US20200384103A1 - Smc combination therapy for the treatment of cancer - Google Patents

Smc combination therapy for the treatment of cancer Download PDF

Info

Publication number
US20200384103A1
US20200384103A1 US16/598,900 US201916598900A US2020384103A1 US 20200384103 A1 US20200384103 A1 US 20200384103A1 US 201916598900 A US201916598900 A US 201916598900A US 2020384103 A1 US2020384103 A1 US 2020384103A1
Authority
US
United States
Prior art keywords
cancer
smc
virus
agent
vsv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/598,900
Inventor
Robert G. Korneluk
Eric C. LACASSE
Shawn T. BEUG
Vera A. TANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEO Research Institute
Original Assignee
CHEO Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHEO Research Institute filed Critical CHEO Research Institute
Priority to US16/598,900 priority Critical patent/US20200384103A1/en
Assigned to CHILDREN'S HOSPITAL OF EASTERN ONTARIO RESEARCH INSTITUTE INC. reassignment CHILDREN'S HOSPITAL OF EASTERN ONTARIO RESEARCH INSTITUTE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEUG, Shawn T., KORNELUK, ROBERT G., LACASSE, Eric C., TANG, Vera A.
Publication of US20200384103A1 publication Critical patent/US20200384103A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/433Thidiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/761Adenovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/765Reovirus; Rotavirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/766Rhabdovirus, e.g. vesicular stomatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/205Rhabdoviridae, e.g. rabies virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • A61K2039/55594Adjuvants of undefined constitution from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • IAP Inhibitor of apoptosis (IAP) proteins, such as X-linked IAP (XIAP) or cellular IAP proteins 1 and 2 (cIAP1 and 2), are regulators of programmed cell death, including (but not limited to) apoptosis pathways, e.g., in cancer cells. Other forms of cell death could include, but are not limited to, necroptosis, necrosis, pyroptosis, and immunogenic cell death. In addition, these IAPs regulate various cell signaling pathways through their ubiquitin E3 ligase activity, which may or may not be related to cell survival.
  • Smac polypeptide Smac
  • Smac is a proapoptotic protein released from mitochondria in conjunction with cell death. Smac can bind to IAPs, antagonizing their function.
  • Smac mimetic compounds SMCs are non-endogenous proapoptotic compounds capable of carrying out one or more of the functions or activities of endogenous Smac.
  • the prototypical XIAP protein directly inhibits key initiator and executioner caspase proteins within apoptosis cascades. XIAP can thereby thwart the completion of apoptotic programs.
  • Cellular IAP proteins 1 and 2 are E3 ubiquitin ligases that regulate apoptotic signaling pathways engaged by immune cytokines. The dual loss of cIAP1 and 2 can cause TNF ⁇ , TRAIL, and/or IL-1 ⁇ to become toxic to, e.g., the majority of cancer cells.
  • SMCs may inhibit XIAP, cIAP1, cIAP2, or other IAPs, and/or contribute to other proapoptotic mechanisms.
  • SMCs Treatment of cancer by the administration of SMCs has been proposed.
  • SMCs alone may be insufficient to treat certain cancers.
  • the present invention includes compositions and methods for the treatment of cancer by the administration of an SMC and an immunostimulatory, or immunomodulatory, agent.
  • SMCs and immunostimulatory agents are described herein, including, without limitation, the SMCs of Table 1 and the immunostimulatory agents of Tables 2 and 3.
  • One aspect of the present invention is a composition including an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, such that the SMC and the immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
  • Another aspect of the present invention is a method for treating a patient diagnosed with cancer, the method including administering to the patient an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, such that the SMC and the immunostimulatory agent are administered simultaneously or within 28 days of each other in amounts that together are sufficient to treat the cancer.
  • the SMC and the immunostimulatory agent are administered within 14 days of each other, within 10 days of each other, within 5 days of each other, within 24 hours of each other, within 6 hours of each other, or simultaneously.
  • the SMC is a monovalent SMC, such as LCL161, SM-122, GDC-0152/RG7419, GDC-0917/CUDC-427, or SM-406/AT-406/Debio1143.
  • the SMC is a bivalent SMC, such as AEG40826/HGS1049, OICR720, TL32711/Birinapant, SM-1387/APG-1387, or SM-164.
  • the immunostimulatory agent is a TLR agonist from Table 2.
  • the immunostimulatory agent is a lipopolysaccharide, peptidoglycan, or lipopeptide.
  • the immunostimulatory agent is a CpG oligodeoxynucleotide, such as CpG-ODN 2216.
  • the immunostimulatory agent is imiquimod or poly(I:C).
  • the immunostimulatory agent is a virus from Table 3.
  • the immunostimulatory agent is a vesicular stomatitis virus (VSV), such as VSV-M51R, VSV-M ⁇ 51, VSV-IFN ⁇ , or VSV-IFN ⁇ -NIS.
  • VSV vesicular stomatitis virus
  • the immunostimulatory agent is an adenovirus, maraba vesiculovirus, reovirus, rhabdovirus, or vaccinia virus, or a variant thereof.
  • the immunostimulatory agent is a Talimogene laherparepvec.
  • a composition or method of the present invention includes a plurality of immunostimulatory or immunomodulatory agents, including but not limited to interferons, and/or a plurality of SMCs.
  • a composition or method of the present invention includes one or more interferon agents, such as an interferon type 1 agent, an interferon type 2 agent, and/or an interferon type 3 agent.
  • interferon agents such as an interferon type 1 agent, an interferon type 2 agent, and/or an interferon type 3 agent.
  • the cancer can be a cancer that is refractory to treatment by an SMC in the absence of an immunostimulatory or immunomodulatory agent.
  • the treatment can further include administration of a therapeutic agent including an interferon.
  • the cancer can be a cancer that is selected from adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphoma, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer, ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors
  • the invention further includes a composition including an SMC from Table 1 and an immunostimulatory agent.
  • the immunostimulatory agent may include a killed virus, an inactivated virus, or a viral vaccine, such that the SMC and the immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
  • the said immunostimulatory agent is a NRRP or a rabies vaccine.
  • the invention includes a composition including an SMC from Table 1 and an immunostimulatory agent.
  • the immunostimulatory agent may include a first agent that primes an immune response and at least a second agent that boosts the immune response, such that the SMC and the said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
  • one or both of the first agent and the second agent is an oncolytic virus vaccine.
  • the first agent is an adenovirus carrying a tumor antigen and the second agent is a vesiculovirus, such as a Maraba-MG1 carrying the same tumor antigen as the adenovirus or a Maraba-MG1 that does not carry a tumor antigen.
  • Neighboring cell means a cell sufficiently proximal to a reference cell to directly or indirectly receive an immune, inflammatory, or proapoptotic signal from the reference cell.
  • “Potentiating apoptosis or cell death” means to increase the likelihood that one or more cells will apoptose or die.
  • a treatment may potentiate cell death by increasing the likelihood that one or more treated cells will apoptose, and/or by increasing the likelihood that one or more cells neighboring a treated cell will apoptose or die.
  • Endogenous Smac activity means one or more biological functions of Smac that result in the potentiation of apoptosis, including at least the inhibition of cIAP1 and cIAP2. It is not required that the biological function occur or be possible in all cells under all conditions, only that Smac is capable of the biological function in some cells under certain naturally occurring in vivo conditions.
  • Smac mimetic compound or “SMC” means a composition of one or more components, e.g., a small molecule, compound, polypeptide, protein, or any complex thereof, capable of inhibiting cIAP1 and/or inhibiting cIAP2.
  • Smac mimetic compounds include the compounds listed in Table 1.
  • To “induce an apoptotic program” means to cause a change in the proteins or protein profiles of one or more cells such that the amount, availability, or activity of one or more proteins capable of participating in an IAP-mediated apoptotic pathway is increased, or such that one or more proteins capable of participating in an IAP-mediated apoptotic pathway are primed for participation in the activity of such a pathway.
  • Inducing an apoptotic program does not require the initiation of cell death per se: induction of a program of apoptosis in a manner that does not result in cell death may synergize with treatment with an SMC that potentiates apoptosis, leading to cell death.
  • Immunostimulatory agent means a composition of one or more components cumulatively capable of inducing an apoptotic or inflammatory program in one or more cells of a subject, and cell death downstream of this program being inhibited by at least cIAP1 and cIAP2.
  • An immunostimulatory agent may be, e.g., a TLR agonist (e.g., a compound listed in Table 2) or a virus (e.g., a virus listed in Table 3), such as an oncolytic virus.
  • Treating cancer means to induce the death of one or more cancer cells in a subject, or to provoke an immune response which could lead to tumor regression and block tumor spread (metastasis). Treating cancer may completely or partially abolish some or all of the signs and symptoms of cancer in a subject, decrease the severity of one or more symptoms of cancer in a subject, lessen the progression of one or more symptoms of cancer in a subject, or mediate the progression or severity of one or more subsequently developed symptoms.
  • Prodrug means a therapeutic agent that is prepared in an inactive form that may be converted to an active form within the body of a subject, e.g. within the cells of a subject, by the action of one or more enzymes, chemicals, or conditions present within the subject.
  • low dosage or “low concentration” is meant at least 5% less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage or lowest standard recommended concentration of a particular compound formulated for a given route of administration for treatment of any human disease or condition.
  • a “high dosage” is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.
  • FIGS. 1A-1F are a set of graphs and images showing that SMC synergizes with oncolytic rhabdoviruses to induce cancer cell death.
  • FIG. 1A is a pair of graphs showing the results of Alamar blue viability assays of cells treated with LCL161 and increasing MOIs of VSV ⁇ 51. Error bars, mean ⁇ s.d.
  • FIG. 1B is a set of micrographs of cells treated with LCL161 and 0.1 MOI of VSV ⁇ 51-GFP.
  • FIG. 1C is a pair of graphs showing viability (Alamar Blue) of cells infected with VSV ⁇ 51 (0.1 MOI) in the presence of increasing concentrations of LCL161. Error bars, mean ⁇ s.d.
  • FIG. 1D is a pair of graphs showing data from cells that were infected with VSV ⁇ 51 for 24 hours. Cell culture supernatant was exposed to virus-inactivating UV light and then media was applied to new cells for viability assays (Alamar Blue) in the presence of LCL161. Error bars, mean ⁇ s.d.
  • FIG. 1E is a graph showing the viability of cells co-treated with LCL161 and non-spreading virus VSV ⁇ 51AG (0.1 MOI). Error bars, mean ⁇ s.d.
  • FIG. 1E is a graph showing the viability of cells co-treated with LCL161 and non-spreading virus VSV ⁇ 51AG (0.1 MOI). Error bars, mean ⁇ s.d.
  • 1F is a graph and a pair of images relating to cells that were overlaid with agarose media containing LCL161, inoculated with VSV ⁇ 51-GFP in the middle of the well, and infectivity measured by fluorescence and cytotoxicity was assessed by crystal violet staining (images were superimposed; non-superimposed images are in FIG. 11 ). Error bars, mean ⁇ s.d.
  • FIGS. 2A-2E are a set of graphs and images showing that SMC treatment does not alter the cancer cell response to oncolytic virus (OV) infection.
  • FIGS. 2A-2E are representative of data from at least three independent experiments using biological replicates.
  • FIG. 2A is a pair of graphs showing data from cells that were pretreated with LCL161 and infected with the indicated MOI of VSV ⁇ 51. Virus titer was assessed by a standard plaque assay.
  • FIG. 2E is a pair of images showing immunoblots for STAT1 pathway activation performed on cells that were pretreated with LCL161 and subsequently stimulated with IFN ⁇ .
  • FIGS. 3A-3H are a set of graphs showing that SMC treatment of OV-infected cancer cells leads to type 1 interferons (type 1 IFN) and nuclear-factor kappa B (NF- ⁇ b)-dependent production of proinflammatory cytokines.
  • FIG. 3A is a graph showing Alamar blue viability assay of cells transfected with combinations of nontargeting (NT), TNF-R1 and DR5 siRNA and subsequently treated with LCL161 and VSV ⁇ 51 (0.1 MOI) or IFN ⁇ . Error bars, mean ⁇ s.d.
  • FIG. 3B is a graph showing the viability of cells transfected with NT or IFNAR1 siRNA and subsequently treated with LCL161 and VSV ⁇ 51 ⁇ G. Error bars, mean ⁇ s.d.
  • FIG. 3C is a graph showing data from an experiment in which cells were pretreated with LCL161, infected with 0.5 MOI of VSV ⁇ 51, and cytokine gene expression was measured by RT-qPCR. Error bars, mean ⁇ s.d.
  • FIG. 3D is a chart showing data collected from an experiment in which cytokine ELISAs were performed on cells transfected with NT or IFNAR1 siRNA and subsequently treated with LCL161 and 0.1 MOI of VSV ⁇ 51. Error bars, mean ⁇ s.d.
  • FIG. 3C is a graph showing data from an experiment in which cells were pretreated with LCL161, infected with 0.5 MOI of VSV ⁇ 51, and cytokine gene expression was measured by RT-qPCR. Err
  • FIG. 3E is a graph showing the viability of cells co-treated with LCL161 and cytokines. Error bars, mean ⁇ s.d.
  • FIG. 3F is a graph showing data from an experiment in which cells were pretreated with LCL161, stimulated with 250 U/mL ( ⁇ 20 pg/mL) IFN ⁇ and cytokine mRNA levels were determined by RT-qPCR. Error bars, mean ⁇ s.d.
  • FIG. 3G is a pair of graphs showing the results of cytokine ELISAs conducted on cells treated with LCL161 and 0.1 MOI of VSV ⁇ 51.
  • FIG. 3H is a graph showing the result of cytokine ELISAs performed on cells expressing IKK ⁇ -DN and treated with LCL161 and VSV ⁇ 51 or IFN ⁇ . Error bars, mean ⁇ s.d.
  • FIGS. 4A-4G are a set of graphs and images showing that combinatorial SMC and OV treatment is efficacious in vivo and is dependent on cytokine signaling.
  • FIG. 4B is a series of representative IVIS images that were acquired from the experiment of FIG. 4A .
  • FIGS. 4C-4D are sets of immunofluorescence images of infection and apoptosis in 24 hour treated tumors using ⁇ -VSV or ⁇ -c-caspase-3 antibodies.
  • FIG. 4E is an image showing an immunoblot in which protein lysates of tumors from the corresponding treated mice were immunoblotted with the indicated antibodies.
  • FIG. 4B is a series of representative IVIS images that were acquired from the experiment of FIG. 4A .
  • FIGS. 4C-4D are sets of immunofluorescence images of infection and apoptosis in 24 hour treated tumors using ⁇ -VSV or ⁇ -c-caspase-3 antibodies.
  • FIG. 4E is an image showing an immunoblot in which protein lysates of tumors from the corresponding treated mice were immunoblotted with the indicated antibodies.
  • 4F is a pair of graphs showing data from an experiment in which mice bearing EMT6-Fluc tumors were injected with neutralizing TNF ⁇ or isotype matched antibodies, and subsequently treated with 50 mg/kg LCL161 (p.o.) and 5 ⁇ 10 8 PFU VSV ⁇ 51 (i.v.).
  • the left panel depicts tumor growth.
  • the right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean ⁇ s.e.m.
  • FIG. 4G is a set of representative IVIS images that were acquired from the experiment of FIG. 4F .
  • FIGS. 5A-5E are a series of graphs and images showing that small molecule immune stimulators enhance SMC therapy in murine cancer models.
  • FIG. 5B is a pair of graphs showing the results of an experiment in which established EMT6-Fluc tumors were treated with SMC (50 mg/kg LCL161, p.o.) and poly(I:C) (15 ug i.t. or 2.5 mg/kg i.p.).
  • the left panel depicts tumor growth.
  • FIG. 5C is a series of representative IVIS images that were acquired from the experiment of FIG.
  • FIG. 5D is a pair of graphs showing the results of an experiment in which EMT6-Fluc tumors were treated with LCL161 or combinations of 200 ⁇ g (i.t.) and/or 2.5 mg/kg (i.p.) CpG ODN 2216.
  • the left panel depicts tumor growth.
  • the right panel represents the Kaplan-Meier curve depicting mouse survival.
  • FIG. 5E is a series of representative IVIS images that were acquired from the experiment of FIG. 5D .
  • FIG. 6 is a graph showing the responsiveness of a panel of cancer and normal cells to the combinatorial treatment of SMC and OV.
  • FIG. 7 is pair of graphs showing that SMC and OV co-treatment is highly synergistic in cancer cells.
  • the graphs show Alamar blue viability of cells treated with serial dilutions of a fixed ratio combination mixture of VSV ⁇ 51 and LCL161 (PFU: ⁇ M LCL161).
  • Combination indexes (CI) were calculated using Calcusyn.
  • FIG. 8 is a pair of graphs showing that monovalent and bivalent SMCs synergize with OVs to cause cancer cell death.
  • FIGS. 9A and 9B are a set of images and graphs showing that SMC-mediated cancer cell death is potentiated by oncolytic viruses.
  • FIG. 9A is a series of images showing the results of a virus spreading assay of cells that were overlaid with 0.7% agarose in the presence of vehicle or LCL161 and 500 PFU of the indicated viruses were dispensed in to the middle of the well. Cytotoxicity was assessed by crystal violet staining. Arrow denotes extension of the cell death zone from the origin of OV infection.
  • FIGS. 10A and 10B are a set of graphs and images showing that cIAP1, cIAP2 and XIAP cooperatively protect cancer cells from OV-induced cell death.
  • FIG. 10B is a representative siRNA efficacy immunoblots for the experiment of FIG. 10A .
  • FIG. 11 is a set of images used for superimposed images depicted in FIG. 1F .
  • Cells were overlaid with agarose media containing LCL161, inoculated with VSV ⁇ 51-GFP in the middle of the well, and infectivity measured by fluorescence and cytotoxicity was denoted by crystal violet (CV) staining. Note: the bars represent the same size.
  • FIGS. 12A and 12B are a set of images and a graph showing that SMC treatment does not affect OV distribution or replication in vivo.
  • FIG. 12A is a set of images showing images from an experiment in which EMT6-bearing mice were treated with 50 mg/kg LCL161 (p.o.) and 5 ⁇ 10 8 PFU firefly luciferase tagged VSV ⁇ 51 (VSV ⁇ 51-Fluc) via i.v. injection. Virus distribution and replication was imaged at 24 and 48 hours using the IVIS. Red outline denotes region of tumors. Representative data from two independent experiments are shown. Arrow indicates spleen infected with VSV ⁇ 51-Fluc.
  • FIG. 12B is a graph showing data from an experiment in which tumors and tissues at 48 hour post-infection were homogenized and virus titrations were performed for each group. Error bars, mean ⁇ s.e.m.
  • FIGS. 13A and 13B are images showing verification of siRNA-mediated knockdown of non-targeting (NT), TNFR1, DR5 and IFNAR1 by immunoblotting.
  • FIG. 13A is an immunoblot showing knockdown in samples from the experiment of FIG. 3A .
  • FIG. 13B is an immunoblot showing knockdown in samples from the experiment of FIG. 3B .
  • FIGS. 14A-14G are images and graphs showing that SMC synergizes with OVs to induce caspase-8- and RIP-1-dependent apoptosis in cancer cells.
  • FIGS. 14A-14G show representative data from three independent experiments using biological replicates.
  • FIG. 14A is a pair of images of immunoblots in which immunoblotting for caspase and PARP activation was conducted on cells pretreated with LCL161 and subsequently treated with 1 MOI of VSV ⁇ 51.
  • FIG. 14B is a series of images showing micrographs of caspase activation that were acquired with cells that were co-treated with LCL161 and VSV ⁇ 51 in the presence of the caspase-3/7 substrate DEVD-488.
  • FIG. 14D is a series of images from an experiment in which apoptosis was assessed by micrographs of translocated phosphatidyl serine (Annexin V-CF594, green) and loss of plasma membrane integrity (YOYO-1, blue) in cells treated with LCL161 and VSV ⁇ 51.
  • FIG. 14G is an image of an immunoblot showing representative siRNA efficacy for the experiment of FIG. 14F .
  • FIGS. 15A and 15B are a set of graphs showing that expression of TNF ⁇ transgene from OVs potentiates SMC-mediated cancer cell death further.
  • FIG. 15A is a pair of graphs showing Alamar blue viability assay of cells co-treated with 5 ⁇ M SMC and increasing MOIs of VSV ⁇ 51-GFP or VSV ⁇ 51-TNF ⁇ for 24 hours. Error bars, mean ⁇ s.d.
  • FIG. 16 is a set of images showing that oncolytic virus infection leads to enhanced TNF ⁇ expression upon SMC treatment. EMT6 cells were co-treated with 5 ⁇ M SMC and 0.1 MOI VSV ⁇ 51-GFP for 24 hours, and cells were processed for the presence of intracellular TNF ⁇ via flow cytometry. Images show representative data from four independent experiments.
  • FIGS. 17A-17C are a pair of graphs and an image showing that TNF ⁇ signaling is required for type I IFN induced synergy with SMC treatment.
  • FIG. 17A is a graph showing the results of an Alamar blue viability assay of EMT6 cells transfected with nontargeting (NT) or TNF-R1 siRNA and subsequently treated with LCL161 and VSV ⁇ 51 (0.1 MOI) or IFN ⁇ . Error bars, mean ⁇ s.d.
  • FIG. 17B is a representative siRNA efficacy blot from the experiment of FIG. 17A .
  • FIG. 17C is a graph showing the viability of EMT6 cells that were pretreated with TNF ⁇ neutralizing antibodies and subsequently treated with 5 ⁇ M SMC and VSV ⁇ 51 or IFN ⁇ .
  • FIGS. 18A and 18B are a schematic of OV-induced type I IFN and SMC synergy in bystander cancer cell death.
  • FIG. 18A is a schematic showing that virus infection in refractory cancer cells leads to the production of Type 1 IFN, which subsequently induces expression of IFN stimulated genes, such as TRAIL.
  • Type 1 IFN stimulation also leads to the NF- ⁇ B-dependent production of TNF ⁇ .
  • IAP antagonism by SMC treatment leads to upregulation of TNF ⁇ and TRAIL expression and apoptosis of neighboring tumor cells.
  • FIG. 18A is a schematic showing that virus infection in refractory cancer cells leads to the production of Type 1 IFN, which subsequently induces expression of IFN stimulated genes, such as TRAIL.
  • Type 1 IFN stimulation also leads to the NF- ⁇ B-dependent production of TNF ⁇ .
  • IAP antagonism by SMC treatment leads to upregulation of TNF ⁇ and TRAIL expression and apoptosis
  • 18B is a schematic showing that infection of a single tumor cell results in the activation of innate antiviral Type 1 IFN pathway, leading to the secretion of Type 1 IFNs onto neighboring cells.
  • the neighboring cells also produce the proinflammatory cytokines TNF ⁇ and TRAIL.
  • the singly infected cell undergoes oncolysis and the remainder of the tumor mass remains intact.
  • neighboring cells undergo bystander cell death due upon SMC treatment as a result of the SMC-mediated upregulation of TNF ⁇ /TRAIL and promotion of apoptosis upon proinflammatory cytokine activation.
  • FIGS. 19A and 19B are a graph and a blot showing that SMC treatment causes minimal transient weight loss and leads to downregulation of cIAP1/2.
  • FIG. 19B is a blot of samples from an experiment in which EMT6-tumor bearing mice were treated with 50 mg/kg LCL161 (p.o.). Tumors were harvested at the indicated time for western blotting using the indicated antibodies.
  • FIGS. 20A-20C are a set of graphs showing that SMC treatment induces transient weight loss in a syngeneic mouse model of cancer.
  • FIGS. 20A-20C are graphs showing measurements of mouse weights upon SMC and oncolytic VSV ( FIG. 20A ), poly(I:C) ( FIG. 20B ), or CpG ( FIG. 20C ) co-treatment in tumor-bearing animals from the experiments depicted in FIGS. 4A, 5B, and 5D , respectively.
  • Error bars mean ⁇ s.e.m.
  • FIGS. 21A-21D are a series of graphs showing that VSV ⁇ 51-induced cell death in HT-29 cell is potentiated by SMC treatment in vitro and in vivo.
  • FIG. 21A is a graph showing data from an experiment in which cells were infected with VSV ⁇ 51, the cell culture supernatant was exposed to UV light for 1 hour and was applied to new cells at the indicated dose in the presence of LCL161. Viability was ascertained by Alamar blue. Error bars, mean ⁇ s.d.
  • FIG. 21B is a graph showing Alamar blue viability of cells co-treated with LCL161 and a non-spreading virus VSV ⁇ 51 ⁇ G (0.1 MOI). Error bars, mean ⁇ s.d.
  • FIG. 21C is a pair of graphs showing data from an experiment in which CD-1 nude mice with established HT-29 tumors were treated with 50 mg/kg LCL161 (p.o.) and 1 ⁇ 10 8 PFU VSV ⁇ 51 (i.t.).
  • the left panel depicts tumor growth relative to day 0 post-treatment.
  • the right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean ⁇ s.e.m.
  • FIG. 21D is a graph showing measurement of mouse weights upon SMC and OV co-treatment in tumor-bearing animals. Error bars, mean ⁇ s.e.m.
  • FIG. 22 is a blot showing that type I IFN signaling is required for SMC and OV synergy in vivo.
  • EMT6 tumor bearing mice were treated with vehicle or 50 mg/kg LCL161 for 4 hours, and subsequently treated with neutralizing IFNAR1 or isotype antibodies for 20 hours. Subsequently, animals were treated with PBS or VSV ⁇ 51 for 18 hours. Tumors were processed for Western blotting with the indicated antibodies.
  • FIGS. 23A and 23B are a pair of graphs showing that oncolytic infection of innate immune cells leads to cancer cell death in the presence of SMCs.
  • FIG. 23A is a graph showing data from an experiment in which immune subpopulations were sorted from splenocytes (CD11b+ F4/80+: macrophage; CD11b+ Gr1+: neutrophil; CD11b ⁇ CD49b+: NK cell; CD11b ⁇ CD49b ⁇ : T and B cells) and were infected with 1 MOI of VSV ⁇ 51 for 24 hours. Cell culture supernatants were applied to SMC-treated ETM6 cells for 24 hours and EMT6 viability was assessed by Alamar Blue. Error bars, mean ⁇ s.d.
  • FIG. 23A is a graph showing data from an experiment in which immune subpopulations were sorted from splenocytes (CD11b+ F4/80+: macrophage; CD11b+ Gr1+: neutrophil; CD11b ⁇ CD49b+:
  • 23B is a chart showing data from an experiment in which bone marrow derived macrophages were infected with VSV ⁇ 51 and the supernatant was applied to EMT6 cells in the presence of 5 ⁇ M SMC, and viability was measured by Alamar blue. Error bars, mean ⁇ s.d.
  • FIGS. 24A-24H are a series of images of full-length immunoblots. Immunoblots of FIGS. 24A-24H pertain to ( FIG. 24A ) FIG. 2E , ( FIG. 24B ) FIG. 4E , ( FIG. 24C ) FIG. 10B , ( FIG. 24D ) FIGS. 13A and 13B , ( FIG. 24E ) FIG. 14A , ( FIG. 24F ) FIG. 14G , ( FIG. 24G ) FIG. 19B , and ( FIG. 24H ) FIG. 17B , respectively.
  • FIGS. 25A-25B are a set of graphs showing that non-replicating rhabdovirus-derived particles (NRRPs) synergize with SMCs to cause cancer cell death.
  • FIG. 25A is a set of graphs showing data from an experiment in which EMT6, DBT, and CT-2A cancer cells were co-treated with the SMC LCL161 (SMC; EMT6: 5 ⁇ M, DBT and CT-2A: 15 ⁇ M) and different numbers of NRRPs for 48 hr (EMT6) or 72 hr (DBT, CT-2A), and cell viability was assessed by Alamar Blue.
  • 25B is a pair of graphs showing data from an experiment in which ufractionated mouse splenocytes were incubated with 1 particle per cell of NRRP or 250 ⁇ M CpG ODN 2216 for 24 hr. Subsequently, the supernatant was applied to EMT6 cells in a dose-response fashion, and 5 ⁇ M LCL161 was added. EMT6 viability was assessed 48 hr post-treatment by Alamar blue.
  • FIGS. 26A and 26B are a graph and a set of image showing that vaccines synergize with SMCs to cause cancer cell death.
  • FIG. 26A is a graph showing data from an experiment in which EMT6 cells were treated with vehicle or 5 ⁇ M LCL161 (SMC) and 1000 CFU/mL BCG or 1 ng/mL TNF ⁇ for 48 hr, and viability was assessed by Alamar blue.
  • SMC 5 ⁇ M LCL161
  • 26B is a set of representative IVIS images depicting survival of mice bearing mammary fat pad tumors (EMT6-Fluc) that were treated twice with vehicle or 50 mg/kg LCL161 (SMC) and PBS intratumorally (i.t.), BCG (1 ⁇ 10 5 CFU) i.t., or BCG (1 ⁇ 10 5 CFU) intraperitoneally (i.p.) and subjected to live tumor bioluminescence imaging by IVIS CCD camera at various time points. Scale: p/sec/cm2/sr.
  • FIGS. 27A and 27B are a pair of graphs and a set of images showing that SMCs synergize with type I IFN to cause mammary tumor regression.
  • FIG. 27A is a pair of graphs showing data from an experiment in which mice were injected with EMT6-Fluc tumors in the mammary fat pad and were treated at eight days post-implantation with combinations of vehicle or 50 mg/kg LCL161 (SMC) orally and bovine serum albumin (BSA), 1 ⁇ g IFN ⁇ intraperitoneally (i.p.), or 2 ⁇ g IFN ⁇ intratumorally (i.t.).
  • the left panel depicts tumor growth.
  • the right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean ⁇ s.e.m.
  • FIG. 27B is a series of representative IVIS images from the experiment described in FIG. 27A . Scale: p/sec/cm2/sr.
  • FIG. 28 is a graph showing that the expression of type I IFN from VSV synergizes with SMCs to cause cancer cell death.
  • the graph shows data from an experiment in which EMT6 cells were co-treated with vehicle or 5 ⁇ M LCL161 (SMC) and differing multiplicity of infection (MOI) of VSV ⁇ 51-GFP, VSV-IFN ⁇ , or VSV-NIS-IFN ⁇ . Cell viability was assessed 48 hr post-treatment by Alamar blue.
  • FIG. 29 is a graph showing that non-viral and viral triggers induce robust expression of TNF ⁇ in vivo.
  • Mice were treated with 50 mg of poly(I:C) intraperitoneally or with intravenous injections of 5 ⁇ 10 8 PFU VSV ⁇ 51, VSV-mIFN ⁇ , or Maraba-MG1. At the indicated times, serum was isolated and processed for ELISA to quantify the levels of TNF ⁇ .
  • FIGS. 30A-30C are a set of graphs and images showing that virally-expressed proinflammatory cytokines synergizes with SMCs to induce mammary tumor regression.
  • FIG. 30A is a pair of graphs showing data from an experiment in which mice were injected with EMT6-Fluc tumors in the mammary fat pad, and were treated at seven days post-implantation with combinations of vehicle or 50 mg/kg LCL161 (SMC) orally and PBS, 1 ⁇ 10 8 PFU VSV ⁇ 51-memTNF ⁇ (i.v.), or 1 ⁇ 10 8 PFU VSV ⁇ 51-solTNF ⁇ (i.v.).
  • the left panel depicts tumor growth.
  • the right panel represents the Kaplan-Meier curve depicting mouse survival.
  • FIG. 30B is a set of representative bioluminescent IVIS images that were acquired from the experiment described in FIG. 30A . Scale: p/sec/cm2/sr.
  • FIG. 30C is a pair of graphs showing data from an experiment in which mice were injected with CT-26 tumors subcutaneously and were treated 10 days post-implantation with combinations of vehicle or 50 mg/kg LCL161 orally and either PBS or 1 ⁇ 10 8 PFU VSV ⁇ 51-solTNF ⁇ intratumorally. The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean ⁇ s.e.m.
  • FIGS. 31A and 31B are a set of images showing that SMC treatment leads to down-regulation of cIAP1/2 protein in vivo in an orthotopic, syngeneic mouse model of glioblastoma.
  • FIG. 31A is an image showing an immunoblot from an experiment in which CT-2A cells were implanted intracranially and treated with 50 mg/kg orally of LCL161 (SMC) and tumors were excised at the indicated time points and processed for western blotting using antibodies against cIAP1/2, XIAP, and ⁇ -tubulin.
  • SMC LCL161
  • 31B is an image showing an immunoblot from an experiment in which CT-2A cells were implanted intracranially and treated with 10 uL of 100 ⁇ M LCL161 intratumorally and tumors were excised at the indicated time points and processed for western blotting using antibodies against cIAP1/2, XIAP, and ⁇ -tubulin.
  • FIGS. 32A-32E are a set of graphs and images showing that a transient proinflammatory response in the brain synergizes with SMCs to cause glioblastoma cell death.
  • FIG. 32A is a graph showing data from an experiment in which an ELISA was conducted to determine the levels of soluble TNF ⁇ from 300 mg of crude brain protein extract that was derived from mice injected intraperitoneally (i.p.) with PBS or 50 mg poly(I:C) for 12 or 24 h. Brain protein extracts were obtained by mechanical homogenization in saline solution.
  • FIG. 32A is a graph showing data from an experiment in which an ELISA was conducted to determine the levels of soluble TNF ⁇ from 300 mg of crude brain protein extract that was derived from mice injected intraperitoneally (i.p.) with PBS or 50 mg poly(I:C) for 12 or 24 h. Brain protein extracts were obtained by mechanical homogenization in saline solution.
  • FIG. 32B is a graph showing data from Alamar blue viability assays of mouse glioblastoma cells (CT-2A, K1580) that were treated with 70 mg of crude brain homogenates and 5 ⁇ M LCL161 (SMC) in culture for 48 h. Brain homogenates were obtained from mice that were treated for 12 h with i.p. injections of poly(I:C), or intravenous injections of 5 ⁇ 10 8 PFU VSV ⁇ 51 or VSV-mIFN ⁇ .
  • FIG. 32C represents the Kaplan-Meier curve depicting survival of mice that received three intracranial treatments of 50 mg poly(I:C). Treatments were on days 0, 3, and 7.
  • FIG. 32D represents the Kaplan-Meier curve depicting survival of mice bearing CT-2A intracranial tumors that received combinations of SMC, VSV ⁇ 51 or poly(I:C).
  • Mice received combinations of three treatments of vehicle, three treatments of 75 mg/kg LCL161 (oral), three treatments of 5 ⁇ 10 8 PFU VSV ⁇ 51 (i.v.), or two treatments of 50 mg poly(I:C) (intracranial, i.c.).
  • Mice were treated on day 7, 10, and 14 post tumor cell implantation with the different conditions, except for the poly(I:C) treated group that received i.c. injections on day 7 and 15. Numbers in brackets denote number of mice per group.
  • FIG. 32E is a series of representative MRI images of mouse skulls from the experiments depicted in FIG. 32D , which shows an animal at endpoint and a representative mouse of the indicated groups at 50 days post-implantation. Dashed line denotes the brain tumor.
  • FIG. 33 is a graph showing that SMCs synergize with type I IFN to eradicate brain tumors.
  • the graph represents the Kaplan-Meier curve depicting survival of mice bearing CT-2A that received intracranial injections of vehicle or 100 ⁇ M LCL161 (SMC) with PBS or 1 ⁇ g IFN ⁇ at 7 days post-implantation.
  • the present invention includes methods and compositions for enhancing the efficacy of Smac mimetic compounds (SMCs) in the treatment of cancer.
  • the present invention includes methods and compositions for combination therapies that include an SMC and a second agent that stimulates one or more cell death pathways that are inhibited by cIAP1 and/or cIAP2.
  • the second agent may be, e.g., a TLR agonist a virus, such as an oncolytic virus, or an interferon or related agent.
  • a pathogen mimetic e.g., a pathogen mimetic having a mechanism of action partially dependent on TRAIL
  • this approach can evoke TNF ⁇ -mediated apoptosis and necroptosis: given the plasticity and heterogeneity of some advanced cancers, treatments that simultaneously induce multiple distinct cell death mechanisms may have greater efficacy than those that do not.
  • pathogen mimetics can elicit an integrated innate immune response that includes layers of negative feedback. These feedback mechanisms may act to temper the cytokine response in a manner difficult to replicate using recombinant proteins, and thus act as a safeguard to this combination therapy strategy.
  • An SMC of the present invention may be any small molecule, compound, polypeptide, protein, or any complex thereof, capable, or predicted of being capable, of inhibiting cIAP1 and/or cIAP2, and, optionally, one or more additional endogenous Smac activities.
  • An SMC of the present invention is capable of potentiating apoptosis by mimicking one or more activities of endogenous Smac, including but not limited to, the inhibition of cIAP1 and the inhibition of cIAP2.
  • An endogenous Smac activity may be, e.g., interaction with a particular protein, inhibition of a particular protein's function, or inhibition of a particular IAP. In particular embodiments, the SMC inhibits both cIAP1 and cIAP2.
  • the SMC inhibits one or more other IAPs in addition to cIAP1 and cIAP2, such as XIAP or Livin/ML-IAP, the single BIR-containing IAP.
  • the SMC inhibits cIAP1, cIAP2, and XIAP.
  • an SMC having particular activities may be selected for combination with one or more particular immune stimulants.
  • the SMC may be capable of activities of which Smac is not capable. In some instances, these additional activities may contribute to the efficacy of the methods or compositions of the present invention.
  • Treatment with SMCs can deplete cells of cIAP1 and cIAP2, through, e.g., the induction of auto- or trans-ubiquitination and proteasomal-mediated degradation.
  • SMCs can also de-repress XIAP's inhibition of caspases.
  • SMCs may primarily function by targeting cIAP1 and 2, and by converting TNF ⁇ , and other cytokines or death ligands, from a survival signal to a death signal, e.g., for cancer cells.
  • Certain SMCs inhibit at least XIAP and the cIAPs.
  • Such “pan-IAP” SMCs can intervene at multiple distinct yet interrelated stages of programmed cell death inhibition. This characteristic minimizes opportunities for cancers to develop resistance to treatment with a pan-IAP SMC, as multiple death pathways are affected by such an SMC, and allows synergy with existing and emerging cancer therapeutics that activate various apoptotic pathways in which SMCs can intervene.
  • TNF ⁇ , TRAIL, and IL-1 ⁇ inflammatory cytokines or death ligands
  • TNF ⁇ , TRAIL, and IL-1 ⁇ potently synergize with SMC therapy in many tumor-derived cell lines.
  • TNF ⁇ , TRAIL, and dozens of other cytokines and chemokines can be upregulated in response to pathogen recognition by the innate immune system of a subject.
  • this ancient response to microbial pathogens is usually self-limiting and safe for the subject, due to stringent negative regulation that limits the strength and duration of its activity.
  • SMCs may be rationally designed based on Smac. The ability of a compound to potentiate apoptosis by mimicking one or more functions or activities of endogenous Smac can be predicted based on similarity to endogenous Smac or known SMCs.
  • An SMC may be a compound, polypeptide, protein, or a complex of two or more compounds, polypeptides, or proteins.
  • SMCs are small molecule IAP antagonists based on an N-terminal tetrapeptide sequence (revealed after processing) of the polypeptide Smac.
  • an SMC is a monomer (monovalent) or dimer (bivalent).
  • an SMC includes 1 or 2 moieties that mimic the tetrapeptide sequence of AVPI from Smac/DIABLO, the second mitochondrial activator of caspases, or other similar IBMs (e.g., IAP-binding motifs from other proteins like casp9).
  • a dimeric SMC of the present invention may be a homodimer or a heterodimer.
  • the dimer subunits are tethered by various linkers.
  • the linkers may be in the same defined spot of either subunit, but could also be located at different anchor points (which may be ‘aa’ position, P1, P2, P3 or P4, with sometimes a P5 group available).
  • the dimer subunits may be in different orientations, e.g., head to tail, head to head, or tail to tail.
  • the heterodimers can include two different monomers with differing affinities for different BIR domains or different IAPs.
  • a heterodimer can include a Smac monomer and a ligand for another receptor or target which is not an IAP.
  • an SMCs can be cyclic.
  • an SMC can be trimeric or multimeric.
  • a multimerized SMC can exhibit a fold increase in activity of 7,000-fold or more, such as 10-, 20-, 30-, 40-, 50-, 100-, 200-, 1,000-, 5,000-, 7,000-fold, or more (measured, e.g., by EC50 in vitro) over one or more corresponding monomers. This may occur, in some instances, e.g., because the tethering enhances the ubiquitination between IAPs or because the dual BIR binding enhances the stability of the interaction. Although multimers, such as dimers, may exhibit increased activity, monomers may be preferable in some embodiments. For example, in some instances, a low molecular weight SMC may be preferable, e.g., for reasons related to bioavailability.
  • an agent capable of inhibiting cIAP1/2 is a bestatin or Me-bestatin analog. Bestatin or Me-bestatin analogs may induce cIAP1/2 autoubiquitination, mimicking the biological activity of Smac.
  • an SMC combination treatment includes one or more SMCs and one or more interferon agents, such as an interferon type 1 agent, an interferon type 2 agent, and an interferon type 3 agent.
  • interferon agents such as an interferon type 1 agent, an interferon type 2 agent, and an interferon type 3 agent.
  • Combination treatments including an interferon agent may be useful in the treatment of cancer, such as multiple myeloma.
  • a VSV expressing IFN, and optionally expressing a gene that enables imaging, such as NIS, the sodium-iodide symporter is used in combination with an SMC.
  • a VSV may be used in combination with an SMC, such as the Ascentage Smac mimetic SM-1387/APG-1387, the Novartis Smac mimetic LCL161, or Birinapant.
  • SMC such as the Ascentage Smac mimetic SM-1387/APG-1387, the Novartis Smac mimetic LCL161, or Birinapant.
  • Such combinations may be useful in the treatment of cancer, such as hepatocellular carcinoma or liver metastases.
  • SMCs are known in the art. Non-limiting examples of SMCs are provided in Table 1. While Table 1 includes suggested mechanisms by which various SMCs may function, methods and compositions of the present invention are not limited by or to these mechanisms.
  • Antagonists Sensitize Cancer Cells to TRAIL-Induced Apoptosis: Roles of XIAP and Reed cIAPs. Mol Cancer Ther. 2014 Jan; 13(1):5-15. doi: 10.1158/1535-7163.MCT-13-0153. Epub 2013 Nov 5.
  • ML183 Ardecky RJ, Welsh K, Finlay D, Lee PS, Gónzalez-López M, Ganji SR, Ravanan P, Mace Preclinical Sanford-Burnham PD, Riedl SJ, Vuori K, Reed JC, Cosford ND. Design, synthesis and evaluation of Institute (NIH?); J.
  • IAP apoptosis protein
  • OICR-720 Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac M, Uehling Preclinical Ontario Institute for D, Al-awar R, LaCasse E, Korneluk RG. TWEAK and cIAP1 regulate myoblast fusion Cancer Research; R. through the noncanonical NE-KB signaling pathway. Sci Signal. 2012 Oct 16; 5(246):ra75. Korneluk doi: 10.1126/scisignal.2003086.
  • SM162 Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as Preclinical Ascenta antagonists of IAP proteins. Bioorg Med Chem Lett. 2010 May 5; 20(10):3043-6.
  • SM163 Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as Preclinical Ascenta (compound 3) antagonists of IAP proteins. Bioorg Med Chem Lett. 2010 May 15; 20(10):3043-6. SM337 Wang S. Design of small-molecule Smac mimetics as IAP antagonists. Curr Top Preclinical Ascenta Microbiol Immunol.
  • SM122 (or Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Preclinical Ascenta SH122 ) Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res. 2008 Nov 15; 68(22):9384-93. doi: 10.1158/0008-5472.CAN-08-2655.
  • cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008 Jun 20; 30(6):689-700. doi: 10.1016/j.molce1.2008.05.014.
  • LBW242 Keating J, Tsoli M, Hallahan AR, Ingram WJ, Haber M, Ziegler DS.
  • MV1 Monomeric version of BV6 Fulda S, Vucic D. Targeting IAP proteins for therapeutic Preclinical Genentech intervention in cancer. Nat Rev Drug Discov. 2012 Feb 1; 11(2):109-24. doi: 10.1038/nrd3627. Review. Erratum in: Nat Rev Drug Discov. 2012 Apr; 11(4):331.
  • ABT-10 Preclinical Abbott A-410099.1 Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore Preclinical Abbott SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem. 2004 Aug 26; 47(18):4417-26.
  • Novel IAP antagonist (822B) induces apoptosis through degradation of IAP proteins which have a BIR3 domain in human pancreatic cancer cells. Cancer Research: April 15, 2011; Volume 71, Issue 8, Supplement 1 doi: 10.1158/1538-7445.AM2011-592 Proceedings: AACR 102nd Annual Meeting 2011-- Apr 2-6, 2011; Orlando, FL.
  • An immunostimulatory or immunomodulatory agent of the present invention may be any agent capable of inducing a receptor-mediated apoptotic program that is inhibited by cIAP1 and cIAP2 in one or more cells of a subject.
  • An immune stimulant of the present invention may induce an apoptotic program regulated by cIAP1(BIRC2), cIAP2 (BIRC3 or API2), and optionally, one or more additional IAPs, e.g., one or more of the human IAP proteins NAIP (BIRC1), XIAP (BIRC4), survivin (BIRC5), Apollon/Bruce (BIRC6), ML-IAP (BIRC7 or livin), and ILP-2 (BIRC8).
  • various immunomodulatory or immunostimulatory agents such as CpGs or IAP antagonists, can change immune cell contexts.
  • an immune stimulant may be a TLR agonist, such as a TLR ligand.
  • a TLR agonist of the present invention may be an agonist of one or more of TLR-1, TLR-2, TLR-3, TLR-4, TLR-5, TLR-6, TLR-7, TLR-8, TLR-9, and TLR-10 in humans or related proteins in other species (e.g., murine TLR-1 to TLR-9 and TLR-11 to TLR-13).
  • TLRs can recognize highly conserved structural motifs known as pathogen-associated microbial patterns (PAMPs), which are exclusively expressed by microbial pathogens, as well as danger-associated molecular patterns (DAMPs) that are endogenous molecules released from necrotic or dying cells.
  • PAMPs pathogen-associated microbial patterns
  • DAMPs danger-associated molecular patterns
  • PAMPs include various bacterial cell wall components such as lipopolysaccharide (LPS), peptidoglycan (PGN), and lipopeptides, as well as flagellin, bacterial DNA, and viral double-stranded RNA.
  • DAMPs include intracellular proteins such as heat shock proteins as well as protein fragments from the extracellular matrix.
  • Agonists of the present invention further include, for example, CpG oligodeoxynucleotides (CpG ODNs), such as Class A, B, and C CpG ODN's, base analogs, nucleic acids such as dsRNA or pathogen DNA, or pathogen or pathogen-like cells or virions.
  • the immunostimulatory agent is an agent that mimics a virus or bacteria or is a synthetic TLR agonist.
  • TLR agonists are known in the art. Non-limiting examples of TLR agonists are provided in Table 2. While Table 2 includes suggested mechanisms, uses, or TLR targets by which various TLR agonists may function, methods and compositions of the present invention are not limited by or to these mechanisms, uses, or targets.
  • TLR Agonists Agonist Compound Structure or Reference Compound Type or Application of: Poly-ICLC
  • Levy HB Historical overview of the use of polynucleotides in cancer. J Intratumoral administration for Toll-like (poly- Biol Response Mod. 1985;4:475-480. 7.
  • Levy HB Induction of treatment of mesothelioma (see, receptor inosinic: interferon in vivo by polynucleotides. Tex Rep Biol Med. 1977; 35:91- e.g., Currie AJ, Van Der Most RG, (TLR)-3 poly- 98.
  • CpG-containing oligodeoxynucleotides act Class C CpG ODN TLR-9 through TLR9 to enhance the NK cell cytokine response to antibodycoated tumor cells.
  • J Immunol. 175(3):1619-27. ODN M362 Hartmann G, Battiany J, Poeck H, et al.: Rational design of new CpG Class C CpG ODN TLR-9 oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol 2003, 33:1633- 41 ODN 1018 Magone, M. T., Chan, C. C., Beck, L., Whitcup, S. M., Raz, E.
  • TLR-7 hepatitis see, e.g., Fletcher S, Steffy K, Averett D. Masked oral prodrugs of Toll-like receptor 7 agonists: a new approach for the treatment of infectious disease. Curr. Opin. Investig. Drugs. 2006; 7(8):702-708.
  • Imiquimod Imidazoquinoline compound topical TLR-7 (InvivoGen) administration for treatment of basal cell carcinoma (see, e.g., Schulze HJ, Cribier B, Requena L, et al.
  • Imiquimod 5% cream for the treatment of superficial basal cell carcinoma results from a randomized vehicle-controlled Phase III study in Europe. Br. J. Dermatol. 2005; 152(5):939-947; Quirk C, Gebauer K, Owens M, Stampone P. Two-year interim results from a 5-year study evaluating clinical recurrence of superficial basal cell carcinoma after treatment with imiquimod 5% cream daily for 6 weeks. Australas. J. Dermatol. 2006; 47(4):258-265.); Topical administration for treatment of squamous cell carcinoma (see, e.g., Ondo AL, Mings SM, Pestak RM, Shanler SD.
  • Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br. J. Dermatol. 2008; 159(3):606-614.); Topical administration for treatment of vulvar intraepithelial neoplasia (see, e.g., Van Seters M, Van Beurden M, Ten Kate FJ, et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N. Engl. J. Med.
  • Topical administration for treatment of cutaneous lymphoma see, e.g., Stavrakoglou A, Brown VL, Coutts I. Successful treatment of primary cutaneous follicle centre lymphoma with topical 5% imiquimod. Br. J. Dermatol. 2007; 157(3):620-622.
  • Topical treatment as Human papillomavirus (HPV) vaccine see, e.g., Daayana S, Elkord E, Winters U, et al. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer.
  • Subcutaneous/intramuscular administration New York esophageal squamous cell carcinoma 1 cancer antigen (NY- ESO-1) protein vaccine for melanoma (see, e.g., Adams S, O'Neill DW, Nonaka D, et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol. 2008; 181(1):776-784.) Mono- Subcutaneous/intramuscular TLR-4 phosphoryl administration for vaccination lipid A against HPV (see, e.g., Harper DM, (MPL) Franco EL, Wheeler CM, et al.
  • an immune stimulant may be a virus, e.g., an oncolytic virus.
  • An oncolytic virus is a virus that selectively infects, replicates, and/or selectively kills cancer cells.
  • Viruses of the present invention include, without limitation, adenoviruses, Herpes simplex viruses, measles viruses, Newcastle disease viruses, parvoviruses, polioviruses, reoviruses, Seneca Valley viruses, retroviruses, Vaccinia viruses, vesicular stomatitis viruses, lentiviruses, rhabdoviruses, Sindvis viruses, coxsackieviruses, poxviruses, and others.
  • the immunostimulatory agent is a rhabodvirus, e.g., VSV. Rhabdoviruses can replicate quickly with high IFN production.
  • the immunostimulatory agent is a feral member, such as Maraba virus, with the MG1 double mutation, Farmington virus, Carajas virus.
  • Viral immunostimulatory agents of the present invention include mutant viruses (e.g., VSV with a ⁇ 51 mutation in the Matrix, or M, protein), transgene-modified viruses (e.g., VSV-hIFN ⁇ ), viruses carrying -TNF ⁇ , -LT ⁇ /TNF ⁇ , -TRAIL, FasL, -TL1 ⁇ , chimeric viruses (eg rabies), or pseudotyped viruses (e.g., viruses pseudotyped with G proteins from LCMV or other viruses).
  • the virus of the present invention will be selected to reduce neurotoxicity.
  • Viruses in general, and in particular oncolytic viruses, are known in the art.
  • the immunostimulatory agent is a killed VSV NRRP particle or a prime-and-boost tumor vaccine.
  • NRRPs are wild type VSV that have been modified to produce an infectious vector that can no longer replicate or spread, but that retains oncolytic and immunostimulatory properties.
  • NRRPs may be produced using gamma irradiation, UV, or busulfan.
  • Particular combination therapies include prime-and-boost with adeno-MAGE3 (melanoma antigen) and/or Maraba-MG1-MAGE3.
  • Other particular combination therapies include UV-killed or gamma irradiation-killed wild-type VSV NRRPs.
  • NRRPs may demonstrate low or absent neurotixicity.
  • NRRPs may be useful, e.g., in the treatment of glioma, hematological (liquid) tumors, or multiple myeloma.
  • the immunostimulatory agent of the present invention is a vaccine strain, attenuated virus or microorganism, or killed virus or microorganism.
  • the immunostimulatory agent may be, e.g., BCG, live or dead Rabies vaccines, or an influenza vaccine.
  • Non-limiting examples of viruses of the present invention e.g., oncolytic viruses, are provided in Table 3. While Table 3 includes suggested mechanisms or uses for the provided viruses, methods and compositions of the present invention are not limited by or to these mechanisms or uses.
  • Oncorine (H101) E3- Adenovirus Phase 3; SCCHN; IT; Completed; Xia Z J, Chang J H, Zhang L, Jiang W Q, Guan Z Z, Liu J W, Zhang Y, Hu X H, Wu G H, Wang H Q, Chen Z C, Chen J C, Zhou Q H, Lu J W, Fan Q X, Huang J J, Zheng X.
  • H101 E1B gene-deleted adenovirus
  • cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus.
  • Phase 1 Ovarian cancer; intraperitoneal (IP); Completed; Vasey P A, Shulman L N, Campos S, Davis J, Gore M, Johnston S, Kirn D H, O'Neill V, Siddiqui N, Seiden M V, Kaye S B.
  • CG7870/CV787 hPSA-E1B Adenovirus Phase 1/2; Prostate cancer; IV; Terminated 2005 E3+ CG0070 E2F-1, Adenovirus Phase 2/3; Bladder cancer; Intracavity; Not yet open; Ramesh N, Ge Y, Ennist GM-CSF D L, Zhu M, Mina M, Ganesh S, Reddy P S, Yu D C. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor-armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006 Jan. 1; 12(1): 305-13.
  • Telomelysin hTERT Adenovirus Phase 1; Solid tumors; IT; Completed; Nemunaitis J, Tong A W, Nemunaitis M, Senzer N, Phadke A P, Bedell C, Adams N, Zhang Y A, Maples P B, Chen S, Pappen B, Burke J, Ichimaru D, Urata Y, Fujiwara T.
  • telomerase-specific replication competent oncolytic adenovirus telomelysin
  • Ad5-D24-RGD RGD Delta-24 Adenovirus Phase 1; Ovarian cancer; IP; Completed; Kimball K J, Preuss M A, Barnes M N, Wang M, Siegal G P, Wan W, Kuo H, Saddekni S, Stockard C R, Grizzle W E, Harris R D, Aurigemma R, Curiel D T, Alvarez R D.
  • CAVATAK Coxsackie Phase 1; Melanoma; IT; Completed virus Phase 2; Melanoma; IT; Recruiting (CVA21) Phase 1; SCCHN; IT; Terminated Phase 1; Solid tumors; IV; recruiting Talimogene GM-CSF Herpes Phase 1; Solid tumors; IT; Completed; Hu J C, Coffin R S, Davis C J, Graham laherparepvec simplex N J, Groves N, Guest P J, Harrington K J, James N D, Love C A, McNeish I, (OncoVEX) virus Medley L C, Michael A, Nutting C M, Pandha H S, Shorrock C A, Simpson J, Steiner J, Steven N M, Wright D, Coombes R C.
  • OncoVEXGM-CSF a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006 Nov. 15; 12(22): 6737-47.
  • the potential for efficacy of the modified (ICP 34.5( ⁇ )) herpes simplex virus HSV1716 following intratumoral injection into human malignant glioma a proof of principle study.
  • a herpes oncolytic virus can be delivered via the vasculature to produce biologic changes in human colorectal cancer. Mol Ther. 2009 February; 17(2): 389-94. doi: 10.1038/mt.2008.240. Epub 2008 Nov. 18.
  • PV701 Newcastle Phase 1; Solid tumors; IV; Completed; Why S A, Bell J C, Atkins H L, Roach J, disease Bamat M K, O'Neil J D, Roberts M S, Groene W S, Lorence R M. A phase 1 virus clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin Cancer Res. 2006 Apr. 15; 12(8): 2555-62. MTH-68/H — Newcastle Phase 2; Solid tumors; Inhalation; Completed; Csatary L K, Eckhardt S, disease Bukosza I, Czegledi F, Fenyvesi C, Gergely P, Bodey B, Csatary C M.
  • H-1PV Parvovirus Phase 1/2; Glioma; IT/IV; Recruiting; Geletneky K, Kiprianova I, Ayache A, Koch R, Herrero Y Calle M, Deleu L, Sommer C, Thomas N, Rommelaere J, Schlehofer J R. Regression of advanced rat and human gliomas by local or systemic treatment with oncolytic parvovirus H-1 in rat models. Neuro Oncol. 2010 August; 12(8): 804-14. doi: 10.1093/neuonc/noq023. Epub 2010 Mar. 18.
  • Reolysin Reovirus Phase 1/2; Glioma; IT; Completed; Forsyth P, Roldán G, George D, Wallace C, (Dearing) Palmer C A, Morris D, Cairncross G, Matthews M V, Markert J, Gillespie Y, Coffey M, Thompson B, Hamilton M. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther. 2008 March; 16(3): 627-32. doi: 10.1038/sj.mt.6300403. Epub 2008 Feb. 5.
  • Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2 molecular imaging after systemic delivery using 111In-pentetreotide. Mol Ther. 2004 September; 10(3): 553-61.
  • HCC human hepatocellular carcinoma
  • Oncolytic myxoma virus the path to clinic. Vaccine. 2013 Sep. 6; 31(39): 4252-8. doi: 10.1016/j.vaccine.2013.05.056. Epub 2013 May 29.
  • WT VSV The parental rWT Recombinant VSV used as oncolytic agent against cancer(see, e.g., see, e.g., (‘Rose lab’) VSV for most J Gen Virol/93(12): 2529-2545, 2012; Lawson N D, Stillman E A, Whitt M A, VSV-based OVs. Rose J K. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad The L gene and Sci USA.
  • pVSV-XN2 (or pVSV-XN1) is commonly used to generate recombinant VSVs encoding an extra gene WT VSV Alternative rWT Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, (‘Wertz lab’) VSV.
  • Vesicular stomatitis virus as a flexible platform for oncolytic -LacZ (between G and virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: L) to track 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernadez et al., “Genetically virus infection. Engineered Vesicular Stomatitis Virus in Gene Therapy: Application for Based on pVSV- Treatment of Malignant Disease”, J Virol 76: 895-904 (2002); Lan Wu, Tian-gui XN2.
  • VSV-G/GFP GFP sequence fused Recombinant VSV used as oncolytic agent against cancer see, e.g., Hastie E, to VSV G gene is Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic inserted between virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45.
  • VSV-WT VSV-rp30 Derivative of Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV-G/GFP. Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic Generated by virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: positive selection 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Tattersail, P. & van on glioblastoma den Pol, A. N. (2005). Targeting human glioblastoma cells: comparison of nine cells and viruses with oncolytic potential. J Virol 79, 6005-6022.) contains two silent mutations and two missense mutations, one in P and one in L.
  • ‘rp30’ indicates 30 repeated passages VSV-p1-GFP, VSV expressing Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV-p1-RFP GFP or red Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic fluorescent virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: protein (RFP or 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Rogulin, V., Simon, dsRed) reporter I., Rose, J. K. & van den Pol, A. N. (2010).
  • Attenuated variants of gene at position vesicular stomatitis virus show enhanced oncolytic activity against human 1. Attenuated glioblastoma cells relative to normal brain cells. J Virol 84, 1563-1573.) because all VSV genes are moved downward, to positions 2-6. Safe and still effective as an OV VSV-dG-GFP Similar to Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, (or RFP) VSV-p1-GFP or Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic (replication- VSV-p1-RFP virotherapy against cancer. J Gen Virol.
  • vesicular stomatitis virus show enhanced oncolytic activity against human Cannot generate glioblastoma cells relative to normal brain cells. J Virol 84, 1563-1573.) a second round of infection.
  • VSV- ⁇ P Poor ability to kill tumor cells VSV- ⁇ P, Each virus cannot Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, - ⁇ L, - ⁇ G replicate alone Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic (semi- because of one virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: replication- VSV gene deleted, 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Muik, A., Dold, C., Gei ⁇ , Y., Volk, competent) but when viruses A., Werbizki, M., Dietrich, U.
  • VSV ⁇ G contains GFP gene in place of G VSV-M51R M mutant; the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, M51R mutation was Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic introduced into M virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Kopecky, S. A., Willingham, M. C. & Lyles, D. S. (2001). Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus.
  • VSV- ⁇ M51, M mutant the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV- ⁇ M51- ⁇ M51 mutation Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic GFP, -RFP, was introduced virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: -FLuc, -Luc, into M. In 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Stojdl, D. F., Lichty, B.
  • rVSV(MD51)-M3 is an effective and safe oncolytic virus for cancer therapy.
  • Hum Gene Ther 19, 635-647. VSV-*Mmut M mutant; VSV Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, with a single Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic mutation or virotherapy against cancer.
  • Vesicular stomatitis virus as a flexible platform for oncolytic 54 are mutated virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: from DTY to AAA. 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Heiber, J. F. & Barber, G. N. M(mut) cannot (2011). Vesicular stomatitis virus expressing tumor suppressor p53 is a highly block nuclear attenuated, potent oncolytic agent.
  • J Virol 85, 10440-10450. mRNA export VSV-G5, -G5R, G mutant; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, -G6, -G6R VSV-expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic mutant G with virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: amino acid 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Janelle, V., Brassard, F., Lapierre, substitutions at P., Lamarre, A. & Poliquin, L. (2011).
  • VSV-CT9- G mutant the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, M51 cytoplasmic tail Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic of VSV-G was virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: reduced from 29 10.1099/vir.0.046672-0. Epub 2012 Oct.
  • VSV- Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, DV/F(L289A) glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic (same as expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: rVSV-F) NDV fusion 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ebert, O., Shinozaki, K., Kournioti, protein gene C., Park, M.
  • VSV-S-GP Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, glycoprotein; Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic VSV with the virotherapy against cancer.
  • the modified GP protein recognizes the Her2 receptor, which is overexpressed on many breast cancer cells VSV- ⁇ G- Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, SV5-F glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic G gene is replaced virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: with the fusogenic 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Chang, G., Xu, S., Watanabe, M., simian parainfluenza Jayakar, H.
  • VSV-FAST Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV-( ⁇ M51)- glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic FAST or VSV-M ⁇ 51 virotherapy against cancer. J Gen Virol.
  • VSV-LCMV-GP Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, (replication- glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic defective) lacking the G gene virotherapy against cancer.
  • Hastie E replication- glycoprotein
  • VSV-H/F Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, - ⁇ EGFR, - ⁇ FR, glycoprotein; VSV Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic - ⁇ PSMA lacking the G gene virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: (replication- was pseudotyped 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ayala-Breton, C., Barber, G. N., defective) with the MV F and Russell, S.
  • VSV-124 microRNA target
  • Recombinant VSV used as oncolytic agent against cancer see, e.g., Hastie E, -125, -128, VSV recombinants Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic -134 (M or with neuron-specific virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: L mRNA) microRNA (miR-124, 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Kelly, E. J., Nace, R., Barber, G. N. 125, 128 or 134) & Russell, S. J. (2010). Attenuation of vesicular stomatitis virus encephalitis targets inserted through microRNA targeting.
  • VSV M or L mRNA VSV-mp53, Cancer suppressor Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV- M(mut)- VSV [WT or Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic mp53 M(mut)] virotherapy against cancer.
  • Hastie E VSV- M(mut)- VSV [WT or Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic mp53 M(mut)] virotherapy against cancer.
  • Vesicular stomatitis virus expressing tumor suppressor p53 is a highly M(mut) has attenuated, potent oncolytic agent. J Virol 85, 10440-10450.) residues 52-54 of the M protein changed from DTY to AAA VSV- Suicide gene; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, C:U VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic E. coli CD/UPRT, virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45.
  • Vesicular stomatitis virus as a flexible platform for oncolytic expressing virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: CD/UPRT 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Leveille, S., Samuel, S., Goulet, M. L. & Hiscott, J. (2011). Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy.
  • VSV- Suicide gene Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, (M ⁇ 51)- VSV-M ⁇ 51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic NIS expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: human NIS 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Goel, A., Carlson, S. K., Classic, K. gene (for L., Greiner, S., Naik, S., Power, A. T., Bell, J.
  • VSV- TK Suicide gene Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic TK; can improve virotherapy against cancer. J Gen Virol.
  • VSV Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, -mIFN ⁇ , VSV expressing the Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic -hIFN ⁇ , murine (m), human virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: VSV-rIFN ⁇ (h) or rat (r) IFN- 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Jenks, N., Myers, R., Greiner, S. ⁇ gene M., Thompson, J., Mader, E. K., Greenslade, A., Griesmann, G. E., Federspiel, M. J., Rakela, J. & other authors (2010).
  • Vesicular stomatitis virus as a flexible platform for oncolytic IL-4 virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernandez, M., Porosnicu, M., Markovic, D. & Barber, G. N. (2002). Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 76, 895-904.) VSV- VSV expressing Naik S, Nace R, Federspiel M J, Barber G N, Peng K W, Russell S J.
  • Vesicular stomatitis virus as a flexible platform for oncolytic IL-23. virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: Significantly 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Miller, J. M., Bidula, S. M., Jensen, attenuated in the T. M. & Reiss, C. S. (2010). Vesicular stomatitis virus modified with single CNS, but effective chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo.
  • VSV- Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, IL28 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic IL-28, a member virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: of the type III 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wongthida, P., Diaz, R.
  • VSV- Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, opt.hIL-15 VSV-M ⁇ 51 Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic expressing a virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: highly secreted 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Stephenson, K. B., Barra, N. G., version of human Davies, E., Ashkar, A. A. & Lichty, B. D. (2012). Expressing human interleukin- IL-15 15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of antitumor immunity.
  • VSV- Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, CD40L VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic CD40L, a member virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: of the tumor 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Galivo, F., Diaz, R.
  • VSV- Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, Flt3L VSV-M ⁇ 51 Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: soluble form of 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Leveille, S., Goulet, M. L., Lichty, the human Flt3L, B. D. & Hiscott, J. (2011). Vesicular stomatitis virus oncolytic treatment a growth factor interferes with tumor-associated dendritic cell functions and abrogates tumor activating DCs antigen presentation.
  • VSV/hDCT Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV-M ⁇ 51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic expressing hDCT virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Boudreau, J. E., Bridle, B. W., Stephenson, K. B., Jenkins, K.
  • VSV- Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, hgp100 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic hgp100, an altered virotherapy against cancer. J Gen Virol.
  • VSV oncolytic well-established virotherapy in the B16 model depends upon intact MyD88 signaling. Mol Ther in C57BL/6 mice 19, 150-158.) VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, ova VSV expressing Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic chicken ovalbumin virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: (for B16ova cancer 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Diaz, R. M., Galivo, F., Kottke, T., model) Wongthida, P., Qiao, J., Thompson, J., Valdes, M., Barber, G. & Vile, R. G. (2007). Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus.
  • VSV-gG Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic EHV-1 glycoprotein virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: G, a broad- 10.1099/vir.0.046672-0. Epub 2012 Oct.
  • VSV- Immunomodulation Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, UL141 VSV expressing Grdzelishvili V Z.
  • Vesicular stomatitis virus as a flexible platform for oncolytic a secreted form virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: of the human 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Altomonte, J., Wu, L., Meseck, M., cytomegalovirus Chen, L., Ebert, O., Garcia-Sastre, A., Fallon, J., Mandeli, J. & Woo, S. L. UL141 protein, (2009). Enhanced oncolytic potency of vesicular stomatitis virus through known to inhibit vector-mediated inhibition of NK and NKT cells.
  • NK cells by blocking the ligand of NK cell- activating receptors VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E, ( ⁇ 51)-M3 VSV-M ⁇ 51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi: murine 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wu, L., Huang, T.
  • rVSV(MD51)-M3 is an effective and safe oncolytic virus binding protein for cancer therapy.
  • Hum Gene Ther 19, 635-647. M3 HSV-1 Genome and Herpesviridae Clinical phase I/II; Glioma; Wollmann et al.
  • Oncolytic virus therapy for glioblastoma multiforme concepts and candidates. Cancer J .
  • AdV Phase I Malignant glioma; Wollmann et al. Oncolytic virus therapy for (Delta24- glioblastoma multiforme: concepts and candidates. Cancer J . 2012 RGD) January-February; 18(1): 69-81 ReoV Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J . 2012 January-February; 18(1): 69-81; Forsyth P, Roldan G, George D, et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther.
  • Newcastle disease virus vaccine (MTH- 68/H) in a patient with high-grade glioblastoma. JAMA. 1999; 281: 1588Y1589. Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J . 2012 January-February; 18(1): 69-81; Csatary L K, Gosztonyi G, Szeberenyi J, et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J Neurooncol. 2004; 67: 83Y93.
  • the methods and compositions of the present invention may be used to treat a wide variety of cancer types.
  • One of skill in the art will appreciate that, since cells of many if not all cancers are capable of receptor-mediated apoptosis, the methods and compositions of the present invention are broadly applicable to many if not all cancers.
  • the combinatorial approach of the present invention is efficacious in various aggressive, treatment refractory tumor models.
  • the cancer treated by a method of the present invention may be adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain and other central nervous system (CNS) cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphomas including Hodgkin's and non-Hodgkin's lymphomas, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma
  • CNS central nervous system
  • ovarian cancer paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenomathymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, cancer of the urinary system, and other carcinomas and sarcomas.
  • Other cancers are known in the art.
  • the cancer may be a cancer that is refractory to treatment by SMCs alone.
  • the methods and compositions of the present invention may be particularly useful in cancers that are refractory to treatment by SMCs alone.
  • a cancer refractory to treatment with SMCs alone may be a cancer in which IAP-mediated apoptotic pathways are not significantly induced.
  • a cancer of the present invention is a cancer in which one or more apoptotic pathways are not significantly induced, i.e., is not activated in a manner such that treatment with SMCs alone is sufficient to effectively treat the cancer.
  • a cancer of the present invention can be a cancer in which a cIAP1/2-mediated apoptotic pathway is not significantly induced.
  • a cancer of the present invention may be a cancer refractory to treatment by one or more immunostimulatory agents.
  • a cancer of the present invention may be a cancer refractory to treatment by one or more immunostimulatory agents (absent an SMC) and also refractory to treatment by one or more SMCs (absent an immunostimulatory agent).
  • SMCs and/or immunostimulatory agents may be administered in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitably pharmacologically effective, e.g., capable of potentiating apoptosis and/or treating cancer.
  • Salts, esters, amides, prodrugs and other derivatives of an SMC or immunostimulatory agent can be prepared using standard procedures known in the art of synthetic organic chemistry.
  • an acid salt of SMCs and/or immunostimulatory agents may be prepared from a free base form of the SMC or immunostimulatory agent using conventional methodology that typically involves reaction with a suitable acid.
  • the base form of the SMC or immunostimulatory agent is dissolved in a polar organic solvent, such as methanol or ethanol, and the acid is added thereto.
  • the resulting salt either precipitates or can be brought out of solution by addition of a less polar solvent.
  • Suitable acids for preparing acid addition salts include, but are not limited to, both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • organic acids e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid,
  • An acid addition salt can be reconverted to the free base by treatment with a suitable base.
  • Certain typical acid addition salts of SMCs and/or immunostimulatory agents for example, halide salts, such as may be prepared using hydrochloric or hydrobromic acids.
  • preparation of basic salts of SMCs and/or immunostimulatory agents of the present invention may be prepared in a similar manner using a pharmaceutically acceptable base, such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like.
  • Certain typical basic salts include, but are not limited to, alkali metal salts, e.g., sodium salt, and copper salts.
  • esters may involve functionalization of, e.g., hydroxyl and/or carboxyl groups that are present within the molecular structure of SMCs and/or immunostimulatory agents.
  • the esters are acyl-substituted derivatives of free alcohol groups, i.e., moieties derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl.
  • Esters may be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides may also be prepared using techniques known in the art. For example, an amide may be prepared from an ester using suitable amine reactants or prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • An SMC or immunostimulatory agent of the present invention may be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition.
  • Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, e.g., to stabilize the composition, increase or decrease the absorption of the SMC or immunostimulatory agent, or improve penetration of the blood brain barrier (where appropriate).
  • Physiologically acceptable compounds may include, e.g., carbohydrates (e.g., glucose, sucrose, or dextrans), antioxidants (e.g.
  • a pharmaceutical formulation may enhance delivery or efficacy of an SMC or immunostimulatory agent.
  • an SMC or immunostimulatory agent of the present invention may be prepared for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration. Administration may occur, for example, transdermally, prophylactically, or by aerosol.
  • a pharmaceutical composition of the present invention may be administered in a variety of unit dosage forms depending upon the method of administration.
  • Suitable unit dosage forms include, but are not limited to, powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectibles, implantable sustained-release formulations, and lipid complexes.
  • an excipient e.g., lactose, sucrose, starch, mannitol, etc.
  • an optional disintegrator e.g. calcium carbonate, carboxymethylcellulose calcium, sodium starch glycollate, crospovidone, etc.
  • a binder e.g.
  • alpha-starch gum arabic, microcrystalline cellulose, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose, cyclodextrin, etc.), or an optional lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.) may be added to an SMC or immunostimulatory agent and the resulting composition may be compressed to manufacture an oral dosage form (e.g., a tablet).
  • a compressed product may be coated, e.g., to mask the taste of the compressed product, to promote enteric dissolution of the compressed product, or to promote sustained release of the SMC or immunostimulatory agent.
  • Suitable coating materials include, but are not limited to, ethyl-cellulose, hydroxymethylcellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, and Eudragit (Rohm & Haas, Germany; methacrylic-acrylic copolymer).
  • physiologically acceptable compounds that may be included in a pharmaceutical composition including an SMC or immunostimulatory agent may include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms.
  • preservatives include, for example, phenol and ascorbic acid.
  • pharmaceutically acceptable carrier(s) including a physiologically acceptable compound, depends, e.g., on the route of administration of the SMC or immunostimulatory agent and on the particular physio-chemical characteristics of the SMC or immunostimulatory agent.
  • one or more excipients for use in a pharmaceutical composition including an SMC or immunostimulatory agent may be sterile and/or substantially free of undesirable matter.
  • Such compositions may be sterilized by conventional techniques known in the art.
  • sterility is not required. Standards are known in the art, e.g., the USP/NF standard.
  • An SMC or immunostimulatory agent pharmaceutical composition of the present invention may be administered in a single or in multiple administrations depending on the dosage, the required frequency of administration, and the known or anticipated tolerance of the subject for the pharmaceutical composition with respect to dosages and frequency of administration.
  • the composition may provide a sufficient quantity of an SMC or immunostimulatory agent of the present invention to effectively treat cancer.
  • the amount and/or concentration of an SMC or immunostimulatory agent to be administered to a subject may vary widely, and will typically be selected primarily based on activity of the SMC or immunostimulatory agent and the characteristics of the subject, e.g., species and body weight, as well as the particular mode of administration and the needs of the subject, e.g., with respect to a type of cancer. Dosages may be varied to optimize a therapeutic and/or prophylactic regimen in a particular subject or group of subjects.
  • an SMC or immunostimulatory agent of the present invention is administered to the oral cavity, e.g., by the use of a lozenge, aerosol spray, mouthwash, coated swab, or other mechanism known in the art.
  • an SMC or immunostimulatory agent of the present invention may be administered systemically (e.g., orally or as an injectable) in accordance with standard methods known in the art.
  • the SMC or immunostimulatory agent may be delivered through the skin using a transdermal drug delivery systems, i.e., transdermal “patches,” wherein the SMCs or immunostimulatory agents are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin.
  • the drug composition is typically contained in a layer or reservoir underlying an upper backing layer.
  • the reservoir of a transdermal patch includes a quantity of an SMC or immunostimulatory agent that is ultimately available for delivery to the surface of the skin.
  • the reservoir may include, e.g., an SMC or immunostimulatory agent of the present invention in an adhesive on a backing layer of the patch or in any of a variety of different matrix formulations known in the art.
  • the patch may contain a single reservoir or multiple reservoirs.
  • a reservoir may comprise a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery.
  • suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, and polyurethanes.
  • the SMC and/or immunostimulatory agent-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, a liquid or hydrogel reservoir, or another form of reservoir known in the art.
  • the backing layer in these laminates which serves as the upper surface of the device, preferably functions as a primary structural element of the patch and provides the device with a substantial portion of flexibility.
  • the material selected for the backing layer is preferably substantially impermeable to the SMC and/or immunostimulatory agent and to any other materials that are present.
  • Additional formulations for topical delivery include, but are not limited to, ointments, gels, sprays, fluids, and creams.
  • Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives.
  • Creams including an SMC or immunostimulatory agent are typically viscous liquids or semisolid emulsions, e.g. oil-in-water or water-in-oil emulsions.
  • Cream bases are typically water-washable and include an oil phase, an emulsifier, and an aqueous phase.
  • the oil phase also sometimes called the “internal” phase, of a cream base is generally comprised of petrolatum and a fatty alcohol, e.g., cetyl alcohol or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic, or amphoteric surfactant.
  • the specific ointment or cream base to be used may be selected to provide for optimum drug delivery according to the art.
  • an ointment base may be inert, stable, non-irritating, and non-sensitizing.
  • parenteral administration of an SMC or immunostimulatory agent of the present invention may be parenteral.
  • Parenteral administration may include intraspinal, epidural, intrathecal, subcutaneous, or intravenous administration. Means of parenteral administration are known in the art.
  • parenteral administration may include a subcutaneously implanted device.
  • an SMC or immunostimulatory agent it may be desirable to deliver an SMC or immunostimulatory agent to the brain. In embodiments including system administration, this could require that the SMC or immunostimulatory agent cross the blood brain barrier. In various embodiments this may be facilitated by co-administering an SMC or immunostimulatory agent with carrier molecules, such as cationic dendrimers or arginine-rich peptides, which may carry an SMC or immunostimulatory agent over the blood brain barrier.
  • carrier molecules such as cationic dendrimers or arginine-rich peptides
  • an SMC or immunostimulatory agent may be delivered directly to the brain by administration through the implantation of a biocompatible release system (e.g., a reservoir), by direct administration through an implanted cannula, by administration through an implanted or partially implanted drug pump, or mechanisms of similar function known the art.
  • a biocompatible release system e.g., a reservoir
  • an SMC or immunostimulatory agent may be systemically administered (e.g., injected into a vein).
  • it is expected that the SMC or immunostimulatory agent will be transported across the blood brain barrier without the use of additional compounds included in a pharmaceutical composition to enhance transport across the blood brain barrier.
  • one or more an SMCs or immunostimulatory agents of the present invention may be provided as a concentrate, e.g., in a storage container or soluble capsule ready for dilution or addition to a volume of water, alcohol, hydrogen peroxide, or other diluent.
  • a concentrate of the present invention may be provided in a particular amount of an SMC or immunostimulatory agent and/or a particular total volume. The concentrate may be formulated for dilution in a particular volume of diluents prior to administration.
  • An SMC or immunostimulatory agent may be administered orally in the form of tablets, capsules, elixirs or syrups, or rectally in the form of suppositories.
  • the compound may also be administered topically in the form of foams, lotions, drops, creams, ointments, emollients, or gels.
  • Parenteral administration of a compound is suitably performed, for example, in the form of saline solutions or with the compound incorporated into liposomes.
  • a solubilizer such as ethanol, can be applied.
  • Other suitable formulations and modes of administration are known or may be derived from the art.
  • An SMC or immunostimulatory agent of the present invention may be administered to a mammal in need thereof, such as a mammal diagnosed as having cancer.
  • An SMC or immunostimulatory agent of the present invention may be administered to potentiate apoptosis and/or treat cancer.
  • a therapeutically effective dose of a pharmaceutical composition of the present invention may depend upon the age of the subject, the gender of the subject, the species of the subject, the particular pathology, the severity of the symptoms, and the general state of the subject's health.
  • the present invention includes compositions and methods for the treatment of a human subject, such as a human subject having been diagnosed with cancer.
  • a pharmaceutical composition of the present invention may be suitable for administration to an animal, e.g., for veterinary use.
  • Certain embodiments of the present invention may include administration of a pharmaceutical composition of the present invention to non-human organisms, e.g., a non-human primates, canine, equine, feline, porcine, ungulate, or lagomorphs organism or other vertebrate species.
  • Therapy according to the invention may be performed alone or in conjunction with another therapy, e.g., another cancer therapy, and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment optionally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed or it may begin on an outpatient basis.
  • the duration of the therapy depends on the type of disease or disorder being treated, the age and condition of the subject, the stage and type of the subject's disease, and how the patient responds to the treatment.
  • the combination of therapy of the present invention further includes treatment with a recombinant interferon, such as IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , pegylated IFN, or liposomal interferon.
  • a recombinant interferon such as IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , pegylated IFN, or liposomal interferon.
  • the combination of therapy of the present invention further includes treatment with recombinant TNF- ⁇ , e.g., for isolated-limb perfusion.
  • the combination therapy of the present invention further includes treatment with one or more of a TNF- ⁇ or IFN-inducing compound, such as DMXAA, Ribavirin, or the like.
  • Additional cancer immunotherapies that may be used in combination with present invention include antibodies, e.g., monoclonal antibodies, targeting CTLA-4, PD-1, PD-L1, PD-L2, or other checkpoint inhibitors.
  • Routes of administration for the various embodiments include, but are not limited to, topical, transdermal, nasal, and systemic administration (such as, intravenous, intramuscular, subcutaneous, inhalation, rectal, buccal, vaginal, intraperitoneal, intraarticular, ophthalmic, otic, or oral administration).
  • systemic administration refers to all nondermal routes of administration, and specifically excludes topical and transdermal routes of administration.
  • the route of administration may be optimized based on the characteristics of the SMC or immunostimulatory agent.
  • the SMC or immunostimulatory agent is a small molecule or compound.
  • the SMC or immunostimulatory agent is a nucleic acid.
  • the immunostimulatory agent may be a cell or virus.
  • appropriate formulations and routes of administration will be selected in accordance with the art.
  • an SMC and an immunostimulatory agent are administered to a subject in need thereof, e.g., a subject having cancer.
  • the SMC and immunostimulatory agent will be administered simultaneously.
  • the SMC and immunostimulatory agent may be present in a single therapeutic dosage form.
  • the SMC and immunostimulatory agent may be administered separately to the subject in need thereof. When administered separately, the SMC and immunostimulatory agent may be administered simultaneously or at different times.
  • a subject will receive a single dosage of an SMC and a single dosage of an immunostimulatory agent.
  • one or more of the SMC and immunostimulatory agent will be administered to a subject in two or more doses.
  • the frequency of administration of an SMC and the frequency of administration of an immunostimulatory agent are non-identical, i.e., the SMC is administered at a first frequence and the immunostimulatory agent is administered at a second frequency.
  • an SMC is administered within one week of the administration of an immunostimulatory agent. In particular embodiments, an SMC is administered within 3 days (72 hours) of the administration of an immunostimulatory agent. In still more particular embodiments, an SMC is administered within 1 day (24 hours) of the administration of an immunostimulatory agent.
  • the SMC and immunostimulatory agent are administered within 28 days of each other or less, e.g., within 14 days of each other.
  • the SMC and immunostimulatory agent are administered, e.g., simultaneously or within 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 18 hours, 24 hours, 36 hours, 2 days, 4 days, 8 days, 10 days, 12 days, 16 days, 20 days, 24 days, or 28 days of each other.
  • the first administration of an SMC of the present invention may precede the first administration of an immunostimulatory agent of the present invention.
  • the first administration of an SMC of the present invention may follow the first administration of an immunostimulatory agent of the present invention.
  • an SMC and/or immunostimulatory agent of the present invention may be administered to a subject in two more doses, and because, in such instances, doses of the SMC and immunostimulatory agent of the present invention may be administered at different frequencies, it is not required that the period of time between the administration of an SMC and the administration of an immunostimulatory agent remain constant within a given course of treatment or for a given subject.
  • One or both of the SMC and the immunostimulatory agent may be administered in a low dosage or in a high dosage.
  • the pharmacokinetic profiles for each agent can be suitably matched to the formulation, dosage, and route of administration, etc.
  • the SMC is administered at a standard or high dosage and the immunostimulatory agent is administered at a low dosage.
  • the SMC is administered at a low dosage and the immunostimulatory agent is administered at a standard or high dosage.
  • both of the SMC and the immunostimulatory agent are administered at a standard or high dosage.
  • both of the SMC and the immunostimulatory agent are administered at a low dosage.
  • each component of the combination can be controlled independently. For example, one component may be administered three times per day, while the second component may be administered once per day or one component may be administered once per week, while the second component may be administered once per two weeks.
  • Combination therapy may be given in on-and-off cycles that include rest periods so that the subject's body has a chance to recover from effects of treatment.
  • kits of the invention contain one or more SMCs and one or more immunostimulatory agents. These can be provided in the kit as separate compositions, or combined into a single composition as described above.
  • the kits of the invention can also contain instructions for the administration of one or more SMCs and one or more immunostimulatory agents.
  • Kits of the invention can also contain instructions for administering an additional pharmacologically acceptable substance, such as an agent known to treat cancer that is not an SMC or immunostimulatory agent of the present invention.
  • an additional pharmacologically acceptable substance such as an agent known to treat cancer that is not an SMC or immunostimulatory agent of the present invention.
  • kits that contain, e.g., two pills, a pill and a powder, a suppository and a liquid in a vial, two topical creams, ointments, foams etc.
  • the kit can include optional components that aid in the administration of the unit dose to subjects, such as vials for reconstituting powder forms, syringes for injection, customized IV delivery systems, inhalers, etc.
  • the unit dose kit can contain instructions for preparation and administration of the compositions.
  • the kit may be manufactured as a single use unit dose for one subject, multiple uses for a particular subject (at a constant dosage regimen or in which the individual compounds may vary in potency as therapy progresses); or the kit may contain multiple doses suitable for administration to multiple subjects (“bulk packaging”).
  • the kit components may be assembled in cartons, blister packs, bottles, tubes, and the like.
  • each compound of the claimed combinations depends on several factors, including: the administration method, the disease (e.g., a type of cancer) to be treated, the severity of the disease, and the age, weight, and health of the person to be treated. Additionally, pharmacogenomic (the effect of genotype on the pharmacokinetic, pharmacodynamic or efficacy profile of a therapeutic) information about a particular subject may affect the dosage regimen or other aspects of administration.
  • the disease e.g., a type of cancer
  • pharmacogenomic the effect of genotype on the pharmacokinetic, pharmacodynamic or efficacy profile of a therapeutic
  • Smac mimetic compounds are a class of apoptosis sensitizing drugs that have proven safe in cancer patient Phase I trials. Stimulating an innate anti-pathogen response may generate a potent yet safe inflammatory “cytokine storm” that would trigger death of tumors treated with Smac mimetics.
  • the present example demonstrates that activation of innate immune responses via oncolytic viruses and adjuvants, such as poly(I:C) and CpG, induces bystander death of cancer cells treated with Smac mimetics in a manner mediated by IFN ⁇ , TNF ⁇ or TRAIL. This therapeutic strategy may lead to durable cures, e.g., in several aggressive mouse models of cancer. With these and other innate immune stimulants having demonstrated safety in human clinical trials, the data provided herein points strongly towards their combined use with Smac mimetics for treating cancer.
  • the present example examines whether stimulating the innate immune system using pathogen mimetics would be a safe and effective strategy to generate a cytokine milieu necessary to initiate apoptosis in tumors treated with an SMC.
  • non-pathogenic oncolytic viruses, as well as mimetics of microbial RNA or DNA, such as poly (I:C) and CpG induce bystander killing of cancer cells treated with an SMC that is dependent either upon IFN ⁇ , TNF ⁇ , or TRAIL production.
  • this therapeutic strategy was tolerable in vivo and led to durable cures in several aggressive mouse models of cancer.
  • Oncolytic viruses are emerging biotherapies for cancer currently in phase I-III clinical evaluation.
  • VSV ⁇ 51 because it is known to induce a robust antiviral cytokine response.
  • SMC treatment enhanced sensitivity the EC50 of VSV ⁇ 51 by 10-10,000 fold ( FIG. 6 , and representative examples in FIGS. 1A and 1B ).
  • low dose of VSV ⁇ 51 reduced the EC50 of SMC therapy from undetermined levels (>2500 nM) to 4.5 and 21.9 nM in two representative cell lines: the mouse mammary carcinoma EMT6 and the human glioblastoma SNB75 cells, respectively ( FIG. 1C ).
  • VSV ⁇ 51 elicits bystander cell death in IAP-depleted neighbouring cells not infected by the virus
  • MOI 0.01 infectious particles per cell
  • conditioned media derived from cells infected with VSV ⁇ 51 which was subsequently inactivated by UV light
  • the conditioned media induced cell death only when the cells were co-treated with an SMC FIG. 1D ).
  • VSV ⁇ 51 infection leads to the release of at least one soluble factor that can potently induce bystander cell death in neighboring, uninfected, cancer cells treated with SMCs.
  • the cellular innate immune response to an RNA virus infection in mammalian tumor cells can be initiated by members of a family of cytosolic (RIG-I-like receptors, RLRs) and endosomal (toll-like receptors, TLRs) viral RNA sensors. Once triggered, these receptors can seed parallel IFN-response factor (IRF) 3/7 and nuclear-factor kappa B (NF- ⁇ B) cell signalling cascades. These signals can culminate in the production of IFNs and their responsive genes as well as an array of inflammatory chemokines and cytokines.
  • IRF IFN-response factor
  • NF- ⁇ B nuclear-factor kappa B
  • IFN ⁇ production was measured in EMT6 and SNB75 cells treated with VSV ⁇ 51 and SMCs.
  • This experiment revealed that the SMC treated cancer cells respond to VSV ⁇ 51 by secreting IFN ⁇ ( FIG. 2C ), although at slightly lower levels as compared to VSV ⁇ 51 alone. It was asked whether the dampened IFN ⁇ secretion from SMC treated cells had any bearing on the induction of downstream IFN stimulated genes (ISGs).
  • Quantitative RT-PCR analyses of a small panel of ISGs in cells treated with VSV ⁇ 51 and SMC revealed that IAP inhibition had no bearing on ISG gene expression in response to an oncolytic VSV infection ( FIG. 2D ).
  • IFN ⁇ Orchestrates Bystander Cell Death During SMC and Oncolytic VSV Co-Therapy
  • TNF ⁇ TNF ⁇
  • TRAIL TRAIL-1 ⁇
  • IL-1 ⁇ IL-1 ⁇
  • TNF-R1 and/or the TRAIL receptor (DR5) were silenced and synergy between SMC and VSV ⁇ 51 was assayed. This experiment revealed that TNF ⁇ and TRAIL are not only involved, but collectively are indispensable for bystander cell death ( FIGS. 3A-3H, 13A, and 24D ).
  • IFNAR1 knockdown prevented the synergy between SMC therapy and oncolytic VSV ( FIGS. 3B, 13B, and 24D ). It was predicted that IFNAR1 knockdown would dampen but not completely suppress bystander killing, as TRAIL is a well-established ISG that is responsive to type I IFN28. TNF ⁇ and IL-1 ⁇ are considered to be independent of IFN signaling, but they are nevertheless responsive to NF- ⁇ B signaling downstream of virus detection. This result suggests the possibility of a non-canonical type I IFN-dependant pathway for the production of TNF ⁇ and/or IL-1 ⁇ .
  • IFNs in turn signal to neighboring, uninfected cancer cells to express and secrete TNF ⁇ and TRAIL, a process that is enhanced by SMC treatment, which consequently induces autocrine and paracrine programmed cell death in uninfected tumor cells exposed to SMC ( FIGS. 18A and 18B ).
  • FIGS. 4E, 24B, and 24G immunoblots with tumor lysates demonstrated activation of caspase-8 and -3 in doubly-treated tumors. While the animals in the combination treatment cohort experienced weight loss, the mice fully recovered following the last treatment ( FIG. 20A ).
  • HT-29 is a cell line that is highly responsive to bystander killing by SMC and VSV ⁇ 51 co-treatment in vitro ( FIGS. 21A and 21B ). Similar to our findings in the EMT6 model system, combination therapy with SMC and VSV ⁇ 51 induced tumor regression and a significant extension of mouse survival ( FIG. 21C ). In contrast, neither monotherapy had any effect on HT-29 tumors. Furthermore, there was no additional weight loss in the double treated mice compared to SMC treated mice ( FIG. 21D ). These results indicate that the synergy is highly efficacious in a refractory xenograft model and that the adaptive immune response does not have a major role initially in the efficacy of SMC and OV co-therapy.
  • mice bearing EMT6 tumors were treated with IFNAR1 blocking antibodies.
  • Mice treated with the IFNAR1 blocking antibody succumbed to viremia within 24-48 hours post infection.
  • tumors Prior to death, tumors were collected at 18-20 hours after virus infection, and the tumors were analyzed for caspase activity.
  • the excised tumors did not demonstrate signs of caspase-8 activity and only showed minimal signs of caspase-3 activity ( FIG. 22 ) in contrast to the control group, which showed the expected activation of caspases within the tumor ( FIG. 22 ).
  • Macrophages (CD11b+ F4/80+), neutrophils (CD11b+ Gr1+), NK cells (CD11b ⁇ CD49b+) and myeloid-negative (lymphoid) population (CD11b ⁇ CD49 ⁇ ) were stimulated with VSV ⁇ 51, and the conditioned medium was transferred to EMT6 cells to measure cytotoxicity in the presence of SMC.
  • VSV ⁇ 51-stimulated macrophages and neutrophils, but not NK cells are capable of producing factors that lead to cancer cell death in the presence of SMCs ( FIG. 23A ).
  • TLR agonists which are known to induce an innate proinflammatory response, would synergize with SMC therapy.
  • EMT6 cells were co-cultured with mouse splenocytes in a transwell insert system, and the splenocytes were treated with SMC and agonists of TLR 3, 4, 7 or 9. All of the tested TLR agonists were found to induce the bystander death of SMC treated EMT6 cells ( FIG. 5A ).
  • TLR3 agonist poly(I:C) led to EMT6 cell death directly in the presence of SMCs.
  • Poly(I:C) and CpG were next tested in combination with SMC therapy in vivo. These agonists were chosen as they have proven to be safe in humans and are currently in numerous mid to late stage clinical trials for cancer.
  • EMT6 tumors were established and treated as described above. While poly(I:C) treatment had no bearing on tumor growth as a single agent, combination with SMCs induced substantial tumor regression and, when delivered intraperitoneally, led to durable cures in 60% of the treated mice ( FIGS. 5B and 5C ).
  • CpG monotherapy had no bearing on tumor size or survival, but when combined with SMC therapy led to tumor regressions and durable cures in 88% of the treated mice ( FIGS. 5D and 5E ).
  • these combination therapies were well tolerated by the mice, and their body weight returned to pre-treatment levels shortly after the cessation of therapy ( FIGS. 20B and 20C ).
  • the data demonstrate that a series of clinically advanced innate immune adjuvants strongly and safely synergize with SMC therapy in vivo, inducing tumor regression and durable cures in several treatment refractory, aggressive mouse models of cancer.
  • Example 2 Inactivated Viral Particles, Cancer Vaccines, and Stimulatory Cytokines Synergize with SMCs to Kill Tumors
  • cancer immunotherapies such as BCG (Bacillus Calmette-Guerin), recombinant interferon (e.g. IFN ⁇ ), and recombinant Tumor Necrosis Factor (e.g. TNF ⁇ used in isolated limb perfusion for example), and the recent clinical use of biologics (e.g. blocking antibodies) to immune checkpoint inhibitors that overcome tumor-mediated suppression of the immune system (such as anti-CTLA-4 and anti-PD-1 or PDL-1 monoclonal antibodies) highlight the potential of ‘cancer immunotherapy’ as an effective treatment modality.
  • BCG Bacillus Calmette-Guerin
  • IFN ⁇ interferon
  • Tumor Necrosis Factor e.g. TNF ⁇ used in isolated limb perfusion for example
  • biologics e.g. blocking antibodies
  • immune checkpoint inhibitors that overcome tumor-mediated suppression of the immune system
  • NRRPs non-replicating rhabdovirus-derived particles
  • Type I IFN Synergizes with SMCs In Vivo
  • VSV ⁇ 51 is a preclinical candidate
  • the oncolytic rhabdoviruses VSV-IFN ⁇ and Maraba-MG1 are currently undergoing clinical testing in cancer patients.
  • Maraba-MG1 synergizes with SMCs in vitro ( FIG. 9A ).
  • SMCs synergized with the clinical candidates, VSV-IFN ⁇ and VSV-NIS-IFN ⁇ i.e. carrying the imaging gene, NIS, sodium iodide symporter
  • VSV ⁇ 51-solTNF ⁇ As shown in Example 1, we documented that a form of VSV ⁇ 51 that was engineered to express full-length TNF ⁇ can enhance oncolytic virus induced death in the presence of SMC ( FIGS. 15A and 15B ). To expand on these findings, we also engineered VSV ⁇ 51 to express a form of TNF ⁇ that had its intracellular and transmembrane components replaced with the secretory signal from human serum albumin (VSV ⁇ 51-solTNF ⁇ ).
  • solTNF ⁇ is constitutively secreted from host cells, while the memTNF ⁇ form may be anchored on plasma membrane (and still capable of inducing cell death in a juxtacrine manner) or is released due to endogenous processing by metalloproteases (such as ADAM17) to kill cells in a paracrine fashion.
  • metalloproteases such as ADAM17
  • VSV ⁇ 51-solTNF ⁇ synergizes with SMCs in a subcutaneous model of the mouse colon carcinoma cell line, CT-26. As expected, we did not observe an impact of tumor growth rates or survival with VSV ⁇ 51-solTNF ⁇ and observed a modest decrease of the tumor growth rate and a slight extension of survival ( FIG. 30C ).
  • TNF ⁇ transgene within oncolytic viruses is a significant advantage for the combination of SMC.
  • SMCs with immune stimulatory agents
  • BBB blood-brain-barrier
  • LCL161 (Houghton, P. J. et al. Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 58: 636-639 (2012); Chen, K. F. et al. Inhibition of Bcl-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells. Biochemical Pharmacology 84: 268-277 (2012)). SM-122 and SM-164 were provided by Dr. Shaomeng Wang (University of Michigan, USA) (Sun, H. et al.
  • IFN ⁇ , IFN ⁇ , IL28 and IL29 were obtained from PBL Interferonsource (Piscataway, USA). All siRNAs were obtained from Dharmacon (Ottawa, Canada; ON TARGETplus SMARTpool).
  • CpG-ODN 2216 was synthesized by IDT (5′-gggGGACGATCGTCgggggg-3′ (SEQ ID NO: 1), lowercase indicates phosphorothioate linkages between these nucleotides, while italics identify three CpG motifs with phosphodiester linkages).
  • Imiquimod was purchased from BioVision Inc. (Milpitas, USA).
  • poly(I:C) was obtained from InvivoGen (San Diego, USA). LPS was from Sigma (Oakville, Canada).
  • Cells were maintained at 37° C. and 5% CO2 in DMEM media supplemented with 10% heat inactivated fetal calf serum, penicillin, streptomycin, and 1% non-essential amino acids (Invitrogen, Burlington, USA). All of the cell lines were obtained from ATCC, with the following exceptions: SNB75 (Dr. D. Stojdl, Children's Hospital of Eastern Ontario Research Institute) and SF539 (UCSF Brain Tumor Bank). Cell lines were regularly tested for mycoplasma contamination. For siRNA transfections, cells were reverse transfected with Lipofectamine RNAiMAX (Invitrogen) or DharmaFECT I (Dharmacon) for 48 hours as per the manufacturer's protocol.
  • RNAiMAX Invitrogen
  • DharmaFECT I Dharmacon
  • VSV ⁇ 51-GFP is a recombinant derivative of VSV ⁇ 51 expressing jellyfish green fluorescent protein.
  • VSV ⁇ 51-Fluc expresses firefly luciferase.
  • VSV ⁇ 51 with the deletion of the gene encoding for glycoprotein (VSV ⁇ 51 ⁇ G) was propagated in HEK293T cells that were transfected with pMD2-G using Lipofectamine2000 (Invitrogen).
  • VSV ⁇ 51-TNF ⁇ construct full-length human TNF ⁇ gene was inserted between the G and L viral genes. All VSV ⁇ 51 viruses were purified on a sucrose cushion. Maraba-MG1, VVDD-B18R-, Reovirus and HSV1 ICP34.5 were generated as previously described (Brun, J. et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol Ther 18, 1440-1449 (2010); Le Boeuf, F. et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther 18, 888-895 (2011); Lun, X. et al.
  • Cell lines were seeded in 96-well plates and incubated overnight. Cells were treated with vehicle (0.05% DMSO) or 5 ⁇ M LCL161 and infected with the indicated MOI of OV or treated with 250 U/mL IFN ⁇ , 500 U/mL IFN ⁇ , 500 U/mL IFN ⁇ , 10 ng/mL IL28, or 10 ng/mL IL29 for 48 hours. Cell viability was determined by Alamar blue (Resazurin sodium salt (Sigma)) and data was normalized to vehicle treatment. The chosen sample size is consistent with previous reports that used similar analyses for viability assays.
  • a confluent monolayer of 786-0 cells was overlaid with 0.7% agarose in complete media.
  • a small hole was made with a pipette in the agarose overlay in the middle of the well where 5 ⁇ 103 PFU of VSV ⁇ 51-GFP was administered.
  • Media containing vehicle or 5 ⁇ M LCL161 was added on top of the overlay, cells were incubated for 4 days, fluorescent images were acquired, and cells were stained with crystal violet.
  • Cells were treated with vehicle or 5 ⁇ M LCL161 for 2 hours and subsequently infected at the indicated MOI of VSV ⁇ 51 for 1 hour. Cells were washed with PBS, and cells were replenished with vehicle or 5 ⁇ M LCL161 and incubated at 37° C. Aliquots were obtained at the indicated times and viral titers assessed by a standard plaque assay using African green monkey VERO cells.
  • RNA was isolated from cells using the RNAEasy Mini Plus kit (Qiagen, Toronto, Canada). Two-step RT-qPCR was performed using Superscript III (Invitrogen) and SsoAdvanced SYBR Green supermix (BioRad, Mississauga, Canada) on a Mastercycler ep realplex (Eppendorf, Mississauga, Canada). All primers were obtained from realtimeprimers.com. An n 3 of biological replicates was used to determine statistical measures (mean, standard deviation).
  • Mammary tumors were established by injecting 1 ⁇ 105 wild-type EMT6 or firefly luciferase-tagged EMT6 (EMT6-Fluc) cells in the mammary fat pad of 6-week old female BALB/c mice. Mice with palpable tumors ( ⁇ 100 mm 3 ) were co-treated with either vehicle (30% 0.1 M HCl, 70% 0.1 M NaOAc pH 4.63) or 50 mg/kg LCL161 per os and either i.v. injections of either PBS or 5 ⁇ 108 PFU of VSV ⁇ 51 twice weekly for two weeks.
  • vehicle 30% 0.1 M HCl, 70% 0.1 M NaOAc pH 4.63
  • LCL161 50 mg/kg LCL161 per os
  • Tumor bioluminescence imaging was captured with a Xenogen2000 IVIS CCD-camera system (Caliper Life Sciences Massachusetts, USA) following i.p. injection of 4 mg luciferin (Gold Biotechnology, St. Louis, USA).
  • ⁇ -TNF ⁇ XT3.11
  • HRPN isotype control
  • mice were treated with 50 mg/kg LCL161 (p.o.) on 8, 10 and 12 days post-implantation and were infected with 5 ⁇ 108 PFU VSV ⁇ 51 i.v. on days 9, 11 and 13.
  • ⁇ -IFNAR1 MAR1-5A3
  • MOPC-21 isotype control
  • EMT6 cells were co-treated with 0.1 MOI of VSV ⁇ 51-GFP and 5 ⁇ M LCL161 for 20 hours.
  • Cells were trypsinized, permeabilized with the CytoFix/CytoPerm kit (BD Biosciences) and stained with APC-TNF ⁇ (MP6-XT22) (BD Biosciences).
  • Cells were analyzed on a Cyan ADP 9 flow cytometer (Beckman Coulter, Mississauga, Canada) and data was analyzed with FlowJo (Tree Star, Ashland, USA).
  • Splenocytes were enriched for CD11b using the EasySep CD11b positive selection kit (StemCell Technologies, Vancouver, Canada).
  • CD49+ cells were enriched using the EasySep CD49b positive selection kit (StemCell Technologies) from the CD11b ⁇ fraction.
  • CD11b+ cells were stained with F4/80-PE-Cy5 (BM8, eBioscience) and Gr1-FITC (RB6-8C5, BD Biosciences) and further sorted with MoFlo Astrios (Beckman Coulter). Flow cytometry data was analyzed using Kaluza (Beckman Coulter). Isolated cells were infected with VSV ⁇ 51 for 24 hours and clarified cell culture supernatants were applied to EMT6 cells for 24 hours in the presence of 5 ⁇ M LCL161.
  • Excised tumors were fixed in 4% PFA, embedded in a 1:1 mixture of OCT compound and 30% sucrose, and sectioned on a cryostat at 12 ⁇ m. Sections were permeablized with 0.1% Triton X-100 in blocking solution (50 mM Tris-HCl pH 7.4, 100 mM L-lysine, 145 mM NaCl and 1% BSA, 10% goat serum). ⁇ -cleaved caspase 3 (C92-605, BD Pharmingen, Mississauga, Canada) and polyclonal antiserum VSV (Dr. Earl Brown, University of Ottawa, Canada) were incubated overnight followed by secondary incubation with AlexaFluor-coupled secondary antibodies (Invitrogen).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention includes methods and compositions for enhancing the efficacy of SMCs in the treatment of cancer. In particular, the present invention includes methods and compositions for combination therapies that include an SMC and at least a second agent that stimulates one or more apoptotic or immune pathways. The second agent may be, e.g., an immunostimulatory compound or oncolytic virus.

Description

    BACKGROUND OF THE INVENTION
  • The death of cells by apoptosis (or programmed cell death), and other cell death pathways, is regulated by various cellular mechanisms. Inhibitor of apoptosis (IAP) proteins, such as X-linked IAP (XIAP) or cellular IAP proteins 1 and 2 (cIAP1 and 2), are regulators of programmed cell death, including (but not limited to) apoptosis pathways, e.g., in cancer cells. Other forms of cell death could include, but are not limited to, necroptosis, necrosis, pyroptosis, and immunogenic cell death. In addition, these IAPs regulate various cell signaling pathways through their ubiquitin E3 ligase activity, which may or may not be related to cell survival. Another regulator of apoptosis is the polypeptide Smac. Smac is a proapoptotic protein released from mitochondria in conjunction with cell death. Smac can bind to IAPs, antagonizing their function. Smac mimetic compounds (SMCs) are non-endogenous proapoptotic compounds capable of carrying out one or more of the functions or activities of endogenous Smac.
  • The prototypical XIAP protein directly inhibits key initiator and executioner caspase proteins within apoptosis cascades. XIAP can thereby thwart the completion of apoptotic programs. Cellular IAP proteins 1 and 2 are E3 ubiquitin ligases that regulate apoptotic signaling pathways engaged by immune cytokines. The dual loss of cIAP1 and 2 can cause TNFα, TRAIL, and/or IL-1β to become toxic to, e.g., the majority of cancer cells. SMCs may inhibit XIAP, cIAP1, cIAP2, or other IAPs, and/or contribute to other proapoptotic mechanisms.
  • Treatment of cancer by the administration of SMCs has been proposed. However, SMCs alone may be insufficient to treat certain cancers. There exists a need for methods of treating cancer that improve the efficacy of SMC treatment in one or more types of cancer.
  • SUMMARY OF THE INVENTION
  • The present invention includes compositions and methods for the treatment of cancer by the administration of an SMC and an immunostimulatory, or immunomodulatory, agent. SMCs and immunostimulatory agents are described herein, including, without limitation, the SMCs of Table 1 and the immunostimulatory agents of Tables 2 and 3.
  • One aspect of the present invention is a composition including an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, such that the SMC and the immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
  • Another aspect of the present invention is a method for treating a patient diagnosed with cancer, the method including administering to the patient an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, such that the SMC and the immunostimulatory agent are administered simultaneously or within 28 days of each other in amounts that together are sufficient to treat the cancer.
  • In some embodiments, the SMC and the immunostimulatory agent are administered within 14 days of each other, within 10 days of each other, within 5 days of each other, within 24 hours of each other, within 6 hours of each other, or simultaneously.
  • In particular embodiments, the SMC is a monovalent SMC, such as LCL161, SM-122, GDC-0152/RG7419, GDC-0917/CUDC-427, or SM-406/AT-406/Debio1143. In other embodiments, the SMC is a bivalent SMC, such as AEG40826/HGS1049, OICR720, TL32711/Birinapant, SM-1387/APG-1387, or SM-164.
  • In particular embodiments, the immunostimulatory agent is a TLR agonist from Table 2. In certain embodiments, the immunostimulatory agent is a lipopolysaccharide, peptidoglycan, or lipopeptide. In other embodiments, the immunostimulatory agent is a CpG oligodeoxynucleotide, such as CpG-ODN 2216. In still other embodiments, the immunostimulatory agent is imiquimod or poly(I:C).
  • In particular embodiments, the immunostimulatory agent is a virus from Table 3. In certain embodiments, the immunostimulatory agent is a vesicular stomatitis virus (VSV), such as VSV-M51R, VSV-MΔ51, VSV-IFNβ, or VSV-IFNβ-NIS. In other embodiments, the immunostimulatory agent is an adenovirus, maraba vesiculovirus, reovirus, rhabdovirus, or vaccinia virus, or a variant thereof. In some embodiments, the immunostimulatory agent is a Talimogene laherparepvec.
  • In some embodiments, a composition or method of the present invention includes a plurality of immunostimulatory or immunomodulatory agents, including but not limited to interferons, and/or a plurality of SMCs.
  • In some embodiments, a composition or method of the present invention includes one or more interferon agents, such as an interferon type 1 agent, an interferon type 2 agent, and/or an interferon type 3 agent.
  • In any method of the present invention, the cancer can be a cancer that is refractory to treatment by an SMC in the absence of an immunostimulatory or immunomodulatory agent. In any method of the present invention, the treatment can further include administration of a therapeutic agent including an interferon.
  • In any method of the present invention, the cancer can be a cancer that is selected from adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphoma, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer, ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenoma, thymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, and cancer of the urinary system.
  • The invention further includes a composition including an SMC from Table 1 and an immunostimulatory agent. The immunostimulatory agent may include a killed virus, an inactivated virus, or a viral vaccine, such that the SMC and the immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof. In particular embodiments, the said immunostimulatory agent is a NRRP or a rabies vaccine. In other embodiments, the invention includes a composition including an SMC from Table 1 and an immunostimulatory agent. The immunostimulatory agent may include a first agent that primes an immune response and at least a second agent that boosts the immune response, such that the SMC and the said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof. In certain embodiments, one or both of the first agent and the second agent is an oncolytic virus vaccine. In other particular embodiments, the first agent is an adenovirus carrying a tumor antigen and the second agent is a vesiculovirus, such as a Maraba-MG1 carrying the same tumor antigen as the adenovirus or a Maraba-MG1 that does not carry a tumor antigen.
  • “Neighboring” cell means a cell sufficiently proximal to a reference cell to directly or indirectly receive an immune, inflammatory, or proapoptotic signal from the reference cell.
  • “Potentiating apoptosis or cell death” means to increase the likelihood that one or more cells will apoptose or die. A treatment may potentiate cell death by increasing the likelihood that one or more treated cells will apoptose, and/or by increasing the likelihood that one or more cells neighboring a treated cell will apoptose or die.
  • “Endogenous Smac activity” means one or more biological functions of Smac that result in the potentiation of apoptosis, including at least the inhibition of cIAP1 and cIAP2. It is not required that the biological function occur or be possible in all cells under all conditions, only that Smac is capable of the biological function in some cells under certain naturally occurring in vivo conditions.
  • “Smac mimetic compound” or “SMC” means a composition of one or more components, e.g., a small molecule, compound, polypeptide, protein, or any complex thereof, capable of inhibiting cIAP1 and/or inhibiting cIAP2. Smac mimetic compounds include the compounds listed in Table 1.
  • To “induce an apoptotic program” means to cause a change in the proteins or protein profiles of one or more cells such that the amount, availability, or activity of one or more proteins capable of participating in an IAP-mediated apoptotic pathway is increased, or such that one or more proteins capable of participating in an IAP-mediated apoptotic pathway are primed for participation in the activity of such a pathway. Inducing an apoptotic program does not require the initiation of cell death per se: induction of a program of apoptosis in a manner that does not result in cell death may synergize with treatment with an SMC that potentiates apoptosis, leading to cell death.
  • “Immunostimulatory agent” means a composition of one or more components cumulatively capable of inducing an apoptotic or inflammatory program in one or more cells of a subject, and cell death downstream of this program being inhibited by at least cIAP1 and cIAP2. An immunostimulatory agent may be, e.g., a TLR agonist (e.g., a compound listed in Table 2) or a virus (e.g., a virus listed in Table 3), such as an oncolytic virus.
  • “Treating cancer” means to induce the death of one or more cancer cells in a subject, or to provoke an immune response which could lead to tumor regression and block tumor spread (metastasis). Treating cancer may completely or partially abolish some or all of the signs and symptoms of cancer in a subject, decrease the severity of one or more symptoms of cancer in a subject, lessen the progression of one or more symptoms of cancer in a subject, or mediate the progression or severity of one or more subsequently developed symptoms.
  • “Prodrug” means a therapeutic agent that is prepared in an inactive form that may be converted to an active form within the body of a subject, e.g. within the cells of a subject, by the action of one or more enzymes, chemicals, or conditions present within the subject.
  • By a “low dosage” or “low concentration” is meant at least 5% less (e.g., at least 10%, 20%, 50%, 80%, 90%, or even 95%) than the lowest standard recommended dosage or lowest standard recommended concentration of a particular compound formulated for a given route of administration for treatment of any human disease or condition.
  • By a “high dosage” is meant at least 5% (e.g., at least 10%, 20%, 50%, 100%, 200%, or even 300%) more than the highest standard recommended dosage of a particular compound for treatment of any human disease or condition.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1F are a set of graphs and images showing that SMC synergizes with oncolytic rhabdoviruses to induce cancer cell death. FIGS. 1A-1F are representative of data from at least three independent experiments using biological replicates (n=3). FIG. 1A is a pair of graphs showing the results of Alamar blue viability assays of cells treated with LCL161 and increasing MOIs of VSVΔ51. Error bars, mean±s.d. FIG. 1B is a set of micrographs of cells treated with LCL161 and 0.1 MOI of VSVΔ51-GFP. FIG. 1C is a pair of graphs showing viability (Alamar Blue) of cells infected with VSVΔ51 (0.1 MOI) in the presence of increasing concentrations of LCL161. Error bars, mean±s.d. FIG. 1D is a pair of graphs showing data from cells that were infected with VSVΔ51 for 24 hours. Cell culture supernatant was exposed to virus-inactivating UV light and then media was applied to new cells for viability assays (Alamar Blue) in the presence of LCL161. Error bars, mean±s.d. FIG. 1E is a graph showing the viability of cells co-treated with LCL161 and non-spreading virus VSVΔ51AG (0.1 MOI). Error bars, mean±s.d. FIG. 1F is a graph and a pair of images relating to cells that were overlaid with agarose media containing LCL161, inoculated with VSVΔ51-GFP in the middle of the well, and infectivity measured by fluorescence and cytotoxicity was assessed by crystal violet staining (images were superimposed; non-superimposed images are in FIG. 11). Error bars, mean±s.d.
  • FIGS. 2A-2E are a set of graphs and images showing that SMC treatment does not alter the cancer cell response to oncolytic virus (OV) infection. FIGS. 2A-2E are representative of data from at least three independent experiments using biological replicates. FIG. 2A is a pair of graphs showing data from cells that were pretreated with LCL161 and infected with the indicated MOI of VSVΔ51. Virus titer was assessed by a standard plaque assay. FIG. 2B is a pair of graphs and a set of micrographs captured over time from cells that were treated with LCL161 and VSVΔ51-GFP. The graphs plot the number of GFP signals over time. Error bars, mean±s.d. n=12. FIG. 2C, is pair of graphs showing data from an experiment in which cell culture supernatants from LCL161 and VSVΔ51 treated cells were processed for the presence of IFNβ by ELISA. Error bars, mean±s.d. n=3. FIG. 2D is a pair of graphs showing data from an experiment in which cells were treated with LCL161 and VSVΔ51 for 20 hours and processed for RT-qPCR to measure interferon stimulated gene (ISG) expression. Error bars, mean±s.d. n=3. FIG. 2E is a pair of images showing immunoblots for STAT1 pathway activation performed on cells that were pretreated with LCL161 and subsequently stimulated with IFNβ.
  • FIGS. 3A-3H are a set of graphs showing that SMC treatment of OV-infected cancer cells leads to type 1 interferons (type 1 IFN) and nuclear-factor kappa B (NF-κb)-dependent production of proinflammatory cytokines. FIGS. 3A-3H are representative of data from at least three independent experiments using biological replicates (n=3). FIG. 3A is a graph showing Alamar blue viability assay of cells transfected with combinations of nontargeting (NT), TNF-R1 and DR5 siRNA and subsequently treated with LCL161 and VSVΔ51 (0.1 MOI) or IFNβ. Error bars, mean±s.d. FIG. 3B is a graph showing the viability of cells transfected with NT or IFNAR1 siRNA and subsequently treated with LCL161 and VSVΔ51ΔG. Error bars, mean±s.d. FIG. 3C is a graph showing data from an experiment in which cells were pretreated with LCL161, infected with 0.5 MOI of VSVΔ51, and cytokine gene expression was measured by RT-qPCR. Error bars, mean±s.d. FIG. 3D is a chart showing data collected from an experiment in which cytokine ELISAs were performed on cells transfected with NT or IFNAR1 siRNA and subsequently treated with LCL161 and 0.1 MOI of VSVΔ51. Error bars, mean±s.d. FIG. 3E is a graph showing the viability of cells co-treated with LCL161 and cytokines. Error bars, mean±s.d. FIG. 3F is a graph showing data from an experiment in which cells were pretreated with LCL161, stimulated with 250 U/mL (˜20 pg/mL) IFNβ and cytokine mRNA levels were determined by RT-qPCR. Error bars, mean±s.d. FIG. 3G is a pair of graphs showing the results of cytokine ELISAs conducted on cells treated with LCL161 and 0.1 MOI of VSVΔ51. FIG. 3H is a graph showing the result of cytokine ELISAs performed on cells expressing IKKβ-DN and treated with LCL161 and VSVΔ51 or IFNβ. Error bars, mean±s.d.
  • FIGS. 4A-4G are a set of graphs and images showing that combinatorial SMC and OV treatment is efficacious in vivo and is dependent on cytokine signaling. FIG. 4A is a pair of graphs showing data from an experiment in which EMT6-Fluc tumors were treated with 50 mg/kg LCL161 (p.o.) and, 5×108 PFU VSVΔ51 (i.v.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. n=5 per group. Log-rank with Holm-Sidak multiple comparison: **, p<0.01; ***, p<0.001. Representative data from two independent experiments are shown. FIG. 4B is a series of representative IVIS images that were acquired from the experiment of FIG. 4A. FIGS. 4C-4D are sets of immunofluorescence images of infection and apoptosis in 24 hour treated tumors using α-VSV or α-c-caspase-3 antibodies. FIG. 4E is an image showing an immunoblot in which protein lysates of tumors from the corresponding treated mice were immunoblotted with the indicated antibodies. FIG. 4F is a pair of graphs showing data from an experiment in which mice bearing EMT6-Fluc tumors were injected with neutralizing TNFα or isotype matched antibodies, and subsequently treated with 50 mg/kg LCL161 (p.o.) and 5×108 PFU VSVΔ51 (i.v.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. Vehicle α-TNFα, n=5; SMC α-TNFα, n=5; vehicle+VSVΔ51, n=5; α-TNFα, n=5; SMC+VSVΔ51 α-TNFα, n=7; SMC+VSVΔ51 α-IgG, n=7. Log-rank with Holm-Sidak multiple comparison: ***, p<0.001. FIG. 4G is a set of representative IVIS images that were acquired from the experiment of FIG. 4F.
  • FIGS. 5A-5E are a series of graphs and images showing that small molecule immune stimulators enhance SMC therapy in murine cancer models. FIG. 5A is a graph showing the results of Alamar blue viability assays of EMT6 cells which were co-cultured with splenocytes in a transwell system, and for which the segregated splenocytes were treated with LCL161 and the indicated TLR agonists. Error bars, mean±s.d. Representative data from at least three independent experiments using biological replicates (n=3) is shown. FIG. 5B is a pair of graphs showing the results of an experiment in which established EMT6-Fluc tumors were treated with SMC (50 mg/kg LCL161, p.o.) and poly(I:C) (15 ug i.t. or 2.5 mg/kg i.p.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Vehicle, vehicle+poly(I:C) i.p., n=4; remainder groups, n=5. Error bars, mean±s.e.m. Log-rank with Holm-Sidak multiple comparison: **, p<0.01; ***, p<0.001. FIG. 5C is a series of representative IVIS images that were acquired from the experiment of FIG. 5B. FIG. 5D is a pair of graphs showing the results of an experiment in which EMT6-Fluc tumors were treated with LCL161 or combinations of 200 μg (i.t.) and/or 2.5 mg/kg (i.p.) CpG ODN 2216. The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Vehicle, n=5; SMC, n=5; vehicle+CpG i.p., n=5; SMC+CpG i.p., n=7; vehicle+CpG i.t., n=5; SMC+CpG i.t., n=8; vehicle+CpG i.p.+i.t., n=5; SMC+CpG i.p.+i.t., n=8. Error bars, mean±s.e.m. Log-rank with Holm-Sidak multiple comparison: *, p<0.05; **, p<0.01; ***, p<0.001. FIG. 5E is a series of representative IVIS images that were acquired from the experiment of FIG. 5D.
  • FIG. 6 is a graph showing the responsiveness of a panel of cancer and normal cells to the combinatorial treatment of SMC and OV. The indicated cancer cell lines (n=28) and non-cancer human cells (primary human skeletal muscle (HSkM) and human fibroblasts (GM38)) were treated with LCL161 and increasing VSVΔ51 for 48 hours. The dose required to yield 50% viable cells in the presence in SMC versus vehicle was determined using nonlinear regression and plotted as a log EC50 shift toward increasing sensitivity. Representative data from at least two independent experiments using biological replicates (n=3) are shown.
  • FIG. 7 is pair of graphs showing that SMC and OV co-treatment is highly synergistic in cancer cells. The graphs show Alamar blue viability of cells treated with serial dilutions of a fixed ratio combination mixture of VSVΔ51 and LCL161 (PFU: μM LCL161). Combination indexes (CI) were calculated using Calcusyn. Plots represent the algebraic estimate of the CI in function of the fraction of cells affected (Fa). Error bars, mean±s.e.m. Representative data from three independent experiments using biological replicates (n=3) is shown.
  • FIG. 8 is a pair of graphs showing that monovalent and bivalent SMCs synergize with OVs to cause cancer cell death. The graphs show the result of Alamar blue viability assay of cells treated with 5 μM monovalent SMCs (LCL161, SM-122) or 0.1 μM bivalent SMCs (AEG40730, OICR720, SM-164) and VSVΔ51 at differing MOIs. Error bars, mean±s.d. Representative data from three independent experiments using biological replicates (n=3) is shown.
  • FIGS. 9A and 9B are a set of images and graphs showing that SMC-mediated cancer cell death is potentiated by oncolytic viruses. FIG. 9A is a series of images showing the results of a virus spreading assay of cells that were overlaid with 0.7% agarose in the presence of vehicle or LCL161 and 500 PFU of the indicated viruses were dispensed in to the middle of the well. Cytotoxicity was assessed by crystal violet staining. Arrow denotes extension of the cell death zone from the origin of OV infection. FIG. 9B is a set of graphs showing the Alamar blue viability of cells treated with LCL161 and increasing MOIs of VSVΔ51 or Maraba-MG1. Error bars, mean±s.d. Representative data from two independent experiments using biological replicates (n=3) is shown.
  • FIGS. 10A and 10B are a set of graphs and images showing that cIAP1, cIAP2 and XIAP cooperatively protect cancer cells from OV-induced cell death. FIG. 10A shows Alamar blue viability of cells transfected with nontargeting (NT) siRNA or siRNA targeting cIAP1, cIAP2 or XIAP, and subsequently treated with LCL161 and 0.1 MOI VSVΔ51 for 48 hours. Error bars, mean±s.d. Representative data from three independent experiments using biological replicates (n=3) is shown. FIG. 10B is a representative siRNA efficacy immunoblots for the experiment of FIG. 10A.
  • FIG. 11 is a set of images used for superimposed images depicted in FIG. 1F. Cells were overlaid with agarose media containing LCL161, inoculated with VSVΔ51-GFP in the middle of the well, and infectivity measured by fluorescence and cytotoxicity was denoted by crystal violet (CV) staining. Note: the bars represent the same size.
  • FIGS. 12A and 12B are a set of images and a graph showing that SMC treatment does not affect OV distribution or replication in vivo. FIG. 12A is a set of images showing images from an experiment in which EMT6-bearing mice were treated with 50 mg/kg LCL161 (p.o.) and 5×108 PFU firefly luciferase tagged VSVΔ51 (VSVΔ51-Fluc) via i.v. injection. Virus distribution and replication was imaged at 24 and 48 hours using the IVIS. Red outline denotes region of tumors. Representative data from two independent experiments are shown. Arrow indicates spleen infected with VSVΔ51-Fluc. FIG. 12B is a graph showing data from an experiment in which tumors and tissues at 48 hour post-infection were homogenized and virus titrations were performed for each group. Error bars, mean±s.e.m.
  • FIGS. 13A and 13B are images showing verification of siRNA-mediated knockdown of non-targeting (NT), TNFR1, DR5 and IFNAR1 by immunoblotting. FIG. 13A is an immunoblot showing knockdown in samples from the experiment of FIG. 3A. FIG. 13B is an immunoblot showing knockdown in samples from the experiment of FIG. 3B.
  • FIGS. 14A-14G are images and graphs showing that SMC synergizes with OVs to induce caspase-8- and RIP-1-dependent apoptosis in cancer cells. FIGS. 14A-14G show representative data from three independent experiments using biological replicates. FIG. 14A is a pair of images of immunoblots in which immunoblotting for caspase and PARP activation was conducted on cells pretreated with LCL161 and subsequently treated with 1 MOI of VSVΔ51. FIG. 14B is a series of images showing micrographs of caspase activation that were acquired with cells that were co-treated with LCL161 and VSVΔ51 in the presence of the caspase-3/7 substrate DEVD-488. FIG. 14C is a graph in which the proportion of DEVD-488-positive cells from the experiment of FIG. 14B was plotted (n=12). Error bars, mean±s.d. FIG. 14D is a series of images from an experiment in which apoptosis was assessed by micrographs of translocated phosphatidyl serine (Annexin V-CF594, green) and loss of plasma membrane integrity (YOYO-1, blue) in cells treated with LCL161 and VSVΔ51. FIG. 14E is a graph in which the proportion of Annexin V-CF594-positive and YOYO-1-negative apoptotic cells from the experiment of FIG. 14D was plotted (n=9). Error bars, mean±s.d. FIG. 14F is a pair of graphs showing alamar blue viability of cells transfected with nontargeting (NT) siRNA or siRNA targeting caspase-8 or RIP1, and subsequently treated with LCL161 and 0.1 MOI of VSVΔ51 (n=3). Error bars, mean±s.d. FIG. 14G is an image of an immunoblot showing representative siRNA efficacy for the experiment of FIG. 14F.
  • FIGS. 15A and 15B are a set of graphs showing that expression of TNFα transgene from OVs potentiates SMC-mediated cancer cell death further. FIG. 15A is a pair of graphs showing Alamar blue viability assay of cells co-treated with 5 μM SMC and increasing MOIs of VSVΔ51-GFP or VSVΔ51-TNFα for 24 hours. Error bars, mean±s.d. FIG. 15B is a graph showing representative EC50 shifts from the experiment of FIG. 15A. The dose required to yield 50% viable cells in the presence in SMC versus vehicle was determined using nonlinear regression and plotted as EC50 shift. Representative data from three independent experiments using biological replicates (n=3).
  • FIG. 16 is a set of images showing that oncolytic virus infection leads to enhanced TNFα expression upon SMC treatment. EMT6 cells were co-treated with 5 μM SMC and 0.1 MOI VSVΔ51-GFP for 24 hours, and cells were processed for the presence of intracellular TNFα via flow cytometry. Images show representative data from four independent experiments.
  • FIGS. 17A-17C are a pair of graphs and an image showing that TNFα signaling is required for type I IFN induced synergy with SMC treatment. FIGS. 17A-17C show representative data from at least three independent experiments using biological replicates (n=3). FIG. 17A is a graph showing the results of an Alamar blue viability assay of EMT6 cells transfected with nontargeting (NT) or TNF-R1 siRNA and subsequently treated with LCL161 and VSVΔ51 (0.1 MOI) or IFNβ. Error bars, mean±s.d. FIG. 17B is a representative siRNA efficacy blot from the experiment of FIG. 17A. FIG. 17C is a graph showing the viability of EMT6 cells that were pretreated with TNFα neutralizing antibodies and subsequently treated with 5 μM SMC and VSVΔ51 or IFNβ.
  • FIGS. 18A and 18B are a schematic of OV-induced type I IFN and SMC synergy in bystander cancer cell death. FIG. 18A is a schematic showing that virus infection in refractory cancer cells leads to the production of Type 1 IFN, which subsequently induces expression of IFN stimulated genes, such as TRAIL. Type 1 IFN stimulation also leads to the NF-κB-dependent production of TNFα. IAP antagonism by SMC treatment leads to upregulation of TNFα and TRAIL expression and apoptosis of neighboring tumor cells. FIG. 18B is a schematic showing that infection of a single tumor cell results in the activation of innate antiviral Type 1 IFN pathway, leading to the secretion of Type 1 IFNs onto neighboring cells. The neighboring cells also produce the proinflammatory cytokines TNFα and TRAIL. The singly infected cell undergoes oncolysis and the remainder of the tumor mass remains intact. On the other hand, neighboring cells undergo bystander cell death due upon SMC treatment as a result of the SMC-mediated upregulation of TNFα/TRAIL and promotion of apoptosis upon proinflammatory cytokine activation.
  • FIGS. 19A and 19B are a graph and a blot showing that SMC treatment causes minimal transient weight loss and leads to downregulation of cIAP1/2. FIG. 19A is graph showing weights from LCL161 treated mice female BALB/c mice (50 mg/kg LCL161, p.o.) that were recorded after a single treatment (day 0). n=5 per group. Error bars, mean±s.e.m. FIG. 19B is a blot of samples from an experiment in which EMT6-tumor bearing mice were treated with 50 mg/kg LCL161 (p.o.). Tumors were harvested at the indicated time for western blotting using the indicated antibodies.
  • FIGS. 20A-20C are a set of graphs showing that SMC treatment induces transient weight loss in a syngeneic mouse model of cancer. FIGS. 20A-20C are graphs showing measurements of mouse weights upon SMC and oncolytic VSV (FIG. 20A), poly(I:C) (FIG. 20B), or CpG (FIG. 20C) co-treatment in tumor-bearing animals from the experiments depicted in FIGS. 4A, 5B, and 5D, respectively. Error bars, mean±s.e.m.
  • FIGS. 21A-21D are a series of graphs showing that VSVΔ51-induced cell death in HT-29 cell is potentiated by SMC treatment in vitro and in vivo. FIG. 21A is a graph showing data from an experiment in which cells were infected with VSVΔ51, the cell culture supernatant was exposed to UV light for 1 hour and was applied to new cells at the indicated dose in the presence of LCL161. Viability was ascertained by Alamar blue. Error bars, mean±s.d. FIG. 21B is a graph showing Alamar blue viability of cells co-treated with LCL161 and a non-spreading virus VSVΔ51ΔG (0.1 MOI). Error bars, mean±s.d. Panels a and b show representative data from three independent experiments using biological replicates (n=3). FIG. 21C is a pair of graphs showing data from an experiment in which CD-1 nude mice with established HT-29 tumors were treated with 50 mg/kg LCL161 (p.o.) and 1×108 PFU VSVΔ51 (i.t.). Vehicle, n=5; VSVΔ51, n=6; SMC, n=6; VSVΔ51+SMC, n=7. The left panel depicts tumor growth relative to day 0 post-treatment. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. Log-rank with Holm-Sidak multiple comparison: ***, p<0.001. FIG. 21D is a graph showing measurement of mouse weights upon SMC and OV co-treatment in tumor-bearing animals. Error bars, mean±s.e.m.
  • FIG. 22 is a blot showing that type I IFN signaling is required for SMC and OV synergy in vivo. EMT6 tumor bearing mice were treated with vehicle or 50 mg/kg LCL161 for 4 hours, and subsequently treated with neutralizing IFNAR1 or isotype antibodies for 20 hours. Subsequently, animals were treated with PBS or VSVΔ51 for 18 hours. Tumors were processed for Western blotting with the indicated antibodies.
  • FIGS. 23A and 23B are a pair of graphs showing that oncolytic infection of innate immune cells leads to cancer cell death in the presence of SMCs. FIG. 23A is a graph showing data from an experiment in which immune subpopulations were sorted from splenocytes (CD11b+ F4/80+: macrophage; CD11b+ Gr1+: neutrophil; CD11b− CD49b+: NK cell; CD11b− CD49b−: T and B cells) and were infected with 1 MOI of VSVΔ51 for 24 hours. Cell culture supernatants were applied to SMC-treated ETM6 cells for 24 hours and EMT6 viability was assessed by Alamar Blue. Error bars, mean±s.d. FIG. 23B is a chart showing data from an experiment in which bone marrow derived macrophages were infected with VSVΔ51 and the supernatant was applied to EMT6 cells in the presence of 5 μM SMC, and viability was measured by Alamar blue. Error bars, mean±s.d.
  • FIGS. 24A-24H are a series of images of full-length immunoblots. Immunoblots of FIGS. 24A-24H pertain to (FIG. 24A) FIG. 2E, (FIG. 24B) FIG. 4E, (FIG. 24C) FIG. 10B, (FIG. 24D) FIGS. 13A and 13B, (FIG. 24E) FIG. 14A, (FIG. 24F) FIG. 14G, (FIG. 24G) FIG. 19B, and (FIG. 24H) FIG. 17B, respectively.
  • FIGS. 25A-25B are a set of graphs showing that non-replicating rhabdovirus-derived particles (NRRPs) synergize with SMCs to cause cancer cell death. FIG. 25A is a set of graphs showing data from an experiment in which EMT6, DBT, and CT-2A cancer cells were co-treated with the SMC LCL161 (SMC; EMT6: 5 μM, DBT and CT-2A: 15 μM) and different numbers of NRRPs for 48 hr (EMT6) or 72 hr (DBT, CT-2A), and cell viability was assessed by Alamar Blue. FIG. 25B is a pair of graphs showing data from an experiment in which ufractionated mouse splenocytes were incubated with 1 particle per cell of NRRP or 250 μM CpG ODN 2216 for 24 hr. Subsequently, the supernatant was applied to EMT6 cells in a dose-response fashion, and 5 μM LCL161 was added. EMT6 viability was assessed 48 hr post-treatment by Alamar blue.
  • FIGS. 26A and 26B are a graph and a set of image showing that vaccines synergize with SMCs to cause cancer cell death. FIG. 26A is a graph showing data from an experiment in which EMT6 cells were treated with vehicle or 5 μM LCL161 (SMC) and 1000 CFU/mL BCG or 1 ng/mL TNFα for 48 hr, and viability was assessed by Alamar blue. FIG. 26B is a set of representative IVIS images depicting survival of mice bearing mammary fat pad tumors (EMT6-Fluc) that were treated twice with vehicle or 50 mg/kg LCL161 (SMC) and PBS intratumorally (i.t.), BCG (1×105 CFU) i.t., or BCG (1×105 CFU) intraperitoneally (i.p.) and subjected to live tumor bioluminescence imaging by IVIS CCD camera at various time points. Scale: p/sec/cm2/sr.
  • FIGS. 27A and 27B are a pair of graphs and a set of images showing that SMCs synergize with type I IFN to cause mammary tumor regression. FIG. 27A is a pair of graphs showing data from an experiment in which mice were injected with EMT6-Fluc tumors in the mammary fat pad and were treated at eight days post-implantation with combinations of vehicle or 50 mg/kg LCL161 (SMC) orally and bovine serum albumin (BSA), 1 μg IFNα intraperitoneally (i.p.), or 2 μg IFNα intratumorally (i.t.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. FIG. 27B is a series of representative IVIS images from the experiment described in FIG. 27A. Scale: p/sec/cm2/sr.
  • FIG. 28 is a graph showing that the expression of type I IFN from VSV synergizes with SMCs to cause cancer cell death. The graph shows data from an experiment in which EMT6 cells were co-treated with vehicle or 5 μM LCL161 (SMC) and differing multiplicity of infection (MOI) of VSVΔ51-GFP, VSV-IFNβ, or VSV-NIS-IFNβ. Cell viability was assessed 48 hr post-treatment by Alamar blue.
  • FIG. 29 is a graph showing that non-viral and viral triggers induce robust expression of TNFα in vivo. Mice were treated with 50 mg of poly(I:C) intraperitoneally or with intravenous injections of 5×108 PFU VSVΔ51, VSV-mIFNβ, or Maraba-MG1. At the indicated times, serum was isolated and processed for ELISA to quantify the levels of TNFα.
  • FIGS. 30A-30C are a set of graphs and images showing that virally-expressed proinflammatory cytokines synergizes with SMCs to induce mammary tumor regression. FIG. 30A is a pair of graphs showing data from an experiment in which mice were injected with EMT6-Fluc tumors in the mammary fat pad, and were treated at seven days post-implantation with combinations of vehicle or 50 mg/kg LCL161 (SMC) orally and PBS, 1×108 PFU VSVΔ51-memTNFα (i.v.), or 1×108 PFU VSVΔ51-solTNFα (i.v.). The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m. FIG. 30B is a set of representative bioluminescent IVIS images that were acquired from the experiment described in FIG. 30A. Scale: p/sec/cm2/sr. FIG. 30C is a pair of graphs showing data from an experiment in which mice were injected with CT-26 tumors subcutaneously and were treated 10 days post-implantation with combinations of vehicle or 50 mg/kg LCL161 orally and either PBS or 1×108 PFU VSVΔ51-solTNFα intratumorally. The left panel depicts tumor growth. The right panel represents the Kaplan-Meier curve depicting mouse survival. Error bars, mean±s.e.m.
  • FIGS. 31A and 31B are a set of images showing that SMC treatment leads to down-regulation of cIAP1/2 protein in vivo in an orthotopic, syngeneic mouse model of glioblastoma. FIG. 31A is an image showing an immunoblot from an experiment in which CT-2A cells were implanted intracranially and treated with 50 mg/kg orally of LCL161 (SMC) and tumors were excised at the indicated time points and processed for western blotting using antibodies against cIAP1/2, XIAP, and β-tubulin. FIG. 31B is an image showing an immunoblot from an experiment in which CT-2A cells were implanted intracranially and treated with 10 uL of 100 μM LCL161 intratumorally and tumors were excised at the indicated time points and processed for western blotting using antibodies against cIAP1/2, XIAP, and β-tubulin.
  • FIGS. 32A-32E are a set of graphs and images showing that a transient proinflammatory response in the brain synergizes with SMCs to cause glioblastoma cell death. FIG. 32A is a graph showing data from an experiment in which an ELISA was conducted to determine the levels of soluble TNFα from 300 mg of crude brain protein extract that was derived from mice injected intraperitoneally (i.p.) with PBS or 50 mg poly(I:C) for 12 or 24 h. Brain protein extracts were obtained by mechanical homogenization in saline solution. FIG. 32B is a graph showing data from Alamar blue viability assays of mouse glioblastoma cells (CT-2A, K1580) that were treated with 70 mg of crude brain homogenates and 5 μM LCL161 (SMC) in culture for 48 h. Brain homogenates were obtained from mice that were treated for 12 h with i.p. injections of poly(I:C), or intravenous injections of 5×108 PFU VSVΔ51 or VSV-mIFNβ. FIG. 32C represents the Kaplan-Meier curve depicting survival of mice that received three intracranial treatments of 50 mg poly(I:C). Treatments were on days 0, 3, and 7. FIG. 32D represents the Kaplan-Meier curve depicting survival of mice bearing CT-2A intracranial tumors that received combinations of SMC, VSVΔ51 or poly(I:C). Mice received combinations of three treatments of vehicle, three treatments of 75 mg/kg LCL161 (oral), three treatments of 5×108 PFU VSVΔ51 (i.v.), or two treatments of 50 mg poly(I:C) (intracranial, i.c.). Mice were treated on day 7, 10, and 14 post tumor cell implantation with the different conditions, except for the poly(I:C) treated group that received i.c. injections on day 7 and 15. Numbers in brackets denote number of mice per group. FIG. 32E is a series of representative MRI images of mouse skulls from the experiments depicted in FIG. 32D, which shows an animal at endpoint and a representative mouse of the indicated groups at 50 days post-implantation. Dashed line denotes the brain tumor.
  • FIG. 33 is a graph showing that SMCs synergize with type I IFN to eradicate brain tumors. The graph represents the Kaplan-Meier curve depicting survival of mice bearing CT-2A that received intracranial injections of vehicle or 100 μM LCL161 (SMC) with PBS or 1 μg IFNα at 7 days post-implantation.
  • DETAILED DESCRIPTION
  • The present invention includes methods and compositions for enhancing the efficacy of Smac mimetic compounds (SMCs) in the treatment of cancer. In particular, the present invention includes methods and compositions for combination therapies that include an SMC and a second agent that stimulates one or more cell death pathways that are inhibited by cIAP1 and/or cIAP2. The second agent may be, e.g., a TLR agonist a virus, such as an oncolytic virus, or an interferon or related agent.
  • The data provided herein demonstrates that treatment with an immunostimulatory agent and an SMC results in tumor regression and durable cures in vivo (see, e.g., Example 1). These combination therapies were well tolerated by mice, with body weight returning to pre-treatment levels shortly after the cessation of therapy. Tested combination therapies were able to treat several treatment refractory, aggressive mouse models of cancer. One of skill in the art will recognize, based on the disclosure and data provided herein, that any one or more of a variety of SMCs and any one or more of a variety of immunostimulatory agents, such as a TLR agonist, pathogen, or pathogen mimetic, may be combined in one or more embodiments of the present invention to potentiate apoptosis and treat cancer.
  • While other approaches to improve SMC therapy have been attempted, very rarely have complete responses been observed, particularly in aggressive immunocompetent model systems. Some embodiments of the present invention, including treatment of cancer with a pathogen mimetic, e.g., a pathogen mimetic having a mechanism of action partially dependent on TRAIL, can have certain advantages. First, this approach can evoke TNFα-mediated apoptosis and necroptosis: given the plasticity and heterogeneity of some advanced cancers, treatments that simultaneously induce multiple distinct cell death mechanisms may have greater efficacy than those that do not. Second, pathogen mimetics can elicit an integrated innate immune response that includes layers of negative feedback. These feedback mechanisms may act to temper the cytokine response in a manner difficult to replicate using recombinant proteins, and thus act as a safeguard to this combination therapy strategy.
  • SMCs
  • An SMC of the present invention may be any small molecule, compound, polypeptide, protein, or any complex thereof, capable, or predicted of being capable, of inhibiting cIAP1 and/or cIAP2, and, optionally, one or more additional endogenous Smac activities. An SMC of the present invention is capable of potentiating apoptosis by mimicking one or more activities of endogenous Smac, including but not limited to, the inhibition of cIAP1 and the inhibition of cIAP2. An endogenous Smac activity may be, e.g., interaction with a particular protein, inhibition of a particular protein's function, or inhibition of a particular IAP. In particular embodiments, the SMC inhibits both cIAP1 and cIAP2. In some embodiments, the SMC inhibits one or more other IAPs in addition to cIAP1 and cIAP2, such as XIAP or Livin/ML-IAP, the single BIR-containing IAP. In particular embodiments, the SMC inhibits cIAP1, cIAP2, and XIAP. In any embodiment including an SMC and an immune stimulant, an SMC having particular activities may be selected for combination with one or more particular immune stimulants. In any embodiment of the present invention, the SMC may be capable of activities of which Smac is not capable. In some instances, these additional activities may contribute to the efficacy of the methods or compositions of the present invention.
  • Treatment with SMCs can deplete cells of cIAP1 and cIAP2, through, e.g., the induction of auto- or trans-ubiquitination and proteasomal-mediated degradation. SMCs can also de-repress XIAP's inhibition of caspases. SMCs may primarily function by targeting cIAP1 and 2, and by converting TNFα, and other cytokines or death ligands, from a survival signal to a death signal, e.g., for cancer cells.
  • Certain SMCs inhibit at least XIAP and the cIAPs. Such “pan-IAP” SMCs can intervene at multiple distinct yet interrelated stages of programmed cell death inhibition. This characteristic minimizes opportunities for cancers to develop resistance to treatment with a pan-IAP SMC, as multiple death pathways are affected by such an SMC, and allows synergy with existing and emerging cancer therapeutics that activate various apoptotic pathways in which SMCs can intervene.
  • One or more inflammatory cytokines or death ligands, such as TNFα, TRAIL, and IL-1β, potently synergize with SMC therapy in many tumor-derived cell lines. Strategies to increase death ligand concentrations in SMC-treated tumors, in particular using approaches that would limit the toxicities commonly associated with recombinant cytokine therapy, are thus very attractive. TNFα, TRAIL, and dozens of other cytokines and chemokines can be upregulated in response to pathogen recognition by the innate immune system of a subject. Importantly, this ancient response to microbial pathogens is usually self-limiting and safe for the subject, due to stringent negative regulation that limits the strength and duration of its activity.
  • SMCs may be rationally designed based on Smac. The ability of a compound to potentiate apoptosis by mimicking one or more functions or activities of endogenous Smac can be predicted based on similarity to endogenous Smac or known SMCs. An SMC may be a compound, polypeptide, protein, or a complex of two or more compounds, polypeptides, or proteins.
  • In some instances, SMCs are small molecule IAP antagonists based on an N-terminal tetrapeptide sequence (revealed after processing) of the polypeptide Smac. In some instances, an SMC is a monomer (monovalent) or dimer (bivalent). In particular instances, an SMC includes 1 or 2 moieties that mimic the tetrapeptide sequence of AVPI from Smac/DIABLO, the second mitochondrial activator of caspases, or other similar IBMs (e.g., IAP-binding motifs from other proteins like casp9). A dimeric SMC of the present invention may be a homodimer or a heterodimer. In certain embodiments, the dimer subunits are tethered by various linkers. The linkers may be in the same defined spot of either subunit, but could also be located at different anchor points (which may be ‘aa’ position, P1, P2, P3 or P4, with sometimes a P5 group available). In various arrangements, the dimer subunits may be in different orientations, e.g., head to tail, head to head, or tail to tail. The heterodimers can include two different monomers with differing affinities for different BIR domains or different IAPs. Alternatively, a heterodimer can include a Smac monomer and a ligand for another receptor or target which is not an IAP. In some instances, an SMCs can be cyclic. In some instances, an SMC can be trimeric or multimeric. A multimerized SMC can exhibit a fold increase in activity of 7,000-fold or more, such as 10-, 20-, 30-, 40-, 50-, 100-, 200-, 1,000-, 5,000-, 7,000-fold, or more (measured, e.g., by EC50 in vitro) over one or more corresponding monomers. This may occur, in some instances, e.g., because the tethering enhances the ubiquitination between IAPs or because the dual BIR binding enhances the stability of the interaction. Although multimers, such as dimers, may exhibit increased activity, monomers may be preferable in some embodiments. For example, in some instances, a low molecular weight SMC may be preferable, e.g., for reasons related to bioavailability.
  • In some instances of the present invention, an agent capable of inhibiting cIAP1/2 is a bestatin or Me-bestatin analog. Bestatin or Me-bestatin analogs may induce cIAP1/2 autoubiquitination, mimicking the biological activity of Smac.
  • In certain embodiments of the present invention, an SMC combination treatment includes one or more SMCs and one or more interferon agents, such as an interferon type 1 agent, an interferon type 2 agent, and an interferon type 3 agent. Combination treatments including an interferon agent may be useful in the treatment of cancer, such as multiple myeloma.
  • In some embodiments, a VSV expressing IFN, and optionally expressing a gene that enables imaging, such as NIS, the sodium-iodide symporter, is used in combination with an SMC. For instance, such a VSV may be used in combination with an SMC, such as the Ascentage Smac mimetic SM-1387/APG-1387, the Novartis Smac mimetic LCL161, or Birinapant. Such combinations may be useful in the treatment of cancer, such as hepatocellular carcinoma or liver metastases.
  • Various SMCs are known in the art. Non-limiting examples of SMCs are provided in Table 1. While Table 1 includes suggested mechanisms by which various SMCs may function, methods and compositions of the present invention are not limited by or to these mechanisms.
  • TABLE 1
    Smac mimetic compounds
    Clinical Organization;
    Compound Structure or Reference Status author/inventor
    GDC-0152/ Baker JE, Boerboom LE, Olinger GN. Cardioplegia-induced damage to ischemic Clinical trials Genentech/Roche; W.
    RG7419 immature myocardium is independent of oxygen availability. Ann Thorac Surg. 1990 Fairbrother
    Dec; 50(6):934-9.
    GDC-0145 Clinical trials Genentech/Roche; W.
    Fairbrother
    AEG40826/ Clinical trials Aegera/Pharmascience
    HGS1029 (Canada); J. Jaquith
    LCL-161 Chen KF, Lin JP, Shiau CW, Tai WT, Liu CY, Yu HC, Chen PJ, Cheng AL. Inhibition of Clinical trials Novartis; L. Zawel
    BcI-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells.
    Biochem Pharmacol. 2012 Aug 1; 84(3):268-77. doi: 10.1016/j.bcp.2012.04.023. Epub
    2012 May 9.
    AT-406/ Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, Liu L, Qiu S, Yang Clinical trials Ascenta
    5M406/ CY, Miller R, Yi H, Zhang T, Sun D, Kang S, Guo M, Leopold L, Yang D, Wang S. A (USA)/DebioPharma
    Debio1143/ potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis (Switzerland);
    D1143 proteins (IAPs) in clinical development for cancer treatment. J Med Chem. 2011 Apr Shaomeng Wang
    28; 54(8):2714-26. doi: 10.1021/jm101505d. Epub 2011 Mar 28. (University of
    Michigan)
    TL32711/ Dubrez L, Berthalet J, Glorian V. IAP proteins as targets for drug development in Clinical trials Tetralogic (USA,
    Birinapant oncology. Onco Targets Ther. 2013 Sep 16; 9:1285-1304. eCollection 2013. Review. formerly Gentara with
    (formerly GTI cpd designations);
    TL32711) S. Condon
    GDC-0917/ Wong H, Gould SE, Budha N, Darbonne WC, Kadel EE 3rd, La H, Alicke B, Halladay JS, Clinical trials Curis (Genentech); W.
    CUDC-427 Erickson R, Portera C, Tolcher AW, Infante JR, Mamounas M, Flygare JA, Hop CE, Fairbrother
    Fairbrother WJ. Learning and confirming with preclinical studies: modeling and simulation
    in the discovery of GDC-0917, an inhibitor of apoptosis proteins antagonist. Drug Metab
    Dispos. 2013 Dec; 41(12):2104-13. doi: 10.1124/dmd.113.053926. Epub 2013 Sep 16.
    APG-1387/ Clinical trials Ascenta
    SM-1387 (USA)/Ascentage
    (China); Shaomeng
    Wang
    AZD5582 Hennessy EJ, Adam A, Aquila BM, Castriotta LM, Cook D, Hattersley M, Hird AW, Clinical AstraZeneca; E.
    Huntington C, Kamhi VM, Laing NM, Li D, Macintyre T, Omer CA, Oza V, Patterson candidate Hennessy
    T, Repik G, Rooney MT, Saeh JC, Sha L, Vasbinder MM, Wang H, Whitston D. Discovery
    of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a
    Clinical Candidate for the Treatment of Cancer (AZD5582). J Med Chem. 2013 Dec
    27; 56(24):9897-919. doi: 10.1021/jm401075x. Epub 2013 Dec 13.
    T-3256336 Sumi H, Yabuki M, Iwai K, Morimoto M, Hibino R, lnazuka M, Hashimoto K, Kosugi Y, Clinical Takeda (Japan); D.
    Aoyama K, Yamamoto S, Yoshimatsu M, Yamasaki H, Tozawa R, Ishikawa T, Yoshida candidate Dougan, T. Ishikawa
    S. Antitumor activity and pharmacodynamic biomarkers of a novel and orally available
    small-molecule antagonist of inhibitor of apoptosis proteins. Mol Cancer Ther. 2013
    Feb; 12(2):230-40. doi: 10.1158/1535-7163.MCT-12-0699. Epub 2012 Dec 12.
    JP1584 Clinical Joyant (GeminX,
    candidate USA); Xiaodong
    Wang, Patrick Harran
    JP1201 Clinical Joyant (GeminX,
    candidate USA); Xiaodong
    Wang, Patrick Harran
    GT-A Clinical Joyant (GeminX,
    candidate USA); Xiaodong
    Wang, Patrick Harran
    AT-IAP Gianni Chessari, Ahn Maria, Ildiko Buck, Elisabetta Chiarparin, Joe Coyle, James Day, Clinical Astex (UK)/Otsuka
    Martyn Frederickson, Charlotte Griffiths-Jones, Keisha Hearn, Steven Howard, Tom candidate (Japan); G. Chessari
    Heightman, Petra Hillmann, Aman Iqbal, Christopher N. Johnson, Jon Lewis, Vanessa
    Martins, Joanne Munck, Mike Reader, Lee Page, Anna Hopkins, Alessia Millemaggi,
    Caroline Richardson, Gordon Saxty, Tomoko Smyth, Emiliano Tamanini, Neil Thompson,
    George Ward, Glyn Williams, Pamela Williams, Nicola Wilsher, and Alison Woolford.
    Abstract 2944: AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in
    melanoma models. Cancer Research: April 15, 2013; Volume 73, Issue 8, Supplement 1
    doi: 10.1158/1538-7445.AM2013-2944 Proceedings: AACR 104th Annual Meeting 2013;
    Apr 6-10, 2013; Washington, DC
    inhib1 Park CM, Sun C, Olejniczak ET, Wilson AE, Meadows RP, Betz SF, Elmore SW, Fesik Pfizer (IDUN acquired
    SW. Non-peptidic small molecule inhibitors of XIAP. Bioorg Med Chem Lett. 2005 Feb cpds from Abbott
    1; 15(3):771-5. collaboration); SW
    Fesik, KJ Tomaselli
    inhib2 Park CM, Sun C, Olejniczak ET, Wilson AE, Meadows RP, Betz SF, Elmore SW, Fesik Pfizer (IDUN acquired
    SW. Non-peptidic small molecule inhibitors of XIAP. Bioorg Med Chem Lett. 2005 Feb cpds from Abbott
    1; 15(3):771-5. collaboration); SW
    Fesik, KJ Tomaselli
    BI-75D2 Formula: C26H26N4O4S2
    Figure US20200384103A1-20201210-C00001
    Preclinical Sanford-Burnham Institute; J. Reed
    T5TR1 Crisóstomo FR, Feng Y, Zhu X, Welsh K, An J, Reed JC, Huang Z. Design and synthesis Preclinical Sanford-Burnham
    of a simplified inhibitor for XIAP-BIR3 domain. Bioorg Med Chem Lett. 2009 Nov Institute (NIH?); J.
    15; 19(22):6413-8. doi: 0.1016/j.bmc1.2009.09.058. Epub 2009 Sep 17. PubMed PMID: Reed
    19819692; PubMed Central PMCID: PMC3807767.
    ML-101 Welsh K, Yuan H, Stonich D, Su Y, Garcia X, Cuddy M, Houghten R, Sergienko E, Reed Preclinical Sanford-Burnham
    JC, Ardecky R, Ganji SR, Lopez M, Dad S, Chung TDY, Cosford N. Antagonists of IAP- Institute (NIH?); J.
    family anti-apoptotic proteins—Probe 1. 2009 May 18 [updated 2010 Sep 2]. Probe Reed
    Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National
    Center for Biotechnology Information (US); 2010-. Available from
    http://www.ncbi.nlm.nih.gov/books/NBK47341/; Gónzalez-López M, Welsh K, Finlay D,
    Ardecky RJ, Ganji SR, Su Y, Yuan H, Teriete P, Mace PD, Riedl SJ, Vuori K, Reed JC,
    Cosford ND. Design, synthesis and evaluation of monovalent Smac mimetics that bind to
    the BIR2 domain of the anti-apoptotic protein XIAP. Bioorg Med Chem Lett. 2011 Jul
    15; 21(14):4332-6. doi: 10.1016/j.bmcl.2011.05.049. Epub 2011 May 24.
    MLS-0390866 Welsh K, Yuan H, Stonich D, Su Y, Garcia X, Cuddy M, Houghten R, Sergienko E, Reed Preclinical Sanford-Burnham
    JC, Ardecky R, Ganji SR, Lopez M, Dad S, Chung TDY, Cosford N. Antagonists of IAP- Institute (NIH?); J.
    family anti-apoptotic proteins—Probe 1. 2009 May 18 [updated 2010 Sep 2]. Probe Reed
    Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National
    Center for Biotechnology Information (US); 2010-. Available from
    http://www.ncbi.nlm.nih.gov/books/NBK47341/PubMed
    MLS- Finlay D, Vamos M, Gónzalez-López M, Ardecky RJ, Ganji SR, Yuan H, Su Y, Cooley Preclinical Sanford-Burnham
    TR, Hauser CT, Welsh K, Reed JC, Cosford ND, Vuori K. Small-Molecule IAP Institute (NIH?); J.
    Antagonists Sensitize Cancer Cells to TRAIL-Induced Apoptosis: Roles of XIAP and Reed
    cIAPs. Mol Cancer Ther. 2014 Jan; 13(1):5-15. doi: 10.1158/1535-7163.MCT-13-0153.
    Epub 2013 Nov 5.
    ML183 Ardecky RJ, Welsh K, Finlay D, Lee PS, Gónzalez-López M, Ganji SR, Ravanan P, Mace Preclinical Sanford-Burnham
    PD, Riedl SJ, Vuori K, Reed JC, Cosford ND. Design, synthesis and evaluation of Institute (NIH?); J.
    inhibitor of apoptosis protein (IAP) antagonists that are highly selective for the BIR2 Reed
    domain of XIAP. Bioorg Med Chem Lett. 2013 Jul 15; 23(14):4253-7. doi:
    10.1016/j.bmcl.2013.04.096. Epub 2013 May 14;-Lopez M, Welsh K, Yuan H, Stonich D,
    Su Y, Garcia X, Cuddy M, Houghten R, Sergienko E, Reed JC, Ardecky R, Reddy S,
    Finlay D, Vuori K, Dad S, Chung TDY, Cosford NDP. Antagonists of IAP-family anti-
    apoptotic proteins—Probe 2. 2009 Sep 1 [updated 2011 Feb 10]. Probe Reports from the
    NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for
    Biotechnology Information (US); 2010-. Available from
    http://www.ncbi.nlm.nih.gov/books/NBK55068/
    SM-83 Gatti L, De Cesare M, Ciusani E, Coma E, Arrighetti N, Cominetti D, Belvisi L, Potenza Preclinical University of Milan; M.
    D, Moroni E, Vasile F, Lecis D, Delia D, Castiglioni V, Scanziani E, Seneci P, Zaffaroni N, Bolognesi
    Perego P. Antitumor Activity of a Novel Homodimeric SMAC Mimetic in Ovarian
    Carcinoma. Mol Pharm. 2014 Jan 6; 11(1):283-93. doi: 10.1021/mp4004578. Epub 2013
    Nov 27.
    SMAC037/SM Mastrangelo E, Cossu F, Milani M, Sorrentino G, Lecis D, Delia D, Manzoni L, Drago C, Preclinical University of Milan; M.
    37 Seneci P, Scolastico C, Rizzo V, Bolognesi M. Targeting the X-linked inhibitor of Bolognesi
    apoptosis protein through 4-substituted azabicyclo[5.3.0]alkane smac mimetics.
    Structure, activity, and recognition principles. J Mol Biol. 2008 Dec 19; 384(3):673-89. doi:
    10.1016/j.jmb.2008.09.064. pub 2008 Oct 7.
    SMAC066 Cossu F, Malvezzi F, Canevari G, Mastrangelo E, Lecis D, Delia D, Seneci P, Scolastico Preclinical University of Milan; M.
    C, Bolognesi M, Milani M. Recognition of Smac-mimetic compounds by the BIR domain Bolognesi
    of cIAP1. Protein Sci. 2010 ec; 19(12):2418-29. doi: 10.1002/pro.523.
    SMC9a Monomer: Seneci P, Bianchi A, Battaglia C, Belvisi L, Bolognesi M, Caprini A, Cossu F, Preclinical University of Milan; M.
    Franco Ed, Matteo Md, Delia D, Drago C, Khaled A, Lecis D, Manzoni L, Marizzoni M, Bolognesi
    Mastrangelo E, Milani M, Motto I, Moroni E, Potenza D, Rizzo V, Servida F, Turlizzi E,
    Varrone M, Vasile F, Scolastico C. Rational design, synthesis and characterization of
    potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer
    therapy. Bioorg Med Chem. 2009 Aug 15; 17(16):5834-56. doi:
    10.1016/j.bmc.2009.07.009. Epub 2009 Jul 10.
    Dimer in different configurations: Ferrari V, Cutler DJ. Uptake of chloroquine by human
    erythrocytes. Biochem Pharmacol. 1990 Feb 15; 39(4):753-62. PubMed PMID: 2306282.;
    Cossu F, Milani M, Vachette P, Malvezzi F, Grassi S, Lecis D, Delia D, Drago C, Seneci
    P, Bolognesi M, Mastrangelo E. Structural insight into inhibitor of apoptosis proteins
    recognition by a potent divalent smac-mimetic. PLoS One. 2012;7(11):e49527. doi:
    10.1371/journal.pone.0049527. Epub 2012 Nov 15.
    OICR-720 Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac M, Uehling Preclinical Ontario Institute for
    D, Al-awar R, LaCasse E, Korneluk RG. TWEAK and cIAP1 regulate myoblast fusion Cancer Research; R.
    through the noncanonical NE-KB signaling pathway. Sci Signal. 2012 Oct 16; 5(246):ra75. Korneluk
    doi: 10.1126/scisignal.2003086.
    SM-164 Sun H, Nikolovska-Coleska Z, Lu J, Meagher JL, Yang CY, Qiu S, Tomita Y, Ueda Y, Preclinical Ascenta
    Jiang S, Krajewski K, Roller PP, Stuckey JA, Wang S. Design, synthesis, and
    characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that
    concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc. 2007
    Dec 12; 129(49):15279-94. Epub 2007 Nov 14.
    SM1200 Sheng R, Sun H, Liu L, Lu J, McEachern D, Wang G, Wen J, Min P, Du Z, Lu H, Kang S, Preclinical Ascenta
    Guo M, Yang D, Wang S. A potent bivalent Smac mimetic (SM-1200) achieving rapid,
    complete, and durable tumor regression in mice. J Med Chem. 2013 May
    23; 56(10):3969-79. doi: 10.1021/jm400216d. Epub 2013 May 7.
    SM-173 Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Preclinical Ascenta
    Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent Smac
    mimetic that induces apoptosis and tumor regression by concurrent removal of the
    blockade of cIAP-1/2 and XIAP. Cancer Res. 2008 Nov 5; 68(22):9384-93. doi:
    10.1158/0008-5472.CAN-08-2655.
    Compound 21 Sun H, Stuckey JA, Nikolovska-Coleska Z, Qin D, Meagher JL, Qiu S, Lu J, Yang CY, Preclinical Ascenta
    Saito NG, Wang S. Structure-based design, synthesis, evaluation, and crystallographic
    studies of conformationally constrained Smac mimetics as inhibitors of the X-linked
    inhibitor of apoptosis protein (XIAP). J Med Chem. 2008 Nov 27; 51(22):7169-80. doi:
    10.1021/jm8006849.
    WS-5 Zhang B, Nikolovska-Coleska Z, Zhang Y, Bai L, Qiu S, Yang CY, Sun H, Wang S, Wu Preclinical Ascenta
    Y. Design, synthesis, and evaluation of tricyclic, conformationally constrained small-
    molecule mimetics of second mitochondria-derived activator of caspases. J Med Chem.
    2008 Dec 11; 51(23):7352-5. doi: 0.1021/jm801146d.
    SH-130 Dai Y, Liu M, Tang W, DeSano J, Burstein E, Davis M, Pienta K, Lawrence T, Xu L. Preclinical Ascenta
    Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor
    of apoptosis. Clin Cancer Res. 2008 Dec 1; 14(23):7701-10. doi: 10.1158/1078-
    0432.CCR-08-0188.
    SM162 Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as Preclinical Ascenta
    antagonists of IAP proteins. Bioorg Med Chem Lett. 2010 May 5; 20(10):3043-6.
    SM163 Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as Preclinical Ascenta
    (compound 3) antagonists of IAP proteins. Bioorg Med Chem Lett. 2010 May 15; 20(10):3043-6.
    SM337 Wang S. Design of small-molecule Smac mimetics as IAP antagonists. Curr Top Preclinical Ascenta
    Microbiol Immunol. 2011; 348:89-113. doi: 10.1007/82_2010_111.
    SM122 (or Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Preclinical Ascenta
    SH122 ) Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S. SM-164: a novel, bivalent Smac
    mimetic that induces apoptosis and tumor regression by concurrent removal of the
    blockade of cIAP-1/2 and XIAP. Cancer Res. 2008 Nov 15; 68(22):9384-93. doi:
    10.1158/0008-5472.CAN-08-2655.
    AEG40730 Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Preclinical Aegera
    Jaquith JB, Morris SJ, Barker PA. cIAP1 and cIAP2 facilitate cancer cell survival by
    functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008 Jun
    20; 30(6):689-700. doi: 10.1016/j.molce1.2008.05.014.
    LBW242 Keating J, Tsoli M, Hallahan AR, Ingram WJ, Haber M, Ziegler DS. Targeting the inhibitor Preclinical Novartis
    of apoptosis proteins as a novel therapeutic strategy in medulloblastoma. Mol Cancer
    Ther. 2012 Dec; 11(12):2654-63. doi: 10.1158/1535-7163.MCT-12-0352. Epub 2012 Sep
    25.
    BV6 Müller-Sienerth N, Dietz L, Holtz P, Kapp M, Grigoleit GU, Schmuck C, Wajant H, Preclinical Genentech
    Siegmund D. SMAC mimetic BV6 induces cell death in monocytes and maturation of
    monocyte-derived dendritic cells. PLoS One. 2011; 6(6):e21556. doi:
    10.1371/journal.pone.0021556. Epub 2011 Jun 30.
    MV1 Monomeric version of BV6: Fulda S, Vucic D. Targeting IAP proteins for therapeutic Preclinical Genentech
    intervention in cancer. Nat Rev Drug Discov. 2012 Feb 1; 11(2):109-24. doi:
    10.1038/nrd3627. Review. Erratum in: Nat Rev Drug Discov. 2012 Apr; 11(4):331.
    ATRA hybrid Itoh Y, Ishikawa M, Kitaguchi R, Okuhira K, Naito M, Hashimoto Y. Double protein Preclinical Genentech
    knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and
    IAPs antagonist. Bioorg Med Chem Lett. 2012 Jul 1; 22(13):4453-7. doi:
    10.1016/j.bmc1.2012.04.134. Epub 2012 May 23.
    SNIPER Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N, Nishimaki-Mogami T, Okuda H, Preclinical
    (bestatin and Kurihara M, Naito M. Development of hybrid small molecules that induce degradation of
    Estrogen estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci. 2013
    receptor ligand Aug 30. doi: 10.1111/cas.12272. [Epub ahead of print]
    fusion)
    RMT5265 Ramachandiran S, Cain J, Liao A, He Y, Guo X, Boise LH, Fu H, Ratner L, Khoury HJ, Preclinical Joyant (USA)
    Bernal-Mizrachi L. The Smac mimetic RMT5265.2HCL induces apoptosis in EBV and
    HTLV-I associated lymphoma cells by inhibiting XIAP and promoting the mitochondrial
    release of cytochrome C and Smac. Leuk Res. 2012 Jun; 36(6):784-90. doi:
    10.1016/j.leukres.2011.12.024. Epub 2012 Feb 10; Li L, Thomas RM, Suzuki H, De
    Brabander JK, Wang X, Herren PG. A small molecule Smac mimic potentiates TRAIL-
    and TNFalpha-mediated cell death. Science. 2004 Sep 3; 305(5689): 471-4.
    JP1010 Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L. Smac mimetics increase Preclinical Joyant (USA)
    cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death
    Differ. 2010 Oct; 17(10):1645-54. doi: 10.1038/cdd.2010.44. Epub 2010 Apr 30.
    JP1400 Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L. Smac mimetics increase Preclinical Joyant (USA)
    cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death
    Differ. 2010 Oct; 17(10):1645-54. doi: 10.1038/cdd.2010.44. Epub 2010 Apr 30.
    ABT-10 Preclinical Abbott
    A-410099.1 Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore Preclinical Abbott
    SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker
    AR, Tomaselli KJ, Zou H, Fesik SW. Discovery of potent antagonists of the antiapoptotic
    protein XIAP for the treatment of cancer. J Med Chem. 2004 Aug 26; 47(18):4417-26.
    822B Jae Sik Shin, Seung-Woo Hong, Dong-Hoon Jin, In-Hwan Bae, Maeng-Sup Kim, Young- Preclinical Hanmi (Korea)
    Soon Na, Jae-Lyun Lee, Yong Sang Hong, and Tae-Won Kim. Abstract 592: Novel IAP
    antagonist (822B) induces apoptosis through degradation of IAP proteins which have a
    BIR3 domain in human pancreatic cancer cells. Cancer Research: April 15, 2011;
    Volume 71, Issue 8, Supplement 1 doi: 10.1158/1538-7445.AM2011-592 Proceedings:
    AACR 102nd Annual Meeting 2011-- Apr 2-6, 2011; Orlando, FL.
    GT13402 Preclinical Tetralogic
    SW iii-123 Zeng C, Vangveravong S, McDunn JE, Hawkins WG, Mach RH. Sigma-2 receptor ligand Preclinical (RH Mach)
    (sigma2R as a novel method for delivering a SMAC mimetic drug for treating ovarian cancer. Br J
    ligand hybrid) Cancer. 2013 Oct 29; 109(9):2368-77. doi: 10.1038/bjc.2013.593. Epub 2013 Oct 8.
    Preclinical Apoptos (USA)
    Preclinical Sanofi-
    Aventis/Synthelabo
    (EU)
  • Immunostimulatory Agents
  • An immunostimulatory or immunomodulatory agent of the present invention may be any agent capable of inducing a receptor-mediated apoptotic program that is inhibited by cIAP1 and cIAP2 in one or more cells of a subject. An immune stimulant of the present invention may induce an apoptotic program regulated by cIAP1(BIRC2), cIAP2 (BIRC3 or API2), and optionally, one or more additional IAPs, e.g., one or more of the human IAP proteins NAIP (BIRC1), XIAP (BIRC4), survivin (BIRC5), Apollon/Bruce (BIRC6), ML-IAP (BIRC7 or livin), and ILP-2 (BIRC8). It is additionally known that various immunomodulatory or immunostimulatory agents, such as CpGs or IAP antagonists, can change immune cell contexts.
  • In some instances, an immune stimulant may be a TLR agonist, such as a TLR ligand. A TLR agonist of the present invention may be an agonist of one or more of TLR-1, TLR-2, TLR-3, TLR-4, TLR-5, TLR-6, TLR-7, TLR-8, TLR-9, and TLR-10 in humans or related proteins in other species (e.g., murine TLR-1 to TLR-9 and TLR-11 to TLR-13). TLRs can recognize highly conserved structural motifs known as pathogen-associated microbial patterns (PAMPs), which are exclusively expressed by microbial pathogens, as well as danger-associated molecular patterns (DAMPs) that are endogenous molecules released from necrotic or dying cells. PAMPs include various bacterial cell wall components such as lipopolysaccharide (LPS), peptidoglycan (PGN), and lipopeptides, as well as flagellin, bacterial DNA, and viral double-stranded RNA. DAMPs include intracellular proteins such as heat shock proteins as well as protein fragments from the extracellular matrix. Agonists of the present invention further include, for example, CpG oligodeoxynucleotides (CpG ODNs), such as Class A, B, and C CpG ODN's, base analogs, nucleic acids such as dsRNA or pathogen DNA, or pathogen or pathogen-like cells or virions. In certain embodiments, the immunostimulatory agent is an agent that mimics a virus or bacteria or is a synthetic TLR agonist.
  • Various TLR agonists are known in the art. Non-limiting examples of TLR agonists are provided in Table 2. While Table 2 includes suggested mechanisms, uses, or TLR targets by which various TLR agonists may function, methods and compositions of the present invention are not limited by or to these mechanisms, uses, or targets.
  • TABLE 2
    Immunostimulatory agents: TLR Agonists
    Agonist
    Compound Structure or Reference Compound Type or Application of:
    Poly-ICLC Levy HB. Historical overview of the use of polynucleotides in cancer. J Intratumoral administration for Toll-like
    (poly- Biol Response Mod. 1985;4:475-480. 7. Levy HB. Induction of treatment of mesothelioma (see, receptor
    inosinic: interferon in vivo by polynucleotides. Tex Rep Biol Med. 1977; 35:91- e.g., Currie AJ, Van Der Most RG, (TLR)-3
    poly- 98. Broomfield SA, Prosser AC, Tovey
    cytidylic MG, Robinson BW. Targeting the
    acid; poly effector site with IFN-αβ-inducing
    (I:C)) TLR ligands reactivates tumor-
    resident CD8 T cell responses to
    eradicate established solid tumors.
    J. lmmunol. 2008; 180(3):1535-
    1544.)
    Poly (A:U) Ducret JP, Caillé P, Sancho Garnier H, et al. A phase I clinical Synthetic double stranded RNA TLR-3
    poly- tolerance study of polyadenylic-polyuridylic acid in cancer patients. J molecule
    adenylic- Biol Response Mod 1985; 4:129-133. Polyadenylic.polyuridylic acid in
    poly- the cotreatment of cancer. Michelson AM, Lacour F, Lacour J. Proc
    uridylic Soc Exp Biol Med. 1985 May; 179(1):1-8.
    acid
    CL075 Gorden KB. et al., 2005. Synthetic TLR agonists reveal functional Thiazoquinoline compound TRL-7
    differences between human TLR7 and TLR8. J Immunol. 174(3):1259- or
    68; InvivoGen, InvivoGen Insight (Company Newsletter) Spring 2013: TLR-7/8
    8 pages.
    Formula: C13H13N3S
    Figure US20200384103A1-20201210-C00002
    CL097 Salio M. et al., 2007. Modulation of human natural killer T cell ligands Imidazoguinoline compound TRL-7
    on TLR-mediated antigen-presenting cell activation. PNAS 104: 20490- or
    20495. Butchi nJ. et al., 2008. Analysis of the Neuroinflammatory TLR-7/8
    Response to TLR7 Stimulation in the Brain: Comparison of Multiple
    TLR7 and/or TLR8 Agonists. J Immunol 180: 7604-7612
    CL264 U.S. Patent Publication No. 20110077263 Adenine analog TRL-7
    Formula: C19H23N7O4
    Figure US20200384103A1-20201210-C00003
    or TLR-7/8
    CL307 Base analog TRL-7
    or
    TLR-7/8
    Gardi- U.S. Patent Publication No. 20110077263 Imidazoguinoline compound TRL-7
    quimod ™ Formula: C17H23N5O  
    Figure US20200384103A1-20201210-C00004
    or TLR-7/8
    Loxoribine Gorden KB. et al., 2005. Synthetic TLR agonists reveal functional Guanosine analog TRL-7
    differences between human TLR7 and TLR8. J Immunol. 174(3):1259- or
    68. 2. Schindler U. & Baichwal VR., 1994. Three NF-kB binding sites in TLR-7/8
    the human E-selectin gene required for maximal tumor necrosis factor
    alpha-induced expression. Mol Cell Biol, 14(9):5820-5831.
    Formula: C13H17N5O6
    Figure US20200384103A1-20201210-C00005
    Poly(dT) Jurk M. et al., 2006. Modulating responsiveness of human TLR7 and 8 Thymidine homopolymer ODN TRL-7
    to small molecule ligands with T-rich phosphorothiate (17 mer) or
    oligodeoxynucleotides. Eur J Immunol. 36(7):1815-26. 2. Gorden KKB. TLR-7/8
    et al., 2006. Oligodeoxynucleotides Differentially Modulate Activation of
    TLR7 and TLR8 by Imidazoquinolines. J. Immunol. 177: 8164-8170.
    3. Gorden KKB. et al., 2006. Cutting Edge: Activation of Murine TLR8
    by a Combination of Imidazoquinoline Immune Response Modifiers and
    PolyT Oligodeoxynucleotides J. Immunol., 177: 6584-6587.
    R848 Hemmi H. et al. 2002. Small anti-viral compounds activate immune Imidazoguinoline compound TRL-7
    cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol, or
    3(2):196-200. 2. Jurk m. et al. 2002. Human TLR7 or TLR8 TLR-7/8
    independently confer responsiveness to the antiviral compound R848.
    Nat Immunol, 3(6):499. 3. Gorden KKB. et al., 2006. Cutting Edge:
    Activation of Murine TLR8 by a Combination of Imidazoguinoline
    Immune Response Modifiers and PolyT Oligodeoxynucleotides J.
    Immunol., 177: 6584-6587
    Formula: C17H22N4O2, HCl
    Figure US20200384103A1-20201210-C00006
    ODN 1585 Ballas ZK. et al., 2001. Divergent therapeutic and immunologic effects Class A CpG ODN TLR-9
    of oligodeoxynucleotides with distinct CpG motifs. J Immunol.
    167(9):4878-86
    ODN 2216 Class A CpG ODN TLR-9
    ODN 2336 Ballas ZK. et al., 2001. Divergent therapeutic and immunologic effects Class A CpG ODN TLR-9
    of oligodeoxynucleotides with distinct CpG motifs. J Immunol.
    167(9):4878-86
    ODN 1668 Heit A. et al., 2004. CpG-DNA aided cross-priming by cross-presenting Class B CpG ODN TLR-9
    B cells. J Immunol. 172(3):1501-7
    ODN 1826 Z Moldoveanu, L Love-Homan, W.Q Huang, A.M Krieg CpG DNA, a Class B CpG ODN TLR-9
    novel immune enhancer for systemic and mucosal immunization with
    influenza virus Vaccine, 16 (1998), pp. 1216-1224
    ODN 2006 Z Moldoveanu, L Love-Homan, W.Q Huang, A.M Krieg CpG DNA, a Class B CpG ODN TLR-9
    (ODN 7909 novel immune enhancer for systemic and mucosal immunization with
    or PF- influenza virus Vaccine, 16 (1998), pp. 1216-1224
    3512676)
    ODN 2007 Krieg, A; CpG motifs in bacterial DNA and their immune effects. Annu Class B CpG ODN TLR-9
    Rev Immunol 2002, 20: 709
    ODN 2395 Roda JM. et al., 2005. CpG-containing oligodeoxynucleotides act Class C CpG ODN TLR-9
    through TLR9 to enhance the NK cell cytokine response to
    antibodycoated tumor cells. J Immunol. 175(3):1619-27.
    ODN M362 Hartmann G, Battiany J, Poeck H, et al.: Rational design of new CpG Class C CpG ODN TLR-9
    oligonucleotides that combine B cell activation with high IFN-alpha
    induction in plasmacytoid dendritic cells. Eur J Immunol 2003, 33:1633-
    41
    ODN 1018 Magone, M. T., Chan, C. C., Beck, L., Whitcup, S. M., Raz, E. (2000) Class B TLR-9
    Systemic or mucosal administration of immunostimulatory DNA inhibits agonist
    early and late phases of murine allergic conjunctivitis Eur. J.
    Immunol. 30,1841-1850
    CL401 Formula: C54H92N8O45  
    Figure US20200384103A1-20201210-C00007
    Dual TLR agonist TLR-2 and TLR-7
    Adili- poline ™ (CL413;) Formula: C81H145N17O12S  
    Figure US20200384103A1-20201210-C00008
    Dual TLR agonist TLR-2 and TLR-7
    CL531 Formula: C82H144N16O14S  
    Figure US20200384103A1-20201210-C00009
    Dual TLR agonist TLR-2 and TLR-7
    CL572 ( Formula: C41H65N9O7S  
    Figure US20200384103A1-20201210-C00010
    Dual TLR agonist Human TLR-2, mouse TLR-7, an human TLR-7
    Adi- Fectin ™ (CL347;) Formula: C72H134N11O6P  
    Figure US20200384103A1-20201210-C00011
    TLR agonist and nucleic acid carrier TLR-7
    CL419 Formula: C48H97N5O5S  
    Figure US20200384103A1-20201210-C00012
    TLR agonist and nucleic acid carrier TLR-2
    Pamadi- Fectin ™ (CL553;) Formula: C67H118N12O8S  
    Figure US20200384103A1-20201210-C00013
    TLR agonist and nucleic acid carrier TLR-2 and TLR-7
    Peptido- TLR ligand; cell surface location TLR-1/2;
    glycan (Expert Rev Clin Pharmacol 4(2): TLR-2/6
    275-289, 2011)
    Diacylated Buwitt-Beckmann u. et al., 2005. Toll-like receptor 6-independent TLR ligand; cell surface location TLR-2/6
    lipopeptide signaling by diacylated lipopeptides. Eur J Immunol. 35(1):282-9
    Triacylated Aliprantis ao et al., 1999. Cell activation and apoptosis by bacterial TLR ligand; cell surface location TLR-1/2
    lipopeptide lipoproteins through toll-like receptor-2. Science. 285(5428):736-9.
    Ozinsky a. et al., 2000. The repertoire for pattern recognition of
    pathogens by the innate immune system is defined by cooperation
    between toll-like receptors. PNAS. 97(25):13766-71. 3
    Lipopoly- N/A TLR ligand; cell surface location; TLR-4
    saccharide intratumoral administration for
    (LPS) treatment of glioma. (see, e.g.,
    Mariani CL, Rajon D, Bova FJ,
    Streit WJ. Nonspecific
    immunotherapy with
    intratumoral lipopolysaccharide
    and zymosan A but not GM-CSF
    leads to an effective anti-tumor
    response in subcutaneous RG-2
    gliomas. J. Neurooncol. 2007;
    85(3):231-240. )
    CpG 7909 Intravenous administration for TLR-9
    treatment of non-Hodgkin
    lymphoma. (see, e.g., Link BK,
    Ballas ZK, Weisdorf D, et al.
    Oligodeoxynucleotide CpG 7909
    delivered as intravenous infusion
    demonstrates immunologic
    modulation in patients with
    previously treated non-Hodgkin
    lymphoma. J. Immunother. 2006;
    29(5):558-568.)
    852A Intravenous administration for TLR-7
    treatment of melanoma and other
    cancer [12,55]; (see, e.g., Dudek
    AZ, Yunis C, Harrison LI, et al.
    First in human Phase I trial of
    852A, a novel systemic Toll-
    like receptor 7 agonist, to
    activate innate immune
    responses in patients with
    advanced cancer. Olin. Cancer
    Res. 2007; 13(23):7119-7125′;
    Dummer R, Hauschild A,
    Becker JC, et al. An
    exploratory study of systemic
    administration of the Toll-like
    receptor-7 agonist 852A in
    patients with refractory
    metastatic melanoma. Clin.
    Cancer Res. 2008; 14(3):856-
    864. intravenous administration
    for
    treatment of chronic lymphocytic
    leukemia (see, e.g., Spaner DE,
    Shi Y, White D, et al. A Phase
    I/II trial of TLR7 agonist
    immunotherapy in chronic
    lymphocytic leukemia. Leukemia.
    2010; 24(1):222-226.)
    Ampligen Intravenous administration for TLR-3
    treatment of chronic fatigue
    syndrome [60]; intravenous
    administration for treatment of HIV
    (see, e.g., Thompson KA, Strayer
    DR, Salvato PD, et al. Results of a
    double-blind placebo-controlled
    study of the double-stranded RNA
    drug polyl:polyC12U in the
    treatment of HIV infection.
    Eur. J. Olin. Microbiol. Infect.
    Dis. 1996; 15(7):580-587.
    [PubMed: 8874076])
    Resiquimod Oral administration for treatment of TLR-7/8
    hepatitis C ((see, e.g., Pockros PJ,
    Guyader D, Patton H, et al. Oral
    resiquimod in chronic HCV infection:
    safety and efficacy in 2 placebo-
    controlled, double-blind Phase IIa
    studies. J. Hepatol. 2007;
    47(2):174-182.);
    Topical administration for treatment
    of Herpes simplex virus 2 (see, e.g.,
    Mark KE, Corey L, Meng TC, et al.
    Topical resiquimod 0.01% gel
    decreases herpes simplex virus type
    2 genital shedding: a randomized,
    controlled trial. J. Infect. Dis. 2007;
    195(9):1342-1331.)
    ANA975 Oral administration for treatment of TLR-7
    hepatitis (see, e.g., Fletcher S,
    Steffy K, Averett D. Masked oral
    prodrugs of Toll-like receptor 7
    agonists: a new approach for the
    treatment of infectious disease.
    Curr. Opin. Investig. Drugs. 2006;
    7(8):702-708.)
    Imiquimod Imidazoquinoline compound; topical TLR-7
    (InvivoGen) administration for treatment of basal
    cell carcinoma (see, e.g., Schulze
    HJ, Cribier B, Requena L, et al.
    Imiquimod 5% cream for the
    treatment of superficial basal cell
    carcinoma: results from a
    randomized vehicle-controlled
    Phase III study in Europe. Br. J.
    Dermatol. 2005; 152(5):939-947;
    Quirk C, Gebauer K, Owens M,
    Stampone P. Two-year interim
    results from a 5-year study
    evaluating clinical recurrence of
    superficial basal cell carcinoma after
    treatment with imiquimod 5% cream
    daily for 6 weeks. Australas. J.
    Dermatol. 2006; 47(4):258-265.);
    Topical administration for treatment
    of squamous cell carcinoma (see,
    e.g., Ondo AL, Mings SM, Pestak
    RM, Shanler SD. Topical
    combination therapy for cutaneous
    squamous cell carcinoma in situ with
    5-fluorouracil cream and imiquimod
    cream in patients who have failed
    topical monotherapy. J. Am. Acad.
    Dermatol. 2006; 55(6):1092-1094.)
    Topical administration for treatment
    of melanoma (see, e.g., Turza K,
    Dengel LT, Harris RC, et al.
    Effectiveness of imiquimod limited to
    dermal melanoma metastases, with
    simultaneous resistance of
    subcutaneous metastasis. J. Cutan.
    Pathol. 2009 DOI: 10.1111/j.1600-
    0560.2009.01290.x. (Epub ahead of
    print); (see, e.g., Green DS,
    Dalgleish AG, Belonwu N, Fischer
    MD, Bodman-Smith MD. Topical
    imiquimod and intralesional
    interleukin-2 increase activated
    lymphocytes and restore the
    Th1/Th2 balance in patients with
    metastatic melanoma. Br. J.
    Dermatol. 2008; 159(3):606-614.);
    Topical administration for treatment
    of vulvar intraepithelial neoplasia
    (see, e.g., Van Seters M, Van
    Beurden M, Ten Kate FJ, et al.
    Treatment of vulvar intraepithelial
    neoplasia with topical imiquimod. N.
    Engl. J. Med. 2008; 358(14):1465-
    1473.);
    Topical administration for treatment
    of cutaneous lymphoma (see, e.g.,
    Stavrakoglou A, Brown VL, Coutts I.
    Successful treatment of primary
    cutaneous follicle centre lymphoma
    with topical 5% imiquimod. Br. J.
    Dermatol. 2007; 157(3):620-622.);
    Topical treatment as Human
    papillomavirus (HPV) vaccine (see,
    e.g., Daayana S, Elkord E, Winters
    U, et al. Phase II trial of imiquimod
    and HPV therapeutic vaccination in
    patients with vulval intraepithelial
    neoplasia. Br. J. Cancer. 2010;
    102(7):1129-1136.);
    Subcutaneous/intramuscular
    administration: New York
    esophageal squamous cell
    carcinoma
    1 cancer antigen (NY-
    ESO-1) protein vaccine for
    melanoma (see, e.g., Adams S,
    O'Neill DW, Nonaka D, et al.
    Immunization of malignant
    melanoma patients with full-length
    NY-ESO-1 protein using TLR7
    agonist imiquimod as vaccine
    adjuvant. J. Immunol. 2008;
    181(1):776-784.)
    Mono- Subcutaneous/intramuscular TLR-4
    phosphoryl administration for vaccination
    lipid A against HPV (see, e.g., Harper DM,
    (MPL) Franco EL, Wheeler CM, et al.
    Sustained efficacy up to 4.5 years of
    a bivalent L1 virus-like particle
    vaccine against human
    papillomavirus types
    16 and 18:
    follow-up from arandomised control
    trial. Lancet. 2006; 367(9518):1247-
    1255.);
    Subcutaneous/intramuscular
    administration for vaccination
    against non-small-cell lung cancer
    (see, e.g., Butts C, Murray N,
    Maksymiuk A, et al. Randomized
    Phase IIB trial of BLP25 liposome
    vaccine in stage IIIB and IV non-
    small-cell lung cancer. J. Clin.
    Oncol. 2005; 23(27):6674-6681.)
    CpG 7909 Subcutaneous/intramuscular TLR-9
    (i.e., PF- administration for treatment of non-
    3512676) small-cell lung cancer (see, e.g.,
    Manegold C, Gravenor D, Woytowitz
    D, et al. Randomized Phase II trial
    of a Toll-like receptor 9 agonist
    oligodeoxynucleotide, PF-3512676,
    in combination with first-line taxane
    plus platinum chemotherapy for
    advanced-stage non-small-cell lung
    cancer. J. Clin. Oncol. 2008;
    26(24):3979-3986; Readett, D.;
    Denis, L.; Krieg, A.; Benner, R.;
    Hanson, D. PF-3512676 (CPG
    7909) a Toll-like receptor 9 agonist-
    status of development for non-small
    cell lung cancer (NSCLC).
    Presented at: 12th World Congress
    on Lung Cancer; Seoul, Korea. 2-6
    September 2007);
    Subcutaneous/intramuscular
    administration for treatment of
    metastatic melanoma (see, e.g.,
    Pashenkov M, Goess G, Wagner C,
    et al. Phase II trial of a Toll-like
    receptor 9-activating oligonucleotide
    in patients with metastatic
    melanoma. J. Olin. Oncol. 2006;
    24(36):5716-5724.;
    Subcutaneous/intramuscular
    administration; Melan-A peptide
    vaccine for melanoma (see, e.g.,
    Speiser DE, Lienard D, Rufer N, et
    al. Rapid and strong human CD8+ T
    cell responses to vaccination with
    peptide, IFA, and CpG
    oligodeoxynucleotide 7909. J. Olin.
    Invest. 2005; 115(3):
    739-746; Appay V, Jandus C,
    Voelter V, et al. New generation
    vaccine induces effective
    melanoma-
    specific CD8+ T cells in the
    circulation but not in the tumor site.
    J. Immunol. 2006; 177(3):1670-
    1678.);
    Subcutaneous/intramuscular
    administration; NY-ESO-1 protein
    vaccine (see, e.g., Valmori D,
    Souleimanian NE, Tosello V, et al.
    Vaccination with NY-ESO-1 protein
    and CpG in Montanide induces
    integrated antibody/Th1 responses
    and CD8 T cells through cross-
    priming. Proc. Natl Acad. Sci. USA.
    2007; 104(21):8947-8952.)
    CpG 1018 Subcutaneous/intramuscular TLR-9
    ISS administration for treatment of
    lymphoma (see, e.g., Friedberg JW,
    Kim H, McCauley M, et al.
    Combination immunotherapy with a
    CpG oligonucleotide (1018 ISS) and
    rituximab in patients with non-
    Hodgkin lymphoma: increased
    interferon-α/β-inducible gene
    expression, without significant
    toxicity. Blood. 2005; 105(2):489-
    495; Friedberg JW, Kelly JL,
    Neuberg D, et al. Phase II study of a
    TLR-9 agonist (1018 ISS) with
    rituximab in patients with relapsed or
    refractory follicular lymphoma. Br. J.
    Haematol. 2009; 146(3):282-291.)
    Bacillus N/A Intratumoral administration for TLR-2
    Calmette- treatment of bladder cancer (see,
    Guerin e.g., Simons MP, O'Donnell MA.
    (BCG) Griffith TS. Role of neutrophils in
    BCG immunotherapy for bladder
    cancer. Urol. Oncol. 2008;
    26(4):341-345.)
    Zymosan A Intratumoral administration for TLR-2
    treatment of glioma (see, e.g.,
    Mariani CL, Rajon D, Bova FJ, Streit
    WJ. Nonspecific immunotherapy
    with intratumoral lipopolysaccharide
    and zymosan A but not GM-CSF
    leads to an effective anti-tumor
    response in subcutaneous RG-2
    gliomas. J. Neurooncol. 2007;
    85(3):231-240.)
    Figure US20200384103A1-20201210-C00014
  • In other instances, an immune stimulant may be a virus, e.g., an oncolytic virus. An oncolytic virus is a virus that selectively infects, replicates, and/or selectively kills cancer cells. Viruses of the present invention include, without limitation, adenoviruses, Herpes simplex viruses, measles viruses, Newcastle disease viruses, parvoviruses, polioviruses, reoviruses, Seneca Valley viruses, retroviruses, Vaccinia viruses, vesicular stomatitis viruses, lentiviruses, rhabdoviruses, sindvis viruses, coxsackieviruses, poxviruses, and others. In particular embodiments of the present invention, the immunostimulatory agent is a rhabodvirus, e.g., VSV. Rhabdoviruses can replicate quickly with high IFN production. In other particular embodiments, the immunostimulatory agent is a feral member, such as Maraba virus, with the MG1 double mutation, Farmington virus, Carajas virus. Viral immunostimulatory agents of the present invention include mutant viruses (e.g., VSV with a Δ51 mutation in the Matrix, or M, protein), transgene-modified viruses (e.g., VSV-hIFNβ), viruses carrying -TNFα, -LTα/TNFβ, -TRAIL, FasL, -TL1α, chimeric viruses (eg rabies), or pseudotyped viruses (e.g., viruses pseudotyped with G proteins from LCMV or other viruses). In some instances, the virus of the present invention will be selected to reduce neurotoxicity. Viruses in general, and in particular oncolytic viruses, are known in the art.
  • In certain embodiments, the immunostimulatory agent is a killed VSV NRRP particle or a prime-and-boost tumor vaccine. NRRPs are wild type VSV that have been modified to produce an infectious vector that can no longer replicate or spread, but that retains oncolytic and immunostimulatory properties. NRRPs may be produced using gamma irradiation, UV, or busulfan. Particular combination therapies include prime-and-boost with adeno-MAGE3 (melanoma antigen) and/or Maraba-MG1-MAGE3. Other particular combination therapies include UV-killed or gamma irradiation-killed wild-type VSV NRRPs. NRRPs may demonstrate low or absent neurotixicity. NRRPs may be useful, e.g., in the treatment of glioma, hematological (liquid) tumors, or multiple myeloma.
  • In some instances, the immunostimulatory agent of the present invention is a vaccine strain, attenuated virus or microorganism, or killed virus or microorganism. In some instances, the immunostimulatory agent may be, e.g., BCG, live or dead Rabies vaccines, or an influenza vaccine.
  • Non-limiting examples of viruses of the present invention, e.g., oncolytic viruses, are provided in Table 3. While Table 3 includes suggested mechanisms or uses for the provided viruses, methods and compositions of the present invention are not limited by or to these mechanisms or uses.
  • TABLE 3
    Immunostimulatory agents
    Modification(s)/
    Strain Description Virus Clinical Trial; Indication; Route; Status; Reference
    Oncorine (H101) E1B-55k- Adenovirus Phase 2; SCCHN; intratumoral (IT); completed; Xu R H, Yuan Z Y, Guan Z Z,
    Cao Y, Wang H Q, Hu X H, Feng J F, Zhang Y, Li F, Chen Z T, Wang J J, Huang
    J J, Zhou Q H, Song S T. [Phase II clinical study of intratumoral H101, an E1B
    deleted adenovirus, in combination with chemotherapy in patients with cancer].
    Ai Zheng. 2003 December; 22(12): 1307-10. Chinese.
    Oncorine (H101) E3- Adenovirus Phase 3; SCCHN; IT; Completed; Xia Z J, Chang J H, Zhang L, Jiang W Q,
    Guan Z Z, Liu J W, Zhang Y, Hu X H, Wu G H, Wang H Q, Chen Z C, Chen J C,
    Zhou Q H, Lu J W, Fan Q X, Huang J J, Zheng X. [Phase III randomized clinical
    trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined
    with cisplatin-based chemotherapy in treating squamous cell cancer of head
    and neck or esophagus]. Ai Zheng. 2004 December; 23(12): 1666-70. Chinese.
    Onyx-015 E1B-55k- Adenovirus Phase 1; Lung Mets; intravenous (IV); Completed; Nemunaitis J, Cunningham
    C, Buchanan A, Blackburn A, Edelman G, Maples P, Netto G, Tong A, Randlev
    B, Olson S, Kirn D. Intravenous infusion of a replication-selective adenovirus
    (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene
    Ther. 2001 May; 8(10): 746-59.
    Onyx-015 E3B- Adenovirus Phase 1; Glioma; Intracavity; Completed; Chiocca E A, Abbed K M, Tatter S,
    Louis D N, Hochberg F H, Barker F, Kracher J, Grossman S A, Fisher J D,
    Carson K, Rosenblum M, Mikkelsen T, Olson J, Markert J, Rosenfeld S,
    Nabors L B, Brem S, Phuphanich S, Freeman S, Kaplan R, Zwiebel J. A phase
    I open-label, dose-escalation, multi-institutional trial of injection with an E1B-
    Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent
    malignant gliomas, in the adjuvant setting. Mol Ther. 2004 November; 10(5): 958-66.
    Phase 1; Ovarian cancer; intraperitoneal (IP); Completed; Vasey P A, Shulman
    L N, Campos S, Davis J, Gore M, Johnston S, Kirn D H, O'Neill V, Siddiqui N,
    Seiden M V, Kaye S B. Phase I trial of intraperitoneal injection of the E1B-55-
    kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5
    every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J
    Clin Oncol. 2002 Mar. 15; 20(6): 1562-9.
    Phase 1; SCCHN; IT; Completed; Ganly I, Kirn D, Eckhardt G, Rodriguez G I,
    Soutar D S, Otto R, Robertson A G, Park O, Gulley M L, Heise C, Von Hoff D D,
    Kaye S B. A phase I study of Onyx-015, an E1B attenuated adenovirus,
    administered intratumorally to patients with recurrent head and neck cancer.
    Clin Cancer Res. 2000 March; 6(3): 798-806. Erratum in: Clin Cancer Res 2000
    May; 6(5): 2120. Clin Cancer Res 2001 March; 7(3): 754. Eckhardt S G [corrected to
    Eckhardt G].
    Phase 1; Solid tumors; IV; Completed; Nemunaitis J, Senzer N, Sarmiento S,
    Zhang Y A, Arzaga R, Sands B, Maples P, Tong A W. A phase I trial of
    intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer
    Gene Ther. 2007 November; 14(11): 885-93. Epub 2007 Aug. 17.
    Phase 1; Sarcoma; IT; Completed; Galanis E, Okuno S H, Nascimento A G,
    Lewis B D, Lee R A, Oliveira A M, Sloan J A, Atherton P, Edmonson J H,
    Erlichman C, Randlev B, Wang Q, Freeman S, Rubin J. Phase I-II trial of
    ONYX-015 in combination with MAP chemotherapy in patients with advanced
    sarcomas. Gene Ther. 2005 March; 12(5): 437-45.
    Phase 1/2; PanCa; IT; Completed; Hecht J R, Bedford R, Abbruzzese J L,
    Lahoti S, Reid T R, Soetikno R M, Kirn D H, Freeman S M. A phase I/II trial of
    intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous
    gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003
    February; 9(2): 555-61.
    Phase 2; CRC; IV; Completed; Hamid O, Varterasian M L, Wadler S, Hecht J R,
    Benson A 3rd, Galanis E, Uprichard M, Omer C, Bycott P, Hackman R C,
    Shields A F. Phase II trial of intravenous CI-1042 in patients with metastatic
    colorectal cancer. J Clin Oncol. 2003 Apr. 15; 21 (8): 1498-504.
    Phase 2; Hepatobiliary; IT; Completed; Makower D, Rozenblit A, Kaufman H,
    Edelman M, Lane M E, Zwiebel J, Haynes H, Wadler S. Phase II clinical trial of
    intralesional administration of the oncolytic adenovirus ONYX-015 in patients
    with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003
    February; 9(2): 693-702.
    Phase 2; CRC, PanCa; intra-arteria (IA); Completed; Reid T, Galanis E,
    Abbruzzese J, Sze D, Wein L M, Andrews J, Randlev B, Heise C, Uprichard M,
    Hatfield M, Rome L, Rubin J, Kirn D. Hepatic arterial infusion of a replication-
    selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical
    endpoints. Cancer Res. 2002 Nov. 1; 62(21): 6070-9.
    Phase 2; SCCHN; IT; Completed; Nemunaitis J, Khuri F, Ganly I, Arseneau J,
    Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A, Romel L,
    Randlev B, Kaye S, Kirn D. Phase II trial of intratumoral administration of
    ONYX-015, a replication-selective adenovirus, in patients with refractory head
    and neck cancer. J Clin Oncol. 2001 Jan. 15; 19(2): 289-98.
    Phase 2; SCCHN; IT; Completed; Khuri FR, Nemunaitis J, Ganly I, Arseneau J,
    Tannock I F, Romel L, Gore M, Ironside J, MacDougall R H, Heise C, Randlev
    B, Gillenwater A M, Bruso P, Kaye S B, Hong W K, Kirn D H. a controlled trial of
    intratumoral ONYX-015, a selectively-replicating adenovirus, in combination
    with cisplatin and 5-fluorouracil in patients with recurrent head and neck
    cancer. Nat Med. 2000 August; 6(8): 879-85.
    Phase 2; CRC; IV; Completed; Reid T R, Freeman S, Post L, McCormick F,
    Sze D Y. Effects of Onyx-015 among metastatic colorectal cancer patients that
    have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther. 2005
    August; 12(8): 673-81.
    CG7060 PSA control Adenovirus Phase 1; Prostate cancer; IT; Completed; DeWeese T L, van der Poel H, Li S,
    Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez
    R, Hauik T, DeMarzo A M, Piantadosi S, Yu D C, Chen Y, Henderson D R,
    Carducci M A, Nelson W G, Simons J W. A phase I trial of CV706, a replication-
    competent, PSA selective oncolytic adenovirus, for the treatment of locally
    recurrent prostate cancer following radiation therapy. Cancer Res. 2001 Oct.
    15; 61 (20): 7464-72.
    CG7870/CV787 Rat probasin- Adenovirus Phase 1/2; Prostate cancer; IV; Completed; Small E J, Carducci M A, Burke J M,
    E1A Rodriguez R, Fong L, van Ummersen L, Yu D C, Aimi J, Ando D, Working P,
    Kirn D, Wilding G. A phase I trial of intravenous CG7870, a replication-
    selective, prostate-specific antigen-targeted oncolytic adenovirus, for the
    treatment of hormone-refractory, metastatic prostate cancer. Mol Ther. 2006
    July; 14(1): 107-17. Epub 2006 May 9.
    CG7870/CV787 hPSA-E1B, Adenovirus Phase 1/2; Prostate cancer; IV; Terminated 2005
    E3+
    CG0070 E2F-1, Adenovirus Phase 2/3; Bladder cancer; Intracavity; Not yet open; Ramesh N, Ge Y, Ennist
    GM-CSF D L, Zhu M, Mina M, Ganesh S, Reddy P S, Yu D C. CG0070, a conditionally
    replicating granulocyte macrophage colony-stimulating factor-armed oncolytic
    adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006 Jan.
    1; 12(1): 305-13.
    Telomelysin hTERT Adenovirus Phase 1; Solid tumors; IT; Completed; Nemunaitis J, Tong A W, Nemunaitis M,
    Senzer N, Phadke A P, Bedell C, Adams N, Zhang Y A, Maples P B, Chen S,
    Pappen B, Burke J, Ichimaru D, Urata Y, Fujiwara T. A phase I study of
    telomerase-specific replication competent oncolytic adenovirus (telomelysin)
    for various solid tumors. Mol Ther. 2010 February; 18(2): 429-34. doi:
    10.1038/mt.2009.262. Epub 2009 Nov. 24.
    Ad5-CD/TKrep CD/TK Adenovirus Phase 1; Prostate cancer; IT; Completed; Freytag S O, Khil M, Stricker H,
    Peabody J, Menon M, DePeralta-Venturina M, Nafziger D, Pegg J, Paielli D,
    Brown S, Barton K, Lu M, Aguilar-Cordova E, Kim J H. Phase I study of
    replication-competent adenovirus-mediated double suicide gene therapy for the
    treatment of locally recurrent prostate cancer. Cancer Res. 2002 Sep. 1;
    62(17): 4968-76.
    Phase 1; Prostate cancer; IT; Completed; Freytag S O, Stricker H, Pegg J,
    Paielli D, Pradhan D G, Peabody J, DePeralta-Venturina M, Xia X, Brown S, Lu
    M, Kim J H. Phase I study of replication-competent adenovirus-mediated
    double-suicide gene therapy in combination with conventional-dose three-
    dimensional conformal radiation therapy for the treatment of newly diagnosed,
    intermediate- to high-risk prostate cancer. Cancer Res. 2003 Nov. 1;
    63(21): 7497-506.
    Ad5-D24-RGD RGD, Delta-24 Adenovirus Phase 1; Ovarian cancer; IP; Completed; Kimball K J, Preuss M A, Barnes M N,
    Wang M, Siegal G P, Wan W, Kuo H, Saddekni S, Stockard C R, Grizzle W E,
    Harris R D, Aurigemma R, Curiel D T, Alvarez R D. A phase I study of a tropism-
    modified conditionally replicative adenovirus for recurrent malignant
    gynecologic diseases. Clin Cancer Res. 2010 Nov. 1; 16(21): 5277-87. doi:
    10.1158/1078-0432.CCR-10-0791. Epub 2010 Oct. 26.
    Phase 1; Glioma; IT; Recruiting
    Phase
    1/2; Glioma; IT; Recruiting
    Ad5-SSTR/TK- SSTR, TK, RGD Adenovirus Phase 1; Ovarian cancer; IP; Active; Ramesh N, Ge Y, Ennist D L, Zhu M, Mina
    RGD M, Ganesh S, Reddy P S, Yu D C. CG0070, a conditionally replicating
    granulocyte macrophage colony-stimulating factor-armed oncolytic
    adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006 Jan.
    1; 12(1): 305-13.
    CGTG-102 Ad5/3, GM-CSF Adenovirus Phase 1/2; Solid tumors; IT; Not open; Koski A, Kangasniemi L, Escutenaire S,
    Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K,
    Ranki T, Oksanen M, Holm S L, Haavisto E, Karioja-Kallio A, Laasonen L,
    Partanen K, Ugolini M, Helminen A, Karli E, Hannuksela P, Pesonen S,
    Joensuu T, Kanerva A, Hemminki A. Treatment of cancer patients with a
    serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther.
    2010 October; 18(10): 1874-84. doi: 10.1038/mt.2010.161. Epub 2010 Jul. 27.
    CGTG-102 Delta-24 Adenovirus Phase 1; Solid tumors; IT/IV; Recruiting
    INGN-007 wtE1a, ADP Adenovirus Phase 1; Solid tumors; IT; Not open; Lichtenstein D L, Spencer J F, Doronin K,
    (VRX-007) Patra D, Meyer J M, Shashkova E V, Kuppuswamy M, Dhar D, Thomas M A,
    Tollefson A E, Zumstein L A, Wold W S, Toth K. An acute toxicology study with
    INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian
    hamsters; comparisons with wild-type Ad5 and a replication-defective
    adenovirus vector. Cancer Gene Ther. 2009 August; 16(8): 644-54. doi:
    10.1038/cgt.2009.5. Epub 2009 Feb. 6.
    ColoAd1 Ad3/11p Adenovirus Phase 1/2; CRC, HCC; ; Not open; Kuhn I, Harden P, Bauzon M, Chartier C,
    Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi G M,
    Harkins R N, Hermiston T W. Directed evolution generates a novel oncolytic
    virus for the treatment of colon cancer. PLoS One. 2008 Jun. 18; 3(6): e2409.
    doi: 10.1371/journal.pone.0002409.
    CAVATAK Coxsackie Phase 1; Melanoma; IT; Completed
    virus Phase 2; Melanoma; IT; Recruiting
    (CVA21) Phase 1; SCCHN; IT; Terminated
    Phase
    1; Solid tumors; IV; Recruiting
    Talimogene GM-CSF Herpes Phase 1; Solid tumors; IT; Completed; Hu J C, Coffin R S, Davis C J, Graham
    laherparepvec simplex N J, Groves N, Guest P J, Harrington K J, James N D, Love C A, McNeish I,
    (OncoVEX) virus Medley L C, Michael A, Nutting C M, Pandha H S, Shorrock C A, Simpson J,
    Steiner J, Steven N M, Wright D, Coombes R C. A phase I study of
    OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus
    expressing granulocyte macrophage colony-stimulating factor. Clin Cancer
    Res. 2006 Nov. 15; 12(22): 6737-47.
    Talimogene ICP34.5(−) Herpes Phase 2; Melanoma; IT; Completed; Kaufman H L, Kim D W, DeRaffele G,
    laherparepvec simplex Mitcham J, Coffin R S, Kim-Schulze S. Local and distant immunity induced by
    (OncoVEX) virus intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in
    patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010
    March; 17(3): 718-30. doi: 10.1245/s10434-009-0809-6; Senzer N N, Kaufman H L,
    Amatruda T, Nemunaitis M, Reid T, Daniels G, Gonzalez R, Glaspy J, Whitman
    E, Harrington K, Goldsweig H, Marshall T, Love C, Coffin R, Nemunaitis J J.
    Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-
    encoding, second-generation oncolytic herpesvirus in patients with
    unresectable metastatic melanoma. J Clin Oncol. 2009 Dec. 1; 27(34): 5763-71.
    doi: 0.1200/JCO.2009.24.3675. Epub 2009 Nov. 2.
    Talimogene ICP47(−) Herpes Phase 3; Melanoma; IT; Active
    laherparepvec simplex
    (OncoVEX) virus
    Talimogene Us11 ↑ Herpes Phase 1/2; SCCHN; IT; Completed; Harrington K J, Hingorani M, Tanay M A,
    laherparepvec simplex Hickey J, Bhide S A, Clarke P M, Renouf L C, Thway K, Sibtain A, McNeish I A,
    (OncoVEX) virus Newbold K L, Goldsweig H, Coffin R, Nutting C M. Phase I/II study of oncolytic
    HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage
    III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010 Aug. 1;
    16(15): 4005-15. doi: 10.1158/1078-0432.CCR-10-0196.
    G207 ICP34.5(−), Herpes Phase 1/2; Glioma; IT; Completed; Markert J M, Liechty P G, Wang W, Gaston
    ICP6(−) simplex S, Braz E, Karrasch M, Nabors L B, Markiewicz M, Lakeman A D, Palmer C A,
    virus Parker J N, Whitley R J, Gillespie G Y. Phase lb trial of mutant herpes simplex
    virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol
    Ther. 2009 January; 17(1): 199-207. doi: 10.1038/mt.2008.228. Epub 2008 Oct. 28;
    Markert J M, Medlock M D, Rabkin S D, Gillespie G Y, Todo T, Hunter W D,
    Palmer C A, Feigenbaum F, Tornatore C, Tufaro F, Martuza R L. Conditionally
    replicating herpes simplex virus mutant, G207 for the treatment of malignant
    glioma: results of a phase I trial. Gene Ther. 2000 May; 7(10): 867-74.
    G207 LacZ(+) Herpes Phase 1; Glioma; IT; Completed
    simplex
    virus
    G47Delta From G207, Herpes Phase 1; Glioma; IT; Recruiting; Todo T, Martuza R L, Rabkin S D, Johnson P A.
    ICP47− simplex Oncolytic herpes simplex virus vector with enhanced MHC class I presentation
    virus and tumor cell killing. Proc Natl Acad Sci USA. 2001 May 22; 98(11): 6396-
    401. Epub 2001 May 15. PubMed PMID: 11353831; PubMed Central PMCID:
    PMC33479.
    HSV 1716 ICP34.5(−) Herpes Phase 1; Non-CNS solid tumors; IT; Recruiting
    (Seprehvir) simplex Phase 1; SCCHN; IT; Completed; Mace A T, Ganly I, Soutar D S, Brown S M.
    virus Potential for efficacy of the oncolytic Herpes simplex virus 1716 in patients with
    oral squamous cell carcinoma. Head Neck. 2008 August; 30(8): 1045-51. doi:
    10.1002/hed.20840.
    Phase 1; Glioma; IT; Completed; Harrow S, Papanastassiou V, Harland J,
    Mabbs R, Petty R, Fraser M, Hadley D, Patterson J, Brown S M, Rampling R.
    HSV1716 injection into the brain adjacent to tumor following surgical resection
    of high-grade glioma: safety data and long-term survival. Gene Ther. 2004
    November; 11(22): 1648-58; Papanastassiou V, Rampling R, Fraser M, Petty R,
    Hadley D, Nicoll J, Harland J, Mabbs R, Brown M. The potential for efficacy of
    the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoral
    injection into human malignant glioma: a proof of principle study. Gene Ther.
    2002 March; 9(6): 398-406.
    Phase 1; Melanoma; IT; MacKie R M, Stewart B, Brown S M. Intralesional
    injection of herpes simplex virus 1716 in metastatic melanoma. Lancet. 2001
    Feb. 17; 357(9255): 525-6.
    Phase 1; Mesothelioma; IP; not active
    HF10 HSV-1 Herpes Phase 1; Solid tumors; IT; Recruiting
    HF strain simplex Phase 1; Pancreatic cancer; IT; Completed; Nakao A, Kasuya H, Sahin T T,
    virus Nomura N, Kanzaki A, Misawa M, Shirota T, Yamada S, Fujii T, Sugimoto H,
    Shikano T, Nomoto S, Takeda S, Kodera Y, Nishiyama Y. A phase I dose-
    escalation clinical trial of intraoperative direct intratumoral injection of HF10
    oncolytic virus in non-resectable patients with advanced pancreatic cancer.
    Cancer Gene Ther. 2011 March; 18(3): 167-75. doi: 10.1038/cgt.2010.65. Epub
    2010 Nov. 19.
    Phase 1; Breast cancer; IT; Completed; Kimata H, Imai T, Kikumori T,
    Teshigahara O, Nagasaka T, Goshima F, Nishiyama Y, Nakao A. Pilot study
    of oncolytic viral therapy using mutant herpes simplex virus (HF10) against
    recurrent metastatic breast cancer. Ann Surg Oncol. 2006 August; 13(8): 1078-84.
    Epub 2006 Jul. 24.
    Phase 1; SCCHN; IT; Completed; Fujimoto Y, Mizuno T, Sugiura S, Goshima
    F, Kohno S, Nakashima T, Nishiyama Y. Intratumoral injection of herpes
    simplex virus HF10 in recurrent head and neck squamous cell carcinoma. Acta
    Otolaryngol. 2006 October; 126(10): 1115-7.
    NV1020 Herpes Phase 1; CRC liver mets; IA; Completed; Fong Y, Kim T, Bhargava A,
    simplex Schwartz L, Brown K, Brody L, Covey A, Karrasch M, Getrajdman G,
    virus Mescheder A, Jarnagin W, Kemeny N. A herpes oncolytic virus can be
    delivered via the vasculature to produce biologic changes in human colorectal
    cancer. Mol Ther. 2009 February; 17(2): 389-94. doi: 10.1038/mt.2008.240. Epub
    2008 Nov. 18.
    MV-CEA CEA Measles Phase 1; Ovarian cancer; IP; Completed; Galanis E, Hartmann L C, Cliby W A,
    virus Long H J, Peethambaram P P, Barrette B A, Kaur J S, Haluska P J Jr, Aderca I,
    (Edmonston) Zollman P J, Sloan J A, Keeney G, Atherton P J, Podratz K C, Dowdy S C,
    Stanhope C R, Wilson T O, Federspiel M J, Peng K W, Russell S J. Phase I trial of
    intraperitoneal administration of an oncolytic measles virus strain engineered to
    express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res.
    2010 Feb. 1; 70(3): 875-82. doi: 10.1158/0008-5472.CAN-09-2762. Epub 2010
    Jan. 26.
    Phase 1; Glioma; IT; Recruiting
    MV-NIS NIS Measles Phase 1; Myeloma; IV; Recruiting
    virus Phase
    1; Ovarian cancer; IP; Recruiting
    (Edmonston) Phase 1; Mesothelioma; IP; Recruiting
    Phase
    1; SCCHN; IT; Not open
    NDV-HUJ Newcastle Phase 1/2; Glioma; IV; Completed; Freeman A I, Zakay-Rones Z, Gomori J M,
    disease Linetsky E, Rasooly L, Greenbaum E, Rozenman-Yair S, Panet A, Libson E,
    virus Irving C S, Galun E, Siegal T. Phase I/II trial of intravenous NDV-HUJ oncolytic
    virus in recurrent glioblastoma multiforme. Mol Ther. 2006 January; 13(1): 221-8.
    Epub 2005 Oct. 28; Pecora A L, Rizvi N, Cohen G I, Meropol N J, Sterman D,
    Marshall J L, Goldberg S, Gross P, O'Neil J D, Groene W S, Roberts M S, Rabin
    H, Bamat M K, Lorence R M. Phase I trial of intravenous administration of
    PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin
    Oncol. 2002 May 1; 20(9): 2251-66.
    PV701 Newcastle Phase 1; Solid tumors; IV; Completed; Laurie S A, Bell J C, Atkins H L, Roach J,
    disease Bamat M K, O'Neil J D, Roberts M S, Groene W S, Lorence R M. A phase 1
    virus clinical study of intravenous administration of PV701, an oncolytic virus, using
    two-step desensitization. Clin Cancer Res. 2006 Apr. 15; 12(8): 2555-62.
    MTH-68/H Newcastle Phase 2; Solid tumors; Inhalation; Completed; Csatary L K, Eckhardt S,
    disease Bukosza I, Czegledi F, Fenyvesi C, Gergely P, Bodey B, Csatary C M.
    virus Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect
    Prev. 1993; 17(6): 619-27.
    H-1PV Parvovirus Phase 1/2; Glioma; IT/IV; Recruiting; Geletneky K, Kiprianova I, Ayache A,
    Koch R, Herrero Y Calle M, Deleu L, Sommer C, Thomas N, Rommelaere J,
    Schlehofer J R. Regression of advanced rat and human gliomas by local or
    systemic treatment with oncolytic parvovirus H-1 in rat models. Neuro Oncol.
    2010 August; 12(8): 804-14. doi: 10.1093/neuonc/noq023. Epub 2010 Mar. 18.
    PVS-RIPO IRES Poliovirus Phase 1; Glioma; IT; Recruiting; Goetz C, Gromeier M. Preparing an oncolytic
    (Sabin) poliovirus recombinant for clinical application against glioblastoma multiforme.
    Cytokine Growth Factor Rev. 2010 April-June; 21(2-3): 197-203. doi:
    10.1016/j.cytogfr.2010.02.005. Epub 2010 Mar. 17. Review.
    Reolysin Reovirus Phase 1/2; Glioma; IT; Completed; Forsyth P, Roldán G, George D, Wallace C,
    (Dearing) Palmer C A, Morris D, Cairncross G, Matthews M V, Markert J, Gillespie Y,
    Coffey M, Thompson B, Hamilton M. A phase I trial of intratumoral
    administration of reovirus in patients with histologically confirmed recurrent
    malignant gliomas. Mol Ther. 2008 March; 16(3): 627-32. doi:
    10.1038/sj.mt.6300403. Epub 2008 Feb. 5.
    Phase 1; Peritoneal cancer; IP; Recruiting
    Phase
    1; Solid tumors; IV; Completed; Vidal L, Pandha H S, Yap T A, White C L,
    Twigger K, Vile R G, Melcher A, Coffey M, Harrington K J, DeBono J S. A phase
    I study of intravenous oncolytic reovirus type 3 Dearing in patients with
    advanced cancer. Clin Cancer Res. 2008 Nov. 1; 14(21): 127-37. doi:
    10.1158/1078-0432.CCR-08-0524.
    Phase 1; Solid tumors; IV; Recruiting
    Phase
    1; CRC; IV; Recruiting
    Phase
    2; Sarcoma; IV; Completed
    Phase 2; Melanoma; IV; Suspended
    Phase
    2; Ovarian, peritoneal cancer; IV; Recruiting
    Phase
    2; Pancreatic cancer; IV; Recruiting
    Phase
    2; SCCHN; IV; Not recruiting
    Phase 2; Melanoma; IV; Recruiting
    Phase
    2; Pancreatic cancer; IV; Recruiting
    Phase
    2; Lung cancer; IV; Recruiting
    Phase
    3; SCCHN; IV; Recruiting
    NTX-010 Seneca Phase 2; Small cell lung cancer; IV; Recruiting; PMID: 17971529
    Valley
    virus
    Toca 511 CD Retrovirus Phase 1/2; Glioma; IT; Recruiting; Tai C K, Wang W J, Chen T C, Kasahara N.
    Single-shot, multicycle suicide gene therapy by replication-competent retrovirus
    vectors achieves long-term survival benefit in experimental glioma. Mol Ther.
    2005 November; 12(5): 842-51.
    JX-594 GM-CSF Vaccinia Phase 1; CRC; IV; Recruiting
    (Wyeth
    strain)
    JX-594 TK(−) Vaccinia Phase 1; Solid tumors; IV; Completed
    (Wyeth Phase 1; HCC; IT; Completed; Park B H, Hwang T, Liu T C, Sze D Y, Kim J S,
    strain) Kwon H C, Oh S Y, Han S Y, Yoon J H, Hong S H, Moon A, Speth K, Park C, Ahn
    Y J, Daneshmand M, Rhee B G, Pinedo H M, Bell J C, Kirn D H. Use of a targeted
    oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver
    cancer: a phase I trial. Lancet Oncol. 2008 June; 9(6): 533-42. doi:
    10.1016/S1470-2045(08)70107-4. Epub 2008 May 19. Erratum in: Lancet
    Oncol. 2008 July; 9(7): 613.
    Phase 1; Pediatric solid tumors; IT; Recruiting
    Phase
    1; Melanoma; IT; Completed; Hwang T H, Moon A, Burke J, Ribas A,
    Stephenson J, Breitbach C J, Daneshmand M, De Silva N, Parato K, Diallo J S,
    Lee Y S, Liu T C, Bell J C, Kirn D H. A mechanistic proof-of-concept clinical trial
    with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with
    metastatic melanoma. Mol Ther. 2011 October; 19(10): 1913-22. doi:
    10.1038/mt.2011.132. Epub 2011 Jul. 19.
    Phase 1/2; Melanoma; IT; Completed; Mastrangelo M J, Maguire H C Jr,
    Eisenlohr L C, Laughlin C E, Monken C E, McCue P A, Kovatich A J, Lattime E C.
    Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients
    with cutaneous melanoma. Cancer Gene Ther. 1999 September-October; 6(5): 409-22.
    Phase 2; HCC; IT; Not recruiting, analyzing data
    Phase 2B; HCC; IV; Recruiting
    Phase
    1/2; CRC; IV/IT; Recruiting
    Phase
    2; CRC; IT; Not yet recruiting
    vvDD-CDSR TK−, VGF−, Vaccinia Phase 1; Solid tumors; IT/IV; Recruiting; McCart J A, Mehta N, Scollard D,
    LacZ, CD, (Western Reilly R M, Carrasquillo J A, Tang N, Deng H, Miller M, Xu H, Libutti S K,
    Somatostatin R Reserve) Alexander H R, Bartlett D L. Oncolytic vaccinia virus expressing the human
    somatostatin receptor SSTR2: molecular imaging after systemic delivery using
    111In-pentetreotide. Mol Ther. 2004 September; 10(3): 553-61.
    GL-ONC1 Renilla Vaccinia Phase 1; Solid tumors; IV; Recruiting, Gentschev I, Müller M, Adelfinger M,
    luciferase Weibel S, Grummt F, Zimmermann M, Bitzer M, Heisig M, Zhang Q, Yu Y A,
    Chen N G, Stritzker J, Lauer U M, Szalay A A. Efficient colonization and therapy
    of human hepatocellular carcinoma (HCC) using the oncolytic vaccinia virus
    strain GLV-1h68. PLoS One. 2011; 6(7): e22069. doi:
    10.1371/journal.pone.0022069. Epub 2011 Jul. 11.
    (GLV-h68) GFP, β-gal Vaccinia Phase 1/2; Peritoneal carcinomatosis; IP; Recruiting
    Lister β-glucoronidase Vaccinia Phase 1/2; SCCHN; IV; Recruiting
    VSV-hIFNβ IFN-β Vesicular Phase 1; HCC; IT; Recruiting
    stomatitis
    virus
    (Indiana)
    DNX-2401 DNAtrix Adenovirus See, e.g., Molecular Therapy 21(10): 1814-1818, 2013 and
    Journal of Vascular and Interventional Radiology 24(8):
    1115-1122, 2013
    Toca511 Tocagen Lentivirus See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and
    Journal of Vascular and Interventional Radiology 24(8):
    1115-1122, 2013
    HSV T-VEC HSV See, e.g., Molecular Therapy 21(10): 1814-1818, 2013 and
    Journal of Vascular and Interventional Radiology 24(8):
    1115-1122, 2013
    H-1 Parvovirus See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and
    ParvOryx Journal of Vascular and Interventional Radiology 24(8):
    1115-1122, 2013
    VACV-TRAIL (see work of Vaccinia See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and
    Karolina Autio virus Journal of Vascular and Interventional Radiology 24(8):
    and Suvi 1115-1122, 2013
    Parvainen,
    Helsinki)
    VACV-CD40L (see work of Vaccinia See, e.g., Molecular Therapy 21 (10): 1814-1818, 2013 and
    Karolina Autio virus Journal of Vascular and Interventional Radiology 24(8):
    and Suvi 1115-1122, 2013
    Parvainen,
    Helsinki)
    Maraba (see work of Dave Rhabdovirus Preclinical/Clinical Candidate
    Stojdl, and
    John Bell)
    Maraba- (see work of Dave Rhabdovirus
    MG1 Stojdl, and
    John Bell)
    Maraba (see work of Dave Rhabdovirus Preclinical/Clinical Candidate
    MG1- Stojdl, Brian
    hMAGE-A3 Litchy and John
    Bell)
    Sindbis Preclinical/Clinical Candidate
    virus
    Coxsackievirus Preclinical/Clinical Candidate
    A21
    MYXV Poxvirus Preclinical/Clinical Candidate Chan W M, Rahman M M, McFadden G. Oncolytic
    myxoma virus: the path to clinic. Vaccine. 2013 Sep. 6; 31(39): 4252-8. doi:
    10.1016/j.vaccine.2013.05.056. Epub 2013 May 29.
    WT VSV The parental rWT Recombinant VSV used as oncolytic agent against cancer(see, e.g., see, e.g.,
    (‘Rose lab’) VSV for most J Gen Virol/93(12): 2529-2545, 2012; Lawson N D, Stillman E A, Whitt M A,
    VSV-based OVs. Rose J K. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad
    The L gene and Sci USA. 1995 May 9; 92(10): 4477-81. Erratum in: Proc Natl Acad Sci USA
    the N-terminal 49 1995 Sep. 12; 92(19): 9009.)
    residues of the
    N gene are derived
    from the Mudd-
    Summers strain,
    the rest is from
    the San Juan
    strain (both
    Indiana serotype)
    VSV-WT-XN2 Derivative of Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    (or XN1) rWT VSV (‘Rose Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    lab’). Generated virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    using pVSV-XN2 (or 10.1099/vir.0.046672-0. Epub 2012 Oct. 10.; Schnell M J, Buonocore L,
    pVSV-XN1), a Kretzschmar E, Johnson E, Rose J K. Foreign glycoproteins expressed from
    full-length VSV recombinant vesicular stomatitis viruses are incorporated efficiently into virus
    plasmid containing particles. Proc Natl Acad Sci USA. 1996 Oct. 15; 93(21): 11359-65.)
    uniqueXhol and
    Nhel sites flanked
    by VSV
    transcription start
    and stop signals
    between G and L
    genes. pVSV-XN2
    (or pVSV-XN1) is
    commonly used
    to generate
    recombinant VSVs
    encoding an
    extra gene
    WT VSV Alternative rWT Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    (‘Wertz lab’) VSV. The N, P, Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    M and L genes virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    originate from 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Whelan S P, Ball L A, Barr J N,
    the San Juan Wertz G T. Efficient recovery of infectious vesicular stomatitis virus entirely from
    strain; G gene cDNA clones. Proc Natl Acad Sci USA. 1995 Aug. 29; 92(18): 8388-92.)
    from the Orsay
    strain (both
    Indiana
    serotype).
    Rarely used
    in OV studies
    VSV-WT-GFP, WT VSV encoding Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    -RFP, -Luc, reporter genes Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    -LacZ (between G and virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    L) to track 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernadez et al., “Genetically
    virus infection. Engineered Vesicular Stomatitis Virus in Gene Therapy: Application for
    Based on pVSV- Treatment of Malignant Disease”, J Virol 76: 895-904 (2002); Lan Wu, Tian-gui
    XN2. Toxicity Huang, Marcia Meseck, Jennifer Altomonte, Oliver Ebert, Katsunori Shinozaki,
    similar to Adolfo Garcia-Sastre, John Fallon, John Mandeli, and Savio L. C. Woo. Human
    VSV-WT Gene Therapy. June 2008, 19(6): 635-647)
    VSV-G/GFP GFP sequence fused Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    to VSV G gene is Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    inserted between virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    the WT G and L 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Dalton, K. P. & Rose, J. K. (2001).
    genes (in addition Vesicular stomatitis virus glycoprotein containing the entire green fluorescent
    to WT G). Toxicity protein on its cytoplasmic domain is incorporated efficiently into virus particles.
    similar to that Virology 279, 414-421.)
    of VSV-WT
    VSV-rp30 Derivative of Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV-G/GFP. Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    Generated by virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    positive selection 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Tattersail, P. & van
    on glioblastoma den Pol, A. N. (2005). Targeting human glioblastoma cells: comparison of nine
    cells and viruses with oncolytic potential. J Virol 79, 6005-6022.)
    contains two
    silent mutations
    and two missense
    mutations, one in
    P and one in L.
    ‘rp30’ indicates
    30 repeated passages
    VSV-p1-GFP, VSV expressing Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV-p1-RFP GFP or red Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    fluorescent virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    protein (RFP or 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Rogulin, V., Simon,
    dsRed) reporter I., Rose, J. K. & van den Pol, A. N. (2010). Some attenuated variants of
    gene at position vesicular stomatitis virus show enhanced oncolytic activity against human
    1. Attenuated glioblastoma cells relative to normal brain cells. J Virol 84, 1563-1573.)
    because all VSV
    genes are moved
    downward, to
    positions 2-6.
    Safe and still
    effective as an
    OV
    VSV-dG-GFP Similar to Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    (or RFP) VSV-p1-GFP or Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    (replication- VSV-p1-RFP virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    defective) described above, 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wollmann, G., Rogulin, V., Simon,
    but with the G I., Rose, J. K. & van den Pol, A. N. (2010). Some attenuated variants of
    gene deleted. vesicular stomatitis virus show enhanced oncolytic activity against human
    Cannot generate glioblastoma cells relative to normal brain cells. J Virol 84, 1563-1573.)
    a second round
    of infection.
    Poor ability to
    kill tumor cells
    VSV-ΔP, Each virus cannot Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    -ΔL, -ΔG replicate alone Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    (semi- because of one virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    replication- VSV gene deleted, 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Muik, A., Dold, C., Geiβ, Y., Volk,
    competent) but when viruses A., Werbizki, M., Dietrich, U. & von Laer, D. (2012). Semireplication-competent
    co-infect, they vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol
    show good Med (Berl) 90, 959-970.)
    replication,
    safety and
    oncolysis
    (especially the
    combination of
    VSVΔG/VSVΔL).
    VSVΔP and VSVΔL
    contain dsRed in
    place of the
    corresponding
    viral gene.
    VSVΔG contains
    GFP gene in
    place of G
    VSV-M51R M mutant; the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    M51R mutation was Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    introduced into M virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Kopecky, S. A., Willingham, M. C.
    & Lyles, D. S. (2001). Matrix protein and another viral component contribute to
    induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 75,
    12169-12181.)
    VSV-ΔM51, M mutant; the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV-ΔM51- ΔM51 mutation Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    GFP, -RFP, was introduced virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    -FLuc, -Luc, into M. In 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Stojdl, D. F., Lichty, B. D.,
    -LacZ addition, some tenOever, B. R., Paterson, J. M., Power, A. T., Knowles, S., Marius, R.,
    recombinants Reynard, J., Poliquin, L. & other authors (2003). VSV strains with defects in
    encode a their ability to shutdown innate immunity are potent systemic anti-cancer
    reporter gene agents. Cancer Cell 4, 263-275.; Power, A. T. & Bell, J. C. (2007). Cell-based
    between the G delivery of oncolytic viruses: a new strategic alliance for a biological strike
    and L against cancer. Mol Ther 15, 660-665.; Wu, L., Huang, T. G., Meseck, M.,
    Altomonte, J., Ebert, O., Shinozaki, K., Garci{acute over ( )}a-Sastre, A., Fallon, J., Mandeli,
    J. & Woo, S. L. (2008). rVSV(MD51)-M3 is an effective and safe oncolytic virus
    for cancer therapy. Hum Gene Ther 19, 635-647.)
    VSV-*Mmut M mutant; VSV Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    with a single Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    mutation or virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    combination 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Hoffmann, M., Wu, Y. J., Gerber,
    of mutations at M., Berger-Rentsch, M., Heimrich, B., Schwemmle, M. & Zimmer, G. (2010).
    the following M Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis
    positions: M33A, virus M mutants lacking host shut-off activity. J Gen Virol 91, 2782-2793.)
    M51R, V221F
    and S226R
    VSV-M6PY > M mutant; the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    A4-R34E M51R mutation Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    and other was introduced virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    M mutants into the M gene, 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Irie, T., Carnero, E., Okumura, A.,
    and, in addition, Garci{acute over ( )}a-Sastre, A. & Harty, R. N. (2007). Modifications of the PSAP region of
    the mutations the matrix protein lead to attenuation of vesicular stomatitis virus in vitro and in
    in the PSAP motif vivo. J Gen Virol 88, 2559-2567.)
    (residues 37-
    40) of M
    VSV-M(mut) M mutant; VSV Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    M residues 52- Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    54 are mutated virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    from DTY to AAA. 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Heiber, J. F. & Barber, G. N.
    M(mut) cannot (2011). Vesicular stomatitis virus expressing tumor suppressor p53 is a highly
    block nuclear attenuated, potent oncolytic agent. J Virol 85, 10440-10450.)
    mRNA export
    VSV-G5, -G5R, G mutant; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    -G6, -G6R VSV-expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    mutant G with virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    amino acid 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Janelle, V., Brassard, F., Lapierre,
    substitutions at P., Lamarre, A. & Poliquin, L. (2011). Mutations in the glycoprotein of vesicular
    various positions stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy. J
    (between residues Virol 85, 6513-6520.)
    100 and 471).
    Triggers type I
    IFN secretion as
    the M51R, but
    inhibits cellular
    transcription and
    host protein
    translation like
    WT
    VSV-CT1 G mutant; the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    cytoplasmic tail of Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    the G protein was virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    truncated from 29 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ozduman, K., Wollmann, G.,
    to 1 aa. Decreased Ahmadi, S. A. & van den Pol, A. N. (2009). Peripheral immunization blocks
    neuropathology, but lethal actions of vesicular stomatitis virus within the brain. J Virol 83, 11540-
    marginal oncolytic 11549.; Wollmann, G., Rogulin, V., Simon, I., Rose, J. K. & van den Pol, A. N.
    efficacy (2010). Some attenuated variants of vesicular stomatitis virus show enhanced
    oncolytic activity against human glioblastoma cells relative to normal brain
    cells. J Virol 84, 1563-1573.)
    VSV-CT9- G mutant; the Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    M51 cytoplasmic tail Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    of VSV-G was virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    reduced from 29 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ozduman, K., Wollmann, G.,
    to 9 aa, also has Ahmadi, S. A. & van den Pol, A. N. (2009). Peripheral immunization blocks
    ΔM51 mutation. lethal actions of vesicular stomatitis virus within the brain. J Virol 83, 11540-
    Attenuated 11549.; Wollmann, G., Rogulin, V., Simon, I., Rose, J. K. & van den Pol, A. N.
    neurotoxicity and (2010). Some attenuated variants of vesicular stomatitis virus show enhanced
    good OV abilities oncolytic activity against human glioblastoma cells relative to normal brain
    cells. J Virol 84, 1563-1573.)
    VSV- Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    DV/F(L289A) glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    (same as expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    rVSV-F) NDV fusion 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ebert, O., Shinozaki, K., Kournioti,
    protein gene C., Park, M. S., Garci{acute over ( )}a-Sastre, A. & Woo, S. L. (2004). Syncytia induction
    between G and L. enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for
    The L289A mutation cancer. Cancer Res 64, 3265-3270.)
    in this protein
    allows it to
    induce syncytia
    alone (without
    NDV HN protein)
    VSV-S-GP Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    glycoprotein; Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    VSV with the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    native G gene 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Bergman, I., Griffin, J. A., Gao, Y.
    deleted and & Whitaker-Dowling, P. (2007). Treatment of implanted mammary tumors with
    replaced with a recombinant vesicular stomatitis virus targeted to Her2/neu. Int J Cancer 121,
    modified 425-430.)
    glycoprotein
    protein (GP) from
    Sindbis virus
    (SV). Also
    expressing mouse
    GM-CSF and GFP
    (between SV GP
    and VSV L). The
    modified GP
    protein recognizes
    the Her2 receptor,
    which is
    overexpressed on
    many breast cancer
    cells
    VSV-ΔG- Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    SV5-F glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    G gene is replaced virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    with the fusogenic 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Chang, G., Xu, S., Watanabe, M.,
    simian parainfluenza Jayakar, H. R., Whitt, M. A. & Gingrich, J. R. (2010). Enhanced oncolytic
    virus
    5 fusion activity of vesicular stomatitis virus encoding SV5-F protein against prostate
    protein (SV5-F) cancer. J Urol 183, 1611-1618.)
    gene
    VSV-FAST, Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV-(ΔM51)- glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    FAST or VSV-MΔ51 virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    expressing the p14 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Brown, C. W., Stephenson, K. B.,
    FAST protein of Hanson, S., Kucharczyk, M., Duncan, R., Bell, J. C. & Lichty, B. D. (2009). The
    reptilian reovirus p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus
    (between VSV G and neuropathogenesis. J Virol 83, 552-561.)
    L)
    VSV-LCMV-GP Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    (replication- glycoprotein; VSV Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    defective) lacking the G gene virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    was pseudotyped with 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Muik, A., Kneiske, I., Werbizki, M.,
    the non-neurotropic Wilflingseder, D., Giroglou, T., Ebert, O., Kraft, A., Dietrich, U., Zimmer, G. &
    glycoprotein of other authors (2011). Pseudotyping vesicular stomatitis virus with lymphocytic
    LMCV choriomeningitis virus glycoproteins enhances infectivity for glioma cells and
    minimizes neurotropism. J Virol 85, 5679-5684.)
    VSV-H/F, Foreign Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    -αEGFR, -αFR, glycoprotein; VSV Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic
    -αPSMA lacking the G gene virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    (replication- was pseudotyped 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Ayala-Breton, C., Barber, G. N.,
    defective) with the MV F and Russell, S. J. & Peng, K. W. (2012). Retargeting vesicular stomatitis virus using
    H displaying measles virus envelope glycoproteins. Hum Gene Ther 23, 484-491.)
    single-chain
    antibodies (scFv)
    specific for
    epidermal growth
    factor receptor,
    folate receptor,
    or prostate
    membrane-specific
    antigen.
    Retargeted VSV
    to cells that
    expressed the
    targeted receptor
    VSV- let- microRNA target; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    7wt the let-7 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    microRNA targets virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    are inserted into 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Edge, R. E., Falls, T. J., Brown, C.
    the 3′-UTR of W., Lichty, B. D., Atkins, H. & Bell, J. C. (2008). A let-7 microRNA-sensitive
    VSV M vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 16,
    1437-1443.)
    VSV-124, microRNA target; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    -125, -128, VSV recombinants Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    -134 (M or with neuron-specific virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    L mRNA) microRNA (miR-124, 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Kelly, E. J., Nace, R., Barber, G. N.
    125, 128 or 134) & Russell, S. J. (2010). Attenuation of vesicular stomatitis virus encephalitis
    targets inserted through microRNA targeting. J Virol 84, 1550-1562.)
    in the 3′-UTR
    of VSV M or L
    mRNA
    VSV-mp53, Cancer suppressor; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV- M(mut)- VSV [WT or Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    mp53 M(mut)] virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    expressing the 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Heiber, J. F. & Barber, G. N.
    murine p53 gene. (2011). Vesicular stomatitis virus expressing tumor suppressor p53 is a highly
    M(mut) has attenuated, potent oncolytic agent. J Virol 85, 10440-10450.)
    residues 52-54
    of the M protein
    changed from
    DTY to AAA
    VSV- Suicide gene; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    C:U VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    E. coli CD/UPRT, virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    catalysing the 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Porosnicu, M., Mian, A. & Barber,
    modification of G. N. (2003). The oncolytic effect of recombinant vesicular stomatitis virus is
    5-fluorocytosine enhanced by expression of the fusion cytosine deaminase/uracil
    into phosphoribosyltransferase suicide gene. Cancer Res 63, 8366-8376.)
    chemotherapeutic
    5-FU
    VSV-C Suicide gene; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV-MΔ51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    expressing virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    CD/UPRT 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Leveille, S., Samuel, S., Goulet, M.
    L. & Hiscott, J. (2011). Enhancing VSV oncolytic activity with an improved
    cytosine deaminase suicide gene strategy. Cancer Gene Ther 18, 435-443.)
    VSV- Suicide gene; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    (MΔ51)- VSV-MΔ51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    NIS expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    human NIS 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Goel, A., Carlson, S. K., Classic, K.
    gene (for L., Greiner, S., Naik, S., Power, A. T., Bell, J. C. & Russell, S. J. (2007).
    ‘radiovirotherapy’ Radioiodide imaging and radiovirotherapy of multiple myeloma using
    with 131I) VSV(D51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium
    iodide symporter gene. Blood 110, 2342-2350.)
    VSV- TK Suicide gene; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    TK; can improve virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    oncolysis if 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernandez, M., Porosnicu, M.,
    used with non- Markovic, D. & Barber, G. N. (2002). Genetically engineered vesicular
    toxic prodrug stomatitis virus in gene therapy: application for treatment of malignant disease.
    ganciclovir J Virol 76, 895-904.)
    VSV Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    -mIFNβ, VSV expressing the Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    -hIFNβ, murine (m), human virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    VSV-rIFNβ (h) or rat (r) IFN- 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Jenks, N., Myers, R., Greiner, S.
    β gene M., Thompson, J., Mader, E. K., Greenslade, A., Griesmann, G. E., Federspiel,
    M. J., Rakela, J. & other authors (2010). Safety studies on intrahepatic or
    intratumoral injection of oncolytic vesicular stomatitis virus expressing
    interferonb in rodents and nonhuman primates. Hum Gene Ther 21, 451-462.;
    Obuchi, M., Fernandez, M. & Barber, G. N. (2003). Development of
    recombinant vesicular stomatitis viruses that exploit defects in host defense to
    augment specific oncolytic activity. J Virol 77, 8843-8856.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    IL4 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    IL-4 virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Fernandez, M., Porosnicu, M.,
    Markovic, D. & Barber, G. N. (2002). Genetically engineered vesicular
    stomatitis virus in gene therapy: application for treatment of malignant disease.
    J Virol 76, 895-904.)
    VSV- VSV expressing Naik S, Nace R, Federspiel M J, Barber G N, Peng K W, Russell S J. Curative
    IFN- IFNb and thyroidal one-shot systemic virotherapy in murine myeloma. Leukemia. 2012
    NIS sodium iodide August; 26(8): 1870-8. doi: 10.1038/leu.2012.70. Epub 2012 Mar. 19.
    symporter
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    IL12 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    IL-12 virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Shin, E. J., Wanna, G. B., Choi, B.,
    Aguila, D., III, Ebert, O., Genden, E. M. & Woo, S. L. (2007a). Interleukin-12
    expression enhances vesicular stomatitis virus oncolytic therapy in murine
    squamous cell carcinoma. Laryngoscope 117, 210-214.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    IL23 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    IL-23. virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    Significantly 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Miller, J. M., Bidula, S. M., Jensen,
    attenuated in the T. M. & Reiss, C. S. (2010). Vesicular stomatitis virus modified with single
    CNS, but effective chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. Int
    OV J Infereron Cytokine Mediator Res 2010, 63-72.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    IL28 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    IL-28, a member virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    of the type III 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wongthida, P., Diaz, R. M., Galivo,
    IFN (IFN-λ) F., Kottke, T., Thompson, J., Pulido, J., Pavelko, K., Pease, L., Melcher, A. &
    family Vile, R. (2010). Type III IFN interleukin-28 mediates the antitumor efficacy of
    oncolytic virus VSV in immune-competent mouse models of cancer. Cancer
    Res
    70, 4539-4549.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    opt.hIL-15 VSV-MΔ51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    expressing a virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    highly secreted 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Stephenson, K. B., Barra, N. G.,
    version of human Davies, E., Ashkar, A. A. & Lichty, B. D. (2012). Expressing human interleukin-
    IL-15 15 from oncolytic vesicular stomatitis virus improves survival in a murine
    metastatic colon adenocarcinoma model through the enhancement of
    antitumor immunity. Cancer Gene Ther 19, 238-246.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    CD40L VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    CD40L, a member virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    of the tumor 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Galivo, F., Diaz, R. M.,
    necrosis factor Thanarajasingam, U., Jevremovic, D., Wongthida, P., Thompson, J., Kottke, T.,
    (TNF) family of Barber, G. N., Melcher, A. & Vile, R. G. (2010). Interference of CD40L-
    cell-surface mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum
    molecules Gene Ther 21, 439-450.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    Flt3L VSV-MΔ51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    soluble form of 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Leveille, S., Goulet, M. L., Lichty,
    the human Flt3L, B. D. & Hiscott, J. (2011). Vesicular stomatitis virus oncolytic treatment
    a growth factor interferes with tumor-associated dendritic cell functions and abrogates tumor
    activating DCs antigen presentation. J Virol 85, 12160-12169.)
    VSV/hDCT Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV-MΔ51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    expressing hDCT virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Boudreau, J. E., Bridle, B. W.,
    Stephenson, K. B., Jenkins, K. M., Brunellie{grave over ( )} re, J., Bramson, J. L., Lichty, B.
    D. & Wan, Y. (2009). Recombinant vesicular stomatitis virus transduction of
    dendritic cells enhances their ability to prime innate and adaptive antitumor
    immunity. Mol Ther 17, 1465-1472.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    hgp100 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    hgp100, an altered virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    self-TAA against 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wongthida, P., Diaz, R. M., Galivo,
    which tolerance is F., Kottke, T., Thompson, J., Melcher, A. & Vile, R. (2011). VSV oncolytic
    well-established virotherapy in the B16 model depends upon intact MyD88 signaling. Mol Ther
    in C57BL/6 mice 19, 150-158.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    ova VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    chicken ovalbumin virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    (for B16ova cancer 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Diaz, R. M., Galivo, F., Kottke, T.,
    model) Wongthida, P., Qiao, J., Thompson, J., Valdes, M., Barber, G. & Vile, R. G.
    (2007). Oncolytic immunovirotherapy for melanoma using vesicular stomatitis
    virus. Cancer Res 67, 2840-2848.)
    VSV-gG Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    EHV-1 glycoprotein virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    G, a broad- 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Altomonte, J., Wu, L., Chen, L.,
    spectrum viral Meseck, M., Ebert, O., Garci{acute over ( )}a-Sastre, A., Fallon, J. & Woo, S. L. (2008).
    chemokine-binding Exponential enhancement of oncolytic vesicular stomatitis virus potency by
    protein vector-mediated suppression of inflammatory responses in vivo. Mol Ther 16,
    146-153.)
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    UL141 VSV expressing Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    a secreted form virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    of the human 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Altomonte, J., Wu, L., Meseck, M.,
    cytomegalovirus Chen, L., Ebert, O., Garcia-Sastre, A., Fallon, J., Mandeli, J. & Woo, S. L.
    UL141 protein, (2009). Enhanced oncolytic potency of vesicular stomatitis virus through
    known to inhibit vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther 16, 266-
    the function of 278.)
    NK cells by
    blocking the
    ligand of NK cell-
    activating
    receptors
    VSV- Immunomodulation; Recombinant VSV used as oncolytic agent against cancer (see, e.g., Hastie E,
    (Δ51)-M3 VSV-MΔ51 Grdzelishvili V Z. Vesicular stomatitis virus as a flexible platform for oncolytic
    expressing the virotherapy against cancer. J Gen Virol. 2012 December; 93(Pt 12): 2529-45. doi:
    murine 10.1099/vir.0.046672-0. Epub 2012 Oct. 10; Wu, L., Huang, T. G.,Meseck, M.,
    gammaherpesvirus- Altomonte, J., Ebert, O., Shinozaki, K., Garci{acute over ( )}a-Sastre, A., Fallon, J., Mandeli,
    68 chemokine- J. & Woo, S. L. (2008). rVSV(MD51)-M3 is an effective and safe oncolytic virus
    binding protein for cancer therapy. Hum Gene Ther 19, 635-647.)
    M3
    HSV-1 Genome and Herpesviridae Clinical phase I/II; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ds glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Human
    NDV Genome and Paramyxoviridae Clinical phase I/II; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    (−) RNA; January-February; 18(1): 69-81
    Enveloped
    Representative
    Host: Avian
    Adeno Genome and Adenoviridae Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ds glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Naked January-February; 18(1): 69-81
    Representative
    Host: Human
    Reo Genome and Reoviridae Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ds glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    RNA; Naked January-February; 18(1): 69-81
    Representative
    Host: Mammalian
    Vaccinia Genome and Poxviridae Preclinical in vivo; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ds glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Cow/horse,
    others
    Polio Genome and Picornaviridae Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    (+) RNA; January-February; 18(1): 69-81
    Naked
    Representative
    Host: Human
    VSV Genome and Rhabdoviridae Preclinical in vivo; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss (−) glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    RNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Livestock/
    mosquito
    MVM Genome and Parvoviridae Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Naked January-February; 18(1): 69-81
    Representative
    Host: Mouse
    Sindbis Genome and Togaviridae Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss (+) glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    RNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Mammalian/
    mosquito
    PRV Genome and Herpesviridae Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ds glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Pig
    Measles Genome and Paramyxoviridae Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss (−) glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    RNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Human
    Myxoma Genome and Poxviridae Preclinical in vivo; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ds glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Enveloped January-February; 18(1): 69-81
    Representative
    Host: Rabbit
    H1PV Genome and Parvoviridae Clinical phase I; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    DNA; Naked January-February; 18(1): 69-81
    Representative
    Host: Rat
    SVV Genome and Picornaviridae Preclinical in vitro; Glioma; Wollmann et al. Oncolytic virus therapy for
    Structure: ss glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    (+) RNA; January-February; 18(1): 69-81
    Naked
    Representative
    Host: Pig
    HSV (G207)I Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Markert J M, Medlock M D, Rabkin S D, et al.
    Conditionally replicating herpes simplex virus mutant, G207 for the treatment
    of malignant glioma: results of a phase I trial. Gene Ther. 2000; 7: 867Y874.
    Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Markert J M, Liechty P G, Wang W, et al. Phase Ib
    trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection
    for recurrent GBM. Mol Ther. 2009; 17: 199Y207.
    Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    HSV (1716) Phase II; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Rampling R, Cruickshank G, Papanastassiou V, et al.
    Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null
    mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 2000; 7:
    859Y866.
    Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Papanastassiou V, Rampling R, Fraser M, et al. The
    potential for efficacy of the modified (ICP 34.5(j)) herpes simplex virus
    HSV1716 following intratumoral injection into human malignant glioma: a proof
    of principle study. Gene Ther. 2002; 9: 398Y406.
    Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Harrow S, Papanastassiou V, Harland J, et al.
    HSV1716 injection into the brain adjacent to tumor following surgical resection
    of high-grade glioma: safety data and long-term survival. Gene Ther. 2004; 11:
    1648Y1658.
    Phase II; Malignant glioma; Wollmann et al. Oncolytic virus therapy for
    glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    HSV Phase I; Malignant glioma; Wollmann et al. Oncolytic virus therapy for
    (G4721) glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    HSV Phase I; Malignant glioma; Wollmann et al. Oncolytic virus therapy for
    (M032) glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    AdV (ONYX- Phase I; Malignant glioma; injection to tumor resection cavity; Wollmann et al.
    015) Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates.
    Cancer J. 2012 January-February; 18(1): 69-81; Chiocca E A, Abbed K M,
    Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional
    trial of injection with an E1BAttenuated adenovirus, ONYX-015, into the
    peritumoral region of recurrent malignant gliomas, in the adjuvant setting.
    Mol Ther. 2004; 10: 958Y966.
    AdV Phase I; Malignant glioma; Wollmann et al. Oncolytic virus therapy for
    (Delta24- glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    RGD) January-February; 18(1): 69-81
    ReoV Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Forsyth P, Roldan G, George D, et al. A phase I
    trial of intratumoral administration of reovirus in patients with histologically
    confirmed recurrent malignant gliomas. Mol Ther. 2008; 16: 627Y632.
    Phase I; Malignant glioma; Convection enhanced; Wollmann et al. Oncolytic
    virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J.
    2012 January-February; 18(1): 69-81
    NDV Phase I/II; Malignant glioma; IV; Wollmann et al. Oncolytic virus therapy for
    (HUJ) glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Freeman A I, Zakay-Rones Z, Gomori J M, et al.
    Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma
    multiforme. Mol Ther. 2006; 13: 221Y228.
    Phase I/II; Malignant glioma; IV; Wollmann et al. Oncolytic virus therapy for
    glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    NDV Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus
    (MTH-68) therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Csatary L K, Bakacs T. Use of Newcastle
    disease virus vaccine (MTH- 68/H) in a patient with high-grade glioblastoma.
    JAMA. 1999; 281: 1588Y1589.
    Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus
    therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Csatary L K, Gosztonyi G, Szeberenyi J,
    et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas.
    J Neurooncol. 2004; 67: 83Y93.
    Case Studies/Series; Malignant glioma; IV; Wollmann et al. Oncolytic virus
    therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81; Wagner S, Csatary C M, Gosztonyi G,
    et al. Combined treatment of pediatric high-grade glioma with the oncolytic
    viral strain MTH-68/H and oral valproic acid. APMIS. 2006; 114: 731Y743.
    Measles Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    (MV- CEA) for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    H1 Phase I; Malignant glioma; IT injection; Wollmann et al. Oncolytic virus therapy
    H1PV for glioblastoma multiforme: concepts and candidates. Cancer J. 2012
    January-February; 18(1): 69-81
    Polio Phase I; Malignant glioma; convection-enahnced IT injection; Wollmann et al.
    (PVS- RIPO) Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates.
    Cancer J. 2012 January-February; 18(1): 69-81
  • Cancers
  • The methods and compositions of the present invention may be used to treat a wide variety of cancer types. One of skill in the art will appreciate that, since cells of many if not all cancers are capable of receptor-mediated apoptosis, the methods and compositions of the present invention are broadly applicable to many if not all cancers. The combinatorial approach of the present invention is efficacious in various aggressive, treatment refractory tumor models. In particular embodiments, for example, the cancer treated by a method of the present invention may be adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain and other central nervous system (CNS) cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphomas including Hodgkin's and non-Hodgkin's lymphomas, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer (e.g. lip, tongue, mouth, and pharynx), ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenomathymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, cancer of the urinary system, and other carcinomas and sarcomas. Other cancers are known in the art.
  • The cancer may be a cancer that is refractory to treatment by SMCs alone. The methods and compositions of the present invention may be particularly useful in cancers that are refractory to treatment by SMCs alone. Typically, a cancer refractory to treatment with SMCs alone may be a cancer in which IAP-mediated apoptotic pathways are not significantly induced. In particular embodiments, a cancer of the present invention is a cancer in which one or more apoptotic pathways are not significantly induced, i.e., is not activated in a manner such that treatment with SMCs alone is sufficient to effectively treat the cancer. For instance, a cancer of the present invention can be a cancer in which a cIAP1/2-mediated apoptotic pathway is not significantly induced.
  • A cancer of the present invention may be a cancer refractory to treatment by one or more immunostimulatory agents. In particular embodiments, a cancer of the present invention may be a cancer refractory to treatment by one or more immunostimulatory agents (absent an SMC) and also refractory to treatment by one or more SMCs (absent an immunostimulatory agent).
  • Formulations and Administration
  • In some instances, delivery of a naked, i.e. native form, of an SMC and/or immunostimulatory agent may be sufficient to potentiate apoptosis and/or treat cancer. SMCs and/or immunostimulatory agents may be administered in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitably pharmacologically effective, e.g., capable of potentiating apoptosis and/or treating cancer.
  • Salts, esters, amides, prodrugs and other derivatives of an SMC or immunostimulatory agent can be prepared using standard procedures known in the art of synthetic organic chemistry. For example, an acid salt of SMCs and/or immunostimulatory agents may be prepared from a free base form of the SMC or immunostimulatory agent using conventional methodology that typically involves reaction with a suitable acid. Generally, the base form of the SMC or immunostimulatory agent is dissolved in a polar organic solvent, such as methanol or ethanol, and the acid is added thereto. The resulting salt either precipitates or can be brought out of solution by addition of a less polar solvent. Suitable acids for preparing acid addition salts include, but are not limited to, both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • An acid addition salt can be reconverted to the free base by treatment with a suitable base. Certain typical acid addition salts of SMCs and/or immunostimulatory agents, for example, halide salts, such as may be prepared using hydrochloric or hydrobromic acids. Conversely, preparation of basic salts of SMCs and/or immunostimulatory agents of the present invention may be prepared in a similar manner using a pharmaceutically acceptable base, such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like. Certain typical basic salts include, but are not limited to, alkali metal salts, e.g., sodium salt, and copper salts.
  • Preparation of esters may involve functionalization of, e.g., hydroxyl and/or carboxyl groups that are present within the molecular structure of SMCs and/or immunostimulatory agents. In certain embodiments, the esters are acyl-substituted derivatives of free alcohol groups, i.e., moieties derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl. Esters may be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides may also be prepared using techniques known in the art. For example, an amide may be prepared from an ester using suitable amine reactants or prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • An SMC or immunostimulatory agent of the present invention may be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition. Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, e.g., to stabilize the composition, increase or decrease the absorption of the SMC or immunostimulatory agent, or improve penetration of the blood brain barrier (where appropriate). Physiologically acceptable compounds may include, e.g., carbohydrates (e.g., glucose, sucrose, or dextrans), antioxidants (e.g. ascorbic acid or glutathione), chelating agents, low molecular weight proteins, protection and uptake enhancers (e.g., lipids), compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers. Other physiologically acceptable compounds, particularly of use in the preparation of tablets, capsules, gel caps, and the like include, but are not limited to, binders, diluents/fillers, disintegrants, lubricants, suspending agents, and the like. In certain embodiments, a pharmaceutical formulation may enhance delivery or efficacy of an SMC or immunostimulatory agent.
  • In various embodiments, an SMC or immunostimulatory agent of the present invention may be prepared for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration. Administration may occur, for example, transdermally, prophylactically, or by aerosol.
  • A pharmaceutical composition of the present invention may be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to, powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectibles, implantable sustained-release formulations, and lipid complexes.
  • In certain embodiments, an excipient (e.g., lactose, sucrose, starch, mannitol, etc.), an optional disintegrator (e.g. calcium carbonate, carboxymethylcellulose calcium, sodium starch glycollate, crospovidone, etc.), a binder (e.g. alpha-starch, gum arabic, microcrystalline cellulose, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose, cyclodextrin, etc.), or an optional lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.) may be added to an SMC or immunostimulatory agent and the resulting composition may be compressed to manufacture an oral dosage form (e.g., a tablet). In particular embodiments, a compressed product may be coated, e.g., to mask the taste of the compressed product, to promote enteric dissolution of the compressed product, or to promote sustained release of the SMC or immunostimulatory agent. Suitable coating materials include, but are not limited to, ethyl-cellulose, hydroxymethylcellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, and Eudragit (Rohm & Haas, Germany; methacrylic-acrylic copolymer).
  • Other physiologically acceptable compounds that may be included in a pharmaceutical composition including an SMC or immunostimulatory agent may include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. The choice of pharmaceutically acceptable carrier(s), including a physiologically acceptable compound, depends, e.g., on the route of administration of the SMC or immunostimulatory agent and on the particular physio-chemical characteristics of the SMC or immunostimulatory agent.
  • In certain embodiments, one or more excipients for use in a pharmaceutical composition including an SMC or immunostimulatory agent may be sterile and/or substantially free of undesirable matter. Such compositions may be sterilized by conventional techniques known in the art. For various oral dosage form excipients, such as tablets and capsules, sterility is not required. Standards are known in the art, e.g., the USP/NF standard.
  • An SMC or immunostimulatory agent pharmaceutical composition of the present invention may be administered in a single or in multiple administrations depending on the dosage, the required frequency of administration, and the known or anticipated tolerance of the subject for the pharmaceutical composition with respect to dosages and frequency of administration. In various embodiments, the composition may provide a sufficient quantity of an SMC or immunostimulatory agent of the present invention to effectively treat cancer.
  • The amount and/or concentration of an SMC or immunostimulatory agent to be administered to a subject may vary widely, and will typically be selected primarily based on activity of the SMC or immunostimulatory agent and the characteristics of the subject, e.g., species and body weight, as well as the particular mode of administration and the needs of the subject, e.g., with respect to a type of cancer. Dosages may be varied to optimize a therapeutic and/or prophylactic regimen in a particular subject or group of subjects.
  • In certain embodiments, an SMC or immunostimulatory agent of the present invention is administered to the oral cavity, e.g., by the use of a lozenge, aerosol spray, mouthwash, coated swab, or other mechanism known in the art.
  • In certain embodiments, an SMC or immunostimulatory agent of the present invention may be administered systemically (e.g., orally or as an injectable) in accordance with standard methods known in the art. In certain embodiments, the SMC or immunostimulatory agent may be delivered through the skin using a transdermal drug delivery systems, i.e., transdermal “patches,” wherein the SMCs or immunostimulatory agents are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin. In such a structure, the drug composition is typically contained in a layer or reservoir underlying an upper backing layer. The reservoir of a transdermal patch includes a quantity of an SMC or immunostimulatory agent that is ultimately available for delivery to the surface of the skin. Thus, the reservoir may include, e.g., an SMC or immunostimulatory agent of the present invention in an adhesive on a backing layer of the patch or in any of a variety of different matrix formulations known in the art. The patch may contain a single reservoir or multiple reservoirs.
  • In particular transdermal patch embodiments, a reservoir may comprise a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, and polyurethanes. Alternatively, the SMC and/or immunostimulatory agent-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, a liquid or hydrogel reservoir, or another form of reservoir known in the art. The backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the patch and provides the device with a substantial portion of flexibility. The material selected for the backing layer is preferably substantially impermeable to the SMC and/or immunostimulatory agent and to any other materials that are present.
  • Additional formulations for topical delivery include, but are not limited to, ointments, gels, sprays, fluids, and creams. Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives. Creams including an SMC or immunostimulatory agent are typically viscous liquids or semisolid emulsions, e.g. oil-in-water or water-in-oil emulsions. Cream bases are typically water-washable and include an oil phase, an emulsifier, and an aqueous phase. The oil phase, also sometimes called the “internal” phase, of a cream base is generally comprised of petrolatum and a fatty alcohol, e.g., cetyl alcohol or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic, or amphoteric surfactant. The specific ointment or cream base to be used may be selected to provide for optimum drug delivery according to the art. As with other carriers or vehicles, an ointment base may be inert, stable, non-irritating, and non-sensitizing.
  • Various buccal and sublingual formulations are also contemplated.
  • In certain embodiments, administration of an SMC or immunostimulatory agent of the present invention may be parenteral. Parenteral administration may include intraspinal, epidural, intrathecal, subcutaneous, or intravenous administration. Means of parenteral administration are known in the art. In particular embodiments, parenteral administration may include a subcutaneously implanted device.
  • In certain embodiments, it may be desirable to deliver an SMC or immunostimulatory agent to the brain. In embodiments including system administration, this could require that the SMC or immunostimulatory agent cross the blood brain barrier. In various embodiments this may be facilitated by co-administering an SMC or immunostimulatory agent with carrier molecules, such as cationic dendrimers or arginine-rich peptides, which may carry an SMC or immunostimulatory agent over the blood brain barrier.
  • In certain embodiments, an SMC or immunostimulatory agent may be delivered directly to the brain by administration through the implantation of a biocompatible release system (e.g., a reservoir), by direct administration through an implanted cannula, by administration through an implanted or partially implanted drug pump, or mechanisms of similar function known the art. In certain embodiments, an SMC or immunostimulatory agent may be systemically administered (e.g., injected into a vein). In certain embodiments, it is expected that the SMC or immunostimulatory agent will be transported across the blood brain barrier without the use of additional compounds included in a pharmaceutical composition to enhance transport across the blood brain barrier.
  • In certain embodiments, one or more an SMCs or immunostimulatory agents of the present invention may be provided as a concentrate, e.g., in a storage container or soluble capsule ready for dilution or addition to a volume of water, alcohol, hydrogen peroxide, or other diluent. A concentrate of the present invention may be provided in a particular amount of an SMC or immunostimulatory agent and/or a particular total volume. The concentrate may be formulated for dilution in a particular volume of diluents prior to administration.
  • An SMC or immunostimulatory agent may be administered orally in the form of tablets, capsules, elixirs or syrups, or rectally in the form of suppositories. The compound may also be administered topically in the form of foams, lotions, drops, creams, ointments, emollients, or gels. Parenteral administration of a compound is suitably performed, for example, in the form of saline solutions or with the compound incorporated into liposomes. In cases where the compound in itself is not sufficiently soluble to be dissolved, a solubilizer, such as ethanol, can be applied. Other suitable formulations and modes of administration are known or may be derived from the art.
  • An SMC or immunostimulatory agent of the present invention may be administered to a mammal in need thereof, such as a mammal diagnosed as having cancer. An SMC or immunostimulatory agent of the present invention may be administered to potentiate apoptosis and/or treat cancer.
  • A therapeutically effective dose of a pharmaceutical composition of the present invention may depend upon the age of the subject, the gender of the subject, the species of the subject, the particular pathology, the severity of the symptoms, and the general state of the subject's health.
  • The present invention includes compositions and methods for the treatment of a human subject, such as a human subject having been diagnosed with cancer. In addition, a pharmaceutical composition of the present invention may be suitable for administration to an animal, e.g., for veterinary use. Certain embodiments of the present invention may include administration of a pharmaceutical composition of the present invention to non-human organisms, e.g., a non-human primates, canine, equine, feline, porcine, ungulate, or lagomorphs organism or other vertebrate species.
  • Therapy according to the invention may be performed alone or in conjunction with another therapy, e.g., another cancer therapy, and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment optionally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed or it may begin on an outpatient basis. The duration of the therapy depends on the type of disease or disorder being treated, the age and condition of the subject, the stage and type of the subject's disease, and how the patient responds to the treatment.
  • In certain embodiments, the combination of therapy of the present invention further includes treatment with a recombinant interferon, such as IFN-α, IFN-β, IFN-γ, pegylated IFN, or liposomal interferon. In some embodiments, the combination of therapy of the present invention further includes treatment with recombinant TNF-α, e.g., for isolated-limb perfusion. In particular embodiments, the combination therapy of the present invention further includes treatment with one or more of a TNF-α or IFN-inducing compound, such as DMXAA, Ribavirin, or the like. Additional cancer immunotherapies that may be used in combination with present invention include antibodies, e.g., monoclonal antibodies, targeting CTLA-4, PD-1, PD-L1, PD-L2, or other checkpoint inhibitors.
  • Routes of administration for the various embodiments include, but are not limited to, topical, transdermal, nasal, and systemic administration (such as, intravenous, intramuscular, subcutaneous, inhalation, rectal, buccal, vaginal, intraperitoneal, intraarticular, ophthalmic, otic, or oral administration). As used herein, “systemic administration” refers to all nondermal routes of administration, and specifically excludes topical and transdermal routes of administration.
  • In any of the above embodiments, the route of administration may be optimized based on the characteristics of the SMC or immunostimulatory agent. In some instances, the SMC or immunostimulatory agent is a small molecule or compound. In other instances, the SMC or immunostimulatory agent is a nucleic acid. In still other instances, the immunostimulatory agent may be a cell or virus. In any of these or other embodiments, appropriate formulations and routes of administration will be selected in accordance with the art.
  • In the embodiments of the present invention, an SMC and an immunostimulatory agent are administered to a subject in need thereof, e.g., a subject having cancer. In some instances, the SMC and immunostimulatory agent will be administered simultaneously. In some embodiments, the SMC and immunostimulatory agent may be present in a single therapeutic dosage form. In other embodiments, the SMC and immunostimulatory agent may be administered separately to the subject in need thereof. When administered separately, the SMC and immunostimulatory agent may be administered simultaneously or at different times. In some instances, a subject will receive a single dosage of an SMC and a single dosage of an immunostimulatory agent. In certain embodiments, one or more of the SMC and immunostimulatory agent will be administered to a subject in two or more doses. In certain embodiments, the frequency of administration of an SMC and the frequency of administration of an immunostimulatory agent are non-identical, i.e., the SMC is administered at a first frequence and the immunostimulatory agent is administered at a second frequency.
  • In some embodiments, an SMC is administered within one week of the administration of an immunostimulatory agent. In particular embodiments, an SMC is administered within 3 days (72 hours) of the administration of an immunostimulatory agent. In still more particular embodiments, an SMC is administered within 1 day (24 hours) of the administration of an immunostimulatory agent.
  • In particular embodiments of any of the methods of the present invention, the SMC and immunostimulatory agent are administered within 28 days of each other or less, e.g., within 14 days of each other. In certain embodiments of any of the methods of the present invention, the SMC and immunostimulatory agent are administered, e.g., simultaneously or within 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 18 hours, 24 hours, 36 hours, 2 days, 4 days, 8 days, 10 days, 12 days, 16 days, 20 days, 24 days, or 28 days of each other. In any of these embodiments, the first administration of an SMC of the present invention may precede the first administration of an immunostimulatory agent of the present invention. Alternatively, in any of these embodiments, the first administration of an SMC of the present invention may follow the first administration of an immunostimulatory agent of the present invention. Because an SMC and/or immunostimulatory agent of the present invention may be administered to a subject in two more doses, and because, in such instances, doses of the SMC and immunostimulatory agent of the present invention may be administered at different frequencies, it is not required that the period of time between the administration of an SMC and the administration of an immunostimulatory agent remain constant within a given course of treatment or for a given subject.
  • One or both of the SMC and the immunostimulatory agent may be administered in a low dosage or in a high dosage. In embodiments in which the SMC and immunostimulatory agent are formulated separately, the pharmacokinetic profiles for each agent can be suitably matched to the formulation, dosage, and route of administration, etc. In some instances, the SMC is administered at a standard or high dosage and the immunostimulatory agent is administered at a low dosage. In some instances, the SMC is administered at a low dosage and the immunostimulatory agent is administered at a standard or high dosage. In some instances, both of the SMC and the immunostimulatory agent are administered at a standard or high dosage. In some instances, both of the SMC and the immunostimulatory agent are administered at a low dosage.
  • The dosage and frequency of administration of each component of the combination can be controlled independently. For example, one component may be administered three times per day, while the second component may be administered once per day or one component may be administered once per week, while the second component may be administered once per two weeks. Combination therapy may be given in on-and-off cycles that include rest periods so that the subject's body has a chance to recover from effects of treatment.
  • Kits
  • In general, kits of the invention contain one or more SMCs and one or more immunostimulatory agents. These can be provided in the kit as separate compositions, or combined into a single composition as described above. The kits of the invention can also contain instructions for the administration of one or more SMCs and one or more immunostimulatory agents.
  • Kits of the invention can also contain instructions for administering an additional pharmacologically acceptable substance, such as an agent known to treat cancer that is not an SMC or immunostimulatory agent of the present invention.
  • The individually or separately formulated agents can be packaged together as a kit. Non-limiting examples include kits that contain, e.g., two pills, a pill and a powder, a suppository and a liquid in a vial, two topical creams, ointments, foams etc. The kit can include optional components that aid in the administration of the unit dose to subjects, such as vials for reconstituting powder forms, syringes for injection, customized IV delivery systems, inhalers, etc. Additionally, the unit dose kit can contain instructions for preparation and administration of the compositions. The kit may be manufactured as a single use unit dose for one subject, multiple uses for a particular subject (at a constant dosage regimen or in which the individual compounds may vary in potency as therapy progresses); or the kit may contain multiple doses suitable for administration to multiple subjects (“bulk packaging”). The kit components may be assembled in cartons, blister packs, bottles, tubes, and the like.
  • The dosage of each compound of the claimed combinations depends on several factors, including: the administration method, the disease (e.g., a type of cancer) to be treated, the severity of the disease, and the age, weight, and health of the person to be treated. Additionally, pharmacogenomic (the effect of genotype on the pharmacokinetic, pharmacodynamic or efficacy profile of a therapeutic) information about a particular subject may affect the dosage regimen or other aspects of administration.
  • EXAMPLES Example 1: Smac Mimetics Prime Tumors for Destruction by the Innate Immune System
  • Smac mimetic compounds are a class of apoptosis sensitizing drugs that have proven safe in cancer patient Phase I trials. Stimulating an innate anti-pathogen response may generate a potent yet safe inflammatory “cytokine storm” that would trigger death of tumors treated with Smac mimetics. The present example demonstrates that activation of innate immune responses via oncolytic viruses and adjuvants, such as poly(I:C) and CpG, induces bystander death of cancer cells treated with Smac mimetics in a manner mediated by IFNβ, TNFα or TRAIL. This therapeutic strategy may lead to durable cures, e.g., in several aggressive mouse models of cancer. With these and other innate immune stimulants having demonstrated safety in human clinical trials, the data provided herein points strongly towards their combined use with Smac mimetics for treating cancer.
  • The present example examines whether stimulating the innate immune system using pathogen mimetics would be a safe and effective strategy to generate a cytokine milieu necessary to initiate apoptosis in tumors treated with an SMC. We report here that non-pathogenic oncolytic viruses, as well as mimetics of microbial RNA or DNA, such as poly (I:C) and CpG, induce bystander killing of cancer cells treated with an SMC that is dependent either upon IFNβ, TNFα, or TRAIL production. Importantly, this therapeutic strategy was tolerable in vivo and led to durable cures in several aggressive mouse models of cancer.
  • SMC Therapy Sensitizes Cancer Cells to Bystander Cell Death During Oncolytic Virus Infection
  • Oncolytic viruses (OVs) are emerging biotherapies for cancer currently in phase I-III clinical evaluation. One barrier to OV therapy may be the induction of type I IFN- and NFκB-responsive cytokines by the host, which orchestrate an antiviral state in tumors. It was examined whether we could harness those innate immune cytokines to induce apoptosis in cancer cells pretreated with an SMC. To begin, a small panel of tumor-derived and normal cell lines (n=30) was screened for responsiveness to the SMC LCL161 and the oncolytic rhabdovirus VSVΔ51. We chose LCL161 because this compound is the most clinically advanced drug in the SMC class, and VSVΔ51 because it is known to induce a robust antiviral cytokine response. In 15 of the 28 cancer cell lines tested (54%), SMC treatment enhanced sensitivity the EC50 of VSVΔ51 by 10-10,000 fold (FIG. 6, and representative examples in FIGS. 1A and 1B). Similarly, low dose of VSVΔ51 reduced the EC50 of SMC therapy from undetermined levels (>2500 nM) to 4.5 and 21.9 nM in two representative cell lines: the mouse mammary carcinoma EMT6 and the human glioblastoma SNB75 cells, respectively (FIG. 1C). Combination index analyses determined that the interaction between SMC therapy and VSVΔ51 was synergistic (FIG. 7). Experiments using four other SMCs and five other oncolytic viruses showed that a spectrum of monovalent and bivalent SMCs synergize with VSVΔ51 (FIG. 8). We find that the oncolytic rhabdoviruses, VSVΔ51 and Maraba-MG1, are superior in eliciting bystander killing in synergizing with SMCs, compared to HSV, reovirus, vaccinia and wild-type VSV platforms, all of which have elaborate mechanisms to disarm aspects of innate immune signalling (FIGS. 9A AND 9B). Genetic experiments using RNAi-mediated silencing demonstrated that both XIAP and the cIAPs must be inhibited to obtain synergy with VSVΔ51 (FIGS. 10A, 10B, and 24C). In stark contrast to the results in tumor-derived cell lines, non-cancer GM38 primary human skin fibroblasts and HSkM human skeletal myoblasts were unaffected by VSVΔ51 and SMC combination therapy (FIG. 6). Taken together, these data indicate that oncolytic VSV synergizes with SMC therapy in a tumor-selective fashion.
  • To determine if VSVΔ51 elicits bystander cell death in IAP-depleted neighbouring cells not infected by the virus, cells were treated with SMCs prior to infection with a low dose of VSVΔ51 (MOI=0.01 infectious particles per cell). We assessed whether conditioned media derived from cells infected with VSVΔ51 (which was subsequently inactivated by UV light) could induce death when transferred to a plate of virus naïve cancer cells treated with an SMC. The conditioned media induced cell death only when the cells were co-treated with an SMC (FIG. 1D). We also found that a low-dose of a pseudo-typed G-less strain of VSVΔ51 (MOI=0.1), containing a deletion of the gene encoding for its glycoprotein (VSVΔ51ΔG) that limits the virus to a single round of infection, was toxic to an entire plate of cancer cells treated with an SMC (FIG. 1E). Finally, we performed a cytotoxicity assay in cells overlaid with agarose, used to retard the spread of VSVΔ51 expressing a fluorescent tag, and observed dramatic cell death in SMC treated cells outside of the zone of virus infection (FIGS. 1F and 11). Overall, these results indicate that VSVΔ51 infection leads to the release of at least one soluble factor that can potently induce bystander cell death in neighboring, uninfected, cancer cells treated with SMCs.
  • SMC Therapy does not Impair the Cellular Innate Immune Response to Oncolytic VSV
  • The cellular innate immune response to an RNA virus infection in mammalian tumor cells can be initiated by members of a family of cytosolic (RIG-I-like receptors, RLRs) and endosomal (toll-like receptors, TLRs) viral RNA sensors. Once triggered, these receptors can seed parallel IFN-response factor (IRF) 3/7 and nuclear-factor kappa B (NF-κB) cell signalling cascades. These signals can culminate in the production of IFNs and their responsive genes as well as an array of inflammatory chemokines and cytokines. This prompts neighboring cells to preemptively express an armament of antiviral genes and also aids in the recruitment and activation of cells within the innate and adaptive immune systems to ultimately clear the virus infection. The cIAP proteins have recently been implicated in numerous signalling pathways downstream of pathogen recognition, including those emanating from RLRs and TLRs. Accordingly, it was examined whether SMC therapy alters the antiviral response to oncolytic VSV infection in tumor cells and in mice. To begin, the effect of SMC therapy on VSVΔ51 productivity and spread was evaluated. Single-step and multi-step growth curves of VSVΔ51 productivity revealed that SMC treatment does not affect the growth kinetics of VSVΔ51 in EMT6 or SNB75 cells in vitro (FIG. 2A). Moreover, analysis through time-lapse microscopy demonstrates that SMC treatment does not alter VSVΔ51 infectivity in or spread through tumor cells (FIG. 2B). Furthermore, viral replication and spread in vivo were analyzed by determining tumor load using IVIS imaging and tissue virus titration. No differences in viral kinetics were found upon SMC treatment in EMT6 tumor-bearing mice (FIGS. 12A and 12B). As EMT6 and SNB75 cells both have functional type I IFN responses that regulate the VSV life cycle, these data provide strong, albeit indirect, evidence that SMC therapy does not affect the antiviral signalling cascades in cancer cells.
  • To probe deeper, IFNβ production was measured in EMT6 and SNB75 cells treated with VSVΔ51 and SMCs. This experiment revealed that the SMC treated cancer cells respond to VSVΔ51 by secreting IFNβ (FIG. 2C), although at slightly lower levels as compared to VSVΔ51 alone. It was asked whether the dampened IFNβ secretion from SMC treated cells had any bearing on the induction of downstream IFN stimulated genes (ISGs). Quantitative RT-PCR analyses of a small panel of ISGs in cells treated with VSVΔ51 and SMC revealed that IAP inhibition had no bearing on ISG gene expression in response to an oncolytic VSV infection (FIG. 2D). Consistent with this finding, western blot analyses indicated that SMCs do not alter the activation of Jak/Stat signalling downstream of IFNβ (FIGS. 2E and 24A). Collectively, these data suggest that SMCs do not impede the ability of tumor cells to sense and respond to an infection from VSVΔ51.
  • IFNβ Orchestrates Bystander Cell Death During SMC and Oncolytic VSV Co-Therapy
  • SMCs sensitize a number of cancer cell lines towards caspase 8-dependant apoptosis induced by TNFα, TRAIL, and IL-1β. As RNA viruses can trigger the production of these cytokines as part of the cellular antiviral response, the involvement of cytokine signaling in SMC and OV induced cell death was investigated. To start, the TNF receptor (TNF-R1) and/or the TRAIL receptor (DR5) were silenced and synergy between SMC and VSVΔ51 was assayed. This experiment revealed that TNFα and TRAIL are not only involved, but collectively are indispensable for bystander cell death (FIGS. 3A-3H, 13A, and 24D). Consistent with this finding, western blot and immunofluorescence experiments revealed strong activation of the extrinsic apoptosis pathway, and RNAi knockdown experiments demonstrated a requirement for both caspase-8 and Rip1 in the synergy response (FIGS. 14A-14G, 24E, and 24F). Moreover, engineering TNFα into VSVΔ51 improved synergy with SMC therapy by an order of magnitude (FIGS. 15A and 15B).
  • Next, the type I IFN receptor (IFNAR1) was silenced and it was found, unexpectedly, that IFNAR1 knockdown prevented the synergy between SMC therapy and oncolytic VSV (FIGS. 3B, 13B, and 24D). It was predicted that IFNAR1 knockdown would dampen but not completely suppress bystander killing, as TRAIL is a well-established ISG that is responsive to type I IFN28. TNFα and IL-1β are considered to be independent of IFN signaling, but they are nevertheless responsive to NF-κB signaling downstream of virus detection. This result suggests the possibility of a non-canonical type I IFN-dependant pathway for the production of TNFα and/or IL-1β. Indeed, when the mRNA expression of IFNβ, TRAIL, TNFα, and IL-1β were probed during an oncolytic VSV infection, a significant temporal lag was found between the induction of IFNβ and that of both TRAIL and TNFα (FIG. 3C). This data also suggests that TNFα—like TRAIL—may be induced secondary to IFNβ. To prove this concept, IFNAR1 was silenced before treating cells with VSVΔ51. IFNAR1 knockdown completely abrogated the induction of both TRAIL and TNFα by oncolytic VSV (FIG. 3D). Moreover, synergy with SMC was recapitulated using recombinant type I IFNs (IFNα/β) and type II IFN (IFNγ), but not type III IFNs (IL28/29) (FIG. 3E). Taken together, these data indicate that type I IFN is required for the induction of TNFα and TRAIL during a VSVΔ51 infection of tumor cells. Moreover, the production of these cytokines is responsible for bystander killing of neighboring, uninfected SMC-treated cells.
  • To explore the non-canonical induction of TNFα further, the mRNA expression levels of TRAIL and TNFα in SNB75 cells treated with recombinant IFNβ were measured. Both cytokines were induced by IFNβ treatment (FIG. 3F), and ELISA experiments confirmed the production of their respective protein products in the cell culture media (FIG. 3G). Interestingly, there was a significant time lag between the induction of TRAIL and that of TNFα. As TRAIL is a bona fide ISG and TNFα is not, this result raised the possibility that TNFα is not induced by IFNβ directly, but responds to a downstream ISG up-regulated by IFNβ. Thus, quantitative RT-PCR was performed on 176 cytokines in SNB75 cells and 70 that were significantly up-regulated by IFNβ were identified (Table 4). The role of these ISGs in the induction of TNFα by IFNβ is currently being investigated. It is also intriguing that SMC treatment potentiated the induction of both TRAIL and TNFα by IFNβ in SNB75 cells (FIGS. 3F and 3G). Furthermore, using a dominant-negative construct of IKK, it was found that the production of these inflammatory cytokines downstream of IFNβ was dependent, at least in part, on classical NF-κB signalling (FIG. 3H). In EMT6 cells, SMC treatment was found to enhance cellular production of TNFα (5- to 7-fold percentage increase) upon VSV infection (FIG. 16). Finally, it was also demonstrated that blocking TNF-R1 signalling (with antibodies or siRNA) prevents EMT6 cell death in the presence of SMC and VSVΔ51 or IFNβ (FIGS. 17A-17C and 24H). The relationship between type I IFN and TNFα is complex, having either complimentary or inhibitory effects depending on the biological context. However, without limiting the present invention to any particular mechanism of action, a simple working model can be proposed as follows: Tumor cells infected by an oncolytic RNA virus up-regulate type I IFN, and this process is not affected by SMC antagonism of the IAP proteins. Those IFNs in turn signal to neighboring, uninfected cancer cells to express and secrete TNFα and TRAIL, a process that is enhanced by SMC treatment, which consequently induces autocrine and paracrine programmed cell death in uninfected tumor cells exposed to SMC (FIGS. 18A and 18B).
  • TABLE 4
    VSV IFNβ Gene Name Gene Identification
    25465.4 1017.8 CCL8 Chemokine (C-C motif) ligand 8
    13388.9 44.9 IL29 Interleukin 29 (interferon, lambda 1)
    5629.3 24.3 IFNB1 Interferon, beta 1, fibroblast
    1526.8 16.2 TNFSF15 Tumor necrosis factor (ligand) superfamily, member 15
    847 24.6 CCL5 Chemokine (C-C motif) ligand 5
    747.7 17.2 CCL3 Chemokine (C-C motif) ligand 3
    650.9 60.6 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10
    421.3 296.1 IL12A Interleukin 12A
    289.3 10.7 TNFSF18 Tumor necrosis factor (ligand) superfamily, member 18
    255.3 18.8 CCL7 Chemokine (C-C motif) ligand 7
    154.2 19.2 IL6 Interleukin 6 (interferon, beta 2)
    150.8 12.9 IL1RN Interleukin 1 receptor antagonist
    108.1 25.5 CCL20 Chemokine (C-C motif) ligand 20
    78.6 6.2 CXCL1 Chemokine (C-X-C motif) ligand 1
    64.7 14.8 CCL2 Chemokine (C-C motif) ligand 2
    62.5 14.5 CCL4 Chemokine (C-C motif) ligand 4
    55.6 1.2 CXCL3 Chemokine (C-X-C motif) ligand 3
    55.2 4.3 TNF Tumor necrosis factor (TNF superfamily, member 2)
    48.8 4.3 IGF1 Insulin-like growth factor 1 (somatomedin C)
    48.4 2.8 CXCL2 Chemokine (C-X-C motif) ligand 2
    38.5 3.8 CCL11 Chemokine (C-C motif) ligand 11
    37.5 3.8 HGF Hepatocyte growth factor
    36.5 75.1 NGFB Nerve growth factor, beta polypeptide
    32.9 4 FGF14 Fibroblast growth factor 14
    24.7 25.6 FGF20 Fibroblast growth factor 20
    21.5 16.4 IL1B Interleukin 1, beta
    20 36.3 CSF2 Colony stimulating factor 2 (granulocyte-macrophage)
    18.3 2.6 GDF3 Growth differentiation factor 3
    17.2 2 CCL28 Chemokine (C-C motif) ligand 28
    12 2.1 CCL22 Chemokine (C-C motif) ligand 22
    11.3 2.5 CCL17 Chemokine (C-C motif) ligand 17
    10.5 2 CCL13 Chemokine (C-C motif) ligand 13
    10.5 15.3 IL20 Interleukin 20
    9.7 22.8 FGF16 Fibroblast growth factor 16
    8.8 3.6 TNFSF14 Tumor necrosis factor (ligand) superfamily, member 14
    8.2 2.7 FGF2 Fibroblast growth factor 2 (basic)
    7.1 8.1 BDNF Brain-derived neurotrophic factor
    7.1 9.7 IL1A Interleukin 1, alpha
    7.1 10.9 ANGPT4 Angiopoietin 4
    7 1.5 TGFB3 Transforming growth factor, beta 3
    7 5.8 IL22 Interleukin 22
    6.9 9.7 IL1F5 Interleukin 1 family, member 5 (delta)
    6.7 2.4 IFNW1 Interferon, omega 1
    6.6 12.6 IL11 Interleukin 11
    6.6 25.1 IL1F8 Interleukin 1 family, member 8 (eta)
    6.3 −1.3 EDA Ectodysplasin A
    5.9 8 FGF5 Fibroblast growth factor 5
    5.8 5 VEGFC Vascular endothelial growth factor C
    5.2 4.9 LIF Leukemia inhibitory factor
    5 1.3 CCL25 Chemokine (C-C motif) ligand 25
    4.9 8.3 BMP3 Bone morphogenetic protein 3
    4.9 1.6 IL17C Interleukin 17C
    4.8 −2.3 TNFSF7 CD70 molecule
    4.3 2.5 TNFSF8 Tumor necrosis factor (ligand) superfamily, member 8
    4.3 2.5 FASLG Fas ligand (TNF superfamily, member 6)
    4.2 2.7 BMP8B Bone morphogenetic protein 8b
    4.2 6 IL7 Interleukin 7
    4.1 5.2 CCL24 Chemokine (C-C motif) ligand 24
    4 −2.2 INHBE Inhibin, beta E
    4 5.8 IL23A Interleukin 23, alpha subunit p19
    3.8 −1.1 IL17F Interleukin 17F
    3.7 2.9 CCL21 Chemokine (C-C motif) ligand 21
    3.5 8.5 CSF1 Colony stimulating factor 1 (macrophage)
    3.5 3 IL15 Interleukin 15
    3.4 5.7 NRG2 Neuregulin 2
    3.3 N/A INHBB Inhibin, beta B
    3.3 N/A LTB Lymphotoxin beta (TNF superfamily, member 3)
    3.3 N/A BMP7 Bone morphogenetic protein 7
    3 −3.8 IL1F9 Interleukin 1 family, member 9
    2.9 6.1 IL12B Interleukin 12B
    2.8 6.2 FLT3LG Fms-related tyrosine kinase 3 ligand
    2.7 3 FGF1 Fibroblast growth factor 1 (acidic)
    2.5 −2 CXCL13 Chemokine (C-X-C motif) ligand 13
    2.4 2.2 IL17B Interleukin 17B
    2.3 7.8 GDNF Glial cell derived neurotrophic factor
    2.3 −1.7 GDF7 Growth differentiation factor 7
    2.3 −2.4 LTA Lymphotoxin alpha (TNF superfamily, member 1)
    2.2 1.7 LEFTY2 Left-right determination factor 2
    2.1 5 FGF19 Fibroblast growth factor 19
    2.1 9.8 FGF23 Fibroblast growth factor 23
    2.1 4.8 CLC Cardiotrophin-like cytokine factor 1
    2.1 3 ANGPT1 Angiopoietin 1
    2 10.6 TPO Thyroid peroxidase
    2 2.1 EFNA5 Ephrin-A5
    1.9 6.4 IL1F10 Interleukin 1 family, member 10 (theta)
    1.9 7.6 LEP Leptin (obesity homolog, mouse)
    1.8 3 IL5 Interleukin 5 (colony-stimulating factor, eosinophil)
    1.8 5.7 IFNE1 Interferon epsilon 1
    1.8 2.7 EGF Epidermal growth factor (beta-urogastrone)
    1.7 3.4 CTF1 Cardiotrophin 1
    1.7 −1.9 BMP2 Bone morphogenetic protein 2
    1.7 3 EFNB2 Ephrin-B2
    1.6 1 FGF8 Fibroblast growth factor 8 (androgen-induced)
    1.6 −2 TGFB2 Transforming growth factor, beta 2
    1.5 −1.6 BMP8A Bone morphogenetic protein 8a
    1.5 3.3 NTF5 Neurotrophin 5 (neurotrophin 4/5)
    1.5 1 GDF10 Growth differentiation factor 10
    1.5 1.5 TNFSF13B Tumor necrosis factor (ligand) superfamily, member 13b
    1.5 2.5 IFNA1 Interferon, alpha 1
    1.4 −1.3 INHBC Inhibin, beta C
    1.4 2.8 FGF7 Galactokinase 2
    1.4 3.3 IL24 Interleukin 24
    1.4 −1.1 CCL27 Chemokine (C-C motif) ligand 27
    1.3 1.9 FGF13 Fibroblast growth factor 13
    1.3 1.4 IFNK Interferon, kappa
    1.3 2 ANGPT2 Angiopoietin 2
    1.3 7.6 IL18 Interleukin 18 (interferon-gamma-inducing factor)
    1.3 7 NRG1 Neuregulin 1
    1.3 4.9 NTF3 Neurotrophin 3
    1.2 15 FGF10 Fibroblast growth factor 10
    1.2 1.9 KITLG KIT ligand
    1.2 −1.3 IL17D Interleukin 17D
    1.2 1.1 TNFSF4 Tumor necrosis factor (ligand) superfamily, member 4
    1.2 1.3 VEGFA Vascular endothelial growth factor
    1.1 2.4 FGF11 Fibroblast growth factor 11
    1.1 −1.4 IL17E Interleukin 17E
    1.1 −2.1 TGFB1 Transforming growth factor, beta 1
    1 3.1 GH1 Growth hormone 1
    −1 6.1 IL9 Interleukin 9
    −1 −2.5 EFNB3 Ephrin-B3
    −1 1.8 VEGFB Vascular endothelial growth factor B
    −1 −1.2 IL1F7 Interleukin 1 family, member 7 (zeta)
    −1 −2.1 GDF11 Growth differentiation factor 11
    −1.1 1.3 ZFP91 Zinc finger protein 91 homolog (mouse)
    −1.2 −1.1 BMP6 Bone morphogenetic protein 6
    −1.2 −1.2 AMH Anti-Mullerian hormone
    −1.3 −1 LEFTY1 Left-right determination factor 1
    −1.3 2.4 EFNA3 Ephrin-A3
    −1.3 −1.3 LASS1 LAG1 longevity assurance homolog 1
    −1.5 1 EFNA4 Ephrin-A4
    −1.8 1.3 PDGFD DNA-damage inducible protein 1
    −1.8 1.8 IL10 Interleukin 10
    −1.9 1.6 GDF5 Growth differentiation factor 5
    −1.9 1.3 EFNA2 Ephrin-A2
    −1.9 −1.5 EFNB1 Ephrin-B1
    −1.9 −1.4 GDF8 Growth differentiation factor 8
    −1.9 1.6 PDGFC Platelet derived growth factor C
    −2.2 2.4 TSLP Thymic stromal lymphopoietin
    −2.3 −1.5 BMP10 Bone morphogenetic protein 10
    −2.4 −4.6 CXCL12 Chemokine (C-X-C motif) ligand 12
    −2.5 4 IFNG Interferon, gamma
    −2.6 1.2 EPO Erythropoietin
    −2.7 −2.1 GAS6 Growth arrest-specific 6
    −2.9 2.9 PRL Prolactin
    −2.9 −2.1 BMP4 Bone morphogenetic protein 4
    −2.9 −5.7 INHA Inhibin, alpha
    −3 −1.3 GDF9 Growth differentiation factor 9
    −3.1 −1.5 FGF18 Fibroblast growth factor 18
    −3.2 N/A IL17 Interleukin 17
    −3.2 −1.1 IL26 Interleukin 26
    −3.4 1.2 EFNA1 Ephrin-A1
    −3.8 −1.1 FGF12 Fibroblast growth factor 12
    −4 −2.3 FGF9 Fibroblast growth factor 9 (glia-activating factor)
    −4.5 1.4 CCL26 Chemokine (C-C motif) ligand 26
    −8 9.7 CCL19 Chemokine (C-C motif) ligand 19
    N/A N/A BMP15 Bone morphogenetic protein 15
    N/A N/A CCL15 Chemokine (C-C motif) ligand 14
    N/A N/A CCL16 Chemokine (C-C motif) ligand 16
    N/A N/A CCL18 Chemokine (C-C motif) ligand 18
    N/A N/A CCL23 Chemokine (C-C motif) ligand 23
    N/A N/A CD40LG CD40 ligand (TNF superfamily)
    N/A N/A CSF3 Colony stimulating factor 3 (granulocyte)
    N/A N/A CXCL5 Chemokine (C-X-C motif) ligand 5
    N/A N/A FGF4 Fibroblast growth factor 4
    N/A N/A FGF6 Fibroblast growth factor 6
    N/A N/A GH2 Growth hormone 2
    N/A N/A IL2 Interleukin 2
    N/A N/A IL21 Interleukin 21
    N/A N/A IL28A Interleukin 28A (interferon, lambda 2)
    N/A N/A INHBA Inhibin, beta A
    N/A N/A NRG3 Neuregulin 3
    N/A N/A TNFSF11 Tumor necrosis factor (ligand) superfamily, member 11
    N/A N/A TNFSF13 Tumor necrosis factor (ligand) superfamily, member 13
    N/A 6.5 NRG4 Neuregulin 4
    N/A 6.1 IL3 Interleukin 3 (colony-stimulating factor, multiple)
    N/A 1.8 TNFSF9 Tumor necrosis factor (ligand) superfamily, member 9
  • Oncolytic VSV Potentiates SMC Therapy in Preclinical Animal Models of Cancer
  • To evaluate SMC and oncolytic VSV co-therapy in vivo, the EMT6 mammary carcinoma was used as a syngeneic, orthotopic model. Preliminary safety and pharmacodynamic experiments revealed that a dose of 50 mg/kg LCL161 delivered by oral gavage was well tolerated and induced cIAP1/2 knockdown in tumors for at least 24 hrs, and up to 48-72 hours in some cases (FIGS. 19A, 19B, and 24G). When tumors reached ˜100 mm3, we began treating mice twice weekly with SMC and VSVΔ51, delivered systemically. As single agents, SMC therapy led to a decrease in the rate of tumor growth and a modest extension in survival, while VSVΔ51 treatments had no bearing on tumor size or survival (FIGS. 4A and 4B). In stark contrast, combined SMC and VSVΔ51 treatment induced dramatic tumor regressions and led to durable cures in 40% of the treated mice. Consistent with the bystander killing mechanism elucidated in vitro, immunofluorescence analyses revealed that the infectivity of VSVΔ51 was transient and limited to small foci within the tumor (FIG. 4C), whereas caspase-3 activation was widespread in the SMC and VSVΔ51 co-treated tumors (FIG. 4D). Furthermore, immunoblots with tumor lysates demonstrated activation of caspase-8 and -3 in doubly-treated tumors (FIGS. 4E, 24B, and 24G). While the animals in the combination treatment cohort experienced weight loss, the mice fully recovered following the last treatment (FIG. 20A).
  • To confirm these in vivo data in another model system, the human HT-29 colorectal adenocarcinoma xenograft model was tested in nude (athymic) mice. HT-29 is a cell line that is highly responsive to bystander killing by SMC and VSVΔ51 co-treatment in vitro (FIGS. 21A and 21B). Similar to our findings in the EMT6 model system, combination therapy with SMC and VSVΔ51 induced tumor regression and a significant extension of mouse survival (FIG. 21C). In contrast, neither monotherapy had any effect on HT-29 tumors. Furthermore, there was no additional weight loss in the double treated mice compared to SMC treated mice (FIG. 21D). These results indicate that the synergy is highly efficacious in a refractory xenograft model and that the adaptive immune response does not have a major role initially in the efficacy of SMC and OV co-therapy.
  • Role of the Innate Antiviral Responses and Immune Effectors in Co-Treatment Synergy
  • It was next determined whether oncolytic VSV infection coupled with SMC treatment leads to TNFα- or IFNβ-mediated cell death in vivo. It was investigated whether blocking TNFα signalling via neutralizing antibodies would affect SMC and VSVΔ51 synergy in the EMT6 tumor model. Compared to isotype matched antibody controls, the application of TNFα neutralizing antibodies reverted the tumor regression and decreased the survival rate to values close to the control and single treatment groups (FIGS. 4F and 4G). This demonstrates that TNFα is required in vivo for the anti-tumor combination efficacy of SMC and oncolytic VSV.
  • To investigate the role of IFNβ signaling in the SMC and OV combination paradigm, Balb/c mice bearing EMT6 tumors were treated with IFNAR1 blocking antibodies. Mice treated with the IFNAR1 blocking antibody succumbed to viremia within 24-48 hours post infection. Prior to death, tumors were collected at 18-20 hours after virus infection, and the tumors were analyzed for caspase activity. Even though these animals with defective type I IFN signaling were ill due to a large viral burden, the excised tumors did not demonstrate signs of caspase-8 activity and only showed minimal signs of caspase-3 activity (FIG. 22) in contrast to the control group, which showed the expected activation of caspases within the tumor (FIG. 22). These results support the hypothesis that intact type I IFN signaling is required to mediate the anti-tumor effects of the combination approach.
  • To assess the contribution of innate immune cells or other immune mediators to the efficacy of OV/SMC combination therapy, treating EMT6 tumors was first attempted in immunodeficient NOD-scid or NSG (NOD-scid-IL2Rgammanull) mice. However, similar to the IFNAR1 depletion signaling studies, these mice also died rapidly due to viremia. Therefore, the contribution of innate immune cells was addressed by employing an ex vivo splenocyte culture system as a surrogate model. Innate immune populations that have the capacity to produce TNFα were positively selected and further sorted from naïve splenocytes. Macrophages (CD11b+ F4/80+), neutrophils (CD11b+ Gr1+), NK cells (CD11b− CD49b+) and myeloid-negative (lymphoid) population (CD11b− CD49−) were stimulated with VSVΔ51, and the conditioned medium was transferred to EMT6 cells to measure cytotoxicity in the presence of SMC. These results show that VSVΔ51-stimulated macrophages and neutrophils, but not NK cells, are capable of producing factors that lead to cancer cell death in the presence of SMCs (FIG. 23A). Primary macrophages from bone marrow were also isolated and these macrophages also responded to oncolytic VSV infection in a dose-dependent manner to produce factors which kill EMT6 cells (FIG. 23B). Altogether, these findings demonstrate that multiple innate immune cell populations can respond to mediate the observed anti-tumor effects, and that macrophages are the most likely effectors of this response.
  • Immune Adjuvants Poly(I:C) and CpG Potentiate SMC Therapy In Vivo
  • It was next investigated whether synthetic TLR agonists, which are known to induce an innate proinflammatory response, would synergize with SMC therapy. EMT6 cells were co-cultured with mouse splenocytes in a transwell insert system, and the splenocytes were treated with SMC and agonists of TLR 3, 4, 7 or 9. All of the tested TLR agonists were found to induce the bystander death of SMC treated EMT6 cells (FIG. 5A). The TLR4, 7, and 9 agonists LPS, imiquimod, and CpG, respectively, required splenocytes to induce bystander killing of EMT6 cells, presumably because their target TLR receptors are not expressed in EMT6 cells. However, the TLR3 agonist poly(I:C) led to EMT6 cell death directly in the presence of SMCs. Poly(I:C) and CpG were next tested in combination with SMC therapy in vivo. These agonists were chosen as they have proven to be safe in humans and are currently in numerous mid to late stage clinical trials for cancer. EMT6 tumors were established and treated as described above. While poly(I:C) treatment had no bearing on tumor growth as a single agent, combination with SMCs induced substantial tumor regression and, when delivered intraperitoneally, led to durable cures in 60% of the treated mice (FIGS. 5B and 5C). Similarly, CpG monotherapy had no bearing on tumor size or survival, but when combined with SMC therapy led to tumor regressions and durable cures in 88% of the treated mice (FIGS. 5D and 5E). Importantly, these combination therapies were well tolerated by the mice, and their body weight returned to pre-treatment levels shortly after the cessation of therapy (FIGS. 20B and 20C). Taken together with the oncolytic VSV results, the data demonstrate that a series of clinically advanced innate immune adjuvants strongly and safely synergize with SMC therapy in vivo, inducing tumor regression and durable cures in several treatment refractory, aggressive mouse models of cancer.
  • Example 2: Inactivated Viral Particles, Cancer Vaccines, and Stimulatory Cytokines Synergize with SMCs to Kill Tumors
  • The use of current cancer immunotherapies, such as BCG (Bacillus Calmette-Guerin), recombinant interferon (e.g. IFNα), and recombinant Tumor Necrosis Factor (e.g. TNFα used in isolated limb perfusion for example), and the recent clinical use of biologics (e.g. blocking antibodies) to immune checkpoint inhibitors that overcome tumor-mediated suppression of the immune system (such as anti-CTLA-4 and anti-PD-1 or PDL-1 monoclonal antibodies) highlight the potential of ‘cancer immunotherapy’ as an effective treatment modality. As shown in Example 1, we have demonstrated the robust potential of non-viral immune stimulants to synergize with SMCs (FIGS. 5A-5E). To expand on these studies, we also examined for the potential of SMCs to synergize with non-replicating rhabdovirus-derived particles (called NRRPs), which are UV-irradiated VSV particles that retain their infectious and immunostimulatory properties without the ability to replicate and spread. To assess if NRRPs directly synergize with SMCs, we co-treated various cancer cell lines, EMT6, DBT, and CT-2A, with SMCs and differing levels of NRRPs, and assessed cell viability by Alamar blue. We observed that NRRPs synergize with SMCs in these cancer cell lines (FIG. 25A). To assess if NRRPs can induce a potent proinflammatory response, we treated fractionated mouse splenocytes with NRRPs (or synthetic CpG ODN 2216 as a positive control), transferred the cell culture supernatants to EMT6 cells in culture in a dose-response fashion, and treated the cells with vehicle or SMC. We observed that the immunogenicity of NRRPs is at a similar level of CpG, as there was a considerable proinflammatory response, which led to a high degree of EMT6 cell death in the presence of SMCs (FIG. 25B). As the treatment of CpG and SMC in the EMT6 tumor model resulted in a 88% cure rate (FIG. 5D), these findings suggest that the combination of SMCs and NRRPs can be highly synergistic in vivo.
  • Our success in finding synergy between SMCs and live or inactivated single-stranded RNA oncolytic rhabdoviruses (e.g., VSVΔ51, Maraba-MG1, and NRRPs) suggested that a clinic approved attenuated vaccine may be able to synergize with SMCs. To test this possibility, we assessed the ability to synergize with SMCs of the cancer biologic, the vaccine for tuberculosis mycobacterium, BCG, which is typically used to treat bladder cancer in situ due to the high local production of TNFα. Indeed, the combination of SMC and BCG potently synergises to kill EMT6 cells in vitro (FIG. 26A). These findings were similarly extended in vivo; we observed significant tumor regression with combined treatment of an oral SMC and BCG administered locally or systemically (i.e., either given intratumorally or intraperitoneally, respectively) (FIG. 26B). These findings attest to the applicability of approved vaccines for combination cancer immunotherapies with SMCs.
  • Type I IFN Synergizes with SMCs In Vivo
  • The effects of viruses, and likely other TLR agonists and vaccines, appear to be mediated, in part, by type I IFN production, which is controlled by various signaling mechanism, including mRNA translation. Our findings raised the distinct possibility of combining SMC treatment with existing immunotherapies, such as recombinant IFN, as an effective approach to treat cancer. To explore the potential of this combination, we conducted two treatment regimens of SMC and either intraperitoneal or intratumoral injections of recombinant IFNα in the syngeneic orthotopic EMT6 mammary carcinoma model. While treatment of IFNα had no effect on EMT6 tumor growth or overall survival, SMC treatment slightly extended mouse survival and had a cure rate of 17% (FIG. 27A). However, the combined treatment of SMC and intraperitoneal or intratumoral injections of IFNα significantly delayed tumor growth and extended survival of tumor-bearing mice, resulting in cure rates of 57% and 86%, respectively (FIG. 27A) These results support the hypothesis that direct stimulation with type I IFN can synergize with SMCs to eradicate tumors in vivo.
  • Assessment of Additional Oncolytic Rhabdoviruses for the Potential of Synergy with SMCs
  • While VSVΔ51 is a preclinical candidate, the oncolytic rhabdoviruses VSV-IFNβ and Maraba-MG1 are currently undergoing clinical testing in cancer patients. As shown in Example 1, we have demonstrated that Maraba-MG1 synergizes with SMCs in vitro (FIG. 9A). We also confirmed that SMCs synergized with the clinical candidates, VSV-IFNβ and VSV-NIS-IFNβ (i.e. carrying the imaging gene, NIS, sodium iodide symporter), in EMT6 cells (FIG. 28). To assess whether these viruses can induce a profinflammatory state in vivo, we treated infected mice i.v. with 5×108 PFU of VSVΔ51, VSV-IFNβ, and Maraba-MG1 and measured the level of TNFα from the serum of infected mice. In all cases, there was a transient, but robust increase of TNFα from oncolytic virus infection at 12 hrs post-infection, which was barely detectable by 24 hr (FIG. 29). This makes sense as these infections are self-limiting in immunocompetent hosts. These results suggest that the clinical candidate oncolytic rhabdoviruses have the potential to synergize with SMCs in a fashion similar to VSVΔ51.
  • As shown in Example 1, we documented that a form of VSVΔ51 that was engineered to express full-length TNFα can enhance oncolytic virus induced death in the presence of SMC (FIGS. 15A and 15B). To expand on these findings, we also engineered VSVΔ51 to express a form of TNFα that had its intracellular and transmembrane components replaced with the secretory signal from human serum albumin (VSVΔ51-solTNFα). Compared to full-length TNFα (memTNFα), solTNFα is constitutively secreted from host cells, while the memTNFα form may be anchored on plasma membrane (and still capable of inducing cell death in a juxtacrine manner) or is released due to endogenous processing by metalloproteases (such as ADAM17) to kill cells in a paracrine fashion. We assessed whether either forms of TNFα from oncolytic VSV infected cells will synergize with SMC in the orthotopic syngeneic mammary cancer model, EMT6. As expected, treatment with SMC slightly delayed EMT6 tumor growth rates and slightly extended the survival of tumor bearing mice, and the combination of vehicle with either VSVΔ51-memTNFα or VSVΔ51-solTNFα had no impact on overall survival or tumor growth rates (FIGS. 30A and 30B). On the other hand, virally expressed TNFα significantly slowed tumor growth rates and led to increases in the survival rates of 30% and 70%, respectively. Notably, the 40% tumor cure rate from combined SMC and VSVΔ51 (FIG. 4A) required four treatments and a dose of 5×108 PFU of VSVΔ51. However, the combination of TNFα-expressing oncolytic VSV and SMC resulted in a higher cure rate and was accomplished with two treatment regimens at a virus dose of 1×108 PFU. To assess whether this treatment strategy can be applied to other refractory syngeneic models, we assessed whether VSVΔ51-solTNFα synergizes with SMCs in a subcutaneous model of the mouse colon carcinoma cell line, CT-26. As expected, we did not observe an impact of tumor growth rates or survival with VSVΔ51-solTNFα and observed a modest decrease of the tumor growth rate and a slight extension of survival (FIG. 30C). However, we were able to further delay tumor growth and extend survival of these tumor bearing mice with the combined treatment of SMC and VSVΔ51-solTNFα. Hence, the inclusion of a TNFα transgene within oncolytic viruses is a significant advantage for the combination of SMC. One could easily envisage the inclusion of other death ligand transgenes, such as TRAIL, FasL, or lymphotoxin, into viruses to synergize with SMCs.
  • Exploring the Potential of SMCs to Eradicate Brain Tumors
  • The combination of SMCs with immune stimulatory agents is applicable to many different types of cancer, including brain malignancies for which effective therapies are lacking and for which immunotherapies hold promise. As a first step, we determined whether SMCs can cross the blood-brain-barrier (BBB) in a mouse model of brain tumors, as the BBB is a significant barrier to drug entry into the brain. We observed the SMC-induced degradation of cIAP1/2 proteins in intracranial CT-2A tumors several hours after drug administration, indicative that SMCs are capable of crossing the BBB to antagonize cIAP1/2 and potentially XIAP within brain tumors (FIG. 31A). We also demonstrated that the direct injection of SMC (10 μL of a 100 μM solution) intracranially can result in the potent down-regulation of both cIAP1/2 and XIAP proteins (FIG. 31B), which is a direct consequence of SMC-induced autoubiquitination of the IAPs or the result of tumor cell death induction in the case of XIAP loss. As a second step, we wished to determine whether systemic stimulation of immune stimulants can led to a proinflammatory response in the brain of naïve mice. Indeed, we observed marked up-regulation of TNFα levels from the brain from mice that were intraperitoneally injected with the viral mimic, poly(I:C), a TLR3 agonist (FIG. 32A). We followed up this finding by extracting crude protein lysates from the brains of mice that were treated with poly(I:C) or with the clinical candidate oncolytic rhabdoviruses VSVΔ51, VSV-IFNβ, or Maraba-MG1, and then applied these lysates onto CT-2A or K1580 glioblastoma cells in the presence of SMCs. We observed that the stimulation of an innate immune response with these non-viral synthetic or biologic viral agents resulted in enhanced cell death in the presence of SMCs with these two glioblastoma cell lines (FIG. 32B). As a third step, we also confirmed that poly(I:C) could be directly administered intracranially without overt toxicities, which may provide an even increased cytokine induction at the site of tumors (FIG. 32C). Finally, we assessed whether the direct immune stimulation within the brain or systemic stimulation would lead to durable cures in SMC-treated mouse models of brain cancer. The combination of SMCs orally and poly(I:C) intracranially or VSVΔ51 i.v. results in the near complete survival of CT-2A bearing mouse gliomas (FIGS. 32D and 32E), with an expected survival rate of 86 and 100%, respectively. As a follow-up to the observed synergy between SMC and intracranial treatment of poly(I:C), we also assessed the potential for treatment of CT-2A gliomas with direct, simultaneous intracranial injections of SMC and recombinant human IFNα (B/D). Indeed, we observed a marked positive impact of mouse survival with the combined treatment, with a cure rate of 50% (FIG. 33). Importantly, the single or combined SMC or IFNα treatment did not result in any overt neurotoxicity in these tumor bearing mice. Overall, these results reveal that multiple modes of SMC treatment can synergize with a multitude of locally or systemically administered innate immunostimulants to kill cancer cell in vitro and to eradicate tumors in animal models of cancer.
  • Methods Reagents
  • Novartis provided LCL161 (Houghton, P. J. et al. Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 58: 636-639 (2012); Chen, K. F. et al. Inhibition of Bcl-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells. Biochemical Pharmacology 84: 268-277 (2012)). SM-122 and SM-164 were provided by Dr. Shaomeng Wang (University of Michigan, USA) (Sun, H. et al. Design, synthesis, and characterization of a potent, nonpeptide, cellpermeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129: 15279-15294 (2007)). AEG40730 (Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689-700 (2008)) was synthesized by Vibrant Pharma Inc (Brantford, Canada). OICR720 was synthesized by the Ontario Institute for Cancer Research (Toronto, Canada) (Enwere, E. K. et al. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-kappaB signalling pathway. Sci Signal 5: ra75 (2013)). IFNα, IFNβ, IL28 and IL29 were obtained from PBL Interferonsource (Piscataway, USA). All siRNAs were obtained from Dharmacon (Ottawa, Canada; ON TARGETplus SMARTpool). CpG-ODN 2216 was synthesized by IDT (5′-gggGGACGATCGTCgggggg-3′ (SEQ ID NO: 1), lowercase indicates phosphorothioate linkages between these nucleotides, while italics identify three CpG motifs with phosphodiester linkages). Imiquimod was purchased from BioVision Inc. (Milpitas, USA). poly(I:C) was obtained from InvivoGen (San Diego, USA). LPS was from Sigma (Oakville, Canada).
  • Cell Culture
  • Cells were maintained at 37° C. and 5% CO2 in DMEM media supplemented with 10% heat inactivated fetal calf serum, penicillin, streptomycin, and 1% non-essential amino acids (Invitrogen, Burlington, USA). All of the cell lines were obtained from ATCC, with the following exceptions: SNB75 (Dr. D. Stojdl, Children's Hospital of Eastern Ontario Research Institute) and SF539 (UCSF Brain Tumor Bank). Cell lines were regularly tested for mycoplasma contamination. For siRNA transfections, cells were reverse transfected with Lipofectamine RNAiMAX (Invitrogen) or DharmaFECT I (Dharmacon) for 48 hours as per the manufacturer's protocol.
  • Viruses
  • The Indiana serotype of VSVΔ51 (Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4(4), 263-275 (2003)) was used in this study and was propagated in Vero cells. VSVΔ51-GFP is a recombinant derivative of VSVΔ51 expressing jellyfish green fluorescent protein. VSVΔ51-Fluc expresses firefly luciferase. VSVΔ51 with the deletion of the gene encoding for glycoprotein (VSVΔ51ΔG) was propagated in HEK293T cells that were transfected with pMD2-G using Lipofectamine2000 (Invitrogen). To generate the VSVΔ51-TNFα construct, full-length human TNFα gene was inserted between the G and L viral genes. All VSVΔ51 viruses were purified on a sucrose cushion. Maraba-MG1, VVDD-B18R-, Reovirus and HSV1 ICP34.5 were generated as previously described (Brun, J. et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol Ther 18, 1440-1449 (2010); Le Boeuf, F. et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther 18, 888-895 (2011); Lun, X. et al. Efficacy and safety/toxicity study of recombinant vaccinia virus JX-594 in two immunocompetent animal models of glioma. Mol Ther 18, 1927-1936 (2010)). Generation of adenoviral vectors expressing GFP or co-expressing GFP and dominant negative IKKβ was as previously described 16.
  • In Vitro Viability Assay
  • Cell lines were seeded in 96-well plates and incubated overnight. Cells were treated with vehicle (0.05% DMSO) or 5 μM LCL161 and infected with the indicated MOI of OV or treated with 250 U/mL IFNβ, 500 U/mL IFNα, 500 U/mL IFNγ, 10 ng/mL IL28, or 10 ng/mL IL29 for 48 hours. Cell viability was determined by Alamar blue (Resazurin sodium salt (Sigma)) and data was normalized to vehicle treatment. The chosen sample size is consistent with previous reports that used similar analyses for viability assays. For combination indices, cells were seeded overnight, treated with serial dilutions of a fixed combination mixture of VSVΔ51 and LCL161 (5000:1, 1000:1 and 400:1 ratios of PFU VSVΔ51: μM LCL161) for 48 hours and cell viability was assessed by Alamar blue. Combination indices (CI) were calculated according to the method of Chou and Talalay using Calcusyn (Chou, T. C. & Talaly, P. A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J Biol Chem 252, 6438-6442 (1977)). An n=3 of biological replicates was used to determine statistical measures (mean with standard deviation or standard error).
  • Spreading Assay
  • A confluent monolayer of 786-0 cells was overlaid with 0.7% agarose in complete media. A small hole was made with a pipette in the agarose overlay in the middle of the well where 5×103 PFU of VSVΔ51-GFP was administered. Media containing vehicle or 5 μM LCL161 was added on top of the overlay, cells were incubated for 4 days, fluorescent images were acquired, and cells were stained with crystal violet.
  • Splenocyte Co-Culture
  • EMT6 cells were cultured in multiwell plates and overlaid with cell culture inserts containing unfractionated splenocytes. Briefly, single-cell suspensions were obtained by passing mouse spleens through 70 μm nylon mesh and red blood cells were lysed with ACK lysis buffer. Splenocytes were treated for 24 hr with either 0.1 MOI of VSVΔ51ΔG, 1 μg/mL poly(I:C), 1 μg/mL LPS, 2 μM imiquimod, or 0.25 μM CpG prior in the presence of 1 μM LCL161. EMT6 cell viability was determined by crystal violet staining. An n=3 of biological replicates was used to determine statistical measures (mean, standard deviation).
  • Cytokine Responsiveness Bioassay
  • Cells were infected with the indicated MOI of VSVΔ51 for 24 hours and the cell culture supernatant was exposed to UV light for 1 hour to inactive VSVΔ51 particles. Subsequently, the UV-inactivated supernatant was applied to naive cells in the presence of 5 μM LCL161 for 48 hours. Cell viability was assessed by Alamar blue. An n=3 of biological replicates was used to determine statistical measures (mean, standard deviation).
  • Microscopy
  • To measure caspase-3/7 activation, 5 μM LCL161, the indicated MOI of VSVΔ51, and 5 μM CellPlayer Apoptosis Caspase-3/7 reagent (Essen Bioscience, Ann Arbor, USA) were added to the cells. Cells were placed in an incubator outfitted with an IncuCyte Zoom microscope with a 10× objective and phase-contrast and fluorescence images were acquired over a span of 48 hours. Alternatively, cells were treated with 5 μM LCL161 and 0.1 MOI of VSVΔ51-GFP and SMC for 36 hours and labeled with the Magic Red Caspase-3/7 Assay Kit (ImmunoChemsitry Technologies, Bloomington, USA). To measure the proportion of apoptotic cells, 1 μg/mL Annexin V-CF594 (Biotium, Hayward, USA) and 0.2 μM YOYO-1 (Invitrogen) was added to SMC and VSVΔ51 treated cells. Images were acquired 24 hours post-treatment using the IncuCyte Zoom. Enumeration of fluorescence signals was processed using the integrated object counting algorithm within the IncuCyte Zoom software. An n=12 (caspase-3/7) or n=9 (Annexin V, YOYO-1) of biological replicates was used to determine statistical measures (mean, standard deviation).
  • Multiple Step Growth Curves
  • Cells were treated with vehicle or 5 μM LCL161 for 2 hours and subsequently infected at the indicated MOI of VSVΔ51 for 1 hour. Cells were washed with PBS, and cells were replenished with vehicle or 5 μM LCL161 and incubated at 37° C. Aliquots were obtained at the indicated times and viral titers assessed by a standard plaque assay using African green monkey VERO cells.
  • Western Immunoblotting
  • Cells were scraped, collected by centrifugation and lysed in RIPA lysis buffer containing a protease inhibitor cocktail (Roche, Laval, Canada). Equal amounts of soluble protein were separated on polyacrylamide gels followed by transfer to nitrocellulose membranes. Individual proteins were detected by western immunoblotting using the following antibodies: pSTAT1 (9171), caspase-3 (9661), caspase-8 (9746), caspase-9 (9508), DR5 (3696), TNF-R1 (3736), cFLIP (3210), and PARP (9541) from Cell Signalling Technology (Danvers, USA); caspase-8 (1612) from Enzo Life Sciences (Farmingdale, USA); IFNAR1 (EP899) and TNF-R1 (19139) from Abcam (Cambridge, USA); caspase-8 (AHZ0502) from Invitrogen; cFLIP (clone NF6) from Alexis Biochemicals (Lausen, Switzerland); RIP1 (clone 38) from BD Biosciences (Franklin Lakes, USA); and E7 from Developmental Studies Hybridoma Bank (Iowa City, USA). Our rabbit anti-rat IAP1 and IAP3 polyclonal antibodies were used to detect human and mouse cIAP1/2 and XIAP, respectively. AlexaFluor680 (Invitrogen) or IRDye800 (Li-Cor, Lincoln, USA) were used to detect the primary antibodies, and infrared fluorescent signals were detected using the Odyssey Infrared Imaging System (Li-Cor).
  • RT-qPCR
  • Total RNA was isolated from cells using the RNAEasy Mini Plus kit (Qiagen, Toronto, Canada). Two-step RT-qPCR was performed using Superscript III (Invitrogen) and SsoAdvanced SYBR Green supermix (BioRad, Mississauga, Canada) on a Mastercycler ep realplex (Eppendorf, Mississauga, Canada). All primers were obtained from realtimeprimers.com. An n=3 of biological replicates was used to determine statistical measures (mean, standard deviation).
  • ELISA
  • Cells were infected with virus at the indicated MOI or treated with IFNβ for 24 hours and clarified cell culture supernatants were concentrated using Amicon Ultra filtration units. Cytokines were measured with the TNFα Quantikine high sensitivity, TNFα DuoSet, TRAIL DuoSet (R&D Systems, Minneapolis, USA) and VeriKine IFNβ (PBL Interferonsource) assay kits. An n=3 of biological replicates was used to determine statistical analysis.
  • EMT6 Mammary Tumor Model
  • Mammary tumors were established by injecting 1×105 wild-type EMT6 or firefly luciferase-tagged EMT6 (EMT6-Fluc) cells in the mammary fat pad of 6-week old female BALB/c mice. Mice with palpable tumors (˜100 mm3) were co-treated with either vehicle (30% 0.1 M HCl, 70% 0.1 M NaOAc pH 4.63) or 50 mg/kg LCL161 per os and either i.v. injections of either PBS or 5×108 PFU of VSVΔ51 twice weekly for two weeks. For poly(I:C) 25 and SMC treatments, animals were treated with LCL161 twice a week and either BSA (i.t.), 20 ug poly(I:C) i.t. or 2.5 mg/kg poly(I:C) i.p. four times a week. The SMC and CpG group was injected with 2 mg/kg CpG (i.p.) and the next day was followed with CpG and SMC treatments. The CpG and SMC treatments were repeated 4 days later. Treatment groups were assigned by cages and each group had min n=4-8 for statistical measures (mean, standard error; Kaplan-Meier with log rank analysis). The sample size is consistent with previous reports that examined tumor growth and mouse survival following cancer treatment. Blinding was not possible. Animals were euthanized when tumors metastasized intraperitoneally or when the tumor burden exceeded 2000 mm3. Tumor volume was calculated using (π)(W)2(L)/4 where W=tumor width and L=tumor length. Tumor bioluminescence imaging was captured with a Xenogen2000 IVIS CCD-camera system (Caliper Life Sciences Massachusetts, USA) following i.p. injection of 4 mg luciferin (Gold Biotechnology, St. Louis, USA).
  • HT-29 Subcutaneous Tumor Model
  • Subcutaneous tumors were established by injecting 3×106 HT-29 cells in the right flank of 6-week old female CD-1 nude mice. Palpable tumors (˜200 mm3) were treated with five intratumoral injections (i.t.) of PBS or 1×108 PFU of VSVΔ51. Four hours later, mice were administered vehicle or 50 mg/kg LCL161 per os. Treatment groups were assigned by cages and each group had min n=5-7 for statistical measures (mean, standard error; Kaplan-Meier with log rank analysis). The sample size is consistent with previous reports that examined tumor growth and mouse survival following cancer treatment. Blinding was not possible. Animals were euthanized when tumor burden exceeded 2000 mm3. Tumor volume was calculated using (π)(W)2(L)/4 where W=tumor width and L=tumor length.
  • All animal experiments were conducted with the approval of the University of Ottawa Animal Care and Veterinary Service in concordance with guidelines established by the Canadian Council on Animal Care.
  • Antibody-Mediated Cytokine Neutralization
  • For neutralizing TNFα signaling in vitro, 25 μg/mL of α-TNFα (XT3.11) or isotype control (HRPN) was added to EMT6 cells for 1 hour prior to LCL161 and VSVΔ51 or IFNβ co-treatment for 48 hours. Viability was assessed by Alamar blue. For neutralizing TNFα in the EMT6-Fluc tumor model, 0.5 mg of α-TNFα or α-HRPN was administered 8, 10 and 12 days post-implantation. Mice were treated with 50 mg/kg LCL161 (p.o.) on 8, 10 and 12 days post-implantation and were infected with 5×108 PFU VSVΔ51 i.v. on days 9, 11 and 13. For neutralization of type I IFN signalling, 2.5 mg of α-IFNAR1 (MAR1-5A3) or isotype control (MOPC-21) were injected into EMT6-tumor bearing mice and treated with 50 mg/kg LCL161 (p.o.) for 20 hours. Mice were infected with 5×108 PFU VSVΔ51 (i.v.) for 18-20 hours and tumors were processed for Western blotting. All antibodies were from BioXCell (West Lebanon, USA).
  • Flow Cytometry and Sorting
  • EMT6 cells were co-treated with 0.1 MOI of VSVΔ51-GFP and 5 μM LCL161 for 20 hours. Cells were trypsinized, permeabilized with the CytoFix/CytoPerm kit (BD Biosciences) and stained with APC-TNFα (MP6-XT22) (BD Biosciences). Cells were analyzed on a Cyan ADP 9 flow cytometer (Beckman Coulter, Mississauga, Canada) and data was analyzed with FlowJo (Tree Star, Ashland, USA).
  • Splenocytes were enriched for CD11b using the EasySep CD11b positive selection kit (StemCell Technologies, Vancouver, Canada). CD49+ cells were enriched using the EasySep CD49b positive selection kit (StemCell Technologies) from the CD11b− fraction. CD11b+ cells were stained with F4/80-PE-Cy5 (BM8, eBioscience) and Gr1-FITC (RB6-8C5, BD Biosciences) and further sorted with MoFlo Astrios (Beckman Coulter). Flow cytometry data was analyzed using Kaluza (Beckman Coulter). Isolated cells were infected with VSVΔ51 for 24 hours and clarified cell culture supernatants were applied to EMT6 cells for 24 hours in the presence of 5 μM LCL161.
  • Bone Marrow Derived Macrophages
  • Mouse femurs and radius were removed and flushed to remove bone marrow. Cells were cultured in RPMI with 8% FBS and 5 ng/ml of M-CSF for 7 days. Flow cytometry was used to confirm the purity of macrophages (F4/80+ CD11b+).
  • Immunohistochemistry
  • Excised tumors were fixed in 4% PFA, embedded in a 1:1 mixture of OCT compound and 30% sucrose, and sectioned on a cryostat at 12 μm. Sections were permeablized with 0.1% Triton X-100 in blocking solution (50 mM Tris-HCl pH 7.4, 100 mM L-lysine, 145 mM NaCl and 1% BSA, 10% goat serum). α-cleaved caspase 3 (C92-605, BD Pharmingen, Mississauga, Canada) and polyclonal antiserum VSV (Dr. Earl Brown, University of Ottawa, Canada) were incubated overnight followed by secondary incubation with AlexaFluor-coupled secondary antibodies (Invitrogen).
  • Statistical Analysis
  • Comparison of Kaplan-Meier survival plots was conducted by log-rank analysis and subsequent pairwise multiple comparisons were performed using the Holm-Sidak method (SigmaPlot, San Jose, USA). Calculation of EC50 values was performed in GraphPad Prism using normalized nonlinear regression analysis. The EC50 shift was calculated by subtracting the log10 EC50 of SMC-treated and VSVΔ51-infected cells from log10 EC50 of vehicle treated cells infected by VSVΔ51. To normalize the degree of SMC synergy, the EC50 value was normalized to 100% to compensate for cell death induced by SMC treatment alone.
  • OTHER EMBODIMENTS
  • All publications, patent applications, and patents mentioned in this specification are herein incorporated by reference.
  • While the invention has been described in connection with the specific embodiments, it will be understood that it is capable of further modifications. Therefore, this application is intended to cover any variations, uses, or adaptations of the invention that follow, in general, the principles of the invention, including departures from the present disclosure that come within known or customary practice within the art.

Claims (28)

What is claimed is:
1. A composition comprising an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, wherein said SMC and said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
2. A method for treating a patient diagnosed with cancer, said method comprising administering to the patient an SMC from Table 1 and an immunostimulatory agent from Table 2 or Table 3, wherein said SMC and said immunostimulatory agent are administered simultaneously or within 28 days, 14 days, 10 days, 5 days, 24 hours, or 6 hours of each other in amounts that together are sufficient to treat said cancer.
3-8. (canceled)
9. The method of claim 2, wherein said SMC is a monovalent SMC.
10. The method of claim 9, wherein said SMC is LCL161, GDC-0152/RG7419, GDC-0917/CUDC-427, or SM-406/AT-406/Debio1143.
11-12. (canceled)
13. The method of claim 2, wherein said SMC is a bivalent SMC.
14. The method of claim 13, wherein said SMC is AEG40826/HGS1049, OICR720, TL32711/Birinapant, or SM-1387/APG-1387.
15-17. (canceled)
18. The method of claim 2, wherein said immunostimulatory agent is a TLR agonist from Table 2, a lipopolysaccharide, a peptidoglycan, a lipopeptide, a CpG oligodeoxynucleotide, or a virus from Table 3.
19-20. (canceled)
21. The method of claim 18, wherein said CpG oligodeoxynucleotide is CpG-ODN 2216.
22. The method of claim 18, wherein said immunostimulatory agent is imiquimod, poly(I:C), or BCG.
23-24. (canceled)
25. The method of any one of claim 2, wherein said immunostimulatory agent is a virus from Table 3.
26. The method of claim 25, wherein said virus is a vesicular stomatitis virus (VSV), adenovirus, maraba vesiculovirus, reovirus, rhabdovirus, vaccinia virus or a variant thereof, or Talimogene laherparepvec.
27. The method of claim 26, wherein said VSV virus is VSV-M51R, VSV-MΔ51, VSV-IFNβ, or VSV-IFNβ-NIS.
28-29. (canceled)
30. The method of claim 2, wherein said cancer is refractory to treatment by an SMC in the absence of an immunostimulatory agent
31. The method of claim 2, wherein said treatment further comprises administration of a therapeutic agent comprising an interferon.
32. The method of claim 31, wherein said interferon is a type 1 interferon.
33. The method of claim 2, wherein said cancer is selected from adrenal cancer, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, colorectal cancer, connective tissue cancer, cancer of the digestive system, endometrial cancer, epipharyngeal carcinoma, esophageal cancer, eye cancer, gallbladder cancer, gastric cancer, cancer of the head and neck, hepatocellular carcinoma, intra-epithelial neoplasm, kidney cancer, laryngeal cancer, leukemia, liver cancer, liver metastases, lung cancer, lymphoma, melanoma, myeloma, multiple myeloma, neuroblastoma, mesothelioma, neuroglioma, myelodysplastic syndrome, multiple myeloma, oral cavity cancer, ovarian cancer, paediatric cancer, pancreatic cancer, pancreatic endocrine tumors, penile cancer, plasma cell tumors, pituitary adenoma, thymoma, prostate cancer, renal cell carcinoma, cancer of the respiratory system, rhabdomyosarcoma, salivary gland cancer, sarcoma, skin cancer, small bowel cancer, stomach cancer, testicular cancer, thyroid cancer, ureteral cancer, and cancer of the urinary system.
34. A composition comprising an SMC from Table 1 and an immunostimulatory agent, said immunostimulatory agent comprising:
(a) a killed virus, an inactivated virus, or a viral vaccine; or
(b) a first agent that primes an immune response and at least a second agent that boosts said immune response,
wherein said SMC and said immunostimulatory agent are provided in amounts that together are sufficient to treat cancer when administered to a patient in need thereof.
35. The composition of claim 34, wherein said immunostimulatory agent is an NRRP or a rabies vaccine.
36. (canceled)
37. The composition of claim 36, wherein one or both of said first agent and said second agent is an oncolytic virus vaccine, or wherein said first agent is an adenovirus carrying a tumor antigen and said second agent is a vesiculovirus.
38. (canceled)
39. The composition of claim 37, wherein said vesiculovirus is selected from Maraba-MG1 carrying the same tumor antigen as said adenovirus and Maraba-MG1 that does not carry a tumor antigen.
US16/598,900 2014-01-24 2019-10-10 Smc combination therapy for the treatment of cancer Abandoned US20200384103A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/598,900 US20200384103A1 (en) 2014-01-24 2019-10-10 Smc combination therapy for the treatment of cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461931321P 2014-01-24 2014-01-24
PCT/CA2015/000043 WO2015109391A1 (en) 2014-01-24 2015-01-26 Smc combination therapy for the treatment of cancer
US201615113634A 2016-07-22 2016-07-22
US16/598,900 US20200384103A1 (en) 2014-01-24 2019-10-10 Smc combination therapy for the treatment of cancer

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/113,634 Continuation US10441654B2 (en) 2014-01-24 2015-01-26 SMC combination therapy for the treatment of cancer
PCT/CA2015/000043 Continuation WO2015109391A1 (en) 2014-01-24 2015-01-26 Smc combination therapy for the treatment of cancer

Publications (1)

Publication Number Publication Date
US20200384103A1 true US20200384103A1 (en) 2020-12-10

Family

ID=53680533

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/113,634 Expired - Fee Related US10441654B2 (en) 2014-01-24 2015-01-26 SMC combination therapy for the treatment of cancer
US16/598,900 Abandoned US20200384103A1 (en) 2014-01-24 2019-10-10 Smc combination therapy for the treatment of cancer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/113,634 Expired - Fee Related US10441654B2 (en) 2014-01-24 2015-01-26 SMC combination therapy for the treatment of cancer

Country Status (3)

Country Link
US (2) US10441654B2 (en)
CA (1) CA2974651A1 (en)
WO (1) WO2015109391A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
US10441654B2 (en) 2014-01-24 2019-10-15 Children's Hospital Of Eastern Ontario Research Institute Inc. SMC combination therapy for the treatment of cancer
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
JOP20200096A1 (en) 2014-01-31 2017-06-16 Children’S Medical Center Corp Antibody molecules to tim-3 and uses thereof
EP3925622A1 (en) 2014-09-13 2021-12-22 Novartis AG Combination therapies
WO2016079527A1 (en) 2014-11-19 2016-05-26 Tetralogic Birinapant Uk Ltd Combination therapy
WO2016097773A1 (en) 2014-12-19 2016-06-23 Children's Cancer Institute Therapeutic iap antagonists for treating proliferative disorders
SG11201807003UA (en) * 2016-02-24 2018-09-27 Childrens Hospital Of Eastern Ontario Res Institute Inc Smc combination therapy for the treatment of cancer
CN109451729B (en) 2016-06-08 2022-03-22 哈佛学院院长及董事 Engineered viral vectors reduce induction of inflammation and immune responses
CN106265764B (en) 2016-08-18 2018-03-16 广州威溶特医药科技有限公司 The application of IAP inhibitor and oncolytic virus in antineoplastic is prepared
WO2019094548A1 (en) 2017-11-08 2019-05-16 President And Fellows Of Harvard College Compositions and methods for inhibiting viral vector-induced inflammatory responses
CN107987083A (en) * 2017-11-24 2018-05-04 江苏亚盛医药开发有限公司 For treating and/or preventing double diazabicyclo compounds of relevant with hepatitis viruse disease or illness
WO2019165215A1 (en) * 2018-02-26 2019-08-29 The Trustees Of The University Of Pennsylvania Methods and compositions comprising cart and a smac mimetic
CN110898226B (en) * 2018-07-31 2023-05-05 苏州亚盛药业有限公司 Methods of using IAP inhibitors in combination with immune checkpoint molecule modulators for the treatment of cancer
CN110742880A (en) * 2019-10-24 2020-02-04 上海长海医院 Application of CL419 to preparation of medicine for treating inflammatory bowel disease
CN111488912B (en) * 2020-03-16 2020-12-11 哈尔滨工业大学 Laryngeal disease diagnosis system based on deep learning neural network
CN112195156B (en) * 2020-09-01 2022-11-22 广东工业大学 Biological nano-particle and multi-dimensional multi-target-point composite nano-particle from endoplasmic reticulum of cell as well as preparation and application thereof
CN116963732A (en) * 2021-02-23 2023-10-27 苏州亚盛药业有限公司 Pharmaceutical composition and preparation method thereof

Family Cites Families (254)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA71889C2 (en) 1996-04-02 2005-01-17 Йєда Рісерч Енд Дівелопмент Ко. Лтд. Modulators of tnf factor (traf) related to receptor, preparation and use thereof
US6133437A (en) 1997-02-13 2000-10-17 Apoptogen, Inc. Modulation of IAPs for the treatment of proliferative diseases
WO1998022131A2 (en) 1996-11-15 1998-05-28 University Of Ottawa Modulators of ovarial apoptosis related to iap
US8329179B2 (en) 1997-01-28 2012-12-11 Human Genome Sciences, Inc. Death domain containing receptor 4 antibodies and methods
US20080248046A1 (en) 1997-03-17 2008-10-09 Human Genome Sciences, Inc. Death domain containing receptor 5
JP4068666B2 (en) 1997-05-22 2008-03-26 ザ バーナム インスティチュート Screening assays for agents that alter apoptosis inhibitor (IAP) protein regulation of caspase activity
JP4203144B2 (en) 1998-05-13 2008-12-24 邦弘 松本 Screening method for substances that inhibit binding to XIAP
US6171821B1 (en) 1998-07-24 2001-01-09 Apoptogen, Inc. XIAP IRES and uses thereof
US6608026B1 (en) 2000-08-23 2003-08-19 Board Of Regents, The University Of Texas System Apoptotic compounds
US6673917B1 (en) 2000-09-28 2004-01-06 University Of Ottawa Antisense IAP nucleic acids and uses thereof
US20050250854A1 (en) 2000-11-03 2005-11-10 Amgen Inc. Combination therapy using pentafluorobenzenesulfonamides and antineoplastic agents
US20090226429A1 (en) 2001-05-25 2009-09-10 Human Genome Sciences, Inc. Antibodies That Immunospecifically Bind to TRAIL Receptors
US20060258581A1 (en) 2001-11-21 2006-11-16 Reed John C Methods and composition for derepressions of IAP-inhibited caspase
US7704700B2 (en) 2002-02-12 2010-04-27 Burnham Institute For Medical Research Methods for determining the prognosis for patients with a prostate neoplastic condition using inhibitor of apoptosis polypeptides
US20060058229A1 (en) 2002-02-24 2006-03-16 Hermann Steller Peptides and methods for cell death regulation
US7041696B2 (en) 2002-06-17 2006-05-09 The Procter & Gamble Company Interleukin-1β converting enzyme inhibitors
WO2004005248A1 (en) 2002-07-02 2004-01-15 Novartis Ag Peptide inhibitors of smac protein binding to inhibitor of apoptosis proteins (iap)
AU2003290083A1 (en) 2002-08-13 2004-03-11 Cell Center Cologne Gmbh Use of iap for the diagnosis and of iap-inhibitors for the treatment of hodgkin's lymphomas
WO2004031144A2 (en) 2002-10-01 2004-04-15 Musc Foundation For Research Development Use of caspase inhibitors as therapeutic agent against radiation-induced injury
BR0316737A (en) 2002-11-27 2005-12-13 Irm Llc Methods and compositions for inducing apoptosis in cancer cells
US20080199439A1 (en) 2003-02-12 2008-08-21 Mclendon George L IAP-binding cargo molecules and peptidomimetics for use in diagnostic and therapeutic methods
DE10313636A1 (en) 2003-03-26 2004-10-14 MedInnova Gesellschaft für medizinische Innovationen aus akademischer Forschung mbH Use of active substances for the prevention or treatment of viral diseases as well as test system for finding such active substances
MY150088A (en) 2003-05-19 2013-11-29 Irm Llc Immunosuppressant compounds and compositions
US7387614B2 (en) 2003-08-26 2008-06-17 University Of Maryland, Baltimore Drug delivery to the inner ear and methods of using same
WO2005040391A1 (en) 2003-10-27 2005-05-06 Murdoch Childrens Research Institute Compositions and methods for differentiating stem cells
MXPA06008095A (en) 2004-01-16 2007-03-28 Univ Michigan Conformationally constrained smac mimetics and the uses thereof.
WO2005074989A2 (en) 2004-02-05 2005-08-18 Novartis Ag Combination of a dna topoisomerase inhibitor and an iap inhibitor
ME02125B (en) 2004-04-07 2013-04-30 Novartis Ag Inhibitors of iap
CN101035802A (en) 2004-07-02 2007-09-12 健泰科生物技术公司 Inhibitors of IAP
WO2006010118A2 (en) 2004-07-09 2006-01-26 The Regents Of The University Of Michigan Conformationally constrained smac mimetics and the uses thereof
WO2006017295A2 (en) 2004-07-12 2006-02-16 Idun Pharmaceuticals, Inc. Tetrapeptide analogs
EP2353651A3 (en) 2004-10-22 2011-09-07 Neurologix, Inc. Use of apoptosis inhibiting compounds in degenerative neurological disorders
WO2006060898A1 (en) 2004-12-06 2006-06-15 Aegera Therapeutics Inc Method for treating inflammatory disorders
AU2011259844B2 (en) 2005-02-02 2012-11-01 The Uab Research Foundation Agents and Methods Related to Reducing Resistance to Apoptosis- inducing Death Receptor Agonists
JP5562521B2 (en) 2005-02-02 2014-07-30 ザ ユーエービー リサーチ ファンデーション Agents and methods relating to reducing resistance to apoptosis-inducing death receptor agonists
US20110183358A1 (en) 2005-03-17 2011-07-28 The Burnham Institute Methods and compositions for derepression of iap-inhibited caspase
US20100040607A1 (en) 2005-05-13 2010-02-18 Tracey Kevin J Combination Therapy with Inhibitors of HMGB and Caspase for the Treatment of Inflammatory Diseases
AU2006254538A1 (en) 2005-05-25 2006-12-07 2Curex Aps Compounds modifying apoptosis
BRPI0611922A2 (en) 2005-06-08 2010-10-05 Novartis Ag organic compounds
US20100256046A1 (en) 2009-04-03 2010-10-07 Tetralogic Pharmaceuticals Corporation Treatment of proliferative disorders
EP1913398A2 (en) 2005-08-09 2008-04-23 Tetralogic Pharmaceuticals Corporation Treatment of proliferative disorders
US20070203749A1 (en) 2005-08-09 2007-08-30 Sri Chunduru Business methods for compounds for treatment of proliferative disorders
CA2632257A1 (en) 2005-11-30 2008-05-02 Massachusetts Institute Of Technology Pathogen-detecting cell preservation systems
KR20080080131A (en) 2005-12-20 2008-09-02 노파르티스 아게 Combination of an iap-inhibitor and a taxane
WO2007101347A1 (en) 2006-03-07 2007-09-13 Aegera Therapeutics Inc. Bir domain binding compounds
DK2019671T3 (en) 2006-05-05 2014-12-08 Univ Michigan Intermediates for the preparation of bivalent SMAC mimetics
MY159563A (en) 2006-05-16 2017-01-13 Pharmascience Inc Iap bir domain binding compounds
WO2008014240A2 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
WO2008014263A2 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap antagonists
US20100143499A1 (en) 2006-07-24 2010-06-10 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
US20100056495A1 (en) 2006-07-24 2010-03-04 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
WO2008014229A2 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
WO2008017123A1 (en) 2006-08-11 2008-02-14 The Walter And Eliza Hall Institute Of Medical Research Methods for modulating apoptosis in platelets
WO2008017121A1 (en) 2006-08-11 2008-02-14 The Walter And Eliza Hall Institute Of Medical Research Methods for modulating apoptosis in platelets
RU2009117701A (en) 2006-10-12 2010-11-20 Новартис АГ (CH) PYRROLIDINE DERIVATIVES AS IAP INHIBITORS
EP2076778A2 (en) 2006-10-19 2009-07-08 Novartis AG Organic compounds
CA2670498A1 (en) 2006-11-28 2008-06-05 Novartis Ag Combination of iap inhibitors and flt3 inhibitors
WO2008109057A1 (en) 2007-03-02 2008-09-12 Dana-Farber Cancer Institute, Inc. Organic compounds and their uses
US20090010941A1 (en) 2007-04-09 2009-01-08 University Of Massachusetts Methods for treating HIV
NZ580468A (en) 2007-04-13 2012-02-24 Univ Michigan Diazo bicyclic smac mimetics and the uses thereof
EP2150271A1 (en) 2007-05-11 2010-02-10 The Texas A & M Univsersity System Hormone normalization therapy and uses thereof
GB0719299D0 (en) 2007-10-03 2007-11-14 Optinose As Nasal delivery devices
US8030307B2 (en) 2007-11-29 2011-10-04 Enanta Pharmaceuticals, Inc. Bicyclic, C5-substituted proline derivatives as inhibitors of the hepatitis C virus NS3 protease
RU2010133548A (en) 2008-01-11 2012-02-20 Дженентек, Инк. (Us) IAP INHIBITORS
CA2712604A1 (en) 2008-01-24 2009-07-30 Tetralogic Pharmaceutical Corporation Iap inhibitors
IL189405A0 (en) 2008-02-10 2008-12-29 Yeda Res & Dev Stabilization of siva2
EP2265604A4 (en) 2008-04-11 2011-10-26 Univ Michigan Heteroaryl-substituted bicyclic smac mimetics and the uses thereof
EP2116602A1 (en) 2008-05-07 2009-11-11 Institut Gustave Roussy Combination products for treating cancer
US9750729B2 (en) 2008-05-16 2017-09-05 Dana-Farber Cancer Institute, Inc. Immunomodulation by IAP inhibitors
EP2296632A4 (en) 2008-07-14 2014-11-12 Otonomy Inc Controlled-release apoptosis modulating compositions and methods for the treatment of otic disorders
NZ590550A (en) 2008-08-02 2013-05-31 Genentech Inc Inhibitors of Apoptosis (IAP) for treating cancer
US20100074863A1 (en) 2008-09-17 2010-03-25 Yat Sun Or Anti-infective pyrrolidine derivatives and analogs
US20110287001A1 (en) 2008-09-22 2011-11-24 Tetralogic Pharmaceuticals Method of treatment
BRPI0921321A2 (en) 2008-11-28 2018-10-16 Emory University methods for the treatment of tumors and tumors
EP2373658A4 (en) 2008-12-08 2012-05-23 Univ Michigan Office Of Technology Transfer Stat3 inhibitors and therapeutic methods using the same
US8841067B2 (en) 2009-01-09 2014-09-23 Dana-Farber Cancer Institute, Inc. NOL3 is a predictor of patient outcome
WO2010086722A1 (en) 2009-01-29 2010-08-05 Otto-Von-Guericke-Universität Magdeburg Method of determining sensitivity of human or non-human animal cells to an iap antagonist
US8242248B2 (en) 2009-03-23 2012-08-14 Nodality, Inc. Kits for multiparametric phospho analysis
US9051569B2 (en) 2009-06-05 2015-06-09 National University Corporation Nagoya University Insect pest control method
US20100317593A1 (en) 2009-06-12 2010-12-16 Astrazeneca Ab 2,3-dihydro-1h-indene compounds
US20120129895A1 (en) 2009-08-11 2012-05-24 Colleen Conway Methods of treatment
CN102612651A (en) 2009-09-18 2012-07-25 诺瓦提斯公司 Biomarkers for iap inhibitor compounds
ES2643233T3 (en) 2009-10-23 2017-11-21 The Regents Of The University Of Michigan Bivalent diazo bicyclic SMAC mimetics and their uses
KR20120101050A (en) 2009-11-05 2012-09-12 더 유에이비 리서치 파운데이션 Treating basal-like genotype cancers
CN102812167A (en) 2009-12-30 2012-12-05 阿维拉制药公司 Ligand-directed Covalent Modification Of Protein
WO2011116344A2 (en) 2010-03-18 2011-09-22 The Uab Research Foundation Targeting cancer stem cells
EA201890869A3 (en) 2010-06-03 2019-03-29 Фармасайкликс, Инк. APPLICATION OF BLUTON THYROSIN KINASE INHIBITORS (BTK)
WO2012052758A1 (en) 2010-10-22 2012-04-26 Astrazeneca Ab Response biomarkers for iap antagonists in human cancers
KR101305578B1 (en) 2010-11-11 2013-09-09 한국원자력의학원 Apoptosis regulator for regulation of interaction between chk1 and xiap protein and screening method using the same
WO2013043591A1 (en) 2011-09-21 2013-03-28 Albert Einstein College Of Medicine Of Yeshiva University Combination therapy for cancer
KR101981873B1 (en) 2011-11-28 2019-05-23 메르크 파텐트 게엠베하 Anti-pd-l1 antibodies and uses thereof
US20130196927A1 (en) 2012-01-27 2013-08-01 Christopher BENETATOS Smac Mimetic Therapy
WO2013124701A2 (en) 2012-02-20 2013-08-29 Universita' Degli Studi Di Milano New homo- and heterodimeric smac mimetic compounds as apoptosis inducers
US20150110779A1 (en) 2012-03-15 2015-04-23 Bristol-Myers Squibb Company Methods for predicting gastrointestinal immune-related adverse events (gi-irae) in patients treated with modulation of the co-stimulatory pathway
US20140127271A1 (en) 2012-04-11 2014-05-08 Intezyne Technologies, Inc. Block copolymers for stable micelles
US20150141273A1 (en) 2012-04-26 2015-05-21 Stichting Vu-Vumc Biomarkers
EP2844764B1 (en) 2012-05-04 2016-06-22 Novartis AG Biomarkers for iap inhibitor therapy
IN2014MN02492A (en) 2012-06-08 2015-07-17 Aduro Biotech
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
JP6297552B2 (en) 2012-07-18 2018-03-20 アポジェニックス アーゲー CD95 signaling pathway inhibitor for the treatment of MDS
EP2888265B1 (en) 2012-08-23 2017-10-11 The Regents of The University of Michigan Bivalent inhibitors of iap proteins and therapeutic methods using the same
DK2900061T3 (en) 2012-09-17 2020-03-02 Galectin Therapeutics Inc PROCEDURE FOR ENHANCING SPECIFIC IMMUNTERPRISES IN CANCER TREATMENT
US10722563B2 (en) 2012-09-20 2020-07-28 Shenzhen Innovation Immunotechnology Co., Ltd. Prostate-specific tumor antigens and uses thereof
CA2889182A1 (en) 2012-10-26 2014-05-01 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
CN104994858A (en) 2012-11-02 2015-10-21 药品循环公司 TEC family kinase inhibitor adjuvant therapy
CA2889298C (en) 2012-11-30 2024-01-02 Anton Belousov Identification of patients in need of pd-l1 inhibitor cotherapy
US9546174B2 (en) 2012-11-30 2017-01-17 Sanford-Burnham Medical Research Institute Inhibitor of apoptosis protein (IAP) antagonists
DK2958588T3 (en) 2013-02-22 2017-11-20 Curevac Ag Combination of vaccination and inhibition of PD-1 pathway
US9415118B2 (en) 2013-03-13 2016-08-16 Novartis Ag Antibody drug conjugates
US9498532B2 (en) 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
EP3305812B1 (en) 2013-03-14 2020-06-17 Bristol-Myers Squibb Company Combination of dr5 agonist and anti-pd-1 antagonist and methods of use
EP2968590B1 (en) 2013-03-15 2018-09-05 Novartis AG Antibody drug conjugates
WO2014145613A2 (en) 2013-03-15 2014-09-18 Cold Spring Harbor Laboratory Transposon activation during aging and neuronal decline
US20140303090A1 (en) 2013-04-08 2014-10-09 Tetralogic Pharmaceuticals Corporation Smac Mimetic Therapy
AP2015008700A0 (en) 2013-05-18 2015-08-31 Univ California Compositions and methods for activating "stimulator of interferon gene"-dependent signalling
TW201536278A (en) 2013-05-31 2015-10-01 Del Mar Pharmaceuticals Use of dianhydrogalactitol and analogs and derivatives thereof to treat recurrent malignant glioma or progressive secondary brain tumor
ES2822665T3 (en) 2013-05-31 2021-05-04 Merck Sharp & Dohme Combination therapies for cancer
JP6785653B2 (en) 2013-06-25 2020-11-18 ザ・ウォルター・アンド・エリザ・ホール・インスティテュート・オブ・メディカル・リサーチ How to treat intracellular infections
WO2015017520A1 (en) 2013-07-30 2015-02-05 Tetralogic Pharmaceuticals Corp. Method of treatment
WO2015017788A1 (en) 2013-08-01 2015-02-05 Eutropics Pharmaceuticals, Inc. Method for predicting cancer sensitivity
JP6527508B2 (en) 2013-10-01 2019-06-05 メディミューン リミテッド Methods for treating and diagnosing cancers that overexpress αVβ6
CA2926690A1 (en) 2013-10-11 2015-04-16 Sloan-Kettering Institute For Cancer Research Methods and compositions for regulatory t-cell ablation
EP3065772A4 (en) 2013-11-05 2017-09-13 Cognate Bioservices, Inc. Combinations of checkpoint inhibitors and therapeutics to treat cancer
WO2015069697A2 (en) 2013-11-05 2015-05-14 Nkt Therapeutics Inc. Combination therapy
WO2015067570A2 (en) 2013-11-06 2015-05-14 Boehringer Ingelheim International Gmbh Pharmaceutical combinations comprising cd33 antibodies and de-methylating agents
US20160299146A1 (en) 2013-11-20 2016-10-13 Dana-Farber Cancer Institute, Inc. Kynurenine Pathway Biomarkers Predictive of Anti-Immune Checkpoint Inhibitor Response
KR102507624B1 (en) 2013-11-22 2023-03-09 미나 테라퓨틱스 리미티드 C/ebp alpha short activating rna compositions and methods of use
AU2014365888B2 (en) 2013-12-16 2018-12-06 Merck Patent Gmbh Survivin-directed cancer vaccine therapy
EP3084005A4 (en) 2013-12-17 2017-08-02 Merck Sharp & Dohme Corp. Pd-l1 gene signature biomarkers of tumor response to pd-1 antagonists
EP3083687A2 (en) 2013-12-17 2016-10-26 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
US20150210772A1 (en) 2013-12-17 2015-07-30 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
KR20230076867A (en) 2013-12-20 2023-05-31 더 브로드 인스티튜트, 인코퍼레이티드 Combination therapy with neoantigen vaccine
RU2696310C1 (en) 2013-12-20 2019-08-01 Астекс Терапьютикс Лимитед Bicyclic heterocyclic compounds and use thereof in therapy
WO2015103431A1 (en) 2013-12-31 2015-07-09 Memorial Sloan-Kettering Cancer Center Compositions and methods for the diagnosis and treatment of ovarian cancers that are associated with reduced smarca4 gene expression or protein function
US10441654B2 (en) 2014-01-24 2019-10-15 Children's Hospital Of Eastern Ontario Research Institute Inc. SMC combination therapy for the treatment of cancer
WO2015127501A1 (en) 2014-02-27 2015-09-03 Viralytics Limited Combination method for treatment of cancer
AU2015225867B2 (en) 2014-03-07 2020-02-06 University Health Network Methods and compositions for modifying the immune response
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
CN104975063B (en) 2014-04-01 2020-04-03 埃提斯生物技术(上海)有限公司 Screening method and application of antitumor drug biomarker
US10278984B2 (en) 2014-05-02 2019-05-07 Nitor Therapeutics Guanosine as an immune potentiator mediated through toll receptors
AU2015255656A1 (en) 2014-05-09 2016-11-10 Assembly Biosciences, Inc. Methods and compositions for treating hepatitis B virus infections
ES2913236T3 (en) 2014-05-13 2022-06-01 Bavarian Nordic As Combination therapy to treat cancer with a recombinant poxvirus expressing a tumor antigen and an antagonist or agonist of an immune checkpoint molecule
KR20170003692A (en) 2014-05-15 2017-01-09 브리스톨-마이어스 스큅 컴퍼니 Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
CA2950911C (en) 2014-06-04 2023-10-10 Sanford-Burnham Medical Research Institute Use of inhibitor of apoptosis protein (iap) antagonists in hiv therapy
EP3151829B1 (en) 2014-06-07 2019-10-02 Academia Sinica Novel sesquiterpene derivatives and their use in inflammation and cancer treatment
CN107073109B (en) 2014-06-11 2021-08-06 凯西·A·格林 Use of VISTA agonists and antagonists to inhibit or enhance humoral immunity
US20170106067A1 (en) 2014-06-12 2017-04-20 The Johns Hopkins University Combinatorial immunotherapy for pancreatic cancer treatment
US10092645B2 (en) 2014-06-17 2018-10-09 Medimmune Limited Methods of treatment with antagonists against PD-1 and PD-L1 in combination with radiation therapy
WO2015197874A2 (en) 2014-06-27 2015-12-30 Apogenix Gmbh Combination of cd95/cd95l inhibition and cancer immunotherapy
WO2016004218A1 (en) 2014-07-01 2016-01-07 Vicus Therapeutics, Llc Combination drug therapies for cancer and methods of making and using them
CA2954446A1 (en) 2014-07-09 2016-01-14 Shanghai Birdie Biotech, Inc. Anti-pd-l1 combinations for treating tumors
CN106573060A (en) 2014-07-15 2017-04-19 豪夫迈·罗氏有限公司 Compositions for treating cancer using PD-1 axis binding antagonists and MEK inhibitors
GB201413162D0 (en) 2014-07-24 2014-09-10 Immusmol Sas Prediction of cancer treatment based on determination of enzymes or metabolites of the kynurenine pathway
US10786578B2 (en) 2014-08-05 2020-09-29 Novartis Ag CKIT antibody drug conjugates
HRP20220738T1 (en) 2014-08-11 2022-08-19 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor
WO2016024195A1 (en) 2014-08-12 2016-02-18 Novartis Ag Anti-cdh6 antibody drug conjugates
JP6764858B2 (en) 2014-08-15 2020-10-07 メルク パテント ゲーエムベーハー SIRP-alpha immunoglobulin fusion protein
EP3925622A1 (en) 2014-09-13 2021-12-22 Novartis AG Combination therapies
WO2016044189A1 (en) 2014-09-15 2016-03-24 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonist and il-17 binding antagonists
CN107087409B (en) 2014-09-19 2020-07-31 吕衍达 Benzoheterocyclic compounds and their use
CA2963281A1 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
WO2016049677A1 (en) 2014-10-03 2016-04-07 The Walter And Eliza Hall Institute Of Medical Research Method of treating cancer
EP4245376A3 (en) 2014-10-14 2023-12-13 Novartis AG Antibody molecules to pd-l1 and uses thereof
WO2016061231A1 (en) 2014-10-14 2016-04-21 Deciphera Pharmaceuticals, Llc Inhibition of tumor cell interactions with the microenvironment resulting in a reduction in tumor growth and disease progression
CN106153939A (en) 2014-10-17 2016-11-23 广州瑞博奥生物科技有限公司 A kind of antibody chip test kit for detecting antiapoptotic factors
EP3012271A1 (en) 2014-10-24 2016-04-27 Effimune Method and compositions for inducing differentiation of myeloid derived suppressor cell to treat cancer and infectious diseases
US20160125127A1 (en) 2014-10-29 2016-05-05 Council Of Scientific & Industrial Research Identification of minimal combinations of oncoproteins in notch pathway to suppress human glioblastoma
JP7305300B2 (en) 2014-11-05 2023-07-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Combination immunotherapy
WO2016079527A1 (en) 2014-11-19 2016-05-26 Tetralogic Birinapant Uk Ltd Combination therapy
GB201421647D0 (en) 2014-12-05 2015-01-21 Amcure Gmbh And Ruprecht-Karls-Universitat And Karlsruher Institut F�R Technologie CD44v6-derived cyclic peptides for treating cancers and angiogenesis related diseases
WO2016097773A1 (en) 2014-12-19 2016-06-23 Children's Cancer Institute Therapeutic iap antagonists for treating proliferative disorders
CN105777632A (en) 2015-01-09 2016-07-20 成都贝斯凯瑞生物科技有限公司 Aromatic-ring azacyclo derivatives and application thereof
CN104634852B (en) 2015-02-06 2015-10-21 济南大学 A kind of preparation method of the triple channel biology sensor based on golden hydridization ZSM-5 molecular sieve load electron mediator structure and application
BR112017016973A2 (en) 2015-02-09 2018-04-03 Synta Pharmaceuticals Corp. hsp90 inhibitors and pd-1 inhibitors combination therapy for cancer treatment
WO2016128912A1 (en) 2015-02-12 2016-08-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor, and/or a pd-l1 inhibitor
JP7243021B2 (en) 2015-02-12 2023-03-22 ビヨンドスプリング ファーマシューティカルズ,インコーポレイテッド Use of plinabulin in combination with immune checkpoint inhibitors
US11512289B2 (en) 2015-02-18 2022-11-29 Enlivex Therapeutics Rdo Ltd Combination immune therapy and cytokine control therapy for cancer treatment
RU2714233C2 (en) 2015-02-26 2020-02-13 Мерк Патент Гмбх Pd-1/pd-l1 inhibitors for treating cancer
US20160254318A1 (en) 2015-02-27 2016-09-01 Qualcomm Incorporated MAGNETIC RANDOM ACCESS MEMORY (MRAM) BIT CELLS EMPLOYING SOURCE LINES (SLs) AND/OR BIT LINES (BLs) DISPOSED IN MULTIPLE, STACKED METAL LAYERS TO REDUCE MRAM BIT CELL RESISTANCE
SG11201706872SA (en) 2015-03-04 2017-09-28 Merck Sharp & Dohme Combination of a pd-1 antagonist and eribulin for treating cancer
EP3067062A1 (en) 2015-03-13 2016-09-14 Ipsen Pharma S.A.S. Combination of tasquinimod or a pharmaceutically acceptable salt thereof and a pd1 and/or pdl1 inhibitor, for use as a medicament
WO2016145578A1 (en) 2015-03-13 2016-09-22 Syz Cell Therapy Co. Methods of cancer treatment using activated t cells
WO2016160966A1 (en) 2015-03-30 2016-10-06 Dana-Farber Cancer Institute, Inc. Compositions and methods of treating renal cell cancer
US20180085398A1 (en) 2015-03-30 2018-03-29 Dana-Farber Cancer Institute, Inc. Compositions and methods of treating cancer
WO2016161347A1 (en) 2015-04-03 2016-10-06 Pharmacyclics Llc Combinations for generating tumor-specific immunological memory
WO2016162867A1 (en) 2015-04-08 2016-10-13 Efranat Ltd. Combination therapy of macrophage activating factor and pd-1 signaling inhibitors
GB201506871D0 (en) 2015-04-22 2015-06-03 Glaxosmithkline Ip Dev Ltd Novel compounds
GB201506872D0 (en) 2015-04-22 2015-06-03 Ge Oil & Gas Uk Ltd Novel compounds
WO2016172583A1 (en) 2015-04-23 2016-10-27 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2016191397A1 (en) 2015-05-22 2016-12-01 Td2 Inc. Benzamide and active compound compositions and methods of use
US20160346408A1 (en) 2015-05-26 2016-12-01 Intezyne Technologies Iron stabilized micelles as magnetic contrast agents
GB201509040D0 (en) 2015-05-27 2015-07-08 Oxford Genetics Ltd Cell lines
AU2015242210A1 (en) 2015-06-15 2017-12-07 Hangzhou Dac Biotech Co., Ltd Hydrophilic linkers for conjugation
US10975112B2 (en) 2015-06-16 2021-04-13 Hangzhou Dac Biotech Co., Ltd. Linkers for conjugation of cell-binding molecules
AU2016279474B2 (en) 2015-06-16 2021-09-09 Eisai R&D Management Co., Ltd. Anticancer agent
KR20180018538A (en) 2015-06-17 2018-02-21 제넨테크, 인크. Methods for the treatment of locally advanced or metastatic breast cancer using PD-1 axis-binding antagonists and taxanes
US20190194315A1 (en) 2015-06-17 2019-06-27 Novartis Ag Antibody drug conjugates
WO2015151079A2 (en) 2015-06-20 2015-10-08 Hangzhou Dac Biotech Co, Ltd Auristatin analogues and their conjugates with cell-binding molecules
WO2017004165A1 (en) 2015-06-29 2017-01-05 Regents Of The University Of Minnesota Apobec3b mutagenesis and immunotherapy
EP3317246A4 (en) 2015-07-04 2019-02-27 Suzhou M-conj Biotech Co., Ltd. Specific conjugation of a cell-binding molecule
EP3322986A4 (en) 2015-07-13 2018-09-05 Arvinas, Inc. Alanine-based modulators of proteolysis and associated methods of use
CA2992282A1 (en) 2015-07-14 2017-01-19 Atossa Genetics Inc. Transpapillary methods and compositions for treating breast disorders
US9839687B2 (en) 2015-07-15 2017-12-12 Suzhou M-Conj Biotech Co., Ltd. Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule
WO2017011670A1 (en) 2015-07-16 2017-01-19 Prospect CharterCare RWMC, LLC d/b/a Roger Williams Medical Center Compositions and methods for treating peritoneal cancers
AU2016297583A1 (en) 2015-07-22 2018-02-01 Hznp Limited Combination of immunomodulatory agent with PD-1-or PD-L1 checkpoint inhibitors in the treatment of cancer
US20180207273A1 (en) 2015-07-29 2018-07-26 Novartis Ag Combination therapies comprising antibody molecules to tim-3
LT3317301T (en) 2015-07-29 2021-07-26 Novartis Ag Combination therapies comprising antibody molecules to lag-3
CN108348492B (en) 2015-07-31 2021-09-28 约翰霍普金斯大学 Methods for cancer and immunotherapy using glutamine analogs
AU2016304597B2 (en) 2015-08-06 2022-10-06 Memorial Sloan Kettering Cancer Center Methods and compositions for tumor therapy
EP3334465A1 (en) 2015-08-12 2018-06-20 Bayer Pharma Aktiengesellschaft Pharmaceutical combination for the treatment of cancer
NZ739780A (en) 2015-08-18 2024-02-23 Rakuten Medical Inc Compositions, combinations and related methods for photoimmunotherapy
WO2017040660A1 (en) 2015-08-31 2017-03-09 Oncomed Pharmaceuticals, Inc. Combination therapy for treatment of disease
US20180244783A1 (en) 2015-08-31 2018-08-30 Oncomed Pharmaceuticals, Inc. Combination therapy for treatment of disease
WO2017042634A2 (en) 2015-09-10 2017-03-16 Del Mar Pharmaceuticals Use of dianhydrogalactitol or derivatives and analogs thereof for treatment of non-small-cell lung carcinoma, glioblastoma, and ovarian carcinoma by induction of dna damage and stalling of cell cycle
MA44909A (en) 2015-09-15 2018-07-25 Acerta Pharma Bv THERAPEUTIC ASSOCIATION OF A CD19 INHIBITOR AND A BTK INHIBITOR
WO2017053823A1 (en) 2015-09-25 2017-03-30 Pharmacyclics Llc Treatment using hdac inhibitors and immunotherapy
WO2017059224A2 (en) 2015-10-01 2017-04-06 Gilead Sciences, Inc. Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers
WO2017062354A1 (en) 2015-10-05 2017-04-13 Calithera Biosciences, Inc. Combination therapy with glutaminase inhibitors and immuno-oncology agents
FR3042121A1 (en) 2015-10-08 2017-04-14 Jean-Marc Limacher ANTI-TUMOR COMPOSITION
WO2017070110A1 (en) 2015-10-19 2017-04-27 Cold Genesys, Inc. Methods of treating solid or lymphatic tumors by combination therapy
WO2017070137A1 (en) 2015-10-20 2017-04-27 Bristol-Myers Squibb Company Combination of ck2 inhibitors and immune checkpoint modulators for cancer treatment
US11058700B2 (en) 2015-10-28 2021-07-13 City Of Hope Macrocyclic lactones and uses thereof as modulators of purinergic receptors
WO2017075052A1 (en) 2015-10-28 2017-05-04 Delmar Pharmaceuticals, Inc. Use of dianhydrogalactitol or derivatives or analogs thereof for treatment of pediatric central nervous system malignancies
MA44334A (en) 2015-10-29 2018-09-05 Novartis Ag ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST
JP2018532803A (en) 2015-11-02 2018-11-08 ベンティアールエックス ファーマシューティカルズ, インコーポレイテッドVentiRx Pharmaceuticals,Inc. Use of a TLR8 Agonist to Treat Cancer
WO2017079080A1 (en) 2015-11-02 2017-05-11 The Johns Hopkins University Method of preventing organ transplant rejections using agonists to the pd-1 checkpoint pathway
US20180244750A1 (en) 2015-11-02 2018-08-30 Memgen, Llc Methods for treatment of cancer
WO2017079431A1 (en) 2015-11-05 2017-05-11 The General Hospital Corporation Methods for treating cancer by enhancing intratumoral immune response
JP6782932B2 (en) 2015-11-12 2020-11-11 国立研究開発法人国立循環器病研究センター New Uses of NPR-A Agonists
CN116327902A (en) 2015-11-20 2023-06-27 纪念斯隆凯特林癌症中心 Methods and compositions for treating cancer
MX2018007423A (en) 2015-12-17 2018-11-09 Novartis Ag Antibody molecules to pd-1 and uses thereof.
ES2919552T3 (en) 2015-12-23 2022-07-27 Modernatx Inc Methods of using ox40 ligand-encoding polynucleotides
EP3393456A4 (en) 2015-12-23 2019-08-21 Dana-Farber Cancer Institute, Inc. Immune cell-targeted particles
CN105617400B (en) 2015-12-25 2019-08-02 浙江省人民医院 Inhibit the pharmaceutical composition of Cell Proliferation of Pancreatic Cancer Cell
ES2944597T3 (en) 2015-12-30 2023-06-22 Novartis Ag Enhanced Efficacy Immune Effector Cell Therapies
US20190008961A1 (en) 2016-01-07 2019-01-10 The Broad Institute, Inc. Compounds and methods for increasing tumor infiltration by immune cells
US11612426B2 (en) 2016-01-15 2023-03-28 Immunsys, Inc. Immunologic treatment of cancer
WO2017127282A1 (en) 2016-01-19 2017-07-27 The General Hospital Corporation Cancer treatments and methods of selecting same
CN105585583B (en) 2016-01-20 2018-04-13 广东工业大学 A kind of non-peptides apoptosis inhibitory protein antagonist and its synthetic method and application
CN105566447B (en) 2016-01-20 2019-09-20 广东工业大学 The class peptide antagonists and its synthetic method of a kind of apoptosis inhibitory protein and application
ES2871112T3 (en) 2016-01-21 2021-10-28 Innate Pharma Neutralization of inhibitory pathways in lymphocytes
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
WO2017133175A1 (en) 2016-02-04 2017-08-10 Nanjing Legend Biotech Co., Ltd. Engineered mammalian cells for cancer therapy
CN107041886A (en) 2016-02-06 2017-08-15 北京华昊中天生物技术有限公司 Decylization oxygen epothilone derivate preparation, the application for preparing and its treating tumour
WO2017143237A1 (en) 2016-02-17 2017-08-24 Acetylon Pharmaceuticals, Inc. Increasing expression of interferon regulated genes with combinatons of histone deacetylase inhibitors and immunomodulatory drugs
US20190249172A1 (en) 2016-02-18 2019-08-15 The Regents Of The University Of California Methods and compositions for gene editing in stem cells
CN109069539A (en) 2016-02-18 2018-12-21 恩立夫克治疗有限责任公司 Combined immunization therapy use for cancer treatment and cell factor control therapy
US10906977B2 (en) 2016-02-18 2021-02-02 Maine Medical Center Research Institute Enhancing the therapeutic activity of immune checkpoint inhibitor
GB201602934D0 (en) 2016-02-19 2016-04-06 Cancer Res Inst Royal Compounds
JP7058606B2 (en) 2016-02-22 2022-04-22 アクセルロン ファーマ インコーポレイテッド ACTRII antagonist for use in increased immune activity
WO2017144877A1 (en) 2016-02-23 2017-08-31 Cancer Research Technology Limited Dietary product devoid of at least two non essential amino acids
SG11201807003UA (en) 2016-02-24 2018-09-27 Childrens Hospital Of Eastern Ontario Res Institute Inc Smc combination therapy for the treatment of cancer
CN106265764B (en) 2016-08-18 2018-03-16 广州威溶特医药科技有限公司 The application of IAP inhibitor and oncolytic virus in antineoplastic is prepared
CN106710510A (en) 2017-02-23 2017-05-24 合肥京东方光电科技有限公司 Grid driving unit and driving method, grid driving circuit and display device

Also Published As

Publication number Publication date
US10441654B2 (en) 2019-10-15
US20170239347A1 (en) 2017-08-24
CA2974651A1 (en) 2015-07-30
WO2015109391A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US20200384103A1 (en) Smc combination therapy for the treatment of cancer
US20210322545A1 (en) Smc combination therapy for the treatment of cancer
Zemp et al. Oncolytic viruses as experimental treatments for malignant gliomas: using a scourge to treat a devil
US20100178684A1 (en) Transgenic oncolytic viruses and uses thereof
ES2539941T3 (en) Composition and method to treat cancer using herpes virus
US20150037355A1 (en) Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus
Panagioti et al. Immunostimulatory bacterial antigen–armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy
Malfitano et al. Virotherapy: From single agents to combinatorial treatments
WO2013038066A1 (en) Modified oncolytic vaccinia virus
JP7239910B2 (en) Therapeutic agents and their use for drugs for the treatment of tumors and/or cancers
Geletneky et al. Double-faceted mechanism of parvoviral oncosuppression
CN109414487B (en) Compositions and methods utilizing STAT1/3 inhibitors with oncolytic herpes viruses
Ellerhoff et al. Novel epi-virotherapeutic treatment of pancreatic cancer combining the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus
Fu et al. Genetically coating oncolytic herpes simplex virus with CD47 allows efficient systemic delivery and prolongs virus persistence at tumor site
ES2702618B2 (en) Combination product comprising a modified mesenchymal stem cell and an antigenic substance.
US20220002680A1 (en) Regulatable fusogenic oncolytic herpes simplex virus type 1 virus and methods of use
Mori et al. Anti-vaccinia virus effect of M13 bacteriophage DNA
CN110564700B (en) Oncolytic vaccinia virus carrying limulus lectin gene, construction method and application
WO2020227503A1 (en) Delivery of oncolytic viruses using dendritic cells
US11591616B1 (en) Apoptotic upregulation by myxoma virus expressing walleye dermal sarcoma virus orfC
US20240189374A1 (en) Adenovirus for treatment of cancer
Nakhaei et al. Oncolytic virotherapy of cancer with vesicular stomatitis virus
Eckert Oncolytic Vesicular Stomatitis Virus Encoding Murine and Human Chemokines for Modulation of the Tumor Microenvironment
Alkayyal et al. Repurposing the oncolytic virus VSV∆ 51M as a COVID-19 vaccine
Guerrero-Rodríguez et al. Delivery of Anti-IFNAR1 shRNA to Hepatic Cells Decreases IFNAR1 Gene Expression and Improves Adenoviral Transduction and Transgene Expression

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHILDREN'S HOSPITAL OF EASTERN ONTARIO RESEARCH INSTITUTE INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KORNELUK, ROBERT G.;LACASSE, ERIC C.;BEUG, SHAWN T.;AND OTHERS;REEL/FRAME:052796/0739

Effective date: 20190820

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION