the second housing member of the fuselage; or
a landing stand is arranged at the first housing member and extends away from the fuselage.
11. The remote control mobile apparatus of claim 1, wherein the at least two functional circuits are configured to perform different functions.
12. The remote control mobile apparatus of claim 11, wherein each of the at least two functional circuits includes at least one of a speed sensing circuit, a gravity sensing circuit, a visual sensing circuit, a magnetic field sensing circuit, or a control circuit.
13. The remote control mobile apparatus of claim 11, wherein the at least two functional circuits include a first circuit board and a second circuit board separately arranged on opposite sides of the mounting bracket.
14. The remote control mobile apparatus of claim 13, wherein:
the first circuit board and the second circuit board are stacked on outer surfaces of the opposite sides of the mounting bracket, respectively.
15. The remote control mobile apparatus of claim 14, wherein:
the power supply device includes an adapter arranged at an end of the mounting bracket and electrically coupled to the power supply device.
16. The remote control mobile apparatus of claim 15, wherein:
the adapter is stacked on an outer side of the mounting bracket, and two opposite side edges of the adapter are adjacent to the first circuit board and the second circuit board, respectively; or
the adapter includes a standard interface electrically coupled to the power supply device.
17. The remote control mobile apparatus of claim 14, wherein:
the at least two functional circuits further include a third circuit board arranged at the mounting bracket and separate from the first circuit board and the second circuit board; and
the third circuit is electrically coupled to the power supply device.
18. The remote control mobile apparatus of claim 17, wherein:
the third circuit board is stacked on an outer surface of a side of the mounting bracket; and
three side edges of the third circuit board are adjacent to the first circuit board, the second circuit board, and the adaptor, respectively.
19. The remote control mobile apparatus of claim 18, further comprising:
a controller electrically coupled to the power supply device and being arranged on a side of the third circuit board away from the mounting bracket, both ends of the controller extending relative to corresponding ends of the third circuit board and being electrically coupled to the power supply device.
20. The remote control mobile apparatus of claim 1, wherein:
the remote control mobile apparatus is an unmanned aerial vehicle, a driverless boat, or an unmanned submarine.
US17/346,191 2016-02-29 2021-06-11 Power supply assembly Abandoned US20210300558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/346,191 US20210300558A1 (en) 2016-02-29 2021-06-11 Power supply assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/074915 WO2017147764A1 (en) 2016-02-29 2016-02-29 Power supply component, unmanned aerial vehicle and remotely controlled moving device
US16/110,756 US11034446B2 (en) 2016-02-29 2018-08-23 Power supply assembly
US17/346,191 US20210300558A1 (en) 2016-02-29 2021-06-11 Power supply assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/110,756 Continuation US11034446B2 (en) 2016-02-29 2018-08-23 Power supply assembly

Publications (1)

Publication Number Publication Date
US20210300558A1 true US20210300558A1 (en) 2021-09-30

Family

ID=59743354

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/110,756 Active 2037-06-28 US11034446B2 (en) 2016-02-29 2018-08-23 Power supply assembly
US17/346,191 Abandoned US20210300558A1 (en) 2016-02-29 2021-06-11 Power supply assembly

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/110,756 Active 2037-06-28 US11034446B2 (en) 2016-02-29 2018-08-23 Power supply assembly

Country Status (3)

Country Link
US (2) US11034446B2 (en)
CN (1) CN107223108B (en)
WO (1) WO2017147764A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053837A1 (en) * 2016-09-26 2018-03-29 深圳市大疆创新科技有限公司 Frame assembly for unmanned aerial vehicle, and unmanned aerial vehicle provided with frame assembly
US11167863B2 (en) * 2016-11-04 2021-11-09 XDynamics Limited Unmanned aerial vehicle
DE102016221829A1 (en) * 2016-11-08 2018-05-09 Audi Ag Energy supply vehicle for supplying an electrically driven motor vehicle with electrical energy
CN208530829U (en) * 2018-06-26 2019-02-22 深圳市大疆创新科技有限公司 Unmanned plane expansion system and its unmanned plane, expansion module
CN110678389A (en) * 2018-09-26 2020-01-10 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
CN109455291A (en) * 2018-12-25 2019-03-12 拓攻(南京)机器人有限公司 A kind of rack and unmanned plane for unmanned plane
CN112789759A (en) * 2019-09-11 2021-05-11 深圳市大疆创新科技有限公司 Power supply installation position detection device and method and power supply

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8235324B1 (en) * 2009-03-03 2012-08-07 Orbital Research Inc. Rotorcraft with electrically driven blade control
US9456185B2 (en) * 2009-08-26 2016-09-27 Geotech Environmental Equipment, Inc. Helicopter
GB2491129B (en) * 2011-05-23 2014-04-23 Blue Bear Systems Res Ltd Air vehicle
TWI500204B (en) * 2012-03-21 2015-09-11 Simplo Technology Co Ltd Battery module
CN203047531U (en) * 2012-11-15 2013-07-10 深圳市大疆创新科技有限公司 Multi-rotor unmanned aerial vehicle
US10569868B2 (en) * 2013-04-02 2020-02-25 Hood Technology Corporation Multicopter-assisted system and method for launching and retrieving a fixed-wing aircraft
US8991758B2 (en) * 2013-05-13 2015-03-31 Precisionhawk Inc. Unmanned aerial vehicle
CN203740115U (en) * 2014-01-24 2014-07-30 深圳一电科技有限公司 Unmanned aerial vehicle
FR3020282B1 (en) * 2014-04-24 2016-05-13 Parrot UNIVERSAL MOUNTING PLATE FOR ROTARY SAIL DRONE
US9611038B2 (en) * 2014-06-03 2017-04-04 Working Drones, Inc. Mobile computing device-based guidance navigation and control for unmanned aerial vehicles and robotic systems
WO2016015354A1 (en) * 2014-07-31 2016-02-04 深圳市大疆创新科技有限公司 Unmanned aerial vehicle dock and battery replacement device thereof
CN204144349U (en) * 2014-08-29 2015-02-04 深圳市大疆创新科技有限公司 Electric device, battery module and battery unit
CN204121762U (en) * 2014-09-23 2015-01-28 彭信泉 A kind of multi-rotor aerocraft
US20160144954A1 (en) * 2014-11-26 2016-05-26 Skymetro UAV Technology Inc. Unmanned aerial vehicle
CN204297110U (en) * 2014-12-05 2015-04-29 广东澄星航模科技股份有限公司 A kind of four-axle aircraft with GPS device
US10220954B2 (en) * 2015-01-04 2019-03-05 Zero Zero Robotics Inc Aerial system thermal control system and method
CN204568055U (en) * 2015-02-05 2015-08-19 深圳雷柏科技股份有限公司 A kind of Modularized unmanned aircraft
CN204688429U (en) * 2015-05-20 2015-10-07 深圳市大疆创新科技有限公司 Main machine structure assembly and use the remote-controlled movement device of this main machine structure assembly
CN112722239B (en) * 2015-06-01 2023-02-28 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
CN205022853U (en) * 2015-08-14 2016-02-10 湖北易瓦特科技股份有限公司 Many rotors flight equipment
CN204937492U (en) * 2015-08-27 2016-01-06 蔡强 A kind of module combined type four-axle aircraft
US9945828B1 (en) * 2015-10-23 2018-04-17 Sentek Systems Llc Airborne multispectral imaging system with integrated navigation sensors and automatic image stitching
FR3043337A1 (en) * 2015-11-10 2017-05-12 Parrot DRONE HAVING A TORQUE PROPULSION SUPPORT.
US11851174B2 (en) * 2015-11-20 2023-12-26 FlightWave Aerospace Systems Gimbaled thruster configuration for use with unmanned aerial vehicle
CN205469856U (en) * 2016-02-29 2016-08-17 深圳市大疆创新科技有限公司 Power supply module , Unmanned vehicles and remote control mobile device
US20200225684A1 (en) * 2016-03-24 2020-07-16 Flir Detection, Inc. Persistent aerial communication and control system
US10780970B2 (en) * 2016-04-06 2020-09-22 Harris Aerial Llc Folding heavy-lift unmanned vehicle frame
US9981743B2 (en) * 2016-04-14 2018-05-29 Qualcomm Incorporated Electronic speed controller arm for vehicle
US20170305537A1 (en) * 2016-04-20 2017-10-26 Tenshi Technologies, LLC (A Utah, LLC) Un-manned aerial vehicle
EP3455131A4 (en) * 2016-05-13 2019-04-17 Top Flight Technologies, Inc. Data center powered by a hybrid generator system
CN109476368B (en) * 2016-07-13 2022-08-02 深圳市大疆创新科技有限公司 Vehicle chassis and vehicle, method and kit related thereto
US20180099756A1 (en) * 2016-09-25 2018-04-12 Impossible Aerospace Corporation Aircraft Battery Systems and Aircraft Including Same
US10850838B2 (en) * 2016-09-30 2020-12-01 Sony Interactive Entertainment Inc. UAV battery form factor and insertion/ejection methodologies
CN206552279U (en) * 2016-10-25 2017-10-13 深圳市大疆创新科技有限公司 Unmanned vehicle and battery warehouse component and battery compartment
JP6853353B2 (en) * 2016-11-02 2021-03-31 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Battery storage device and unmanned aerial vehicle
WO2018152785A1 (en) * 2017-02-24 2018-08-30 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
US10427790B2 (en) * 2017-06-12 2019-10-01 David A. Verkade Adaptive aerial vehicle
EP3661847A1 (en) * 2017-08-01 2020-06-10 Zipline International Inc. Unmanned aircraft system with swappable components
US20190061970A1 (en) * 2017-08-29 2019-02-28 Qualcomm Incorporated Multi-rotor aerial drone with thermal energy harvesting
WO2019041174A1 (en) * 2017-08-30 2019-03-07 深圳市大疆创新科技有限公司 Unmanned aerial vehicle
US11046443B2 (en) * 2017-11-07 2021-06-29 Intel Corporation Safety systems for unmanned vehicles
WO2019140660A1 (en) * 2018-01-19 2019-07-25 深圳市大疆创新科技有限公司 Fuselage and unmanned aerial vehicle comprising same

Also Published As

Publication number Publication date
US20180362159A1 (en) 2018-12-20
CN107223108B (en) 2019-09-27
CN107223108A (en) 2017-09-29
US11034446B2 (en) 2021-06-15
WO2017147764A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
US20210300558A1 (en) Power supply assembly
US10093418B2 (en) Unmanned aerial vehicle
US9623969B2 (en) Multicopter with detachable wing
CN205469856U (en) Power supply module , Unmanned vehicles and remote control mobile device
US9272784B2 (en) Vertical takeoff winged multicopter
EP3694777B1 (en) Modular fuselage for unmanned aerial vehicle
EP3272652B1 (en) Unmanned aerial vehicle
US20180273165A1 (en) Multirotor unmanned aerial vehicle
US10099783B1 (en) Accessory mounting for rotary wing aircraft
US11767109B2 (en) Modular unmanned air vehicles
CN107703961A (en) Integrated control/command module for flight unmanned plane
KR101456035B1 (en) The rotor arm device of multi-rotor type drone
US20140061390A1 (en) Modular miniature unmanned aircraft with vectored-thrust control
US9499268B2 (en) Near belly-tangent pod system for an aircraft
US11628932B2 (en) Multicopter
US20200346777A1 (en) Fuselage and unmanned aerial vehicle thereof
KR20160098807A (en) A drone having high accessibility
EP2772429A1 (en) Four-rotor aircraft
US20220001980A1 (en) Group configurations for a modular drone system
WO2014025617A1 (en) Modular miniature unmanned aircraft with vectored-thrust control
KR102162848B1 (en) Multi purpose extension type unmanned aerial vehicle
EP4206074A1 (en) Unmanned aerial vehicle
RU186777U1 (en) Foldable support frame for tethered / autonomous quadrocopter based unmanned aerial vehicle
CN106927043B (en) Aircraft
CN211108026U (en) Unmanned aerial vehicle

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION