US20200340333A1 - Method of extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity - Google Patents

Method of extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity Download PDF

Info

Publication number
US20200340333A1
US20200340333A1 US16/960,024 US201816960024A US2020340333A1 US 20200340333 A1 US20200340333 A1 US 20200340333A1 US 201816960024 A US201816960024 A US 201816960024A US 2020340333 A1 US2020340333 A1 US 2020340333A1
Authority
US
United States
Prior art keywords
coal
horizontal well
liquid
well
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/960,024
Other versions
US10830018B1 (en
Inventor
Shuxun SANG
Shiqi Liu
Liwen CAO
Xiaozhi ZHOU
Haiwen Wang
Huihu LIU
Zicheng Li
Huazhou HUANG
Changjiang Liu
Hongjie Xu
Ran Wang
Jinlong JIA
Shuyun ZHU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Xuzhou Olivine Geoscience and Geotech Co Ltd
Original Assignee
China University of Mining and Technology CUMT
Xuzhou Olivine Geoscience and Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT, Xuzhou Olivine Geoscience and Geotech Co Ltd filed Critical China University of Mining and Technology CUMT
Assigned to CHINA UNIVERSITY OF MINING AND TECHNOLOGY, XUZHOU OLIVINE GEOSCIENCE & GEOTECH CO., LTD reassignment CHINA UNIVERSITY OF MINING AND TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAO, Liwen, HUANG, Huazhou, JIA, Jinlong, LI, ZICHENG, LIU, CHANGJIANG, LIU, Huihu, LIU, SHIQI, SANG, Shuxun, WANG, HAIWEN, WANG, RAN, XU, Hongjie, ZHOU, Xiaozhi, ZHU, Shuyun
Publication of US20200340333A1 publication Critical patent/US20200340333A1/en
Application granted granted Critical
Publication of US10830018B1 publication Critical patent/US10830018B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/29Obtaining a slurry of minerals, e.g. by using nozzles
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/32Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/13Lifting well fluids specially adapted to dewatering of wells of gas producing reservoirs, e.g. methane producing coal beds
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/28Enlarging drilled holes, e.g. by counterboring
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Definitions

  • the present invention relates to the field of coal bed methane extraction, and relates to a method for coal bed methane extraction, and in particular, to a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity.
  • Tectonically-deformed coal refers to coal whose coal seam is subject to tectonic stress and whose primary structure and construction are significantly destroyed due to cracking, resulting in fractures, wrinkles, polished surfaces, and other structural changes.
  • CBM tectonically-deformed coal bed methane
  • Tectonically-deformed coal has prominent features such as rich gas, low permeability, and looseness, and most of tectonically-deformed coal are coal and gas outburst coal seams. Due to its hazards and difficulty in extraction and utilization, the tectonically-deformed coal is mostly discharged into the atmosphere in coal production. The efficient development of tectonically-deformed coal bed methane is of great significance for energy, safety and ecology.
  • a method based on the theory of hydrophobic depressurization, desorption, and gas recovery is a main method for the development of surface wells for in-situ coal bed methane at present. Due to the extremely low permeability of tectonically-deformed coal reservoirs and the poor effect of a reconstruction method such as hydraulic fracturing, the theory of hydrophobic depressurization, desorption, and gas recovery is not suitable for tectonically-deformed coal reservoirs.
  • coal bed methane exploration and development technologies based on the theory of hydrophobic depressurization, desorption, and gas recovery, including SVR technologies (vertical well fracturing, U-shaped well fracturing, multi-branched horizontal well fracturing, horizontal well fracturing, and the like), ECBM technologies (CO 2 -ECBM, N 2 -ECBM, and the like) and their combined technologies, fail to achieve efficient development of tectonically-deformed coal bed methane. Therefore, efficient exploration and development technologies and equipment for tectonically-deformed coal bed methane have become one of important technical bottlenecks restricting the rapid and scale development of the China's coal bed methane industry.
  • the present invention provides a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity, to enable the completion of a large-diameter horizontal well in a loose tectonically-deformed coal reservoir, horizontal well cavity-constructing stress release, effective lifting of mixed fluids, and efficient separation of produced mixtures, thereby achieving efficient and continuous in-situ extraction of tectonically-deformed coal bed methane.
  • the present invention adopts the following technical solution: a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity.
  • a horizontal well drilling and reaming subsystem constructs a U-shaped well in which a horizontal well adjoins a vertical well, and performs a reaming process on a horizontal section of the horizontal well.
  • a horizontal well hole-collapse cavity-construction depressurization excitation subsystem performs pressure-pulse excitation and stress release on the horizontal well, and hydraulically displaces a coal-liquid-gas mixture such that the mixture is conveyed towards a vertical well section along a depressurizing space.
  • a product lifting subsystem further pulverizes the coal and lifts the mixture towards a wellhead of the vertical well.
  • a gas-liquid-solid separation subsystem separates the coal, liquid and gas.
  • a monitoring and control subsystem detects and controls the operation conditions and the execution processes of technical equipment in real time, so as to collect, display, process, and analyze engineering data. Specific steps are as follows:
  • pre-treating the mixture that enters the coal-liquid-gas separation device to enable a coal-liquid mixture and coal bed methane that are separated to respectively enter a coal-liquid separation device and a gas storage tank, further treating the coal-liquid mixture that enters the coal-liquid separation device, and storing a coal powder and a liquid that are separated in a coal powder collection tank and a liquid storage tank respectively.
  • step 2) three-stage reaming rates are respectively 150%, 200%, and 300%, and a diameter increase after reaming is 200% to 300%.
  • a depressurization excitation range after the pressure-pulse excitation and the stress release are performed on the horizontal well is ⁇ 15.
  • step 5 coal powder concentration after the pulverizing is ⁇ 50%.
  • step 4 the high-pressure and high-speed fluids are mixed with a particular proportion of an abrasive.
  • the drilling tool in the horizontal well drilling and reaming subsystem is designed into a three-stage drilling and reaming tool; and further reaming is implemented through two-way reciprocating drilling construction after drilling in the horizontal section of the horizontal well.
  • the diameter of the horizontal section is greatly increased, the problem of wellbore collapse induced by overburden deformation resulting from the loose tectonically-deformed coal is avoided, and continuous in-situ extraction of tectonically-deformed coal bed methane is ensured.
  • the high-pressure and high-speed fluids are injected into the horizontal well cavity at a particular pulse frequency to further cut and pulverize the medium, to implement the pressure-pulse excitation and the stress release on the horizontal well of the tectonically-deformed coal bed methane, and hydraulically displace the coal-liquid-gas mixture such that the mixture is conveyed towards the vertical well section along the depressurizing space. In this way, subsequent lifting is ensured.
  • the coal powder is further pulverized and the mixture is lifted towards the wellhead of the vertical well through cooperation of the underground pulverization disturbance device and the hydraulic jet pump; and efficient coal-liquid-gas separation for the produced mixture and recycling of the excitation liquid are achieved through the coal-liquid-gas separation device and the coal-liquid separation device.
  • Real-time detection and control of the operation conditions and the execution processes of the technical equipment are implemented through three layers of network architecture and software including on-site workstations, monitoring instruments and sensors, and a central server control system, so as to collect, display, process, and analyze the engineering data.
  • the coordinated operation of subsystems in the entire extraction system achieves efficient and continuous in-situ extraction of the tectonically-deformed coal bed methane.
  • FIG. 1 is a schematic diagram of an extraction system used in the present invention.
  • FIG. 2 is a schematic structural diagram of a drilling tool in an extraction system used in the present invention.
  • FIG. 2( a ) is a schematic state diagram of drilling of the drilling tool.
  • FIG. 2( b ) is a schematic state diagram of reaming of the drilling tool.
  • FIG. 3 is a schematic diagram of a depressurization excitation subsystem in an extraction system used in the present invention.
  • FIG. 1 to FIG. 3 show a system for extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity that is used in the present invention, which includes a horizontal well drilling and reaming subsystem, a horizontal well hole-collapse cavity-construction depressurization excitation subsystem, a product lifting subsystem, a gas-liquid-solid separation subsystem, and a monitoring and control subsystem.
  • the horizontal well drilling and reaming subsystem includes a drill tower 1 , a drilling rig (not shown), a drill column string (not shown), a drilling tool 10 , and a drilling fluid circulation system.
  • the drill tower 1 is configured to place and suspend a lifting system, bear the weight of the drilling tool, store a drill pipe and a drill collar, and so on.
  • the drilling rig is configured to power the drilling tool 10 .
  • the drill column string is a string consisting of a Kelly bar, a drill pipe, a drill collar, and another underground tool, and is configured to install the drilling tool 10 .
  • the drilling tool 10 from a connection end with the drill column string to a drilling end, includes a third-stage reaming and retraction assembly 10 - 3 , a primary and secondary reaming and retraction assembly 10 - 2 , and a pilot assembly 10 - 1 respectively.
  • the third-stage reaming and retraction assembly 10 - 3 includes a plurality of expandable and closable blades 10 - 5 that is circumferentially disposed.
  • the blade 10 - 5 is locked and positioned by a second locking mechanism 10 - 6 .
  • the primary and secondary reaming and retraction assembly 10 - 2 includes a plurality of extendable and retractable plunger drill bits 10 - 4 that is circumferentially disposed.
  • the plunger drill bit 10 - 4 is locked and positioned by a first locking mechanism 10 - 7 .
  • a connection between a drilling fluid positive circulation system and another component is the same as that in the prior art.
  • the plunger drill bit 10 - 4 is extended to start drilling, and during returning towards the direction of the drill tower 1 , the blade 10 - 5 is opened. Because the diameter after the blade 10 - 5 is opened is greater than the diameter when the plunger drill bit 10 - 4 is extended, the horizontal well is reamed, thereby achieving three-stage reaming in rock mass at drillability classes I, II, III, IV and V.
  • Three-stage reaming rates respectively reach 150%, 200%, 300%, and a diameter increase after reaming is 200% to 300%.
  • the horizontal well hole-collapse cavity-construction depressurization excitation subsystem includes a ground power unit 15 and an underground injection device 16 .
  • An inlet of the ground power unit 15 is in communication with a liquid storage tank 3
  • an outlet of the ground power unit 15 is in communication with the underground injection device 16 .
  • the underground injection device 16 is disposed at one side of a depressurization cavity 9 in the horizontal well 11 near the drill tower 1 .
  • a booster pump in the ground power unit 15 injects high-pressure and high-speed fluids to a horizontal well cavity at a particular pulse frequency, which are sprayed by the underground injection device 16 to the depressurization cavity 9 , to implement pressure-pulse excitation and stress release on the horizontal well of tectonically-deformed coal bed methane; and a gas-liquid-coal mixture is displaced through the injected high-pressure and high-speed fluids such that the mixture is conveyed towards the vertical well 7 along a depressurizing space and then produced.
  • a depressurization excitation range (a stress release area width/a coal thickness) after the pressure-pulse excitation and the stress release are performed on the horizontal well is ⁇ 15.
  • the product lifting subsystem includes a pulverization disturbance device and a hydraulic jet pump 8 .
  • the hydraulic jet pump 8 is a wide-flow jet pump, is disposed in the vertical well 7 near the bottom of the well, and is configured to lift the gas-liquid-coal mixture to a wellhead.
  • the pulverization disturbance device is disposed between the depressurization cavity 9 and the vertical well 7 for pulverizing coal powder at the bottom of the well, so that the coal powder can be more easily lifted by the hydraulic jet pump 8 to the wellhead of the vertical well 7 . In this way, fluids with coal powder concentration ⁇ 50% are efficiently produced.
  • the gas-liquid-solid separation subsystem includes a coal-liquid-gas separation device 5 and a coal-liquid separation device 4 .
  • An inlet of the coal-liquid-gas separation device 5 is in communication with a wellhead pipeline of the vertical well 7 , and two outlets of the coal-liquid-gas separation device 5 are in communication with a gas storage tank 6 and the coal-liquid separation device 4 respectively.
  • Two outlets of the coal-liquid separation device 4 are in communication with a coal powder collection tank 12 and the liquid storage tank 3 respectively.
  • the subsystem can achieve gas-liquid-coal mixture pre-treating, gas separation, liquid-coal separation, coal-gas collection, excitation liquid (or water) purification and recycling, with gas separation efficiency of above 90% to 95%, excitation liquid separation and collection efficiency of above 80% to 90%, and a coal powder collection capability of above 98%.
  • the main function is to achieve preliminary separation of gas, liquid, and coal powder through the coal-liquid-gas separation device 5 and the coal-liquid separation device 4 .
  • the separated coal and gas respectively enter the coal powder collection tank 12 and the gas storage tank 6 for storage, and the treated excitation liquid enters the liquid storage tank 3 for recycling, to ensure continuous extraction.
  • the monitoring and control subsystem includes three layers of network architecture and software including on-site workstations, monitoring instruments and sensors, and a central server control system. Based on a high-precision sensor technology, through construction of the three layers of network architecture including the sensors, the on-site workstations, and the central server control system, and application of configuration analysis software and an Internet of Things perception technology, a data acquisition and monitoring system that is “accurate, visual, interactive, fast, and intelligent” is formed to detect and control the operation conditions and the execution processes of technical equipment in real time, so as to collect, display, process, and analyze engineering data.
  • the horizontal well hole-collapse cavity-construction depressurization excitation subsystem further includes an abrasive mixing device 14 .
  • An inlet of the abrasive mixing device 14 is in communication with the liquid storage tank 3 and an abrasive tank 13 , and an outlet of the abrasive mixing device 14 is in communication with the inlet of the ground power unit 15 .
  • the addition of a particular proportion of an abrasive to the excitation liquid improves the capability of the excitation liquid to cut a coal rock, thereby improving extraction efficiency.
  • the blade 10 - 5 on the drilling tool 10 is rotated and opened towards the direction of the drill tower 1 .
  • a drilling fluid outlet 10 - 8 is disposed on the right of the blade 10 - 5 , and gradually inclines towards the direction of the blade 10 - 5 when extending towards the outer circumference of the drilling tool 10 from an inner cavity of the drilling tool 10 .
  • drilling fluids can achieve cooling and auxiliary cutting functions like conventional drilling fluids, and can also provide sufficient support for the expansion of the blade 10 - 5 , to reduce rigid deformation of a connecting member with the blade 10 - 5 , and prolong a service life of the device.
  • Pumps in the extraction system are all integrated in a pump group 2 except for the hydraulic jet pump 8 , which is convenient for communication with the liquid storage tank 3 and underground equipment pipelines, thereby reducing the complexity of connections between the devices in the extraction system.
  • a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity includes the following steps:
  • a ground power unit 15 namely, a high-pressure pulse pump in the pump group 2 , injecting high-pressure and high-speed fluids into the horizontal section of the horizontal well 11 at a specified frequency, to cut and pulverize a coal rock and implement pressure-pulse excitation and stress release on the horizontal section of the horizontal well 11 to form a depressurization cavity 9 , then accelerating water into high-velocity jet flows, to further pulverize and flush coal powder, and conveying a formed gas-liquid-coal mixture to the bottom of the vertical well 7 , where during the pressure-pulse excitation and the stress release on the horizontal section of the horizontal well 11 , an abrasive mixing device 14 may be connected between a liquid storage tank 3 and the underground injection device 16 , and through combined action of a high-pressure mud pump and the high-pressure pulse pump in the pump group 2 , an excitation liquid containing an abrasive is injected into the underground, to improve the capability of the excitation liquid to cut
  • step 6 the separated liquid is purified before entering the liquid storage tank 3 to ensure efficient recycling in production.

Abstract

A method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity is provided. A horizontal well drilling and reaming subsystem constructs a U-shaped well in which a horizontal well adjoins a vertical well, and performs a reaming process on a horizontal section of the horizontal well to enlarge a hole diameter. A horizontal well hole-collapse cavity-construction depressurization excitation subsystem performs pressure-pulse excitation and stress release on the horizontal well of tectonically-deformed coal bed methane, and hydraulically displaces a coal-liquid-gas mixture such that the mixture is conveyed towards a vertical well section along a depressurizing space. A product lifting subsystem pulverizes the coal and lifts the mixture towards a wellhead of a vertical well. A gas-liquid-solid separation subsystem separates the coal, liquid and gas. A monitoring and control subsystem detects and controls the operation conditions and the execution processes of technical equipment in real time.

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to the field of coal bed methane extraction, and relates to a method for coal bed methane extraction, and in particular, to a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity.
  • Description of Related Art
  • Tectonically-deformed coal refers to coal whose coal seam is subject to tectonic stress and whose primary structure and construction are significantly destroyed due to cracking, resulting in fractures, wrinkles, polished surfaces, and other structural changes. The extensive development of tectonically-deformed coal and the richness of tectonically-deformed coal bed methane (referred to as CBM) resources are distinguishing features of coal and coal bed methane resources in China. Tectonically-deformed coal resources account for a very high proportion of coal resources that have been discovered in China, and a proportion of a quantity of tectonically-deformed coal bed methane resources to a total quantity of coal bed methane resources in China is larger. Tectonically-deformed coal has prominent features such as rich gas, low permeability, and looseness, and most of tectonically-deformed coal are coal and gas outburst coal seams. Due to its hazards and difficulty in extraction and utilization, the tectonically-deformed coal is mostly discharged into the atmosphere in coal production. The efficient development of tectonically-deformed coal bed methane is of great significance for energy, safety and ecology.
  • A method based on the theory of hydrophobic depressurization, desorption, and gas recovery is a main method for the development of surface wells for in-situ coal bed methane at present. Due to the extremely low permeability of tectonically-deformed coal reservoirs and the poor effect of a reconstruction method such as hydraulic fracturing, the theory of hydrophobic depressurization, desorption, and gas recovery is not suitable for tectonically-deformed coal reservoirs. The results of exploration and development practice also show that all coal bed methane exploration and development technologies based on the theory of hydrophobic depressurization, desorption, and gas recovery, including SVR technologies (vertical well fracturing, U-shaped well fracturing, multi-branched horizontal well fracturing, horizontal well fracturing, and the like), ECBM technologies (CO2-ECBM, N2-ECBM, and the like) and their combined technologies, fail to achieve efficient development of tectonically-deformed coal bed methane. Therefore, efficient exploration and development technologies and equipment for tectonically-deformed coal bed methane have become one of important technical bottlenecks restricting the rapid and scale development of the China's coal bed methane industry.
  • With the in-depth study of coal bed methane extraction technologies, the development theory of mining-induced pressure relief and permeability improvement for tectonically-deformed coal bed methane in a protected layer in a coal mine area provides a new idea for in-situ extraction of tectonically-deformed coal bed methane. However, in actual extraction application, due to the characteristics of tectonically-deformed coal, there are problems such as wellbore fractures caused by overburden deformation and difficulty in connecting coal to coal bed methane production. Therefore, the research and development of a technical theory and a technical method that are suitable for in-situ extraction of tectonically-deformed coal bed methane is an important theoretical and practical way to break the technical bottleneck of efficient development of surface wells for tectonically-deformed coal bed methane in China and realize the exploration and development of coal bed methane in China.
  • SUMMARY OF THE INVENTION
  • To resolve the foregoing problem, the present invention provides a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity, to enable the completion of a large-diameter horizontal well in a loose tectonically-deformed coal reservoir, horizontal well cavity-constructing stress release, effective lifting of mixed fluids, and efficient separation of produced mixtures, thereby achieving efficient and continuous in-situ extraction of tectonically-deformed coal bed methane.
  • To achieve the foregoing objective, the present invention adopts the following technical solution: a method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity. A horizontal well drilling and reaming subsystem constructs a U-shaped well in which a horizontal well adjoins a vertical well, and performs a reaming process on a horizontal section of the horizontal well. A horizontal well hole-collapse cavity-construction depressurization excitation subsystem performs pressure-pulse excitation and stress release on the horizontal well, and hydraulically displaces a coal-liquid-gas mixture such that the mixture is conveyed towards a vertical well section along a depressurizing space. A product lifting subsystem further pulverizes the coal and lifts the mixture towards a wellhead of the vertical well. A gas-liquid-solid separation subsystem separates the coal, liquid and gas. A monitoring and control subsystem detects and controls the operation conditions and the execution processes of technical equipment in real time, so as to collect, display, process, and analyze engineering data. Specific steps are as follows:
  • 1) arranging various devices on the ground and connecting the corresponding devices, and using an existing drilling device and processing technology to construct vertical well sections and kick-off sections of the vertical well and the horizontal well to a target coal seam;
  • 2) replacing the conventional drilling tool with a drilling tool and lowering the drilling tool to the kick-off section of the underground horizontal well, performing three-stage reaming and large-diameter well completion on a loose tectonically-deformed coal seam, and forming a horizontal well section that runs through the vertical well, to complete an open-hole cavity-construction;
  • 3) removing all drilling tools from the well, lowering an underground injection device to a starting point of the horizontal section of the horizontal well, lowering gas-liquid-coal mixture lifting and production devices, namely, a pulverization disturbance device and a hydraulic jet pump to the vertical well, and connecting the wellhead of the vertical well to a coal-liquid-gas separation device;
  • 4) starting a ground power unit, injecting high-pressure and high-speed fluids into the horizontal section of the horizontal well at a specified frequency, to cut and pulverize a coal rock and form a depressurization cavity, then accelerating water into high-velocity jet flows, to further pulverize and flush coal powder, and conveying a formed gas-liquid-coal mixture to the bottom of the vertical well;
  • 5) starting the underground pulverization disturbance device and the hydraulic jet pump, further pulverizing the coal powder that flows into the bottom of the vertical well, and then lifting the coal powder to the ground to enter the coal-liquid-gas separation device; and
  • 6) pre-treating the mixture that enters the coal-liquid-gas separation device, to enable a coal-liquid mixture and coal bed methane that are separated to respectively enter a coal-liquid separation device and a gas storage tank, further treating the coal-liquid mixture that enters the coal-liquid separation device, and storing a coal powder and a liquid that are separated in a coal powder collection tank and a liquid storage tank respectively.
  • Further, in step 2), three-stage reaming rates are respectively 150%, 200%, and 300%, and a diameter increase after reaming is 200% to 300%.
  • Further, in step 4), a depressurization excitation range after the pressure-pulse excitation and the stress release are performed on the horizontal well is ≥15.
  • Further, in step 5), coal powder concentration after the pulverizing is ≤50%.
  • Further, in step 4), the high-pressure and high-speed fluids are mixed with a particular proportion of an abrasive.
  • In the present invention, the drilling tool in the horizontal well drilling and reaming subsystem is designed into a three-stage drilling and reaming tool; and further reaming is implemented through two-way reciprocating drilling construction after drilling in the horizontal section of the horizontal well. In this way, the diameter of the horizontal section is greatly increased, the problem of wellbore collapse induced by overburden deformation resulting from the loose tectonically-deformed coal is avoided, and continuous in-situ extraction of tectonically-deformed coal bed methane is ensured.
  • After completing the open-hole cavity-construction through reaming of the horizontal well, the high-pressure and high-speed fluids are injected into the horizontal well cavity at a particular pulse frequency to further cut and pulverize the medium, to implement the pressure-pulse excitation and the stress release on the horizontal well of the tectonically-deformed coal bed methane, and hydraulically displace the coal-liquid-gas mixture such that the mixture is conveyed towards the vertical well section along the depressurizing space. In this way, subsequent lifting is ensured.
  • The coal powder is further pulverized and the mixture is lifted towards the wellhead of the vertical well through cooperation of the underground pulverization disturbance device and the hydraulic jet pump; and efficient coal-liquid-gas separation for the produced mixture and recycling of the excitation liquid are achieved through the coal-liquid-gas separation device and the coal-liquid separation device.
  • Real-time detection and control of the operation conditions and the execution processes of the technical equipment are implemented through three layers of network architecture and software including on-site workstations, monitoring instruments and sensors, and a central server control system, so as to collect, display, process, and analyze the engineering data. The coordinated operation of subsystems in the entire extraction system achieves efficient and continuous in-situ extraction of the tectonically-deformed coal bed methane.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of an extraction system used in the present invention.
  • FIG. 2 is a schematic structural diagram of a drilling tool in an extraction system used in the present invention.
  • FIG. 2(a) is a schematic state diagram of drilling of the drilling tool.
  • FIG. 2(b) is a schematic state diagram of reaming of the drilling tool.
  • FIG. 3 is a schematic diagram of a depressurization excitation subsystem in an extraction system used in the present invention.
  • In the figures: 1: Drill tower; 2: Pump group; 3: Liquid storage tank; 4: Coal-liquid separation device; 5: Coal-liquid-gas separation device; 6: Gas storage tank; 7: Vertical well; 8: Hydraulic jet pump; 9: Depressurization cavity; 10: Drilling tool; 10-1: Pilot assembly; 10-2: Primary and secondary reaming and retraction assembly; 10-3: Third-stage reaming and retraction assembly; 10-4: Plunger drill bit; 10-5: Blade; 10-6: Second locking mechanism; 10-7: First locking mechanism; 10-8: Drilling fluid outlet; 11: Horizontal well; 12: Coal powder collection tank; 13: Abrasive tank; 14: Abrasive mixing device; 15: Ground power unit; and 16: Underground injection device.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The present invention is further described below with reference to the accompanying drawings (a left-right direction in the following description is the same as a left-right direction in FIG. 1).
  • FIG. 1 to FIG. 3 show a system for extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity that is used in the present invention, which includes a horizontal well drilling and reaming subsystem, a horizontal well hole-collapse cavity-construction depressurization excitation subsystem, a product lifting subsystem, a gas-liquid-solid separation subsystem, and a monitoring and control subsystem. The horizontal well drilling and reaming subsystem includes a drill tower 1, a drilling rig (not shown), a drill column string (not shown), a drilling tool 10, and a drilling fluid circulation system. Connections between the drill tower 1, the drilling rig, and the drill column string are the same as those in the prior art. The drill tower 1 is configured to place and suspend a lifting system, bear the weight of the drilling tool, store a drill pipe and a drill collar, and so on. The drilling rig is configured to power the drilling tool 10. The drill column string is a string consisting of a Kelly bar, a drill pipe, a drill collar, and another underground tool, and is configured to install the drilling tool 10. The drilling tool 10, from a connection end with the drill column string to a drilling end, includes a third-stage reaming and retraction assembly 10-3, a primary and secondary reaming and retraction assembly 10-2, and a pilot assembly 10-1 respectively. The third-stage reaming and retraction assembly 10-3 includes a plurality of expandable and closable blades 10-5 that is circumferentially disposed. The blade 10-5 is locked and positioned by a second locking mechanism 10-6. The primary and secondary reaming and retraction assembly 10-2 includes a plurality of extendable and retractable plunger drill bits 10-4 that is circumferentially disposed. The plunger drill bit 10-4 is locked and positioned by a first locking mechanism 10-7. A connection between a drilling fluid positive circulation system and another component is the same as that in the prior art. During drilling construction of a horizontal well 11, during running towards the direction of a vertical well 7, the plunger drill bit 10-4 is extended to start drilling, and during returning towards the direction of the drill tower 1, the blade 10-5 is opened. Because the diameter after the blade 10-5 is opened is greater than the diameter when the plunger drill bit 10-4 is extended, the horizontal well is reamed, thereby achieving three-stage reaming in rock mass at drillability classes I, II, III, IV and V. Three-stage reaming rates respectively reach 150%, 200%, 300%, and a diameter increase after reaming is 200% to 300%.
  • The horizontal well hole-collapse cavity-construction depressurization excitation subsystem includes a ground power unit 15 and an underground injection device 16. An inlet of the ground power unit 15 is in communication with a liquid storage tank 3, and an outlet of the ground power unit 15 is in communication with the underground injection device 16. The underground injection device 16 is disposed at one side of a depressurization cavity 9 in the horizontal well 11 near the drill tower 1. After completing the open-hole cavity-construction through reaming of the horizontal well 11, a booster pump in the ground power unit 15 injects high-pressure and high-speed fluids to a horizontal well cavity at a particular pulse frequency, which are sprayed by the underground injection device 16 to the depressurization cavity 9, to implement pressure-pulse excitation and stress release on the horizontal well of tectonically-deformed coal bed methane; and a gas-liquid-coal mixture is displaced through the injected high-pressure and high-speed fluids such that the mixture is conveyed towards the vertical well 7 along a depressurizing space and then produced. A depressurization excitation range (a stress release area width/a coal thickness) after the pressure-pulse excitation and the stress release are performed on the horizontal well is ≥15.
  • The product lifting subsystem includes a pulverization disturbance device and a hydraulic jet pump 8. The hydraulic jet pump 8 is a wide-flow jet pump, is disposed in the vertical well 7 near the bottom of the well, and is configured to lift the gas-liquid-coal mixture to a wellhead. The pulverization disturbance device is disposed between the depressurization cavity 9 and the vertical well 7 for pulverizing coal powder at the bottom of the well, so that the coal powder can be more easily lifted by the hydraulic jet pump 8 to the wellhead of the vertical well 7. In this way, fluids with coal powder concentration ≤50% are efficiently produced.
  • The gas-liquid-solid separation subsystem includes a coal-liquid-gas separation device 5 and a coal-liquid separation device 4. An inlet of the coal-liquid-gas separation device 5 is in communication with a wellhead pipeline of the vertical well 7, and two outlets of the coal-liquid-gas separation device 5 are in communication with a gas storage tank 6 and the coal-liquid separation device 4 respectively. Two outlets of the coal-liquid separation device 4 are in communication with a coal powder collection tank 12 and the liquid storage tank 3 respectively. The subsystem can achieve gas-liquid-coal mixture pre-treating, gas separation, liquid-coal separation, coal-gas collection, excitation liquid (or water) purification and recycling, with gas separation efficiency of above 90% to 95%, excitation liquid separation and collection efficiency of above 80% to 90%, and a coal powder collection capability of above 98%. The main function is to achieve preliminary separation of gas, liquid, and coal powder through the coal-liquid-gas separation device 5 and the coal-liquid separation device 4. The separated coal and gas respectively enter the coal powder collection tank 12 and the gas storage tank 6 for storage, and the treated excitation liquid enters the liquid storage tank 3 for recycling, to ensure continuous extraction.
  • The monitoring and control subsystem includes three layers of network architecture and software including on-site workstations, monitoring instruments and sensors, and a central server control system. Based on a high-precision sensor technology, through construction of the three layers of network architecture including the sensors, the on-site workstations, and the central server control system, and application of configuration analysis software and an Internet of Things perception technology, a data acquisition and monitoring system that is “accurate, visual, interactive, fast, and intelligent” is formed to detect and control the operation conditions and the execution processes of technical equipment in real time, so as to collect, display, process, and analyze engineering data.
  • The horizontal well hole-collapse cavity-construction depressurization excitation subsystem further includes an abrasive mixing device 14. An inlet of the abrasive mixing device 14 is in communication with the liquid storage tank 3 and an abrasive tank 13, and an outlet of the abrasive mixing device 14 is in communication with the inlet of the ground power unit 15. The addition of a particular proportion of an abrasive to the excitation liquid improves the capability of the excitation liquid to cut a coal rock, thereby improving extraction efficiency.
  • The blade 10-5 on the drilling tool 10 is rotated and opened towards the direction of the drill tower 1. A drilling fluid outlet 10-8 is disposed on the right of the blade 10-5, and gradually inclines towards the direction of the blade 10-5 when extending towards the outer circumference of the drilling tool 10 from an inner cavity of the drilling tool 10. During drilling, drilling fluids can achieve cooling and auxiliary cutting functions like conventional drilling fluids, and can also provide sufficient support for the expansion of the blade 10-5, to reduce rigid deformation of a connecting member with the blade 10-5, and prolong a service life of the device.
  • Pumps in the extraction system are all integrated in a pump group 2 except for the hydraulic jet pump 8, which is convenient for communication with the liquid storage tank 3 and underground equipment pipelines, thereby reducing the complexity of connections between the devices in the extraction system.
  • A method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity includes the following steps:
  • 1) arranging various devices on the ground and connecting the corresponding devices, and using an existing drilling device and processing technology to construct vertical well sections and kick-off sections of a vertical well 7 and a horizontal well 11 to a target coal seam, where a drilling fluid circulation pump in a pump group 2 provides drilling fluids for the underground during construction;
  • 2) replacing a drilling tool with a drilling tool 10 and lowering the drilling tool 10 to the kick-off section of the underground horizontal well, performing three-stage reaming and large-diameter well completion on a loose tectonically-deformed coal seam, and forming a horizontal well section that runs through the vertical well 7 (forming a U-shaped well in which the horizontal well adjoins the vertical well), to complete an open-hole cavity-construction, where the drilling fluid circulation pump in the pump group 2 provides the drilling fluids for the underground during construction;
  • 3) removing all drilling tools from the well, lowering an underground injection device 16 to a starting point of the horizontal section of the horizontal well 11, lowering gas-liquid-coal mixture lifting and production devices, namely, a pulverization disturbance device and a hydraulic jet pump 8 to the vertical well 7, and connecting a wellhead of the vertical well 7 to a coal-liquid-gas separation device 5;
  • 4) starting a ground power unit 15, namely, a high-pressure pulse pump in the pump group 2, injecting high-pressure and high-speed fluids into the horizontal section of the horizontal well 11 at a specified frequency, to cut and pulverize a coal rock and implement pressure-pulse excitation and stress release on the horizontal section of the horizontal well 11 to form a depressurization cavity 9, then accelerating water into high-velocity jet flows, to further pulverize and flush coal powder, and conveying a formed gas-liquid-coal mixture to the bottom of the vertical well 7, where during the pressure-pulse excitation and the stress release on the horizontal section of the horizontal well 11, an abrasive mixing device 14 may be connected between a liquid storage tank 3 and the underground injection device 16, and through combined action of a high-pressure mud pump and the high-pressure pulse pump in the pump group 2, an excitation liquid containing an abrasive is injected into the underground, to improve the capability of the excitation liquid to cut a coal rock, thereby improving extraction efficiency;
  • 5) starting the underground pulverization disturbance device and hydraulic jet pump 8, further pulverizing the coal powder that flows into the bottom of the vertical well 7, and then lifting the coal powder to the ground to enter the coal-liquid-gas separation device 5; and
  • 6) pre-treating the mixture that enters the coal-liquid-gas separation device 5, to enable a coal-liquid mixture and coal bed methane that are separated to respectively enter a coal-liquid separation device 4 and a gas storage tank 6, further treating the coal-liquid mixture that enters the coal-liquid separation device 4, and storing coal powder and a liquid that are separated in a coal powder collection tank 12 and the liquid storage tank 3 respectively.
  • In step 6), the separated liquid is purified before entering the liquid storage tank 3 to ensure efficient recycling in production.

Claims (8)

1. A method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity, wherein a horizontal well drilling and reaming subsystem constructs a U-shaped well in which a horizontal well adjoins a vertical well, and performs a reaming process on a horizontal section of the horizontal well; a horizontal well hole-collapse cavity-construction depressurization excitation subsystem performs pressure-pulse excitation and stress release on the horizontal well, and hydraulically displaces a coal-liquid-gas mixture such that the mixture is conveyed towards a vertical well section along a depressurizing space; a product lifting subsystem further pulverizes the coal and lifts the mixture towards a wellhead of the vertical well; a gas-liquid-solid separation subsystem separates coal, liquid and gas; and a monitoring and control subsystem detects and controls operation conditions and execution processes of technical equipment in real time, so as to collect, display, process, and analyze engineering data, wherein specific steps are as follows:
1) arranging various devices on a ground and connecting corresponding devices, and using an existing drilling device and processing technology to construct vertical well sections and kick-off sections of a vertical well and a horizontal well to a target coal seam;
2) replacing a conventional drilling tool with a drilling tool and lowering the drilling tool to the kick-off section of the underground horizontal well, performing three-stage reaming and large-diameter well completion on a loose tectonically-deformed coal seam, and forming a horizontal well section that runs through the vertical well, to complete an open-hole cavity-construction;
3) removing all drilling tools from the well, lowering an underground injection device to a starting point of the horizontal section of the horizontal well, lowering gas-liquid-coal mixture lifting and production devices, namely, a pulverization disturbance device and a hydraulic jet pump to the vertical well, and connecting a wellhead of the vertical well to a coal-liquid-gas separation device;
4) starting a ground power unit, injecting high-pressure and high-speed fluids into the horizontal section of the horizontal well at a specified frequency, to cut and pulverize a coal rock and form a depressurization cavity, then accelerating water into high-velocity jet flows, to further pulverize and flush coal powder, and conveying a formed gas-liquid-coal mixture to a bottom of the vertical well;
5) starting the underground pulverization disturbance device and the hydraulic jet pump, further pulverizing the coal powder that flows into the bottom of the vertical well, and then lifting the coal powder to the ground to enter the coal-liquid-gas separation device; and
6) pre-treating the mixture that enters the coal-liquid-gas separation device, to enable a coal-liquid mixture and a coal bed methane that are separated to respectively enter a coal-liquid separation device and a gas storage tank, further treating the coal-liquid mixture that enters the coal-liquid separation device, and storing a coal powder and a liquid that are separated in a coal powder collection tank and a liquid storage tank respectively.
2. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 1, wherein in step 2), three-stage reaming rates are respectively 150%, 200%, and 300%, and a diameter increase after the reaming is 200% to 300%.
3. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 1, wherein in step 4), a depressurization excitation range after the pressure-pulse excitation and the stress release are performed on the horizontal well is ≥15.
4. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 3, wherein in step 5), coal powder concentration after the pulverizing is ≤50%.
5. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 4, wherein in step 4), the high-pressure and high-speed fluids are mixed with a particular proportion of an abrasive.
6. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 2, wherein in step 4), a depressurization excitation range after the pressure-pulse excitation and the stress release are performed on the horizontal well is ≥15.
7. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 6, wherein in step 5), coal powder concentration after the pulverizing is ≤50%.
8. The method of extracting gas from a tectonically-deformed coal seam in-situ by depressurizing a horizontal well cavity according to claim 7, wherein in step 4), the high-pressure and high-speed fluids are mixed with a particular proportion of an abrasive.
US16/960,024 2018-04-28 2018-10-18 Method of extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity Active US10830018B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810404470.2 2018-04-28
CN201810404470 2018-04-28
CN201810404470.2A CN108798516B (en) 2018-04-28 2018-04-28 Cave pressure relief mining method for tectonic coal in-situ coal bed gas horizontal well
PCT/CN2018/110864 WO2019205515A1 (en) 2018-04-28 2018-10-18 Method of extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity

Publications (2)

Publication Number Publication Date
US20200340333A1 true US20200340333A1 (en) 2020-10-29
US10830018B1 US10830018B1 (en) 2020-11-10

Family

ID=64094056

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/960,024 Active US10830018B1 (en) 2018-04-28 2018-10-18 Method of extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity

Country Status (4)

Country Link
US (1) US10830018B1 (en)
CN (1) CN108798516B (en)
AU (1) AU2018421310B2 (en)
WO (1) WO2019205515A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035228B2 (en) * 2018-04-28 2021-06-15 China University Of Mining And Technology Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
CN113565470A (en) * 2021-06-18 2021-10-29 煤炭科学技术研究院有限公司 Gas injection displacement pneumatic pressurization system and method for promoting coal seam gas extraction
CN114033350A (en) * 2021-11-17 2022-02-11 中国矿业大学 Methane in-situ combustion-explosion fracturing circulating type natural gas enhanced extraction system and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339746B (en) * 2018-12-07 2020-08-25 中国矿业大学 Roof separation layer water and coal-based gas collaborative dredging and discharging method
CN111305810A (en) * 2019-11-12 2020-06-19 国家能源集团乌海能源有限责任公司 Outburst prevention drilling device, equipment and control method thereof
CN111852364B (en) * 2020-07-29 2022-03-01 中国石油化工股份有限公司 Cyclone separation and mechanical crushing type coal dust cleaning system and working method thereof
CN114183118A (en) * 2021-12-31 2022-03-15 石家庄铁道大学 Infiltration mining method and device for infiltration-increasing area of low-permeability sandstone uranium ore and terminal equipment
CN116147711B (en) * 2023-04-17 2023-07-11 山西潞安环保能源开发股份有限公司 Device and method for testing coal mine overburden stratum fracture space-time evolution law

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850477A (en) * 1972-02-18 1974-11-26 Univ Syracuse Res Corp Chemical comminution and mining of coal
US6708764B2 (en) * 2002-07-12 2004-03-23 Cdx Gas, L.L.C. Undulating well bore
US8297377B2 (en) * 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6662870B1 (en) * 2001-01-30 2003-12-16 Cdx Gas, L.L.C. Method and system for accessing subterranean deposits from a limited surface area
US6367555B1 (en) * 2000-03-15 2002-04-09 Corley P. Senyard, Sr. Method and apparatus for producing an oil, water, and/or gas well
US6968893B2 (en) * 2002-04-03 2005-11-29 Target Drilling Inc. Method and system for production of gas and water from a gas bearing strata during drilling and after drilling completion
RU2354820C1 (en) * 2007-09-07 2009-05-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Method for coal gasification for production of hydrogen and synthesis gas (versions)
CN101775975A (en) 2010-01-28 2010-07-14 郑州大学 Method for exploiting coal bed gas by hydraulic drilling and pressure relieving
WO2013090979A1 (en) * 2011-12-21 2013-06-27 Linc Energy Ltd Ucg product gas quenching method and apparatus
CN102518412A (en) * 2011-12-29 2012-06-27 郑州大学 Method for mining coal and gas by hydraulic jet grouting washout
CN102518411A (en) 2011-12-29 2012-06-27 郑州大学 Method for mining coal bed gas by hydraulic washout of butted well in manner of pressure relief
CN102425397A (en) * 2011-12-29 2012-04-25 郑州大学 Method for exploiting coal-bed methane by utilizing water force of horizontal pinnate well of double well-shaft to scour, drill and relieve pressure
US8882204B2 (en) * 2012-08-21 2014-11-11 George Anthony Aulisio Apparatus and method for mining coal
CA2852358C (en) * 2013-05-20 2021-09-07 Robert Gardes Continuous circulating concentric casing managed equivalent circulating density (ecd) drilling for methane gas recovery from coal seams
CN104912520B (en) * 2014-03-14 2017-12-29 郑州大学 Horizontally-butted wells sluicing migration release extinction gas production method
CN104763398A (en) * 2015-02-11 2015-07-08 中国石油集团长城钻探工程有限公司 Mining method for deformed coal coalbed methane for V-shaped well bottom plate auxiliary layer
CN104847263A (en) * 2015-04-30 2015-08-19 中煤科工集团西安研究院有限公司 Coal bed methane far-end butt joint horizontal well drilling method
CN107387034B (en) * 2017-08-30 2020-06-09 中煤科工集团西安研究院有限公司 Extraction method of horizontal coal bed gas well completed by non-well-cementing casing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035228B2 (en) * 2018-04-28 2021-06-15 China University Of Mining And Technology Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
CN113565470A (en) * 2021-06-18 2021-10-29 煤炭科学技术研究院有限公司 Gas injection displacement pneumatic pressurization system and method for promoting coal seam gas extraction
CN114033350A (en) * 2021-11-17 2022-02-11 中国矿业大学 Methane in-situ combustion-explosion fracturing circulating type natural gas enhanced extraction system and method

Also Published As

Publication number Publication date
CN108798516A (en) 2018-11-13
AU2018421310B2 (en) 2021-04-22
AU2018421310A1 (en) 2020-07-02
CN108798516B (en) 2020-08-04
US10830018B1 (en) 2020-11-10
WO2019205515A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US10934817B2 (en) System for extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
US10830018B1 (en) Method of extracting gas from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
AU2018420473B2 (en) Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
AU2018420472B2 (en) Simulation test method for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
AU2014336858B2 (en) Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body
CN103195468A (en) System process for conducting efficient strengthened extraction in surrounding rock
Qian et al. Application of zipper-fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin
CN103939077A (en) Perforation fracturing permeability-improvement method for high-stress low-porosity coal seam
CN103306657B (en) A kind of coal seam cutting release is anti-reflection and slot holding device and method
CN106285599A (en) A kind of waterpower changing of the relative positions release anti-reflection draining coal seam gas method
CN206957683U (en) A kind of coal seam pressure relief and permeability improvement system
CN105804786A (en) Method for layer penetrating, drilling, pressing punching and permeability improving of soft coal seam floor
CN111827878A (en) Method for quickly and accurately probing hidden water inrush channel of coal seam floor
CN111441817A (en) Method for reinforcing gas extraction by synergistic effect of coal seam drilling jet fracturing and mining pressure
CN114542164A (en) Co-production and CO production of fluidized coal and coal bed gas in deep coal bed2Reservoir integration method
Bo et al. Reverse circulation DTH hammer drilling technique
CN202991106U (en) Drilling spraying dust-removing device
WO2019205517A1 (en) Coalbed methane horizontal well hole collapse cave-building pressure relief developing system and method
CN105804747A (en) Hydraulic drilling and bursting exploitation method for ultra-thin coal seam
CN110541727A (en) coal bed gas ground treatment method
Cao Application Idea of Hydraulic Cutting in the Development of Horizontal Well of Coalbed Methane
CN117703270A (en) Mining system and method
CN116220620A (en) Pressure relief and permeability improvement device and method for coal seam drilling
Wang Technological framework of coordinated coal mining and coalbed methane
CN104481434A (en) Method for improving debris carrying ability of drilling fluid

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANG, SHUXUN;LIU, SHIQI;CAO, LIWEN;AND OTHERS;REEL/FRAME:053143/0644

Effective date: 20200623

Owner name: XUZHOU OLIVINE GEOSCIENCE & GEOTECH CO., LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANG, SHUXUN;LIU, SHIQI;CAO, LIWEN;AND OTHERS;REEL/FRAME:053143/0644

Effective date: 20200623

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE