US20210283644A1 - Spreading unit - Google Patents

Spreading unit Download PDF

Info

Publication number
US20210283644A1
US20210283644A1 US16/338,828 US201716338828A US2021283644A1 US 20210283644 A1 US20210283644 A1 US 20210283644A1 US 201716338828 A US201716338828 A US 201716338828A US 2021283644 A1 US2021283644 A1 US 2021283644A1
Authority
US
United States
Prior art keywords
component
shaping
contour
spreading
viscous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/338,828
Inventor
Sergej Pidan
Kay Rupp
Christoph Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broetje Automation GmbH
Original Assignee
Broetje Automation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broetje Automation GmbH filed Critical Broetje Automation GmbH
Publication of US20210283644A1 publication Critical patent/US20210283644A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • B05C11/041Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by means for positioning, loading, or deforming the blades
    • B05C11/042Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by means for positioning, loading, or deforming the blades allowing local positioning, loading or deforming along the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • B05C5/0212Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles
    • B05C5/0216Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles by relative movement of article and outlet according to a predetermined path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/023Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • B05C11/041Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by means for positioning, loading, or deforming the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • B05C11/045Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades characterised by the blades themselves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C17/00Hand tools or apparatus using hand held tools, for applying liquids or other fluent materials to, for spreading applied liquids or other fluent materials on, or for partially removing applied liquids or other fluent materials from, surfaces
    • B05C17/005Hand tools or apparatus using hand held tools, for applying liquids or other fluent materials to, for spreading applied liquids or other fluent materials on, or for partially removing applied liquids or other fluent materials from, surfaces for discharging material from a reservoir or container located in or on the hand tool through an outlet orifice by pressure without using surface contacting members like pads or brushes
    • B05C17/00503Details of the outlet element
    • B05C17/00516Shape or geometry of the outlet orifice or the outlet element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0204Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to the edges of essentially flat articles

Definitions

  • the disclosure relates to a spreading unit for spreading viscous material, a system for spreading viscous material, and a method for spreading a viscous material.
  • sealing material such as, for instance, aircraft sealing compounds or silicone-like sealing material
  • various application units are known.
  • a shaping nozzle for applying and shaping a seal weld on a component is described. With a nozzle, respectively only one weld with a nozzle-specific shape can in this case be formed.
  • This spreading unit has two brush portions, which, for the bridging of offsets in a component, can be manually adjusted relative to one another. Two portions of different height can herewith be surface-treated across a projection. For the adjustment, the spreading process has to be interrupted. In addition, a continuous adaptation of the spreading unit to varying component surfaces is not possible.
  • the disclosure is based on the problem of designing and refining a known spreading unit such that viscous material can be spread in a simple and flexible manner on a component.
  • an adjustable shape or contour can overall be provided in order to meet altered requirements concerning the length of a material application.
  • the start and/or end of an applied web of a sealing material for example, can be shaped in a controlled manner.
  • a clean and repeatable shape at the start and end of the web is hence able to be achieved.
  • Right at the end of the web given an invariable shape of the shaper, a stringing of a sealing material, and/or undercuts, frequently materialize following a reduction of the material flow.
  • a shaping contour here generally comprises a purposefully shaped boundary, which comes partially or fully into contact with the applied material and effects a reshaping or a shape-forming spreading of the material.
  • the shape of the shaper is obtained, in particular, by superimposition of the two shaping contours. This corresponds to a geometric overlap of the shaping contours in the direction of application or direction of spreading.
  • a free cross-section of the first shaping contour is therefore reduced by the superimposition with the second shaping contour, or the resulting adjustable shape is derived from the intersection of the free cross-sections of the two shaping contours in their respective position.
  • an actuator is generally understood any motorized element for automatically adjusting at least the second shaping contour. Examples are piezo actuators, electric linear drives, pneumatic linear drives, or similar.
  • the second shaping contour can be adjusted, at least in one direction, in a controlled and stepless manner in terms of its position relative to the first shaping contour.
  • the second shaping contour has an outline which substantially corresponds to a cross-section of the component in the region of the spreading.
  • the applied material can be largely or completely scraped off by contact of the second shaping contour with the component, whereby particularly well shaped start regions and end regions are formed.
  • portions of an otherwise continuous material web can be neatly spared a material application.
  • the second shaping contour comprises at least two contour segments which are separately movable relative to one another, wherein the contour segments are arranged side by side, in particular transversely to the direction of spreading. This allows an improved guidance, in particular along stepped edges of variable height.
  • one of the separately movable contour segments is movable in a resiliently elastic manner in relation to the other of the contour segments.
  • the component is a structural component of an aircraft.
  • one or more materials from the group aluminium alloy, composite fibre material and/or titanium are covered.
  • the viscous material is applied to a joint weld of the component, wherein the joint weld is configured, in particular, as a stepped weld or a fillet weld.
  • the second shaping contour at least partially superimposes the first shaping contour at least at the beginning of a material application, wherein the second shaping contour is moved back during the application of a start region.
  • the second shaping contour at least predominantly clears the first shaping contour during a continuous material application, wherein the second shaping contour, during the application of an end region, is brought into superimposition with the first shaping contour.
  • the spreading unit has a nozzle for the application of the viscous material, such as the sealing material, on the component.
  • the nozzle can in particular be structurally combined with the shaping contours and, at the same time, be moved with the shaping contours.
  • the nozzle and the shaper have a fixed distance apart. In this way, for instance in the drawing of welds with the viscous material, a uniform drying and/or hardening of the viscous material from the moment of discharge from the nozzle to the shaping by the shaping contours can be obtained.
  • the weld quality is hereby able to be enhanced in a simple manner.
  • the spreading unit can have a sensor, such as a line laser, for detecting that region of the component that is to be coated.
  • a sensor such as a line laser
  • a joint for instance, which is due to be coated with the viscous material can be detected.
  • a volume flow and/or mass flow which is required, for instance, to fill the joint is determinable.
  • the viscous material can be constituted, in particular, by a sealing material, in particular an aircraft sealing compound or a silicone-like sealing material.
  • the component can be an assembly of parts, and the viscous material can be spread along a joint of the parts of the assembly.
  • the spreading of the viscous material can be realized by a movement of the component and/or by a movement of the spreading unit in the direction of spreading.
  • the spreading unit is configured as an end effector for a manipulator, such as, for instance, a gantry machine and/or an industrial robot.
  • the above-stated object is achieved, with regard to the method, by the features described herein.
  • the viscous material is spread in an automated manner.
  • step a or in step b respectively a start region or an end region of the viscous material is applied.
  • the variable shape of the shaper is herein utilized for the controlled shaping of the start and end regions, whilst avoiding stringing or the formation of undercuts.
  • the viscous material is applied in step a and in step b, one above the other, onto the same region of the component.
  • a first, smaller weld can here, for example, firstly be applied by means of the second shaping contour in order to ensure the filling of a corner of the component.
  • the shape of the first weld is here shaped in the second shaping contour.
  • a larger, second weld is then applied by means of the first shaping contour.
  • the second weld can, in particular, completely superimpose the first weld.
  • it is applied in good time before the first weld sets.
  • a controlled shaping of the start and/or end regions can be provided, moreover, by the relative movement of the shaping contours.
  • the method can comprise that a sensor, such as a line laser, registers that region of the component that is to be coated and the sensor data are analysed by a control system.
  • a sensor such as a line laser
  • the shape of the shaper is controlled and/or regulated in dependence on the sensor data.
  • control system in dependence on the sensor data, controls and/or regulates the relative movement between the component and the spreading unit.
  • the volume flow and/or mass flow of viscous material through a nozzle onto the region to be coated is regulated and/or controlled in dependence on the sensor data.
  • a weld is created.
  • the cross-section at the start and/or end of the weld is reduced by a change in position of the second shaping contour.
  • a change in the cross-section of the weld is continuously realized through the change in position.
  • a spreading unit having a shaper for spreading viscous material, in particular sealing material, on a component, wherein the shaper has a first shaping contour for shaping the viscous material in the process of the spreading, wherein at least a second shaping contour of the shaper for shaping the viscous material can be brought by means of an actuator, in a direction of spreading, into superimposition with the first shaping contour, so that a shape of the shaper is adjustable during an application process.
  • the second shaping contour has a course which substantially corresponds to a cross-section of the component in the region of the spreading.
  • the second shaping contour comprises at least two contour segments which are separately movable relative to one another, wherein the contour segments are arranged side by side, in particular transversely to the direction of spreading.
  • one of the separately movable contour segments is movable in a resiliently elastic manner in relation to the other of the contour segments.
  • the component is a structural component of an aircraft, in particular comprising one or more materials from the group aluminium alloy, composite fibre material and/or titanium.
  • the viscous material is applied to a joint weld of the component, wherein the joint weld is configured, in particular, as a stepped weld or a fillet weld.
  • the second shaping contour at least partially superimposes the first shaping contour at least at the beginning of a material application, wherein the second shaping contour is moved back during the application of a start region.
  • the second shaping contour at least predominantly opens up the first shaping contour during a continuous material application, wherein the second shaping contour, during the application of an end region, is brought into superimposition with the first shaping contour.
  • the spreading unit has a nozzle for the application of the viscous material, in particular the sealing material, on the component.
  • the spreading unit has a sensor, in particular a line laser, for detecting that region of the component that is to be coated.
  • Various embodiments provide a system for spreading viscous material on a component, wherein the system has a component holder for receiving a component, wherein the system has a spreading unit according to the disclosure.
  • the system has a manipulator with the spreading unit as the end effector.
  • Various embodiments provide a method for spreading a viscous material on a component by means of a spreading unit according to the disclosure.
  • the method can include application of the viscous material to the component in a first position of the shaping contours relative to one another; and application of the viscous material to the component in a second position of the shaping contours relative to one another.
  • a start region or an end region of the viscous material is applied.
  • the viscous material is applied in both steps, one above the other, onto the same region of the component.
  • FIG. 1 shows a spreading unit of a first embodiment in lateral and in in frontal view
  • FIG. 2 shows the spreading unit from FIG. 1 in three different positions of shaping contours
  • FIG. 3 shows the spreading unit from FIG. 1 in several method steps for the formation of a start region of a weld
  • FIG. 4 shows the spreading unit from FIG. 1 in several method steps for the formation of an end region of a weld
  • FIG. 5 shows the spreading unit from FIG. 1 in several method steps for the formation of a weld from two layers applied one above the other
  • FIG. 6 shows a spreading unit of a second embodiment
  • FIG. 7 shows a spreading unit of a third embodiment in several method steps for the application of a fillet weld.
  • FIG. 1 shows a spreading unit 1 having a shaper 2 , for spreading viscous material 3 on a component 4 .
  • the shaper 2 has a first shaping contour 5 and a second shaping contour 6 for shaping the viscous material 3 in the process of the spreading.
  • the viscous material 3 is here constituted by a sealing material, in particular an aircraft sealing compound or a silicone-like sealing material.
  • the component 4 can in particular be an assembly, such as an aircraft structure component and/or a motor vehicle part, in particular a body structure component.
  • the spreading unit 1 can have a nozzle 8 .
  • the nozzle 8 can be arranged, in the direction of relative movement of the spreading unit 1 relative to the component 4 , before the shaper 2 .
  • the nozzle 8 can be arranged at a predefined fixed distance from the shaper 2 .
  • a robust spreading process can hereby be ensured, since the viscous material 3 can precompact or partially harden in a predefined manner on the path from the nozzle 8 to the shaper 2 .
  • the viscous material 3 can hereby stretch and/or slacken prior to the shaping.
  • the distance between the nozzle 8 and the shaper 2 can be maximally 5 cm, further maximally 3 cm, further maximally 1 cm.
  • the shaping contours 5 , 6 are arranged directly one behind the other in a direction of application or spreading V.
  • the first shaping contour 5 here lies behind the second shaping contour 6 in the direction of spreading V and is arranged at a fixed distance relative to the nozzle 8 .
  • the second shaping contour 6 is movable relative to the first shaping contour 5 by means of an actuator 7 in the form of a pneumatic cylinder or servo motor. The movement is realized perpendicular to the direction of spreading V towards the component 4 or away from the component 4 .
  • the second shaping contour 6 comprises, moreover, two contour segments 6 a , 6 b , which are separately movable relative to one another and are arranged side by side transversely to the direction of spreading V.
  • One of the contour segments 6 a is here directly connected to the actuator 7 , wherein the other of the contour segments 6 b is guided in a separately movable manner on the first contour segment 6 a .
  • the second contour segment 6 b is biased, so that it is at all times advanced up to a stop on the first contour segment 6 a insofar as it does not bear against the component 4 and is hereby moved in relation to the first contour segment 6 a out of the stop position.
  • the second contour segment can here rest on the top edge of the step and completely scrape off the viscous material there while the second contour segment is purposefully adjusted.
  • FIG. 2 shows the spreading unit 1 in three different positions of the second shaping contour 6 .
  • the second shaping contour 6 is fully retracted and the cross-sectional shape of the applied viscous material is fully determined by the first shaping contour 5 .
  • the second shaping contour 6 is partially advanced, so that the second contour portion 6 b already rests on the upper edge of the component step and there prevents the material application.
  • the first contour portion 6 a permits in the lower region of the component step a further, height-reduced material application.
  • the second shaping contour 6 is maximally advanced and completely superimposes the first shaping contour 5 .
  • the spreading unit 1 here has a sensor (not represented) for detecting the region to be coated, such as a joint of the component 4 .
  • the sensor is here arranged, in the direction of relative movement, before the nozzle 8 and/or the shaper 2 . In the process of the spreading, it here runs ahead of the nozzle 8 and/or the shaper 2 .
  • the sensor is configured as an optical sensor, in particular a line laser. With a line laser, a reliable detection of the relevant joint is enabled.
  • the sensor registers a region to be coated of the component 4 .
  • a control system analyses the resulting sensor data.
  • the shaping contours of the shaper 2 are controlled and/or regulated in dependence on the sensor data.
  • the control system can control and/or regulate the relative movement between the component 4 and the spreading unit 1 in dependence on the sensor data.
  • control system can control and/or regulate the relative movement between the component 4 and the spreading unit 1 in dependence on the sensor data. That relative movement between component 4 and shaper 2 which is necessary for the spreading can here be generated in different ways.
  • the spreading unit 1 can be configured as an end effector, for example of an industrial robot, and be moved relative to the component 4 .
  • the component 4 can be moved relative to the shaper 2 .
  • the component 4 can be received in a component holder, which can in turn be moved relative to the shaper 2 .
  • control system in dependence on the sensor data, regulates and/or controls the volume flow and/or mass flow of viscous material through the nozzle 8 onto the region to be coated.
  • a start region of the weld can be shaped in a controlled manner by firstly the second shaping contour 6 being maximally advanced and fully covering the first shaping contour 5 ( FIG. 3 a ).
  • a dispensing of the viscous material from the nozzle 8 is commenced and the spreading unit 1 is moved in the direction of spreading V.
  • the second shaping contour 6 is then transported continuously upwards, so that increasingly material is applied with increasing thickness in the lower region of the component step ( FIG. 3 b ).
  • the second shaping contour is fully retracted, so that only the first shaping contour determines the cross-section of the applied material. This is a quasi-stationary state, in which an optionally long middle region of the weld is applied.
  • an end region of the weld can be shaped in a controlled manner by firstly the second shaping contour 6 being maximally retracted and the aforementioned middle region of the weld being coated ( FIG. 4 a ).
  • the second shaping contour 6 is transported continuously downwards, so that the cross-section is increasingly limited ( FIG. 4 b ).
  • the second shaping contour is pushed fully against the component 4 , so that all material is scraped off ( FIG. 4 c ). Once or shortly before this state is reached, the material flow from the nozzle 8 is expediently halted.
  • a first, smaller weld 9 is firstly applied by means of the second shaping contour in order to ensure the filling of a corner of the component step ( FIG. 5 a ).
  • the shape of the first weld is here expediently shaped in the second shaping contour 6 , in the present case on the contour segment 6 a .
  • the shape of the contour segment 6 a in this region can be configured as in the methods in FIG. 3 and FIG. 4 , or an appropriate clearance can be provided.
  • the spreading unit is then transported back into a starting position and, by means of the first shaping contour 5 , a larger, second weld 10 is applied ( FIG. 5 b ).
  • the second weld 10 can in particular fully cover the first weld. Expediently, it is applied in good time before the first weld sets.
  • a controlled shaping of the start and/or end regions can be provided, moreover, through the relative movement of the shaping contours 5 , 6 . Accordingly, the methods according to FIG. 3 / FIG. 4 on the one hand, and the dual application according to FIG. 5 , can be realized in combination.
  • FIG. 6 shows a simplified embodiment, in which the second shaping contour 6 is configured in one piece or is not divided into contour segments.
  • the second shaping contour 6 is connected via a guide 11 to the first shaping contour and is movable relative to the latter by means of an actuator (not represented).
  • an actuator not represented.
  • FIG. 7 shows a further embodiment, in which the shaping contours 5 , 6 are optimized for the application of a fillet weld. Accordingly, the second shaping contour has an acute-angled shape, which, in the advanced state into the fillet weld, can fully engage in a fillet of the component 4 .
  • first shaping contour 5 and the second shaping contour 6 are of dimensionally stable, here, rigid design, as far as the respective portions which enter into shaping engagement with the viscous material are concerned.
  • These portions can respectively, for instance, be formed of at least one sheet-metal element or at least one elastic, yet dimensionally stable shaping element, in particular wall element.

Abstract

The disclosure relates to a spreading unit having a shaper for spreading viscous material, in particular sealing material, on a component, wherein the shaper has a first shaping contour for shaping the viscous material in the process of the spreading, wherein at least a second shaping contour of the shaper for shaping the viscous material can be brought by means of an actuator, in a direction of spreading, into superimposition with the first shaping contour, so that a shape of the shaper is adjustable during an application process.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a national stage application under 35 U.S.C. 371 of International Patent Application Serial No. PCT/EP2017/068981, entitled “Spreading Unit,” filed Jul. 27, 2017, which claims priority from German Patent Application No. DE 10 2016 118 693.7, filed Oct. 2, 2016, the disclosure of which is incorporated herein by reference.
  • FIELD OF THE TECHNOLOGY
  • The disclosure relates to a spreading unit for spreading viscous material, a system for spreading viscous material, and a method for spreading a viscous material.
  • BACKGROUND
  • For the application of viscous material, in particular sealing material such as, for instance, aircraft sealing compounds or silicone-like sealing material, various application units are known. For instance, in EP 2 896 463 A1 a shaping nozzle for applying and shaping a seal weld on a component is described. With a nozzle, respectively only one weld with a nozzle-specific shape can in this case be formed.
  • In addition, in Japanese printed publication JP 2014-057638 A a spreading unit for the application and spreading of sealing material is described. This spreading unit has two brush portions, which, for the bridging of offsets in a component, can be manually adjusted relative to one another. Two portions of different height can herewith be surface-treated across a projection. For the adjustment, the spreading process has to be interrupted. In addition, a continuous adaptation of the spreading unit to varying component surfaces is not possible.
  • SUMMARY
  • The disclosure is based on the problem of designing and refining a known spreading unit such that viscous material can be spread in a simple and flexible manner on a component.
  • This object is achieved by a spreading unit having the features as described herein.
  • Through the provision of a second shaping contour, an adjustable shape or contour can overall be provided in order to meet altered requirements concerning the length of a material application. Thus, the start and/or end of an applied web of a sealing material, for example, can be shaped in a controlled manner. A clean and repeatable shape at the start and end of the web is hence able to be achieved. Right at the end of the web, given an invariable shape of the shaper, a stringing of a sealing material, and/or undercuts, frequently materialize following a reduction of the material flow.
  • A shaping contour here generally comprises a purposefully shaped boundary, which comes partially or fully into contact with the applied material and effects a reshaping or a shape-forming spreading of the material.
  • In the case of the present disclosure, the shape of the shaper is obtained, in particular, by superimposition of the two shaping contours. This corresponds to a geometric overlap of the shaping contours in the direction of application or direction of spreading.
  • Normally, a free cross-section of the first shaping contour is therefore reduced by the superimposition with the second shaping contour, or the resulting adjustable shape is derived from the intersection of the free cross-sections of the two shaping contours in their respective position.
  • By an actuator is generally understood any motorized element for automatically adjusting at least the second shaping contour. Examples are piezo actuators, electric linear drives, pneumatic linear drives, or similar. In some embodiments, the second shaping contour can be adjusted, at least in one direction, in a controlled and stepless manner in terms of its position relative to the first shaping contour.
  • In general, it is advantageously provided that the second shaping contour has an outline which substantially corresponds to a cross-section of the component in the region of the spreading. As a result, the applied material can be largely or completely scraped off by contact of the second shaping contour with the component, whereby particularly well shaped start regions and end regions are formed. Where necessary, also portions of an otherwise continuous material web can be neatly spared a material application.
  • In some embodiments, it is provided that the second shaping contour comprises at least two contour segments which are separately movable relative to one another, wherein the contour segments are arranged side by side, in particular transversely to the direction of spreading. This allows an improved guidance, in particular along stepped edges of variable height. In the interest of a simple and effective structural realization, it can here be provided that one of the separately movable contour segments is movable in a resiliently elastic manner in relation to the other of the contour segments.
  • Various advantages of the disclosure can be used to particularly good effect if the component is a structural component of an aircraft. In some embodiments, with the component, one or more materials from the group aluminium alloy, composite fibre material and/or titanium are covered.
  • In some embodiments if the viscous material is applied to a joint weld of the component, wherein the joint weld is configured, in particular, as a stepped weld or a fillet weld.
  • For the controlled creation of a neatly shaped start region of the viscous material, it is advantageously provided that the second shaping contour at least partially superimposes the first shaping contour at least at the beginning of a material application, wherein the second shaping contour is moved back during the application of a start region.
  • For the controlled creation of a neatly shaped end region of the viscous material, it is advantageously provided that the second shaping contour at least predominantly clears the first shaping contour during a continuous material application, wherein the second shaping contour, during the application of an end region, is brought into superimposition with the first shaping contour.
  • It is generally advantageous if the spreading unit has a nozzle for the application of the viscous material, such as the sealing material, on the component. The nozzle can in particular be structurally combined with the shaping contours and, at the same time, be moved with the shaping contours. In some embodiments, the nozzle and the shaper have a fixed distance apart. In this way, for instance in the drawing of welds with the viscous material, a uniform drying and/or hardening of the viscous material from the moment of discharge from the nozzle to the shaping by the shaping contours can be obtained. The weld quality is hereby able to be enhanced in a simple manner.
  • For the accurate position control of the spreading unit in relation to the component, the spreading unit can have a sensor, such as a line laser, for detecting that region of the component that is to be coated. With the aid of the sensor, a joint, for instance, which is due to be coated with the viscous material can be detected. In addition, a volume flow and/or mass flow which is required, for instance, to fill the joint is determinable.
  • The viscous material can be constituted, in particular, by a sealing material, in particular an aircraft sealing compound or a silicone-like sealing material. The component can be an assembly of parts, and the viscous material can be spread along a joint of the parts of the assembly.
  • The spreading of the viscous material can be realized by a movement of the component and/or by a movement of the spreading unit in the direction of spreading. With a view to a flexible and an at least partially automated production, it has proved advantageous if the spreading unit is configured as an end effector for a manipulator, such as, for instance, a gantry machine and/or an industrial robot.
  • In addition, the above-stated object is achieved by a system having the features as described herein. The same advantages can be obtained as previously described in connection with the spreading unit.
  • According to various embodiments, the above-stated object is achieved, with regard to the method, by the features described herein.
  • The same advantages can be obtained as previously described in connection with the spreading unit and with the system for spreading viscous material. In some embodiments, the viscous material is spread in an automated manner.
  • In a first application method, it is provided that, in step a or in step b, respectively a start region or an end region of the viscous material is applied. The variable shape of the shaper is herein utilized for the controlled shaping of the start and end regions, whilst avoiding stringing or the formation of undercuts.
  • In an alternative or supplementary method, it is provided that the viscous material is applied in step a and in step b, one above the other, onto the same region of the component. This allows two application steps by means of the same nozzle. A first, smaller weld can here, for example, firstly be applied by means of the second shaping contour in order to ensure the filling of a corner of the component. Expediently, the shape of the first weld is here shaped in the second shaping contour. After this, a larger, second weld is then applied by means of the first shaping contour. The second weld can, in particular, completely superimpose the first weld. Expediently, it is applied in good time before the first weld sets. Even in just such a multi-stage application of the material, a controlled shaping of the start and/or end regions can be provided, moreover, by the relative movement of the shaping contours.
  • The method can comprise that a sensor, such as a line laser, registers that region of the component that is to be coated and the sensor data are analysed by a control system. In some embodiments, by means of the control system, the shape of the shaper is controlled and/or regulated in dependence on the sensor data.
  • It can here be provided that the control system, in dependence on the sensor data, controls and/or regulates the relative movement between the component and the spreading unit.
  • Alternatively or additionally, it can be provided that, by the control system, the volume flow and/or mass flow of viscous material through a nozzle onto the region to be coated is regulated and/or controlled in dependence on the sensor data.
  • Alternatively or additionally, it can be provided that, with the spreading of the viscous material, a weld is created. In some embodiments, the cross-section at the start and/or end of the weld is reduced by a change in position of the second shaping contour. In some embodiments, in the process of the spreading, a change in the cross-section of the weld is continuously realized through the change in position.
  • Further advantages and features emerge from the below-described illustrative embodiments.
  • Various embodiments provide a spreading unit having a shaper for spreading viscous material, in particular sealing material, on a component, wherein the shaper has a first shaping contour for shaping the viscous material in the process of the spreading, wherein at least a second shaping contour of the shaper for shaping the viscous material can be brought by means of an actuator, in a direction of spreading, into superimposition with the first shaping contour, so that a shape of the shaper is adjustable during an application process.
  • In some embodiments, the second shaping contour has a course which substantially corresponds to a cross-section of the component in the region of the spreading.
  • In some embodiments, the second shaping contour comprises at least two contour segments which are separately movable relative to one another, wherein the contour segments are arranged side by side, in particular transversely to the direction of spreading.
  • In some embodiments, one of the separately movable contour segments is movable in a resiliently elastic manner in relation to the other of the contour segments.
  • In some embodiments, the component is a structural component of an aircraft, in particular comprising one or more materials from the group aluminium alloy, composite fibre material and/or titanium.
  • In some embodiments, the viscous material is applied to a joint weld of the component, wherein the joint weld is configured, in particular, as a stepped weld or a fillet weld.
  • In some embodiments, the second shaping contour at least partially superimposes the first shaping contour at least at the beginning of a material application, wherein the second shaping contour is moved back during the application of a start region.
  • In some embodiments, the second shaping contour at least predominantly opens up the first shaping contour during a continuous material application, wherein the second shaping contour, during the application of an end region, is brought into superimposition with the first shaping contour.
  • In some embodiments, the spreading unit has a nozzle for the application of the viscous material, in particular the sealing material, on the component.
  • In some embodiments, the spreading unit has a sensor, in particular a line laser, for detecting that region of the component that is to be coated.
  • Various embodiments provide a system for spreading viscous material on a component, wherein the system has a component holder for receiving a component, wherein the system has a spreading unit according to the disclosure.
  • In some embodiments, the system has a manipulator with the spreading unit as the end effector.
  • Various embodiments provide a method for spreading a viscous material on a component by means of a spreading unit according to the disclosure. The method can include application of the viscous material to the component in a first position of the shaping contours relative to one another; and application of the viscous material to the component in a second position of the shaping contours relative to one another.
  • In some embodiments, in one of the steps, respectively a start region or an end region of the viscous material is applied.
  • In some embodiments, the viscous material is applied in both steps, one above the other, onto the same region of the component.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Below, several illustrative embodiments are described, and explained in greater detail with reference to the accompanying drawings, wherein:
  • FIG. 1 shows a spreading unit of a first embodiment in lateral and in in frontal view,
  • FIG. 2 shows the spreading unit from FIG. 1 in three different positions of shaping contours,
  • FIG. 3 shows the spreading unit from FIG. 1 in several method steps for the formation of a start region of a weld,
  • FIG. 4 shows the spreading unit from FIG. 1 in several method steps for the formation of an end region of a weld,
  • FIG. 5 shows the spreading unit from FIG. 1 in several method steps for the formation of a weld from two layers applied one above the other,
  • FIG. 6 shows a spreading unit of a second embodiment,
  • FIG. 7 shows a spreading unit of a third embodiment in several method steps for the application of a fillet weld.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a spreading unit 1 having a shaper 2, for spreading viscous material 3 on a component 4.
  • The shaper 2 has a first shaping contour 5 and a second shaping contour 6 for shaping the viscous material 3 in the process of the spreading. The viscous material 3 is here constituted by a sealing material, in particular an aircraft sealing compound or a silicone-like sealing material. The component 4 can in particular be an assembly, such as an aircraft structure component and/or a motor vehicle part, in particular a body structure component.
  • As can be seen in FIG. 1, for the application of the viscous material 3 on the component the spreading unit 1 can have a nozzle 8. The nozzle 8 can be arranged, in the direction of relative movement of the spreading unit 1 relative to the component 4, before the shaper 2.
  • In some embodiments, the nozzle 8 can be arranged at a predefined fixed distance from the shaper 2. A robust spreading process can hereby be ensured, since the viscous material 3 can precompact or partially harden in a predefined manner on the path from the nozzle 8 to the shaper 2. In the case of a compressible viscous material 3, the viscous material 3 can hereby stretch and/or slacken prior to the shaping. The distance between the nozzle 8 and the shaper 2 can be maximally 5 cm, further maximally 3 cm, further maximally 1 cm.
  • The shaping contours 5, 6 are arranged directly one behind the other in a direction of application or spreading V. The first shaping contour 5 here lies behind the second shaping contour 6 in the direction of spreading V and is arranged at a fixed distance relative to the nozzle 8.
  • The second shaping contour 6 is movable relative to the first shaping contour 5 by means of an actuator 7 in the form of a pneumatic cylinder or servo motor. The movement is realized perpendicular to the direction of spreading V towards the component 4 or away from the component 4.
  • In the case of the first illustrative embodiment, the second shaping contour 6 comprises, moreover, two contour segments 6 a, 6 b, which are separately movable relative to one another and are arranged side by side transversely to the direction of spreading V. One of the contour segments 6 a is here directly connected to the actuator 7, wherein the other of the contour segments 6 b is guided in a separately movable manner on the first contour segment 6 a. Via a spring 6 c, the second contour segment 6 b is biased, so that it is at all times advanced up to a stop on the first contour segment 6 a insofar as it does not bear against the component 4 and is hereby moved in relation to the first contour segment 6 a out of the stop position.
  • Such an arrangement is in particular advantageous in respect of that stepped weld of the component that is shown in the first illustrative embodiment. The second contour segment can here rest on the top edge of the step and completely scrape off the viscous material there while the second contour segment is purposefully adjusted.
  • FIG. 2 shows the spreading unit 1 in three different positions of the second shaping contour 6. In the left-hand diagram, the second shaping contour 6 is fully retracted and the cross-sectional shape of the applied viscous material is fully determined by the first shaping contour 5. In the middle diagram, the second shaping contour 6 is partially advanced, so that the second contour portion 6 b already rests on the upper edge of the component step and there prevents the material application. The first contour portion 6 a permits in the lower region of the component step a further, height-reduced material application. In the right-hand diagram, the second shaping contour 6 is maximally advanced and completely superimposes the first shaping contour 5.
  • Furthermore, the spreading unit 1 here has a sensor (not represented) for detecting the region to be coated, such as a joint of the component 4. The sensor is here arranged, in the direction of relative movement, before the nozzle 8 and/or the shaper 2. In the process of the spreading, it here runs ahead of the nozzle 8 and/or the shaper 2. In some embodiments, the sensor is configured as an optical sensor, in particular a line laser. With a line laser, a reliable detection of the relevant joint is enabled.
  • Here, the sensor registers a region to be coated of the component 4. A control system analyses the resulting sensor data. In some embodiments, by means of the control system, the shaping contours of the shaper 2 are controlled and/or regulated in dependence on the sensor data. Additionally or alternatively, the control system can control and/or regulate the relative movement between the component 4 and the spreading unit 1 in dependence on the sensor data. By combining the controlling of the relative movement and of the shaping contours, the weld quality can be enhanced. For instance, motional deviations of a manipulator bearing the spreading unit can in this way be compensated by an adjustment of the shaping contour.
  • Additionally or alternatively, the control system can control and/or regulate the relative movement between the component 4 and the spreading unit 1 in dependence on the sensor data. That relative movement between component 4 and shaper 2 which is necessary for the spreading can here be generated in different ways. For instance, the spreading unit 1 can be configured as an end effector, for example of an industrial robot, and be moved relative to the component 4. Additionally or alternatively, the component 4 can be moved relative to the shaper 2. For instance, the component 4 can be received in a component holder, which can in turn be moved relative to the shaper 2.
  • According to a further embodiment, it can be provided that the control system, in dependence on the sensor data, regulates and/or controls the volume flow and/or mass flow of viscous material through the nozzle 8 onto the region to be coated.
  • The disclosure according to the first illustrative embodiment now functions as follows:
  • According to the representations in FIG. 3, a start region of the weld can be shaped in a controlled manner by firstly the second shaping contour 6 being maximally advanced and fully covering the first shaping contour 5 (FIG. 3a ). Next, a dispensing of the viscous material from the nozzle 8 is commenced and the spreading unit 1 is moved in the direction of spreading V. The second shaping contour 6 is then transported continuously upwards, so that increasingly material is applied with increasing thickness in the lower region of the component step (FIG. 3b ). Finally, according to FIG. 3c , the second shaping contour is fully retracted, so that only the first shaping contour determines the cross-section of the applied material. This is a quasi-stationary state, in which an optionally long middle region of the weld is applied.
  • According to the representations in FIG. 4, an end region of the weld can be shaped in a controlled manner by firstly the second shaping contour 6 being maximally retracted and the aforementioned middle region of the weld being coated (FIG. 4a ). Next, the second shaping contour 6 is transported continuously downwards, so that the cross-section is increasingly limited (FIG. 4b ). Finally, according to the right-hand diagram, the second shaping contour is pushed fully against the component 4, so that all material is scraped off (FIG. 4c ). Once or shortly before this state is reached, the material flow from the nozzle 8 is expediently halted.
  • According to the representations in FIG. 5, a method in which the viscous material 3 is applied in two steps, one above the other, to the same region of the component 4 is explained.
  • Here, a first, smaller weld 9 is firstly applied by means of the second shaping contour in order to ensure the filling of a corner of the component step (FIG. 5a ). The shape of the first weld is here expediently shaped in the second shaping contour 6, in the present case on the contour segment 6 a. According to requirements, the shape of the contour segment 6 a in this region can be configured as in the methods in FIG. 3 and FIG. 4, or an appropriate clearance can be provided.
  • Below, the spreading unit is then transported back into a starting position and, by means of the first shaping contour 5, a larger, second weld 10 is applied (FIG. 5b ). The second weld 10 can in particular fully cover the first weld. Expediently, it is applied in good time before the first weld sets.
  • In just such a multi-stage application of the material, a controlled shaping of the start and/or end regions can be provided, moreover, through the relative movement of the shaping contours 5, 6. Accordingly, the methods according to FIG. 3/FIG. 4 on the one hand, and the dual application according to FIG. 5, can be realized in combination.
  • FIG. 6 shows a simplified embodiment, in which the second shaping contour 6 is configured in one piece or is not divided into contour segments. The second shaping contour 6 is connected via a guide 11 to the first shaping contour and is movable relative to the latter by means of an actuator (not represented). Even with a simplified arrangement of this kind, all of the above-described application methods, namely the formation of start and end regions or the two-layered application of a weld, are able to be carried out analogously. Only the early bearing contact of the one contour segment against the component is not available.
  • FIG. 7 shows a further embodiment, in which the shaping contours 5, 6 are optimized for the application of a fillet weld. Accordingly, the second shaping contour has an acute-angled shape, which, in the advanced state into the fillet weld, can fully engage in a fillet of the component 4.
  • Analogously to the above descriptions, in the diagrams of FIG. 7a the configuration of a start region of the weld is represented, whilst in the diagrams of FIG. 7b the configuration of an end region of the weld is represented.
  • It should also be pointed out that, here, the first shaping contour 5 and the second shaping contour 6 are of dimensionally stable, here, rigid design, as far as the respective portions which enter into shaping engagement with the viscous material are concerned. These portions can respectively, for instance, be formed of at least one sheet-metal element or at least one elastic, yet dimensionally stable shaping element, in particular wall element.

Claims (15)

1. A spreading unit having a shaper for spreading viscous material on a component, wherein the shaper has a first shaping contour for shaping the viscous material in the process of the spreading,
wherein at least a second shaping contour of the shaper for shaping the viscous material can be brought by an actuator, in a direction of spreading, into superimposition with the first shaping contour, so that a shape of the shaper is adjustable during an application process.
2. The spreading unit according to claim 1, wherein the second shaping contour has a course which substantially corresponds to a cross-section of the component in the region of the spreading.
3. The spreading unit according to claim 1, wherein the second shaping contour comprises at least two contour segments which are separately movable relative to one another, wherein the contour segments are arranged side by side.
4. The spreading unit according to claim 3, wherein one of the separately movable contour segments is movable in a resiliently elastic manner in relation to the other of the contour segments.
5. The spreading unit according to claim 1, wherein the component is a structural component of an aircraft.
6. The spreading unit according to claim 1, wherein the viscous material is applied to a joint weld of the component, wherein the joint weld is configured as a stepped weld or a fillet weld.
7. The spreading unit according to claim 1, wherein the second shaping contour at least partially superimposes the first shaping contour at least at the beginning of a material application, wherein the second shaping contour is moved back during the application of a start region.
8. The spreading unit according to claim 1, wherein the second shaping contour at least predominantly opens up the first shaping contour during a continuous material application, wherein the second shaping contour, during the application of an end region, is brought into superimposition with the first shaping contour.
9. The spreading unit according to claim 1, wherein the spreading unit has a nozzle for the application of the viscous material on the component.
10. The spreading unit according to claim 1, wherein the spreading unit has a sensor for detecting that region of the component that is to be coated.
11. A system for spreading viscous material on a component, wherein the system has a component holder for receiving a component, wherein the system has a spreading unit according to claim 1.
12. A system according to claim 12, wherein the system has a manipulator with the spreading unit as the end effector.
13. A method for spreading a viscous material on a component by a spreading unit according to claim 1, comprising the steps:
applying the viscous material to the component in a first position of the shaping contours relative to one another; and
applying the viscous material to the component in a second position of the shaping contours relative to one another.
14. The method according to claim 13, wherein in applying the viscous material to the component in the first position or in applying the viscous material to the component in the second position, respectively a start region or an end region of the viscous material is applied.
15. The method according to claim 13, wherein the viscous material is applied in the first position and in the second position, one above the other, onto the same region of the component.
US16/338,828 2016-10-02 2017-07-27 Spreading unit Abandoned US20210283644A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016118693.7 2016-10-02
DE102016118693.7A DE102016118693A1 (en) 2016-10-02 2016-10-02 Verstreicheinheit
PCT/EP2017/068981 WO2018059792A1 (en) 2016-10-02 2017-07-27 Spreading unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/068981 A-371-Of-International WO2018059792A1 (en) 2016-10-02 2017-07-27 Spreading unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/964,565 Continuation US20230173531A1 (en) 2016-10-02 2022-10-12 Spreading unit with adjustable shaper

Publications (1)

Publication Number Publication Date
US20210283644A1 true US20210283644A1 (en) 2021-09-16

Family

ID=59506255

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/338,828 Abandoned US20210283644A1 (en) 2016-10-02 2017-07-27 Spreading unit
US17/964,565 Pending US20230173531A1 (en) 2016-10-02 2022-10-12 Spreading unit with adjustable shaper

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/964,565 Pending US20230173531A1 (en) 2016-10-02 2022-10-12 Spreading unit with adjustable shaper

Country Status (6)

Country Link
US (2) US20210283644A1 (en)
EP (1) EP3519105B1 (en)
CN (1) CN109890515B (en)
DE (1) DE102016118693A1 (en)
RU (1) RU2745220C2 (en)
WO (1) WO2018059792A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3036274C2 (en) * 1979-04-04 1983-11-10 J.M. Voith Gmbh, 7920 Heidenheim Method and device for stripping off excess coating material from a moving web
JPH03109673U (en) * 1990-02-23 1991-11-11
DE4031236A1 (en) * 1990-10-04 1992-04-09 Ver Glaswerke Gmbh DEVICE FOR SHAPING A PROFILE STRAND BY EXTRUDING DIRECTLY ON THE EDGE OF A GLASS DISC
JP3484740B2 (en) * 1993-12-24 2004-01-06 石川島播磨重工業株式会社 Method and apparatus for adjusting profile in initial stage of coating of coating machine
JP2002248406A (en) * 2000-12-21 2002-09-03 Dainippon Printing Co Ltd Coating apparatus
US7131555B2 (en) * 2002-09-30 2006-11-07 Matsushita Electric Industrial Co., Ltd. Method and device for discharging fluid
JP5290852B2 (en) * 2009-04-23 2013-09-18 日置電機株式会社 Flux coating apparatus and flux coating method
DE102009035002A1 (en) * 2009-07-24 2011-01-27 Bystronic Lenhardt Gmbh Method for producing an insulating glass pane
EP2551024B1 (en) * 2011-07-29 2017-03-22 3M Innovative Properties Co. Multilayer film having at least one thin layer and continuous process for forming such a film
JP5922539B2 (en) 2012-09-13 2016-05-24 三菱重工業株式会社 Sealant molding nozzle, sealant molding device, sealant molding method
JP6071359B2 (en) 2012-09-14 2017-02-01 三菱重工業株式会社 Sealant application brush and sealant application method
JP2016107190A (en) * 2014-12-04 2016-06-20 三菱重工業株式会社 Sealant application nozzle, and sealant application method
US9884329B2 (en) * 2015-03-19 2018-02-06 The Boeing Company Adhesive applicator having reversibly extensible first and second edges

Also Published As

Publication number Publication date
EP3519105B1 (en) 2023-06-28
CN109890515A (en) 2019-06-14
CN109890515B (en) 2022-01-11
RU2745220C2 (en) 2021-03-22
RU2019109148A3 (en) 2020-11-06
WO2018059792A1 (en) 2018-04-05
RU2019109148A (en) 2020-11-06
DE102016118693A1 (en) 2018-04-05
EP3519105A1 (en) 2019-08-07
US20230173531A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US8631996B2 (en) Composite of sheet metal parts
US8686314B2 (en) Method of soldering or welding components
US20230182165A1 (en) Spreading unit with adjustable contour
DE102006030130B3 (en) Workpiece machining method for, e.g., industrial robot, involves compensating deviation of determined actual-position from reference-movement path and deviation of determined actual-speed vector from measured reference-speed vector
JP5689431B2 (en) Control device for wire electric discharge machine that corrects machining path by program command
US20170090431A1 (en) Robot control method
JP5562845B2 (en) Process for machining a contour on at least one workpiece by a robot
JP2022504853A (en) Methods and equipment for laser cutting sheet metal blanks from continuously conveyed sheet metal strips
CN105102136A (en) Method for producing a seal
DE102013008085B4 (en) Method and device for joining workpieces with a machining beam
US20230173531A1 (en) Spreading unit with adjustable shaper
US10730143B2 (en) Laser welding device
DE102014101568A1 (en) Method and apparatus for laser welding or cutting with a dynamically adaptable analysis area
US20050109740A1 (en) Process for laser beam welding with prior spot welding
KR100602200B1 (en) Control apparatus for hybrid welding
US11198199B2 (en) Method for producing a sheet metal blank
EP3871820B1 (en) Method for manufacturing laminated molding
US20060186092A1 (en) Joining device
EP1832373A1 (en) Adjustable overlap joint and structure produced thereby
JP2002126595A (en) Method and apparatus for treating car body
CN110191763A (en) Coating unit
JP7347908B2 (en) High viscosity material coating method and control point automatic generation program for high viscosity material coating equipment
JP2021074843A (en) Robot system
Mueller Laser welding of hem flange joints
KR101505247B1 (en) Arc welding apparatus

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION