US20210015517A1 - Catheter - Google Patents
Catheter Download PDFInfo
- Publication number
- US20210015517A1 US20210015517A1 US17/061,025 US202017061025A US2021015517A1 US 20210015517 A1 US20210015517 A1 US 20210015517A1 US 202017061025 A US202017061025 A US 202017061025A US 2021015517 A1 US2021015517 A1 US 2021015517A1
- Authority
- US
- United States
- Prior art keywords
- catheter
- shaft body
- distal end
- tip member
- proximal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 67
- 239000000463 material Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 30
- 208000031481 Pathologic Constriction Diseases 0.000 abstract description 29
- 208000037804 stenosis Diseases 0.000 abstract description 29
- 230000036262 stenosis Effects 0.000 abstract description 29
- 239000000032 diagnostic agent Substances 0.000 abstract description 5
- 229940039227 diagnostic agent Drugs 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 5
- 229940124597 therapeutic agent Drugs 0.000 abstract description 5
- 210000003484 anatomy Anatomy 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 210000004204 blood vessel Anatomy 0.000 description 11
- 210000005166 vasculature Anatomy 0.000 description 11
- 238000004804 winding Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000002792 vascular Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 241001137251 Corvidae Species 0.000 description 2
- 229920002614 Polyether block amide Polymers 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 235000015108 pies Nutrition 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- RYECOJGRJDOGPP-UHFFFAOYSA-N Ethylurea Chemical group CCNC(N)=O RYECOJGRJDOGPP-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 229940036348 bismuth carbonate Drugs 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- GMZOPRQQINFLPQ-UHFFFAOYSA-H dibismuth;tricarbonate Chemical compound [Bi+3].[Bi+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GMZOPRQQINFLPQ-UHFFFAOYSA-H 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 210000002321 radial artery Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M25/0045—Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M25/005—Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M2025/006—Catheters; Hollow probes characterised by structural features having a special surface topography or special surface properties, e.g. roughened or knurled surface
Definitions
- the subject matter of this patent document relates to the field of medical devices. More particularly, but not by way of limitation, the subject matter relates to catheters and methods for supporting a guidewire or delivering a radiopaque, diagnostic or therapeutic agent.
- a guidewire can be inserted through the lumen of a hollow needle and made to enter the vascular system.
- a catheter can fit over and slide along the guidewire as it passes through vasculature. The guidewire alone or with the help of the catheter can be incrementally maneuvered through the vasculature to a target site.
- Catheters are typically introduced through a large artery, such as those found her the groin or neck, and then passed through ever-narrower regions of the vascular system until reaching the target site. Often, such pathways will wind back upon themselves in a multi-looped path.
- the quest to provide treatment options for narrowing and winding vessels and other lumens has given rise to the need to reduce catheter size, yet retain a catheter's favorable structural properties.
- catheters can be used to describe a catheter's axial strength to facilitate movement of its distal end through vascular passages or other body lumens by applying an axial pushing force near its proximal end.
- a related characteristic, “torqueability,” can be used to describe the ability to rotate the catheter's distal end by rotating its proximal end.
- “Flexibility,” particularly along a distal portion of the catheter, becomes increasingly important as the catheter enters winding or tortuous passages. Another characteristic that becomes more important with increased curvature of passages is the ability to resist kinking.
- the present inventors recognize a difficulty in placing existing “push-to-advance” catheter designs, which include a relatively stiff, thick wall to navigate a vascular passage.
- the present inventors further recognize that as higher demands for length have been placed on catheters, a competing difficulty of smaller catheter distal end portions has developed.
- a catheter can comprise an elongate shaft body and a tip member disposed at a distal end of the shaft body.
- the shaft body can extend from a proximal end to the distal end and can define an inner lumen.
- the shaft body can include a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil.
- the multi-layer coil can include first and second coil layers wound in opposing directions.
- An outer surface portion of the polymer cover can include one or more helical threads.
- the one or more helical threads are positioned around a distal end portion of the shaft body and have a radial height sufficient to provide a longitudinal pull on a vessel wall or a stenosis when rotated.
- the tip member can be made from a metal or a polymer and can also include one or more helical threads around its outer surface.
- Clinical bench testing has demonstrated that the present catheters exhibit pushability, flexibility, an ability to transfer torque in a controllable manner without kinking, and an ability to be propelled along a blood vessel, particularly when rotated.
- the present methods can include advancing a distal end of a guidewire to a location proximate a stenosis or other narrowing in a blood vessel; guiding a catheter over the guidewire; using the guidewire as a rail, advancing a distal end of the catheter to the location proximate the stenosis or narrowing; rotating the catheter in a first direction and advancing it into the stenosis or narrowing; and advancing the guidewire through the stenosis or narrowing with the support of the catheter.
- the guidewire can be inserted into an inner lumen of the catheter, where the inner lumen is defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil.
- Rotation of the catheter in the first direction can engage one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel, which can help advance the catheter into and eventually through the stenosis or narrowing.
- FIG. 1 illustrates a schematic view of a present catheter, as constructed in accordance with at least one embodiment, located in coronary vasculature.
- FIG. 2 illustrates a distal end portion of a present catheter, as constructed in accordance with at least one embodiment, with one or more helical threads located on both an outer surface of a shaft body and a tip member being engaged with a vessel wall.
- FIG. 3 illustrates partial, staggered cutaways of a present catheter, as constructed in accordance with at least one embodiment.
- FIG. 4 illustrates an enlarged side view of a distal end portion of a present catheter's shaft body, as constructed in accordance with at least one embodiment.
- FIG. 5 illustrates a metallic tip member including one or more helical threads coupled with a distal end of a present catheter's shaft body, as constructed in accordance with at least one embodiment.
- FIG. 6 illustrates a metallic tip member including a smooth outer surface coupled with a distal end of a present catheter's shaft body, as constructed in accordance with at least one embodiment.
- FIG. 7 illustrates a polymer tip member including a non-tapered proximal portion and a tapered distal portion coupled with a distal end of a present catheter's shaft body, as constructed in accordance with at least one embodiment.
- FIG. 8 illustrates partial, staggered cutaways of a present catheter's shaft body, as constructed in accordance with at least one embodiment.
- FIG. 9 illustrates a cross-section of a proximal end portion of a present catheter's shaft body, such as a cross-section along line 9 - 9 of FIG. 3 .
- FIG. 10 illustrates a cross-section of a distal end portion of a present catheter's shaft body, such as a cross-section along line 10 - 10 of FIG. 3 .
- FIG. 11 illustrates a cross-section of a present catheter's polymer tip member, such as a cross-section along line 11 - 11 of FIG. 3 .
- FIG. 12 illustrates a method of using a present catheter to navigate through vasculature, as constructed in accordance with at least one embodiment.
- FIG. 1 illustrates a present catheter 100 for supporting a guidewire 102 or delivering a radiopaque, diagnostic or therapeutic agent through a vessel stenosis or other tortuous anatomy of coronary vasculature 104 , as constructed in accordance with at least one embodiment.
- the present catheter 100 can be used in peripheral and coronary applications, but its primary benefit is believed to be in coronary applications where the vessels, relative to peripheral vessels, are smaller, more tortuous and more difficult to reach.
- the catheter 100 can include a shaft body 106 and a tip member 108 and can be delivered through a surgically created opening in a femoral or radial artery, for example.
- the shaft body 106 can extend from a proximal end 110 to a distal end 112 and can define an inner lumen.
- the tip member 108 can be connected to the distal end 112 of the shaft body 106 and can include a lumen coaxial with the shaft body's inner lumen to facilitate receipt or delivery of the guidewire or agent.
- a luer hub 114 can be connected to the proximal end 110 of the shaft body 106 to facilitate connection to other medical devices, such as valves, syringes or adaptors, and to provide access to the shaft body's inner lumen.
- a proximal portion 116 of the shaft body 106 can be designed to be less flexible than its distal portion 118 .
- the less flexible proximal portion 116 can provide enhanced axial and circumferential strength to the catheter 100 for greater pushability and torqueability.
- the distal portion 118 can provide the catheter 100 with enhanced flexibility for negotiating winding or tortuous vascular passages.
- An outer surface portion of the shaft body 106 such as the distal end portion 118 , can include one or more helical threads 120 to enhance catheter delivery or withdrawal through rotation.
- FIG. 2 illustrates engagement between a vessel wall 226 and one or more helical threads 220 , 224 projecting from outer surfaces of a catheter's shaft body 206 and tip member 208 , respectively.
- a treating clinician can gently push the “rotate-to-advance” catheter 200 through vasculature far enough to engage the helical threads 220 , 224 with the vessel wall 226 .
- the clinician can then rotate a proximal end of the catheter 200 in the direction 228 of the helical threads, such as in a clockwise direction, to advance the catheter through small and tortuous vessels to a target site.
- the helical threads 220 , 224 can have a sufficient radial height, relative to an outer surface of the shaft body 206 or tip member 208 , to provide a longitudinal pull on the vessel wall 226 or a stenosis, if present, when rotated.
- the catheter 200 can be removed by rotating the proximal end of the catheter in a direction 230 opposite the direction of delivery, such as in a counterclockwise direction.
- FIG. 3 A side view of a catheter 300 , including a shaft body 306 and a tip member 308 , is illustrated in FIG. 3 .
- the shaft body 306 can include multiple components, including an inner liner 332 , a reinforcing braid member 334 , two coil layers 336 , 338 wound in opposing directions, and an outer polymer cover 340 .
- the braid member 334 can be composed of multiple elongate strands having a rectangular transverse profile and arranged with its thickness directed radially.
- Each coil layer 336 , 338 can be composed of multiple elongate stands having a fully-round transverse profile.
- the catheter 300 can optionally include a polymer tip member 308 composed of a non-tapered proximal portion and a tapered distal portion.
- the proximal portion of the tip member 308 can receive distal ends of the braid member 334 and coil layers 336 , 338 .
- the sandwiching of the braid member 334 and coil layers 336 , 338 between the inner liner 332 and the outer polymer cover 340 , and the polymer tip member's 308 receipt of distal ends of the braid member 334 and the coil layers 336 , 338 permits the catheter 300 to be formed at a reduced thickness while maintaining favorable structural characteristics including pushability, torqueability, flexibility and resistance to kinking.
- FIG. 4 illustrates, in enlarged view, one or more helical threads 420 on an outer surface portion of a polymer cover 440 , which can help propel a catheter through a blood vessel when rotated.
- the helical threads 420 can be positioned around a distal end portion 418 of a shaft body 406 and project radially outward. Ends 442 , 444 of the helical threads 420 can be tapered from zero to full height in one-half turn of the helix to facilitate gentle, gradual displacement of a vessel wall or stenosis by the threads when the catheter is rotated for advancement and retraction.
- Thread width 446 and thread pitch 448 can be designed so that the vessel wall or stenosis does not bridge between adjacent turns of the threads 420 but rather is only displaced in a manner closely conforming to the threads 420 , thereby providing the necessary longitudinal grip on the vessel wall or stenosis for advancing and retracting the catheter.
- the one or more helical threads 420 include a polymer member wound around the polymer cover 440 .
- the polymer member can be a strip of a synthetic fiber, such as nylon or polyester, having a fully-round cross-sectional shape of about 0.05 mm-0.2 mm in diameter prior to being bonded to the polymer cover 440 .
- the polymer member can have a melting temperature higher than a melting temperature of the polymer cover 440 so that the helical threads 420 can be thermally bonded to, and inlaid in, the polymer cover 440 .
- the helical threads 420 can be attached to the polymer cover 440 by sonic or adhesive bonding.
- the polymer member can, for example, extend 20-50 turns around the outer surface of the polymer cover 440 at a uniform pitch of 1.0 mm-2.0 mm, resulting in a threaded section 2-8 cm in length.
- the polymer member can be reinforced with wire or fibers.
- Hard, metallic tip members or soft, polymer tip members can be utilized by the present catheters and coupled to a distal end 112 , 212 , 312 , 512 , 612 , 712 , 812 of a shaft body 106 , 206 , 306 , 506 , 606 , 706 , 806 .
- FIGS. 1, 2, 5 and 6 illustrate optional metallic tip members 108 , 208 , 508 , 608
- FIGS. 3 and 7 illustrate an optional polymer tip member 308 , 708 .
- Metallic tip members 108 , 208 , 508 , 608 can facilitate crossing of a difficult stenosis or other narrowing and allow for imaging on a screen as a catheter advances through vasculature.
- the metallic tip member 108 , 208 , 508 , 608 includes a gold-plated, stainless steel member available with ( FIGS. 1, 2 and 5 ) or without ( FIG. 6 ) one or more helical threads 224 , 524 .
- the gold-plating allows for imaging on the screen.
- the helical threads 224 , 524 can provide rotational advancement (in additional to the helical threads of the shaft body) through a vessel stenosis or other tortuous anatomy when the catheter is rotated.
- the one or more helical threads 224 , 524 extend radially outward from an outer surface of the tip member 208 , 508 ; in other examples, the helical threads extend radially inward from the outer surface and form a helical depression.
- Metallic tip members 608 including a smooth outer surface can be used in treatment cases benefiting from minimized friction during catheter advancement.
- a proximal diameter of the metallic tip members can be in a range of 0.8 mm to 1.10 mm and a distal diameter 509 , 609 can be in a range of 0.50 mm to 0.80 mm, such as about 0.70 mm.
- Polymer tip members 308 , 708 can facilitate tracking through tortuous vasculature using their inherent flexibility and low profile, including a distal diameter 709 in a range of 0.3 mm to 0.6 mm.
- the polymer tip member 708 includes a non-tapered proximal portion 750 and a tapered distal portion 752 .
- the proximal portion 750 and the distal portion 752 can have a similar length, or the proximal portion 750 can be longer than the distal portion 752 .
- the polymer tip member 708 has a length of 11 mm, including a 6 mm proximal portion 750 and a 5 mm distal portion 752 .
- the polymer tip member 708 can be impregnated with a radiopaque filler material, such as barium sulfate, bismuth trioxide, bismuth carbonate, powdered tungsten, powdered tantalum or the like, so that its location within a subject's body can be radiographically visualized.
- a radiopaque filler material such as barium sulfate, bismuth trioxide, bismuth carbonate, powdered tungsten, powdered tantalum or the like, so that its location within a subject's body can be radiographically visualized.
- FIG. 8 further illustrates the multiple components of a present catheter's shaft body 806 , including a liner 832 , a braid member 834 , multiple coil layers 836 , 838 and a polymer cover 840 , each of which can extend the length 859 of the shaft body 806 .
- the shaft body 806 can define an inner lumen 860 and have an inner surface 854 , an outer surface 856 , and a wall thickness 858 in a radial direction.
- the length 859 of the shaft body 806 can range from 60 cm-200 cm, for example.
- the liner 832 can extend the length of the shaft body 806 and, optionally, into and through the catheter's tip member.
- the liner 832 can be formed of a material providing high lubricity, such as polytetrafluoroethylene (PTFE) or polyethylene, to reduce the forces required to advance a guidewire or other member through an associated catheter.
- PTFE polytetrafluoroethylene
- a braid member 834 formed of multiple elongate strands 862 wound helically in opposite directions and interbraided with one another to form multiple crossings.
- the braid member 834 can extend the length of the shaft body 806 and into the catheter's tip member.
- the strands 862 can be formed of stainless steel or another high tensile strength material and can be axially spaced apart to define multiple pies and voids 863 between the strands 862 .
- the axial length of the pies, as determined by the strand spacing, can be selected to influence one or more of the catheter's pushability, torqueability, flexibility and kink resistance properties.
- the transverse profiles of the strands 862 can also be selected to influence these characteristics. For example, structural strength can be increased by increasing the strand width while maintaining the same thickness. Flexibility can be increased by increasing the pic axial length. Another factor influencing the desired characteristics is the braid angle of the filament strand windings, i.e., the angle of each helical strand 862 with respect to a longitudinal central axis. Increasing the braid angle tends to increase the torqueability while reducing the pushability. In short, strands 862 and arrangements of the strands 862 can be selected to customize the present catheter's properties.
- the braid member 834 includes 16 stainless steel strands 862 having a braid angle of 45 degrees along the axis of the catheter. Other braid angle ranges from 20 degrees to 60 degrees, for example, are also suitable.
- the braid member 834 can be stretched axially as it is placed upon the liner 832 during manufacture. When the coil layers 836 , 838 and the polymer cover 840 are placed over the braid member 834 , the braid member 834 can assume an unbiased configuration.
- strands 862 of the braid member 834 can have a thickness ranging from 0.010 mm to 0.015 mm, but both larger and smaller strand thicknesses can also be used. Widths of the strands 862 can also vary. Some embodiments use strand widths in the range of about 0.057 mm to 0.070 mm.
- the multiple coil layers which surround the braid member 834 , can include a first coil layer 836 composed of one or more wires 864 wound in a first direction and a second coil layer 838 composed of one or more wires 866 wound in a second direction, opposing the first direction.
- the second coil layer 838 can be positioned around and in contact with the first coil layer 836 .
- the wires 864 , 866 of the first and second coil layers 836 , 838 can interlock and provide the present catheter with bi-directional torqueability and pushability capabilities.
- one wire 864 , 866 in a coil layer has a tendency to kink or bend in use, particularly under influence of a load
- the other wires 864 , 866 in the same layer or the adjacent layer can support it and inhibit kinking.
- the wires 864 , 866 can include a fully-rounded cross-section and can vary in size, number and pitch between the first coil layer 836 and the second coil layer 838 to alter structural properties of the catheter. Wire properties can be selected to balance structural properties, such as pushability, torqueability and flexibility.
- each coil layer includes 12 wires having a diameter of about 0.050 mm.
- Each of the 12 wires can have a uniform pitch that is equal to or greater than about 0.623 mm.
- Adjacent wires of the 12 wire grouping can be view as having a pitch that is equal to or greater than about 0.072 mm, with a small gap distributed throughout each 12 wire grouping.
- This distributed gap forms a void 865 between successive windings of each of the first and second coil layers 836 , 838 .
- the size of the pitch can depend on the diameter of the wires, the diameter of the inner lumen 860 and the number of wires in the layer.
- the polymer cover 840 can surround the coil layers 836 , 838 and, in light of the liner 832 , can form the second of two polymer layers included in the shaft body 806 .
- the polymer cover 840 can include a low-friction polymer to reduce the forces required to advance the catheter through vasculature, or a polymer with low viscosity at melting temperatures to allow flow through and around the voids 865 in the coil layers 836 , 838 and the voids 863 in the braid member 834 when heated during manufacture, the latter of which is shown in different perspectives in FIGS. 8 and 9 .
- the polymer cover 840 is composed of polyether block amide (commonly referred to as “PEBAX,” a registered trademark of Arkema France Corporation).
- the polymer cover 840 can be applied to the coil layers 836 , 838 after they are wound into a tubular shape via an extrusion, molding or shrink tubing process, and can be applied thicker along a proximal portion of the shaft body 806 than along a distal portion of the shaft body to enhance distal flexibility and provide a smaller leading size.
- the proximal portion includes an outer diameter 909 (see FIG. 9 ) between 0.9 mm-11 mm and the distal portion includes an outer diameter 1009 (see FIG. 10 ) between 0.8-1.0 mm.
- a hydrophilic coating can be provided on the outer surface 856 of the shaft body 806 for lubricious delivery and to aid in steerability.
- the hydrophilic coating can be thin and constitute only a minor part of the wall thickness of the shaft body 806 .
- FIGS. 9 and 10 respectively illustrate cross-sections of a proximal portion and a distal portion of a shaft body 906 , 1006 , such as along lines 9 - 9 and 10 - 10 of FIG. 3 .
- a polymer cover 940 , 1040 can extend inward and seal around first and second coil layers 936 , 938 , 1036 , 1038 and a braid member 934 , 1034 .
- Inherent elasticity of the polymer cover 940 , 1040 can allow wires 964 , 966 , 1064 , 1066 of the coil layers 936 , 938 , 1036 , 1038 to make small movements so that the flexibility of the coil layers is maintained; the elasticity also allows the shaft body wall to stay leak-proof when the wires move.
- the polymer cover 940 , 1040 can terminate at the distal end of the shaft body 906 , 1006 . proximal to a tip member.
- FIG. 11 illustrates a cross-section of a proximal portion of a tip member 1108 , and specifically a polymer tip member, which is coupled with a distal end of a shaft body.
- Distal ends of first and second coil layers 1136 , 1138 , a braid member 1134 and a liner 1132 can extend into the tip member 1108 and can be surrounded by a polymer impregnated with a radiopaque material.
- the polymer 1168 of the tip member 1108 can have a higher viscosity at melting temperatures such that little to no flow through or around the coil layers 1136 , 1138 or the braid member 1134 occurs.
- the polymer of the tip member is pellethane and the void space 1170 existing within the polymer 1168 can provide the catheter's distal end portion with increased flexibility relative to the shaft body.
- FIG. 12 illustrates a method 1272 of using a present catheter to navigate through vasculature, as constructed in accordance with at least one embodiment.
- the method can include advancing a distal end of a guidewire through vasculature to a location proximate a stenosis or other narrowing in a blood vessel.
- a catheter can be guided over the guidewire by inserting its proximal end into an inner lumen of the catheter from the catheter's distal end.
- the inner lumen can be defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil.
- a distal end of the catheter can be advanced to the location proximate the stenosis or narrowing at step 1278 .
- the catheter can be rotated in a first direction at step 1280 , thereby engaging one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel.
- This engagement between the helical threads and the stenosis or vessel wall can propel the catheter forward, in a distal direction.
- Incremental rotation of the catheter, particularly the catheter's proximal end can allow incremental movement of the catheter relative to the stenosis or vessel wall.
- the guidewire can be advanced distally with the support of the catheter.
- the method can be configured such that the distal end of the guidewire is at all times distal to the distal end of the catheter.
- the catheter can be withdrawn from the blood vessel at step 1284 by rotating its proximal end in a second direction, opposite the first direction. Rotation of the catheter, whether in the first direction or the second direction, can cause wires of the first and second coil layers to engage.
- the method can optionally include viewing a tip member using an imaging means.
- the method can optionally include delivering a radiopaque, diagnostic or therapeutic agent through the inner lumen of the catheter.
- the method can optionally include exchanging the guidewire advanced to the location proximate the stenosis or narrowing with a second guidewire.
- the present catheters and methods include or use a multi-component shaft body, which can include one or more helical threads projecting from its outer surface.
- the multi-component shaft body can provide catheters with favorable structural characteristics including pushability, torqueability, flexibility and resistance to kinking.
- First and second helically-wound coil layers of the shaft body can provide torqueability and pushability to the catheter.
- a braid member can enable a small shaft body diameter for extending through a tortuous path and reaching small vessels and can further provide kink resistance.
- the one or more helical threads can provide the catheter with a rotationally-activated propulsion means. Accordingly, the present catheters and methods can overcome difficulties associated with placing existing “push-to-advance” catheter designs and can possess a small cross-section to navigate tortuous anatomy.
- a catheter can comprise an elongate shaft body and a tip member disposed at a distal end of the shaft body.
- the shaft body can extend from a proximal end to the distal end and can define an inner lumen.
- the shaft body can include a liner, a multi-layer coil surrounding the liner, and a polymer cover surrounding the multi-layer coil.
- An outer surface portion of the polymer cover can include one or more helical threads.
- Example 2 the catheter of Example 1 can optionally be configured such that the multi-layer coil includes a first coil layer wound in a first direction and a second coil layer, surrounding the first coil layer, wound in a second direction opposing the first direction.
- Example 3 the catheter of Example 2 can optionally be configured such that the first and second coil layers each include a plurality of wound wires having a fully round cross-section.
- Example 4 the catheter of any one or any combination of Examples 1-3 can optionally be configured such that the polymer cover extends inward through voids between successive windings of the multi-layer coil.
- Example 5 the catheter of any one or any combination of Examples 1-4 can optionally be configured such that the shaft body further comprises a braid member extending between the liner and the multi-layer coil.
- Example 6 the catheter of Example 5 can optionally be configured such that the polymer cover extends inward through voids between successive windings of the multi-layer coil and into voids of the braid member.
- Example 7 the catheter of any one or any combination of Examples 5 or 6 can optionally be configured such that a distal end of each of the liner, the braid member, and the multi-layer coil extend beyond the distal end of the shaft body.
- Example 8 the catheter of any one or any combination of Examples 1-7 can optionally be configured such that the one or more helical threads are positioned around a distal end portion of the shaft body.
- Example 9 the catheter of any one or any combination of Examples 1-8 can optionally be configured such that the one or more helical threads include a polymer member wound around the polymer cover.
- Example 10 the catheter of Example 9 can optionally be configured such that the polymer member forming the one or more helical threads has a melting point higher than a melting point of the polymer cover surrounding the multi-layer coil.
- Example 11 the catheter of any one or any combination of Examples 1-9 can optionally be configured such that the one or more helical threads include a depression of the outer surface of the polymer cover.
- Example 12 the catheter of any one or any combination of Examples 1-11 can optionally be configured such that the tip member includes a metallic tip member.
- Example 13 the catheter of Example 12 can optionally be configured such that an outer surface of the metallic tip member includes one or more helical threads.
- Example 14 the catheter of Example 13 can optionally be configured such that the one or more helical threads of the metallic tip member project radially outward from its outer surface.
- Example 15 the catheter of Example 13 can optionally be configured such that the one or more helical threads of the metallic tip member extend radially inward from its outer surface.
- Example 16 the catheter of any one or any combination of Examples 1-15 can optionally be configured such that the tip member includes a polymer tip member.
- Example 17 the catheter of Example 16 can optionally be configured such that the polymer tip member includes a non-tapered proximal portion and a tapered distal portion.
- Example 18 the catheter of Example 17 can optionally be configured such that a distal end of the multi-layer coil extends beyond the distal end of the shaft body and into the non-tapered proximal portion of the polymer tip member.
- a method can comprise advancing a distal end of a guidewire to a location proximate a stenosis or other narrowing in a blood vessel; guiding a catheter over the guidewire; using the guidewire as a rail, advancing a distal end of the catheter to the location proximate the stenosis or narrowing; rotating the catheter in a first direction and advancing it into the stenosis or narrowing; and advancing the guidewire through the stenosis or narrowing with the support of the catheter.
- the guidewire can be inserted into an inner lumen of the catheter, where the inner lumen is defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil.
- Rotation of the catheter in the first direction can engage one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel, which can help advance the catheter into and eventually through the stenosis or narrowing.
- Example 20 the method of Example 19 can optionally be configured such that rotating the catheter in the first direction further includes engaging one or more helical threads of a tip member, disposed at the distal end of the catheter, with the stenosis or wall of the blood vessel.
- Example 21 the method of any one or any combination of Examples 19 or 20 can optionally be configured such that rotating the catheter in the first direction includes rotating a proximal end portion of the catheter, thereby causing the distal end of the catheter to rotate a corresponding amount.
- Example 22 the method of any one or any combination of Examples 19-21 can optionally further comprise rotating the catheter in a second direction, opposite the first direction, and withdrawing the catheter from the blood vessel.
- Example 23 the method of Example 22 can optionally be configured such that rotating the catheter in the first or second direction includes engaging first and second coil layers of the multi-layer coil.
- Example 24 the method of any one or any combination of Examples 22 or 23 can optionally be configured such that rotating the catheter in the first or second direction includes inhibiting kinking between a distal end of a shaft body and a proximal end of a tip member by extending the braid member and the multi-layer coil beyond the distal end of the shaft body and into the proximal end of the tip member.
- Example 25 the method of any one or any combination of Examples 19-24 can optionally further comprise delivering a radiopaque, diagnostic or therapeutic agent through the inner lumen of the catheter.
- Example 26 the method of any one or any combination of Examples 19-25 can optionally further comprise viewing a tip member, disposed at the distal end of the catheter, using an imaging means.
- Example 27 the method of any one or any combination of Examples 19-26 can optionally further comprise exchanging the guidewire advanced to the location proximate the stenosis or narrowing with a second guidewire.
- Example 28 the catheter or method of any one or any combination of Examples 1-27 can optionally be configured such that all features, components, operations or other options are available to use or select from.
- the term “about” can include numbers that are rounded to the nearest significant figure.
- the recitation of numerical ranges by endpoints includes all numbers and sub-ranges within and bounding that range (e.g., 1 to 4 includes 1, 1.5, 1.75, 2, 2.3, 2.6, 2.9, etc. and 1 to 1.5, 1 to 2, 1 to 3, 2 to 3.5, 2 to 4, 3 to 4, etc.).
- patient and “subject” are intended to include mammals, such as for human or veterinary applications.
- the terms “distal” and “proximal” are used to refer to a position or direction relative to the treating clinician. “Distal” and “distally” refer to a position that is distant from, or in a direction away from, the treating clinician. “Proximal” and “proximally” refer to a position that is near, or in a direction toward, the treating clinician.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
- This non-provisional patent document is a continuation of U.S. patent application Ser. No. 15/441,352, filed on Feb. 24, 2017, which is a divisional of U.S. patent application Ser. No. 14/673,966, filed on Mar. 31, 2015, now issued under U.S. Pat. No. 9,636,477, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/061,781, entitled “CATHETER,” filed on Oct. 9, 2014, each of which is herein incorporated by reference in its entirety.
- The subject matter of this patent document relates to the field of medical devices. More particularly, but not by way of limitation, the subject matter relates to catheters and methods for supporting a guidewire or delivering a radiopaque, diagnostic or therapeutic agent.
- A variety of catheters exist for percutaneous insertion into a subject's vascular system to accomplish diagnostic or therapeutic objectives using the Seldinger technique. As part of the Seldinger technique, a guidewire can be inserted through the lumen of a hollow needle and made to enter the vascular system. A catheter can fit over and slide along the guidewire as it passes through vasculature. The guidewire alone or with the help of the catheter can be incrementally maneuvered through the vasculature to a target site.
- Catheters are typically introduced through a large artery, such as those found her the groin or neck, and then passed through ever-narrower regions of the vascular system until reaching the target site. Often, such pathways will wind back upon themselves in a multi-looped path. The quest to provide treatment options for narrowing and winding vessels and other lumens has given rise to the need to reduce catheter size, yet retain a catheter's favorable structural properties.
- Various structural properties can be used to describe catheters. “Pushability,” for example, can be used to describe a catheter's axial strength to facilitate movement of its distal end through vascular passages or other body lumens by applying an axial pushing force near its proximal end. A related characteristic, “torqueability,” can be used to describe the ability to rotate the catheter's distal end by rotating its proximal end. “Flexibility,” particularly along a distal portion of the catheter, becomes increasingly important as the catheter enters winding or tortuous passages. Another characteristic that becomes more important with increased curvature of passages is the ability to resist kinking.
- The present inventors recognize a difficulty in placing existing “push-to-advance” catheter designs, which include a relatively stiff, thick wall to navigate a vascular passage. The present inventors further recognize that as higher demands for length have been placed on catheters, a competing difficulty of smaller catheter distal end portions has developed.
- The present catheters overcome drawbacks of existing catheter designs by providing a structure that, despite a reduction in distal diameter, maintains favorable structural properties and advanceability along its length. A catheter can comprise an elongate shaft body and a tip member disposed at a distal end of the shaft body. The shaft body can extend from a proximal end to the distal end and can define an inner lumen. The shaft body can include a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. The multi-layer coil can include first and second coil layers wound in opposing directions. An outer surface portion of the polymer cover can include one or more helical threads. In an example, the one or more helical threads are positioned around a distal end portion of the shaft body and have a radial height sufficient to provide a longitudinal pull on a vessel wall or a stenosis when rotated.
- The tip member can be made from a metal or a polymer and can also include one or more helical threads around its outer surface. Clinical bench testing has demonstrated that the present catheters exhibit pushability, flexibility, an ability to transfer torque in a controllable manner without kinking, and an ability to be propelled along a blood vessel, particularly when rotated.
- The present methods can include advancing a distal end of a guidewire to a location proximate a stenosis or other narrowing in a blood vessel; guiding a catheter over the guidewire; using the guidewire as a rail, advancing a distal end of the catheter to the location proximate the stenosis or narrowing; rotating the catheter in a first direction and advancing it into the stenosis or narrowing; and advancing the guidewire through the stenosis or narrowing with the support of the catheter. The guidewire can be inserted into an inner lumen of the catheter, where the inner lumen is defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. Rotation of the catheter in the first direction can engage one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel, which can help advance the catheter into and eventually through the stenosis or narrowing.
- These and other examples and features of the present catheters and methods will be set forth, at least in part, in the following Detailed Description. This
- Overview is intended to provide non-limiting examples of the present subject matter—it is not intended to provide an exclusive or exhaustive explanation. The Detailed Description below is included to provide further information about the present catheters and methods.
- In the drawings, like numerals can be used to describe similar features and components throughout the several views. The drawings illustrate generally, by way of example but not by way of limitation, various embodiments discussed in the present patent document.
-
FIG. 1 illustrates a schematic view of a present catheter, as constructed in accordance with at least one embodiment, located in coronary vasculature. -
FIG. 2 illustrates a distal end portion of a present catheter, as constructed in accordance with at least one embodiment, with one or more helical threads located on both an outer surface of a shaft body and a tip member being engaged with a vessel wall. -
FIG. 3 illustrates partial, staggered cutaways of a present catheter, as constructed in accordance with at least one embodiment. -
FIG. 4 illustrates an enlarged side view of a distal end portion of a present catheter's shaft body, as constructed in accordance with at least one embodiment. -
FIG. 5 illustrates a metallic tip member including one or more helical threads coupled with a distal end of a present catheter's shaft body, as constructed in accordance with at least one embodiment. -
FIG. 6 illustrates a metallic tip member including a smooth outer surface coupled with a distal end of a present catheter's shaft body, as constructed in accordance with at least one embodiment. -
FIG. 7 illustrates a polymer tip member including a non-tapered proximal portion and a tapered distal portion coupled with a distal end of a present catheter's shaft body, as constructed in accordance with at least one embodiment. -
FIG. 8 illustrates partial, staggered cutaways of a present catheter's shaft body, as constructed in accordance with at least one embodiment. -
FIG. 9 illustrates a cross-section of a proximal end portion of a present catheter's shaft body, such as a cross-section along line 9-9 ofFIG. 3 . -
FIG. 10 illustrates a cross-section of a distal end portion of a present catheter's shaft body, such as a cross-section along line 10-10 ofFIG. 3 . -
FIG. 11 illustrates a cross-section of a present catheter's polymer tip member, such as a cross-section along line 11-11 ofFIG. 3 . -
FIG. 12 illustrates a method of using a present catheter to navigate through vasculature, as constructed in accordance with at least one embodiment. - The drawing figures are not necessarily to scale. Certain features and components may be shown exaggerated in scale or in schematic form and some details may not be shown in the interest of clarity and conciseness.
-
FIG. 1 illustrates apresent catheter 100 for supporting aguidewire 102 or delivering a radiopaque, diagnostic or therapeutic agent through a vessel stenosis or other tortuous anatomy ofcoronary vasculature 104, as constructed in accordance with at least one embodiment. Thepresent catheter 100 can be used in peripheral and coronary applications, but its primary benefit is believed to be in coronary applications where the vessels, relative to peripheral vessels, are smaller, more tortuous and more difficult to reach. - The
catheter 100 can include ashaft body 106 and atip member 108 and can be delivered through a surgically created opening in a femoral or radial artery, for example. Theshaft body 106 can extend from aproximal end 110 to adistal end 112 and can define an inner lumen. Thetip member 108 can be connected to thedistal end 112 of theshaft body 106 and can include a lumen coaxial with the shaft body's inner lumen to facilitate receipt or delivery of the guidewire or agent. Aluer hub 114 can be connected to theproximal end 110 of theshaft body 106 to facilitate connection to other medical devices, such as valves, syringes or adaptors, and to provide access to the shaft body's inner lumen. - A
proximal portion 116 of theshaft body 106 can be designed to be less flexible than itsdistal portion 118. The less flexibleproximal portion 116 can provide enhanced axial and circumferential strength to thecatheter 100 for greater pushability and torqueability. Thedistal portion 118 can provide thecatheter 100 with enhanced flexibility for negotiating winding or tortuous vascular passages. An outer surface portion of theshaft body 106, such as thedistal end portion 118, can include one or morehelical threads 120 to enhance catheter delivery or withdrawal through rotation. -
FIG. 2 illustrates engagement between avessel wall 226 and one or morehelical threads shaft body 206 andtip member 208, respectively. A treating clinician can gently push the “rotate-to-advance”catheter 200 through vasculature far enough to engage thehelical threads vessel wall 226. The clinician can then rotate a proximal end of thecatheter 200 in thedirection 228 of the helical threads, such as in a clockwise direction, to advance the catheter through small and tortuous vessels to a target site. Thehelical threads shaft body 206 ortip member 208, to provide a longitudinal pull on thevessel wall 226 or a stenosis, if present, when rotated. Thecatheter 200 can be removed by rotating the proximal end of the catheter in adirection 230 opposite the direction of delivery, such as in a counterclockwise direction. - A side view of a
catheter 300, including ashaft body 306 and atip member 308, is illustrated inFIG. 3 . Theshaft body 306 can include multiple components, including aninner liner 332, a reinforcingbraid member 334, two coil layers 336, 338 wound in opposing directions, and anouter polymer cover 340. Thebraid member 334 can be composed of multiple elongate strands having a rectangular transverse profile and arranged with its thickness directed radially. Each coil layer 336, 338 can be composed of multiple elongate stands having a fully-round transverse profile. Thecatheter 300 can optionally include apolymer tip member 308 composed of a non-tapered proximal portion and a tapered distal portion. The proximal portion of the tip member 308 (shown cutaway) can receive distal ends of thebraid member 334 and coil layers 336, 338. Collectively, the sandwiching of thebraid member 334 and coil layers 336, 338 between theinner liner 332 and theouter polymer cover 340, and the polymer tip member's 308 receipt of distal ends of thebraid member 334 and the coil layers 336, 338 permits thecatheter 300 to be formed at a reduced thickness while maintaining favorable structural characteristics including pushability, torqueability, flexibility and resistance to kinking. -
FIG. 4 illustrates, in enlarged view, one or morehelical threads 420 on an outer surface portion of apolymer cover 440, which can help propel a catheter through a blood vessel when rotated. Thehelical threads 420 can be positioned around adistal end portion 418 of ashaft body 406 and project radially outward.Ends helical threads 420 can be tapered from zero to full height in one-half turn of the helix to facilitate gentle, gradual displacement of a vessel wall or stenosis by the threads when the catheter is rotated for advancement and retraction.Thread width 446 andthread pitch 448 can be designed so that the vessel wall or stenosis does not bridge between adjacent turns of thethreads 420 but rather is only displaced in a manner closely conforming to thethreads 420, thereby providing the necessary longitudinal grip on the vessel wall or stenosis for advancing and retracting the catheter. - In various examples, the one or more
helical threads 420 include a polymer member wound around thepolymer cover 440. The polymer member can be a strip of a synthetic fiber, such as nylon or polyester, having a fully-round cross-sectional shape of about 0.05 mm-0.2 mm in diameter prior to being bonded to thepolymer cover 440. The polymer member can have a melting temperature higher than a melting temperature of thepolymer cover 440 so that thehelical threads 420 can be thermally bonded to, and inlaid in, thepolymer cover 440. Alternatively, thehelical threads 420 can be attached to thepolymer cover 440 by sonic or adhesive bonding. The polymer member can, for example, extend 20-50 turns around the outer surface of thepolymer cover 440 at a uniform pitch of 1.0 mm-2.0 mm, resulting in a threaded section 2-8 cm in length. Optionally, the polymer member can be reinforced with wire or fibers. - Hard, metallic tip members or soft, polymer tip members can be utilized by the present catheters and coupled to a
distal end shaft body FIGS. 1, 2, 5 and 6 illustrate optionalmetallic tip members FIGS. 3 and 7 illustrate an optionalpolymer tip member -
Metallic tip members metallic tip member FIGS. 1, 2 and 5 ) or without (FIG. 6 ) one or morehelical threads helical threads helical threads tip member Metallic tip members 608 including a smooth outer surface (i.e., without threads) can be used in treatment cases benefiting from minimized friction during catheter advancement. In various examples, a proximal diameter of the metallic tip members can be in a range of 0.8 mm to 1.10 mm and adistal diameter -
Polymer tip members distal diameter 709 in a range of 0.3 mm to 0.6 mm. In the example ofFIG. 7 , thepolymer tip member 708 includes a non-taperedproximal portion 750 and a tapereddistal portion 752. Theproximal portion 750 and thedistal portion 752 can have a similar length, or theproximal portion 750 can be longer than thedistal portion 752. In an example, thepolymer tip member 708 has a length of 11 mm, including a 6 mmproximal portion 750 and a 5 mmdistal portion 752. Thepolymer tip member 708 can be impregnated with a radiopaque filler material, such as barium sulfate, bismuth trioxide, bismuth carbonate, powdered tungsten, powdered tantalum or the like, so that its location within a subject's body can be radiographically visualized. -
FIG. 8 further illustrates the multiple components of a present catheter'sshaft body 806, including aliner 832, abraid member 834,multiple coil layers polymer cover 840, each of which can extend thelength 859 of theshaft body 806. Theshaft body 806 can define aninner lumen 860 and have aninner surface 854, anouter surface 856, and awall thickness 858 in a radial direction. Thelength 859 of theshaft body 806 can range from 60 cm-200 cm, for example. - The
liner 832 can extend the length of theshaft body 806 and, optionally, into and through the catheter's tip member. Theliner 832 can be formed of a material providing high lubricity, such as polytetrafluoroethylene (PTFE) or polyethylene, to reduce the forces required to advance a guidewire or other member through an associated catheter. - Surrounding the
liner 832 can be abraid member 834 formed of multipleelongate strands 862 wound helically in opposite directions and interbraided with one another to form multiple crossings. Thebraid member 834, like theliner 832, can extend the length of theshaft body 806 and into the catheter's tip member. Thestrands 862 can be formed of stainless steel or another high tensile strength material and can be axially spaced apart to define multiple pies and voids 863 between thestrands 862. The axial length of the pies, as determined by the strand spacing, can be selected to influence one or more of the catheter's pushability, torqueability, flexibility and kink resistance properties. The transverse profiles of thestrands 862, both as to surface area and as to the ratio of width-to-thickness, can also be selected to influence these characteristics. For example, structural strength can be increased by increasing the strand width while maintaining the same thickness. Flexibility can be increased by increasing the pic axial length. Another factor influencing the desired characteristics is the braid angle of the filament strand windings, i.e., the angle of eachhelical strand 862 with respect to a longitudinal central axis. Increasing the braid angle tends to increase the torqueability while reducing the pushability. In short,strands 862 and arrangements of thestrands 862 can be selected to customize the present catheter's properties. - In the example of
FIG. 8 , thebraid member 834 includes 16stainless steel strands 862 having a braid angle of 45 degrees along the axis of the catheter. Other braid angle ranges from 20 degrees to 60 degrees, for example, are also suitable. Thebraid member 834 can be stretched axially as it is placed upon theliner 832 during manufacture. When the coil layers 836, 838 and thepolymer cover 840 are placed over thebraid member 834, thebraid member 834 can assume an unbiased configuration. In various examples,strands 862 of thebraid member 834 can have a thickness ranging from 0.010 mm to 0.015 mm, but both larger and smaller strand thicknesses can also be used. Widths of thestrands 862 can also vary. Some embodiments use strand widths in the range of about 0.057 mm to 0.070 mm. - The multiple coil layers, which surround the
braid member 834, can include afirst coil layer 836 composed of one ormore wires 864 wound in a first direction and asecond coil layer 838 composed of one ormore wires 866 wound in a second direction, opposing the first direction. Thesecond coil layer 838 can be positioned around and in contact with thefirst coil layer 836. In use, thewires wire other wires - The
wires first coil layer 836 and thesecond coil layer 838 to alter structural properties of the catheter. Wire properties can be selected to balance structural properties, such as pushability, torqueability and flexibility. In an example, each coil layer includes 12 wires having a diameter of about 0.050 mm. Each of the 12 wires can have a uniform pitch that is equal to or greater than about 0.623 mm. Adjacent wires of the 12 wire grouping can be view as having a pitch that is equal to or greater than about 0.072 mm, with a small gap distributed throughout each 12 wire grouping. This distributed gap forms a void 865 between successive windings of each of the first and second coil layers 836, 838. The size of the pitch can depend on the diameter of the wires, the diameter of theinner lumen 860 and the number of wires in the layer. - The
polymer cover 840 can surround the coil layers 836, 838 and, in light of theliner 832, can form the second of two polymer layers included in theshaft body 806. Thepolymer cover 840 can include a low-friction polymer to reduce the forces required to advance the catheter through vasculature, or a polymer with low viscosity at melting temperatures to allow flow through and around thevoids 865 in the coil layers 836, 838 and thevoids 863 in thebraid member 834 when heated during manufacture, the latter of which is shown in different perspectives inFIGS. 8 and 9 . In an example, thepolymer cover 840 is composed of polyether block amide (commonly referred to as “PEBAX,” a registered trademark of Arkema France Corporation). Thepolymer cover 840 can be applied to the coil layers 836, 838 after they are wound into a tubular shape via an extrusion, molding or shrink tubing process, and can be applied thicker along a proximal portion of theshaft body 806 than along a distal portion of the shaft body to enhance distal flexibility and provide a smaller leading size. In an example, the proximal portion includes an outer diameter 909 (seeFIG. 9 ) between 0.9 mm-11 mm and the distal portion includes an outer diameter 1009 (seeFIG. 10 ) between 0.8-1.0 mm. - A hydrophilic coating can be provided on the
outer surface 856 of theshaft body 806 for lubricious delivery and to aid in steerability. The hydrophilic coating can be thin and constitute only a minor part of the wall thickness of theshaft body 806. -
FIGS. 9 and 10 respectively illustrate cross-sections of a proximal portion and a distal portion of ashaft body FIG. 3 . As shown, apolymer cover braid member polymer cover wires polymer cover shaft body -
FIG. 11 illustrates a cross-section of a proximal portion of atip member 1108, and specifically a polymer tip member, which is coupled with a distal end of a shaft body. Distal ends of first andsecond coil layers braid member 1134 and aliner 1132 can extend into thetip member 1108 and can be surrounded by a polymer impregnated with a radiopaque material. Thepolymer 1168 of thetip member 1108 can have a higher viscosity at melting temperatures such that little to no flow through or around the coil layers 1136, 1138 or thebraid member 1134 occurs. In an example, the polymer of the tip member is pellethane and thevoid space 1170 existing within thepolymer 1168 can provide the catheter's distal end portion with increased flexibility relative to the shaft body. -
FIG. 12 illustrates amethod 1272 of using a present catheter to navigate through vasculature, as constructed in accordance with at least one embodiment. - At
step 1274, the method can include advancing a distal end of a guidewire through vasculature to a location proximate a stenosis or other narrowing in a blood vessel. Atstep 1276, a catheter can be guided over the guidewire by inserting its proximal end into an inner lumen of the catheter from the catheter's distal end. The inner lumen can be defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. Using the guidewire as a rail, a distal end of the catheter can be advanced to the location proximate the stenosis or narrowing atstep 1278. - The catheter can be rotated in a first direction at
step 1280, thereby engaging one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel. This engagement between the helical threads and the stenosis or vessel wall can propel the catheter forward, in a distal direction. Incremental rotation of the catheter, particularly the catheter's proximal end, can allow incremental movement of the catheter relative to the stenosis or vessel wall. - At
step 1282, the guidewire can be advanced distally with the support of the catheter. The method can be configured such that the distal end of the guidewire is at all times distal to the distal end of the catheter. - The catheter can be withdrawn from the blood vessel at
step 1284 by rotating its proximal end in a second direction, opposite the first direction. Rotation of the catheter, whether in the first direction or the second direction, can cause wires of the first and second coil layers to engage. - Additional method steps are also possible. At
step 1286, the method can optionally include viewing a tip member using an imaging means. Atstep 1288, the method can optionally include delivering a radiopaque, diagnostic or therapeutic agent through the inner lumen of the catheter. And atstep 1290, the method can optionally include exchanging the guidewire advanced to the location proximate the stenosis or narrowing with a second guidewire. - The present catheters and methods include or use a multi-component shaft body, which can include one or more helical threads projecting from its outer surface. The multi-component shaft body can provide catheters with favorable structural characteristics including pushability, torqueability, flexibility and resistance to kinking. First and second helically-wound coil layers of the shaft body, for example, can provide torqueability and pushability to the catheter. A braid member can enable a small shaft body diameter for extending through a tortuous path and reaching small vessels and can further provide kink resistance. The one or more helical threads can provide the catheter with a rotationally-activated propulsion means. Accordingly, the present catheters and methods can overcome difficulties associated with placing existing “push-to-advance” catheter designs and can possess a small cross-section to navigate tortuous anatomy.
- The above Detailed Description includes references to the accompanying drawings, which form a part of the Detailed Description. The Detailed Description should be read with reference to the drawings. The drawings show, by way of illustration, specific embodiments in which the present catheters and methods can be practiced. These embodiments are also referred to herein as “examples.”
- The above Detailed Description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more features or components thereof) can be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above Detailed Description. Also, various features or components can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed embodiment. Thus, the following claim examples are hereby incorporated into the Detailed Description, with each example standing on its own as a separate embodiment:
- In Example 1, a catheter can comprise an elongate shaft body and a tip member disposed at a distal end of the shaft body. The shaft body can extend from a proximal end to the distal end and can define an inner lumen. The shaft body can include a liner, a multi-layer coil surrounding the liner, and a polymer cover surrounding the multi-layer coil. An outer surface portion of the polymer cover can include one or more helical threads.
- In Example 2, the catheter of Example 1 can optionally be configured such that the multi-layer coil includes a first coil layer wound in a first direction and a second coil layer, surrounding the first coil layer, wound in a second direction opposing the first direction.
- In Example 3, the catheter of Example 2 can optionally be configured such that the first and second coil layers each include a plurality of wound wires having a fully round cross-section.
- In Example 4, the catheter of any one or any combination of Examples 1-3 can optionally be configured such that the polymer cover extends inward through voids between successive windings of the multi-layer coil.
- In Example 5, the catheter of any one or any combination of Examples 1-4 can optionally be configured such that the shaft body further comprises a braid member extending between the liner and the multi-layer coil.
- In Example 6, the catheter of Example 5 can optionally be configured such that the polymer cover extends inward through voids between successive windings of the multi-layer coil and into voids of the braid member.
- n Example 7, the catheter of any one or any combination of Examples 5 or 6 can optionally be configured such that a distal end of each of the liner, the braid member, and the multi-layer coil extend beyond the distal end of the shaft body.
- In Example 8, the catheter of any one or any combination of Examples 1-7 can optionally be configured such that the one or more helical threads are positioned around a distal end portion of the shaft body.
- In Example 9, the catheter of any one or any combination of Examples 1-8 can optionally be configured such that the one or more helical threads include a polymer member wound around the polymer cover.
- In Example 10, the catheter of Example 9 can optionally be configured such that the polymer member forming the one or more helical threads has a melting point higher than a melting point of the polymer cover surrounding the multi-layer coil.
- In Example 11, the catheter of any one or any combination of Examples 1-9 can optionally be configured such that the one or more helical threads include a depression of the outer surface of the polymer cover.
- In Example 12, the catheter of any one or any combination of Examples 1-11 can optionally be configured such that the tip member includes a metallic tip member.
- In Example 13, the catheter of Example 12 can optionally be configured such that an outer surface of the metallic tip member includes one or more helical threads.
- In Example 14, the catheter of Example 13 can optionally be configured such that the one or more helical threads of the metallic tip member project radially outward from its outer surface.
- In Example 15, the catheter of Example 13 can optionally be configured such that the one or more helical threads of the metallic tip member extend radially inward from its outer surface.
- In Example 16, the catheter of any one or any combination of Examples 1-15 can optionally be configured such that the tip member includes a polymer tip member.
- In Example 17, the catheter of Example 16 can optionally be configured such that the polymer tip member includes a non-tapered proximal portion and a tapered distal portion.
- In Example 18, the catheter of Example 17 can optionally be configured such that a distal end of the multi-layer coil extends beyond the distal end of the shaft body and into the non-tapered proximal portion of the polymer tip member.
- In Example 19, a method can comprise advancing a distal end of a guidewire to a location proximate a stenosis or other narrowing in a blood vessel; guiding a catheter over the guidewire; using the guidewire as a rail, advancing a distal end of the catheter to the location proximate the stenosis or narrowing; rotating the catheter in a first direction and advancing it into the stenosis or narrowing; and advancing the guidewire through the stenosis or narrowing with the support of the catheter. The guidewire can be inserted into an inner lumen of the catheter, where the inner lumen is defined, in part, by a liner, a braid member surrounding the liner, a multi-layer coil surrounding the braid member, and a polymer cover surrounding the multi-layer coil. Rotation of the catheter in the first direction can engage one or more helical threads on an outer surface of the polymer cover with the stenosis or wall of the blood vessel, which can help advance the catheter into and eventually through the stenosis or narrowing.
- In Example 20, the method of Example 19 can optionally be configured such that rotating the catheter in the first direction further includes engaging one or more helical threads of a tip member, disposed at the distal end of the catheter, with the stenosis or wall of the blood vessel.
- In Example 21, the method of any one or any combination of Examples 19 or 20 can optionally be configured such that rotating the catheter in the first direction includes rotating a proximal end portion of the catheter, thereby causing the distal end of the catheter to rotate a corresponding amount.
- In Example 22, the method of any one or any combination of Examples 19-21 can optionally further comprise rotating the catheter in a second direction, opposite the first direction, and withdrawing the catheter from the blood vessel.
- In Example 23, the method of Example 22 can optionally be configured such that rotating the catheter in the first or second direction includes engaging first and second coil layers of the multi-layer coil.
- In Example 24, the method of any one or any combination of Examples 22 or 23 can optionally be configured such that rotating the catheter in the first or second direction includes inhibiting kinking between a distal end of a shaft body and a proximal end of a tip member by extending the braid member and the multi-layer coil beyond the distal end of the shaft body and into the proximal end of the tip member.
- In Example 25, the method of any one or any combination of Examples 19-24 can optionally further comprise delivering a radiopaque, diagnostic or therapeutic agent through the inner lumen of the catheter.
- In Example 26, the method of any one or any combination of Examples 19-25 can optionally further comprise viewing a tip member, disposed at the distal end of the catheter, using an imaging means.
- In Example 27, the method of any one or any combination of Examples 19-26 can optionally further comprise exchanging the guidewire advanced to the location proximate the stenosis or narrowing with a second guidewire.
- In Example 28, the catheter or method of any one or any combination of Examples 1-27 can optionally be configured such that all features, components, operations or other options are available to use or select from.
- Certain terms are used throughout this patent document to refer to particular features or components. As one skilled in the art appreciates, different people may refer to the same feature or component by different names. This patent document does not intend to distinguish between components or features that differ in name but not in function.
- For the following defined terms, certain definitions shall be applied unless a different definition is given elsewhere in this patent document. The terms “a,” “an,” and “the” are used to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” The term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B.” All numeric values are assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In many instances, the term “about” can include numbers that are rounded to the nearest significant figure. The recitation of numerical ranges by endpoints includes all numbers and sub-ranges within and bounding that range (e.g., 1 to 4 includes 1, 1.5, 1.75, 2, 2.3, 2.6, 2.9, etc. and 1 to 1.5, 1 to 2, 1 to 3, 2 to 3.5, 2 to 4, 3 to 4, etc.). The terms “patient” and “subject” are intended to include mammals, such as for human or veterinary applications. The terms “distal” and “proximal” are used to refer to a position or direction relative to the treating clinician. “Distal” and “distally” refer to a position that is distant from, or in a direction away from, the treating clinician. “Proximal” and “proximally” refer to a position that is near, or in a direction toward, the treating clinician.
- The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended; that is, a device, kit or method that includes features or components in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
- The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/061,025 US20210015517A1 (en) | 2014-10-09 | 2020-10-01 | Catheter |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462061781P | 2014-10-09 | 2014-10-09 | |
US14/673,966 US9636477B2 (en) | 2014-10-09 | 2015-03-31 | Catheter |
US15/441,352 US10835283B2 (en) | 2014-10-09 | 2017-02-24 | Catheter |
US17/061,025 US20210015517A1 (en) | 2014-10-09 | 2020-10-01 | Catheter |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/441,352 Continuation US10835283B2 (en) | 2014-10-09 | 2017-02-24 | Catheter |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210015517A1 true US20210015517A1 (en) | 2021-01-21 |
Family
ID=55654728
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/673,966 Active 2035-08-25 US9636477B2 (en) | 2014-10-09 | 2015-03-31 | Catheter |
US15/441,352 Active US10835283B2 (en) | 2014-10-09 | 2017-02-24 | Catheter |
US17/061,025 Pending US20210015517A1 (en) | 2014-10-09 | 2020-10-01 | Catheter |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/673,966 Active 2035-08-25 US9636477B2 (en) | 2014-10-09 | 2015-03-31 | Catheter |
US15/441,352 Active US10835283B2 (en) | 2014-10-09 | 2017-02-24 | Catheter |
Country Status (1)
Country | Link |
---|---|
US (3) | US9636477B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11160952B2 (en) | 2017-08-25 | 2021-11-02 | Teleflex Life Sciences Limited | Catheter |
USD1029235S1 (en) | 2022-08-12 | 2024-05-28 | Luminoah, Inc. | Fluid delivery system |
USD1029236S1 (en) | 2022-08-12 | 2024-05-28 | Luminoah, Inc. | Fluid pouch assembly |
US12017039B2 (en) | 2022-08-12 | 2024-06-25 | Luminoah, Inc. | Pump for wearable fluid delivery system |
USD1033628S1 (en) | 2022-08-12 | 2024-07-02 | Luminoah, Inc. | Fluid delivery module |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9636477B2 (en) | 2014-10-09 | 2017-05-02 | Vascular Solutions, Inc. | Catheter |
US9782561B2 (en) | 2014-10-09 | 2017-10-10 | Vacular Solutions, Inc. | Catheter tip |
US11007345B2 (en) | 2016-10-05 | 2021-05-18 | Orbusneich Medical Pte. Ltd. | Modular vascular catheter |
US10617847B2 (en) | 2014-11-04 | 2020-04-14 | Orbusneich Medical Pte. Ltd. | Variable flexibility catheter support frame |
EP4005623A1 (en) | 2014-11-04 | 2022-06-01 | OrbusNeich Medical Pte. Ltd. | Progressive flexibility catheter support frame |
EP3476423B1 (en) | 2017-10-27 | 2021-01-20 | Heraeus Medical Components, LLC | Microcatheter and method |
NL1043006B1 (en) * | 2018-09-21 | 2020-05-29 | Idris Oncology Bv | Device for collecting specimen in a fluid |
US20200155184A1 (en) * | 2018-10-12 | 2020-05-21 | Synecor Llc | Graspers for use in guiding delivery of percutaneous cardiac therapeutic devices |
US11701828B2 (en) | 2019-10-28 | 2023-07-18 | Medtronic, Inc. | Additive manufacturing for medical devices |
CN115297922A (en) * | 2020-03-30 | 2022-11-04 | 美敦力公司 | 3D printed splines on medical devices and methods of making the same |
CN114832203A (en) * | 2020-05-27 | 2022-08-02 | 深圳北芯生命科技股份有限公司 | Microcatheter with tapered tip |
CN116096552A (en) | 2020-07-31 | 2023-05-09 | 美敦力公司 | System and method for manufacturing 3D printed medical devices |
US11718018B2 (en) | 2020-07-31 | 2023-08-08 | Medtronic, Inc. | 3D printed medical devices including internal shaping |
WO2022026771A1 (en) | 2020-07-31 | 2022-02-03 | Medtronic, Inc. | Systems and methods for manufacturing 3d printed medical devices |
DE102021126571A1 (en) * | 2021-10-13 | 2023-04-13 | Ambu A/S | Reinforced working channel tubing for an endoscope |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732154A (en) * | 1984-05-14 | 1988-03-22 | Surgical Systems & Instruments, Inc. | Rotary catheter system |
US4900303A (en) * | 1978-03-10 | 1990-02-13 | Lemelson Jerome H | Dispensing catheter and method |
US5662673A (en) * | 1995-04-05 | 1997-09-02 | Kieturakis; Maciej J. | Surgical trocar and method for placing a trocar sleeve in a body wall |
US5879342A (en) * | 1996-10-21 | 1999-03-09 | Kelley; Gregory S. | Flexible and reinforced tubing |
US5989230A (en) * | 1996-01-11 | 1999-11-23 | Essex Technology, Inc. | Rotate to advance catheterization system |
US6171297B1 (en) * | 1998-06-30 | 2001-01-09 | Schneider (Usa) Inc | Radiopaque catheter tip |
US6767355B2 (en) * | 2000-11-03 | 2004-07-27 | Willy Rusch Gmbh | Tracheostomy dilator |
US6939337B2 (en) * | 2000-07-14 | 2005-09-06 | Cook Incorporated | Medical device including tube having a braid and an expanded coil |
US20050272976A1 (en) * | 2004-03-15 | 2005-12-08 | Olympus Corporation | Endoscope insertion aiding device |
US20100094258A1 (en) * | 2008-10-11 | 2010-04-15 | Asahi Intecc Co., Ltd. | Catheter |
US7850678B2 (en) * | 2006-01-13 | 2010-12-14 | Olympus Medical Systems Corp. | Endoscope, endoscope system, and method of manufacturing endoscope |
US20130018318A1 (en) * | 2011-07-15 | 2013-01-17 | Cook Medical Technologies Llc | Introducer sheath with braided filament securement mechanism |
US8414477B2 (en) * | 2005-05-04 | 2013-04-09 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
US8500785B2 (en) * | 2004-07-13 | 2013-08-06 | Boston Scientific Scimed, Inc. | Catheter |
US9055971B2 (en) * | 2001-03-14 | 2015-06-16 | Covidien Lp | Trocar device |
US10863994B2 (en) * | 2014-08-04 | 2020-12-15 | Medos International Sàrl | Flexible transport auger |
Family Cites Families (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3815608A (en) | 1972-03-10 | 1974-06-11 | East West Med Prod | Retaining catheter |
US4898212A (en) * | 1984-10-01 | 1990-02-06 | Eaton Corporation | Fatigue resistant hose |
US5037404A (en) * | 1988-11-14 | 1991-08-06 | Cordis Corporation | Catheter having sections of variable torsion characteristics |
US4932413A (en) * | 1989-03-13 | 1990-06-12 | Schneider (Usa), Inc. | Guidewire exchange catheter |
FR2649470B1 (en) * | 1989-07-05 | 1991-10-18 | Hutchinson Sa | PROTECTIVE COATING AGAINST HEAT AND FIRE FOR PIPES AND SIMILAR STRUCTURES OF ELONGATE SHAPE |
US5057092A (en) * | 1990-04-04 | 1991-10-15 | Webster Wilton W Jr | Braided catheter with low modulus warp |
US5569220A (en) * | 1991-01-24 | 1996-10-29 | Cordis Webster, Inc. | Cardiovascular catheter having high torsional stiffness |
US5234416A (en) | 1991-06-06 | 1993-08-10 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter with a nontraumatic distal tip |
US5769830A (en) | 1991-06-28 | 1998-06-23 | Cook Incorporated | Soft tip guiding catheter |
US5129910A (en) * | 1991-07-26 | 1992-07-14 | The Regents Of The University Of California | Stone expulsion stent |
US5263959A (en) | 1991-10-21 | 1993-11-23 | Cathco, Inc. | Dottering auger catheter system and method |
US5423846A (en) | 1991-10-21 | 1995-06-13 | Cathco, Inc. | Dottering auger catheter system |
NL9300670A (en) | 1993-04-20 | 1994-11-16 | Cordis Europ | Catheter with electrically conductive wire reinforcement. |
US5462523A (en) | 1993-05-18 | 1995-10-31 | Target Therapeutics, Inc. | Drug delivery system |
US5954651A (en) | 1993-08-18 | 1999-09-21 | Scimed Life Systems, Inc. | Catheter having a high tensile strength braid wire constraint |
JPH07178176A (en) | 1993-12-24 | 1995-07-18 | Terumo Corp | Catheter |
US5911715A (en) | 1994-02-14 | 1999-06-15 | Scimed Life Systems, Inc. | Guide catheter having selected flexural modulus segments |
US6858024B1 (en) | 1994-02-14 | 2005-02-22 | Scimed Life Systems, Inc. | Guide catheter having selected flexural modulus segments |
US5569218A (en) | 1994-02-14 | 1996-10-29 | Scimed Life Systems, Inc. | Elastic guide catheter transition element |
JP3659664B2 (en) | 1994-05-31 | 2005-06-15 | テルモ株式会社 | Medical tube |
US5454795A (en) | 1994-06-27 | 1995-10-03 | Target Therapeutics, Inc. | Kink-free spiral-wound catheter |
JP3394327B2 (en) | 1994-07-11 | 2003-04-07 | テルモ株式会社 | Tube inner surface treatment method |
US5658264A (en) | 1994-11-10 | 1997-08-19 | Target Therapeutics, Inc. | High performance spiral-wound catheter |
EP0801581B1 (en) | 1995-01-04 | 1998-08-12 | Medtronic, Inc. | Improved method of soft tip forming |
US5662622A (en) * | 1995-04-04 | 1997-09-02 | Cordis Corporation | Intravascular catheter |
JP2865428B2 (en) | 1995-04-28 | 1999-03-08 | ターゲット セラピューティクス, インコーポレイテッド | High performance braided catheter |
US6824553B1 (en) * | 1995-04-28 | 2004-11-30 | Target Therapeutics, Inc. | High performance braided catheter |
US5702373A (en) | 1995-08-31 | 1997-12-30 | Target Therapeutics, Inc. | Composite super-elastic alloy braid reinforced catheter |
US5871475A (en) | 1995-06-05 | 1999-02-16 | Frassica; James J. | Catheter system |
US5601537A (en) | 1995-06-05 | 1997-02-11 | Frassica; James J. | Catheter system |
US5871537A (en) | 1996-02-13 | 1999-02-16 | Scimed Life Systems, Inc. | Endovascular apparatus |
US5830184A (en) | 1996-03-06 | 1998-11-03 | Medical Components, Inc. | Composite catheter stabilizing devices, methods of making the same and catheter extracting device |
US5927345A (en) * | 1996-04-30 | 1999-07-27 | Target Therapeutics, Inc. | Super-elastic alloy braid structure |
JP3563540B2 (en) | 1996-09-13 | 2004-09-08 | テルモ株式会社 | catheter |
US5971975A (en) | 1996-10-09 | 1999-10-26 | Target Therapeutics, Inc. | Guide catheter with enhanced guidewire tracking |
US6379334B1 (en) | 1997-02-10 | 2002-04-30 | Essex Technology, Inc. | Rotate advance catheterization system |
US6508825B1 (en) | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
US5968064A (en) | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
DE19721703A1 (en) | 1997-05-23 | 1998-11-26 | Angiomed Ag | Catheter system with high kink resistance |
US5951539A (en) | 1997-06-10 | 1999-09-14 | Target Therpeutics, Inc. | Optimized high performance multiple coil spiral-wound vascular catheter |
US5891114A (en) | 1997-09-30 | 1999-04-06 | Target Therapeutics, Inc. | Soft-tip high performance braided catheter |
US20030097138A1 (en) | 1997-12-12 | 2003-05-22 | Boris Reydel | Body canal intrusion instrumentation having bi-directional coefficient of surface friction with body tissue |
US20050171478A1 (en) | 1998-01-13 | 2005-08-04 | Selmon Matthew R. | Catheter system for crossing total occlusions in vasculature |
US6231546B1 (en) | 1998-01-13 | 2001-05-15 | Lumend, Inc. | Methods and apparatus for crossing total occlusions in blood vessels |
US6003561A (en) * | 1998-04-16 | 1999-12-21 | Southeastern Universities Research Assn., Inc. | Flexible cryogenic conduit |
US6368316B1 (en) * | 1998-06-11 | 2002-04-09 | Target Therapeutics, Inc. | Catheter with composite stiffener |
JP4339940B2 (en) | 1998-07-03 | 2009-10-07 | 清仁 石田 | Catheter and manufacturing method thereof |
EP1096965B1 (en) | 1998-07-16 | 2007-12-05 | Mark Cohen | Reinforced variable stiffness tubing |
US6171295B1 (en) * | 1999-01-20 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular catheter with composite reinforcement |
US6726712B1 (en) | 1999-05-14 | 2004-04-27 | Boston Scientific Scimed | Prosthesis deployment device with translucent distal end |
ATE257722T1 (en) * | 1999-07-16 | 2004-01-15 | Terumo Corp | CATHETER AND METHOD FOR PRODUCING SAME |
US6508804B2 (en) * | 1999-07-28 | 2003-01-21 | Scimed Life Systems, Inc. | Catheter having continuous lattice and coil reinforcement |
US6689120B1 (en) | 1999-08-06 | 2004-02-10 | Boston Scientific Scimed, Inc. | Reduced profile delivery system |
JP2001095923A (en) | 1999-09-28 | 2001-04-10 | Terumo Corp | Catheter |
US7758624B2 (en) | 2000-11-13 | 2010-07-20 | C. R. Bard, Inc. | Implant delivery device |
EP1103281A3 (en) | 1999-11-26 | 2002-05-02 | Terumo Kabushiki Kaisha | Catheter having sections with different rigidity |
EP1409058A2 (en) | 2000-01-28 | 2004-04-21 | William Cook Europe ApS | Endovascular medical device with plurality of wires |
EP1270031A4 (en) * | 2000-03-22 | 2006-05-24 | Kawasumi Lab | Medical tube and production method and production device therefor and medical appliance |
US6508806B1 (en) * | 2000-12-13 | 2003-01-21 | Advanced Cardiovascular Systems, Inc. | Catheter with multi-layer wire reinforced wall construction |
US7927784B2 (en) | 2000-12-20 | 2011-04-19 | Ev3 | Vascular lumen debulking catheters and methods |
US7699790B2 (en) | 2000-12-20 | 2010-04-20 | Ev3, Inc. | Debulking catheters and methods |
JP4080874B2 (en) | 2000-12-20 | 2008-04-23 | フォックス ハロウ テクノロジーズ,インコーポレイティド | Bulking catheter |
US6858019B2 (en) | 2001-01-09 | 2005-02-22 | Rex Medical, L.P. | Dialysis catheter and methods of insertion |
US8721625B2 (en) | 2001-01-26 | 2014-05-13 | Cook Medical Technologies Llc | Endovascular medical device with plurality of wires |
US20020156460A1 (en) * | 2001-04-20 | 2002-10-24 | Scimed Life Systems, Inc | Microcatheter with improved distal tip and transitions |
AU2002364514B2 (en) | 2001-11-29 | 2008-12-18 | Cook Medical Technologies Llc | Medical device delivery system |
US7141044B2 (en) * | 2001-12-11 | 2006-11-28 | Ekos Corporation | Alternate site gene therapy |
US6945970B2 (en) | 2001-12-27 | 2005-09-20 | Scimed Life Systems, Inc. | Catheter incorporating a curable polymer layer to control flexibility and method of manufacture |
US7488338B2 (en) | 2001-12-27 | 2009-02-10 | Boston Scientific Scimed, Inc. | Catheter having an improved torque transmitting shaft |
US7037288B2 (en) | 2002-01-14 | 2006-05-02 | Codman & Shurtleff, Inc. | Anti-block catheter |
US7300534B2 (en) | 2002-01-15 | 2007-11-27 | Boston Scientific Scimed, Inc. | Bonds between metals and polymers for medical devices |
US20030191451A1 (en) * | 2002-04-05 | 2003-10-09 | Kevin Gilmartin | Reinforced catheter system |
US6966891B2 (en) | 2002-08-27 | 2005-11-22 | Terumo Kabushiki Kaisha | Catheter |
JP4065167B2 (en) | 2002-09-05 | 2008-03-19 | テルモ株式会社 | catheter |
US20040102719A1 (en) * | 2002-11-22 | 2004-05-27 | Velocimed, L.L.C. | Guide wire control catheters for crossing occlusions and related methods of use |
JP4098613B2 (en) | 2002-12-11 | 2008-06-11 | 朝日インテック株式会社 | Hollow stranded wire coil body, medical instrument using the same, and manufacturing method thereof |
US7322988B2 (en) | 2003-01-17 | 2008-01-29 | Boston Scientific Scimed, Inc. | Methods of forming catheters with soft distal tips |
US8377035B2 (en) | 2003-01-17 | 2013-02-19 | Boston Scientific Scimed, Inc. | Unbalanced reinforcement members for medical device |
JP3971320B2 (en) | 2003-02-17 | 2007-09-05 | 修 加藤 | catheter |
DE602004022397D1 (en) | 2003-04-14 | 2009-09-17 | Cook Inc | DEPOSIT CATHETER / SLING WITH LARGE DIAMETER |
US7985213B2 (en) | 2003-04-25 | 2011-07-26 | Cook Medical Technologies Llc | Delivery catheter and method of manufacture |
JP2004357805A (en) | 2003-06-02 | 2004-12-24 | Terumo Corp | Catheter assembly |
ATE427131T1 (en) | 2003-06-10 | 2009-04-15 | Lumend Inc | CATHETER SYSTEM AND METHOD FOR OPENING BLOOD VESSEL OCCLUSIONS |
US7104966B2 (en) | 2003-07-16 | 2006-09-12 | Samuel Shiber | Guidewire system with exposed midsection |
JP4141336B2 (en) | 2003-06-26 | 2008-08-27 | 朝日インテック株式会社 | Manufacturing method of medical guide wire |
US7597830B2 (en) | 2003-07-09 | 2009-10-06 | Boston Scientific Scimed, Inc. | Method of forming catheter distal tip |
US7291127B2 (en) | 2003-07-28 | 2007-11-06 | Boston Scientific Scimed, Inc. | Variable manipulative strength catheter |
US7615043B2 (en) | 2003-08-20 | 2009-11-10 | Boston Scientific Scimed, Inc. | Medical device incorporating a polymer blend |
US7824392B2 (en) | 2003-08-20 | 2010-11-02 | Boston Scientific Scimed, Inc. | Catheter with thin-walled braid |
US7763012B2 (en) | 2003-09-02 | 2010-07-27 | St. Jude Medical, Cardiology Division, Inc. | Devices and methods for crossing a chronic total occlusion |
US8382739B2 (en) | 2003-12-02 | 2013-02-26 | Boston Scientific Scimed, Inc. | Composite medical device and method of forming |
US7955313B2 (en) | 2003-12-17 | 2011-06-07 | Boston Scientific Scimed, Inc. | Composite catheter braid |
US8221387B2 (en) | 2004-02-24 | 2012-07-17 | Boston Scientific Scimed, Inc. | Catheter having an improved distal tip |
JP4497454B2 (en) | 2004-04-06 | 2010-07-07 | 朝日インテック株式会社 | Medical tools |
US7887529B2 (en) | 2004-04-19 | 2011-02-15 | Boston Scientific Scimed, Inc. | Hybrid micro guide catheter |
WO2005105192A1 (en) | 2004-05-05 | 2005-11-10 | Invatec S.R.L. | A catheter and the method for making it |
IL162415A0 (en) | 2004-06-09 | 2005-11-20 | Noam Shamay | A micro-catheter for crossing totalocclusions in blood vessels |
US7166100B2 (en) | 2004-06-29 | 2007-01-23 | Cordis Neurovascular, Inc. | Balloon catheter shaft design |
US7621904B2 (en) | 2004-10-21 | 2009-11-24 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
US7828790B2 (en) | 2004-12-03 | 2010-11-09 | Boston Scientific Scimed, Inc. | Selectively flexible catheter and method of use |
US7815599B2 (en) | 2004-12-10 | 2010-10-19 | Boston Scientific Scimed, Inc. | Catheter having an ultra soft tip and methods for making the same |
JP4693091B2 (en) | 2004-12-21 | 2011-06-01 | 朝日インテック株式会社 | Catheter and manufacturing method thereof |
US20060151043A1 (en) * | 2005-01-07 | 2006-07-13 | Shadrach Nanney | Fire resistant hose construction |
WO2006077951A1 (en) | 2005-01-21 | 2006-07-27 | Terumo Kabushiki Kaisha | Catheter and process for producing the same |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US7740652B2 (en) | 2005-03-30 | 2010-06-22 | Boston Scientific Scimed, Inc. | Catheter |
US8235942B2 (en) | 2005-05-04 | 2012-08-07 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
US7780650B2 (en) | 2005-05-04 | 2010-08-24 | Spirus Medical, Inc. | Rotate-to-advance catheterization system |
US20060264904A1 (en) | 2005-05-09 | 2006-11-23 | Kerby Walter L | Medical device |
US20060258987A1 (en) | 2005-05-10 | 2006-11-16 | Cook Incorporated | Catheter stiffening member |
US8419680B2 (en) * | 2005-06-24 | 2013-04-16 | Boston Scientific Scimed, Inc. | Rapid exchange pre-dilator |
JP2007029120A (en) | 2005-07-22 | 2007-02-08 | Kaneka Corp | Medical catheter tube and its manufacturing method |
JP4553010B2 (en) | 2005-07-28 | 2010-09-29 | 株式会社カネカ | Medical catheter tube and manufacturing method thereof |
JP4790349B2 (en) | 2005-08-30 | 2011-10-12 | 株式会社パイオラックスメディカルデバイス | catheter |
US7998132B2 (en) | 2005-09-02 | 2011-08-16 | Boston Scientific Scimed, Inc. | Adjustable stiffness catheter |
US9084694B2 (en) | 2005-09-09 | 2015-07-21 | Boston Scientific Scimed, Inc. | Coil shaft |
US8257314B2 (en) | 2005-11-16 | 2012-09-04 | Cook Medical Technologies Llc | Spiral shaft catheter |
EP2792382A1 (en) | 2005-12-19 | 2014-10-22 | Cook Medical Technologies LLC | Medical catheters of modular construction |
JP4905647B2 (en) | 2006-02-14 | 2012-03-28 | 朝日インテック株式会社 | Medical tools |
AU2007224008B2 (en) | 2006-03-03 | 2013-04-18 | Cook Medical Technologies Llc | Endoscopic apparatus having an improved catheter |
US20070260224A1 (en) | 2006-03-09 | 2007-11-08 | Abbott Laboratories | Flexible catheter tip having a shaped head |
US7579550B2 (en) | 2006-03-31 | 2009-08-25 | Boston Scientific Scimed, Inc. | Flexible device shaft with angled spiral wrap |
US7766896B2 (en) | 2006-04-25 | 2010-08-03 | Boston Scientific Scimed, Inc. | Variable stiffness catheter assembly |
US8021352B2 (en) | 2006-08-23 | 2011-09-20 | Codman & Shurtleff, Inc. | Unfused catheter body feature and methods of manufacture |
US8419658B2 (en) | 2006-09-06 | 2013-04-16 | Boston Scientific Scimed, Inc. | Medical device including structure for crossing an occlusion in a vessel |
US8574219B2 (en) | 2006-09-18 | 2013-11-05 | Boston Scientific Scimed, Inc. | Catheter shaft including a metallic tapered region |
US20080108974A1 (en) | 2006-10-20 | 2008-05-08 | Vital Signs, Inc. | Reinforced catheter with radiopaque distal tip and process of manufacture |
US7981091B2 (en) * | 2006-10-24 | 2011-07-19 | Vascular Solutions, Inc. | Small diameter intravascular catheter with screw tip and limited torsional displacement |
US8556914B2 (en) | 2006-12-15 | 2013-10-15 | Boston Scientific Scimed, Inc. | Medical device including structure for crossing an occlusion in a vessel |
US8944112B2 (en) * | 2007-02-01 | 2015-02-03 | Eaton Corporation | Braided hose and method of making same |
US20120149985A1 (en) | 2007-05-18 | 2012-06-14 | Frassica James J | Rotate-to-advance catheterization system |
US8870755B2 (en) * | 2007-05-18 | 2014-10-28 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
US7914515B2 (en) | 2007-07-18 | 2011-03-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter and introducer catheter having torque transfer layer and method of manufacture |
US20090048657A1 (en) | 2007-08-15 | 2009-02-19 | Boston Scientific Scimed, Inc. | Preferentially varying-density ePTFE structure |
EP3659664A1 (en) | 2007-10-22 | 2020-06-03 | Bridgepoint Medical, Inc. | Devices for crossing chronic total occlusions |
US20090112063A1 (en) * | 2007-10-31 | 2009-04-30 | Bakos Gregory J | Endoscopic overtubes |
US7841994B2 (en) | 2007-11-02 | 2010-11-30 | Boston Scientific Scimed, Inc. | Medical device for crossing an occlusion in a vessel |
JP5631744B2 (en) | 2008-02-05 | 2014-11-26 | ブリッジポイント、メディカル、インコーポレイテッドBridgepoint Medical, Inc. | Crossing occluded parts in blood vessels |
US8337425B2 (en) | 2008-02-05 | 2012-12-25 | Bridgepoint Medical, Inc. | Endovascular device with a tissue piercing distal probe and associated methods |
WO2009134346A2 (en) | 2008-04-28 | 2009-11-05 | David Bryan Robinson | Methods and apparatus for crossing occlusions in blood vessels |
US9750625B2 (en) | 2008-06-11 | 2017-09-05 | C.R. Bard, Inc. | Catheter delivery device |
US8206373B2 (en) | 2008-07-01 | 2012-06-26 | Boston Scientific Scimed, Inc. | Medical device including braid with coated portion |
US8109985B2 (en) | 2008-07-23 | 2012-02-07 | Boston Scientific Scimed, Inc. | Occlusion crossing device and method |
JP5317566B2 (en) | 2008-07-30 | 2013-10-16 | テルモ株式会社 | Catheter assembly |
US8162891B2 (en) * | 2008-11-26 | 2012-04-24 | Revascular Therapeutics, Inc. | Delivery and exchange catheter for storing guidewire |
US8758847B2 (en) | 2009-02-18 | 2014-06-24 | AUST Development, LLC | Apparatus and methods for making coated liners and tubular devices including such liners |
US8821510B2 (en) * | 2009-04-15 | 2014-09-02 | Cook Medical Technologies Llc | Flexible sheath with polymer coil |
US8955552B2 (en) * | 2009-07-24 | 2015-02-17 | Parker-Hannifin Corporation | Fire resistant hose assembly |
JP5688023B2 (en) | 2009-09-15 | 2015-03-25 | テルモ株式会社 | catheter |
JP5399301B2 (en) | 2010-03-12 | 2014-01-29 | テルモ株式会社 | catheter |
JP4846044B1 (en) | 2010-06-30 | 2011-12-28 | テルモ株式会社 | Medical device |
JP5777936B2 (en) | 2010-07-16 | 2015-09-09 | テルモ株式会社 | Suction catheter |
EP2603276A4 (en) | 2010-08-13 | 2017-07-05 | Cathrx Ltd | A catheter sheath and a method of manufacturing |
CN103096964B (en) | 2010-09-23 | 2015-10-21 | 奥林巴斯医疗株式会社 | Bending conduit |
USD690806S1 (en) | 2010-10-26 | 2013-10-01 | Asahi Intecc Co., Ltd. | Coil |
JP2012223346A (en) | 2011-04-19 | 2012-11-15 | Terumo Corp | Catheter |
US9480818B2 (en) | 2011-08-22 | 2016-11-01 | Boston Scientific Scimed, Inc. | Rotatable tip for endoscopic medical devices |
JP2013198633A (en) | 2012-03-26 | 2013-10-03 | Sumitomo Bakelite Co Ltd | Medical instrument, and method for manufacturing medical instrument |
JP6125806B2 (en) | 2012-11-13 | 2017-05-10 | テルモ株式会社 | catheter |
JP6076855B2 (en) | 2013-08-09 | 2017-02-08 | 川澄化学工業株式会社 | Microcatheter and catheter apparatus |
US9636477B2 (en) | 2014-10-09 | 2017-05-02 | Vascular Solutions, Inc. | Catheter |
US9782561B2 (en) | 2014-10-09 | 2017-10-10 | Vacular Solutions, Inc. | Catheter tip |
US10398874B2 (en) | 2015-05-29 | 2019-09-03 | Covidien Lp | Catheter distal tip configuration |
US10238834B2 (en) | 2017-08-25 | 2019-03-26 | Teleflex Innovations S.À.R.L. | Catheter |
-
2015
- 2015-03-31 US US14/673,966 patent/US9636477B2/en active Active
-
2017
- 2017-02-24 US US15/441,352 patent/US10835283B2/en active Active
-
2020
- 2020-10-01 US US17/061,025 patent/US20210015517A1/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900303A (en) * | 1978-03-10 | 1990-02-13 | Lemelson Jerome H | Dispensing catheter and method |
US4732154A (en) * | 1984-05-14 | 1988-03-22 | Surgical Systems & Instruments, Inc. | Rotary catheter system |
US5662673A (en) * | 1995-04-05 | 1997-09-02 | Kieturakis; Maciej J. | Surgical trocar and method for placing a trocar sleeve in a body wall |
US5989230A (en) * | 1996-01-11 | 1999-11-23 | Essex Technology, Inc. | Rotate to advance catheterization system |
US5879342A (en) * | 1996-10-21 | 1999-03-09 | Kelley; Gregory S. | Flexible and reinforced tubing |
US6171297B1 (en) * | 1998-06-30 | 2001-01-09 | Schneider (Usa) Inc | Radiopaque catheter tip |
US6939337B2 (en) * | 2000-07-14 | 2005-09-06 | Cook Incorporated | Medical device including tube having a braid and an expanded coil |
US6767355B2 (en) * | 2000-11-03 | 2004-07-27 | Willy Rusch Gmbh | Tracheostomy dilator |
US9055971B2 (en) * | 2001-03-14 | 2015-06-16 | Covidien Lp | Trocar device |
US20050272976A1 (en) * | 2004-03-15 | 2005-12-08 | Olympus Corporation | Endoscope insertion aiding device |
US8500785B2 (en) * | 2004-07-13 | 2013-08-06 | Boston Scientific Scimed, Inc. | Catheter |
US8414477B2 (en) * | 2005-05-04 | 2013-04-09 | Olympus Endo Technology America Inc. | Rotate-to-advance catheterization system |
US7850678B2 (en) * | 2006-01-13 | 2010-12-14 | Olympus Medical Systems Corp. | Endoscope, endoscope system, and method of manufacturing endoscope |
US20100094258A1 (en) * | 2008-10-11 | 2010-04-15 | Asahi Intecc Co., Ltd. | Catheter |
US20130018318A1 (en) * | 2011-07-15 | 2013-01-17 | Cook Medical Technologies Llc | Introducer sheath with braided filament securement mechanism |
US10863994B2 (en) * | 2014-08-04 | 2020-12-15 | Medos International Sàrl | Flexible transport auger |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11160952B2 (en) | 2017-08-25 | 2021-11-02 | Teleflex Life Sciences Limited | Catheter |
USD1029235S1 (en) | 2022-08-12 | 2024-05-28 | Luminoah, Inc. | Fluid delivery system |
USD1029236S1 (en) | 2022-08-12 | 2024-05-28 | Luminoah, Inc. | Fluid pouch assembly |
US12017039B2 (en) | 2022-08-12 | 2024-06-25 | Luminoah, Inc. | Pump for wearable fluid delivery system |
USD1033628S1 (en) | 2022-08-12 | 2024-07-02 | Luminoah, Inc. | Fluid delivery module |
Also Published As
Publication number | Publication date |
---|---|
US20170156750A1 (en) | 2017-06-08 |
US10835283B2 (en) | 2020-11-17 |
US9636477B2 (en) | 2017-05-02 |
US20160101262A1 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210015517A1 (en) | Catheter | |
US9782561B2 (en) | Catheter tip | |
US11160952B2 (en) | Catheter | |
US11819631B2 (en) | Catheter shaft and associated devices, systems, and methods | |
US10926060B2 (en) | Flexible tip catheter | |
EP2450077B1 (en) | Micro catheter | |
US5599326A (en) | Catheter with multi-layer section | |
US20170072163A1 (en) | Catheter shaft and associated devices, systems, and methods | |
US11986607B2 (en) | Catheter structure with improved support and related systems, methods, and devices | |
EP3347078B1 (en) | Polymeric catheter shaft with reinforcement | |
JP7155269B2 (en) | Guided extension catheter | |
WO2017044129A1 (en) | Catheter shaft and associated devices, systems, and methods | |
US20240009431A1 (en) | Guidewire | |
JP2015533555A (en) | Method for producing variably reinforced extension medical device | |
EP4291275A1 (en) | Catheter and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VASCULAR SOLUTIONS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROOT, HOWARD;BRIDGEMAN, JOHN;MICHAEL, STEVE;REEL/FRAME:053951/0558 Effective date: 20150325 Owner name: TELEFLEX INNOVATIONS S.A.R.L., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUTTON, GREGG S.;GANSKE, KARL V.;REEL/FRAME:053951/0672 Effective date: 20190312 Owner name: TELEFLEX LIFE SCIENCES LIMITED, MALTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELEFLEX MEDICAL DEVICES S.A.R.L.;REEL/FRAME:053967/0034 Effective date: 20191230 Owner name: VASCULAR SOLUTIONS LLC, MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:VASCULAR SOLUTIONS, INC.;REEL/FRAME:053967/0097 Effective date: 20170808 Owner name: TELEFLEX INNOVATIONS S.A.R.L., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VASCULAR SOLUTIONS LLC;REEL/FRAME:053966/0939 Effective date: 20171122 Owner name: TELEFLEX MEDICAL DEVICES S.A.R.L., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELEFLEX INNOVATIONS S.A.R.L.;REEL/FRAME:053967/0001 Effective date: 20190930 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: TELEFLEX LIFE SCIENCES LLC, DELAWARE Free format text: MERGER;ASSIGNOR:TELEFLEX LIFE SCIENCES III LLC;REEL/FRAME:066305/0817 Effective date: 20231212 Owner name: TELEFLEX LIFE SCIENCES III LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELEFLEX LIFE SCIENCES LIMITED;REEL/FRAME:066305/0565 Effective date: 20231211 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: TELEFLEX LIFE SCIENCES III LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TELEFLEX LIFE SCIENCES LIMITED;REEL/FRAME:066617/0582 Effective date: 20231211 Owner name: TELEFLEX LIFE SCIENCES LLC, DELAWARE Free format text: MERGER;ASSIGNOR:TELEFLEX LIFE SCIENCES III LLC;REEL/FRAME:066621/0980 Effective date: 20231212 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |