US20200289609A1 - Peptidomimetic macrocycles and uses thereof - Google Patents

Peptidomimetic macrocycles and uses thereof Download PDF

Info

Publication number
US20200289609A1
US20200289609A1 US16/818,284 US202016818284A US2020289609A1 US 20200289609 A1 US20200289609 A1 US 20200289609A1 US 202016818284 A US202016818284 A US 202016818284A US 2020289609 A1 US2020289609 A1 US 2020289609A1
Authority
US
United States
Prior art keywords
hours
days
macrocycle
peptidomimetic macrocycle
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/818,284
Other languages
English (en)
Inventor
Vojislav Vukovic
Luis CARVAJAL
David Allen Annis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aileron Therapeutics Inc
Original Assignee
Aileron Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aileron Therapeutics Inc filed Critical Aileron Therapeutics Inc
Priority to US16/818,284 priority Critical patent/US20200289609A1/en
Publication of US20200289609A1 publication Critical patent/US20200289609A1/en
Assigned to AILERON THERAPEUTICS, INC. reassignment AILERON THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANNIS, DAVID ALLEN, Carvajal, Luis, VUKOVIC, VOJISLAV
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids

Definitions

  • Myelosuppression relates to the destruction of bone marrow, while mucositis involves inflammation and ulceration of mucous membranes of the digestive tract. Side effects such as myelosuppression and mucositis can limit the dose of an anticancer therapy that can be safely administered to a patient.
  • the disclosure provides a method of treating a tumor in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptidomimetic macrocycle and a therapeutically effective amount of a first additional pharmaceutically-active agent, wherein the administration of the peptidomimetic macrocycle induces cell cycle arrest in a non-cancerous tissue in the subject, the administration of the peptidomimetic macrocycle does not induce cell cycle arrest in the tumor; and the administration of the peptidomimetic macrocycle does not induce apoptosis in the tumor.
  • the disclosure provides a method of treating a cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptidomimetic macrocycle and a therapeutically effective amount of a first additional pharmaceutically-active agent, wherein the cancer has a p53 deactivating mutation; a non-cancerous tissue of the subject comprises a functional p53 protein; and the non-cancerous tissue is bone marrow or digestive tract tissue.
  • the disclosure provides a method of treating a tumor in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a peptidomimetic macrocycle and a therapeutically effective amount of a first additional pharmaceutically-active agent, wherein the administration of the peptidomimetic macrocycle does not induce cell cycle arrest in the tumor; the administration of the peptidomimetic macrocycle does not induce apoptosis in the tumor; the therapeutically effective amount of the first additional pharmaceutically-active agent is associated with a side effect; and the administration of the peptidomimetic macrocycle reduces a likelihood of the subject developing the side effect.
  • FIG. 1 shows the human wild type p53 protein sequence (SEQ ID NO: 1949).
  • FIG. 2 presents a schematic showing dose dependent effects of peptidomimetic macrocycles on cell cycle arrest and cell death.
  • FIG. 3 presents a schematic showing the mechanism of how a combination treatment of chemotherapy and the peptidomimetic macrocycle AP-1 can treat p53 mutant tumors and prevent myelosuppression.
  • FIG. 4 presents data that shows the effect of AP-1 in p53 wild type cells vs. p53 mutant cells.
  • FIG. 5 presents data on the effect of AP-1 on apoptosis (top panel) and cell cycle arrest (bottom panel).
  • the following dose levels of AP-1 are represented in order from left to right: vehicle control, 1 ⁇ M, 5 ⁇ M, and 10 ⁇ M.
  • the following dose levels of AP-1 are represented in order from left to right: vehicle control, 1 ⁇ M, and 2.5 ⁇ M.
  • FIG. 6 shows the effect of AP-1 on DNA-synthesis and cell cycle arrest in CD34 + bone marrow cells.
  • FIG. 7 shows the percentage of 5-ethynyl-2′-deoxyuridine (EdU) positive CD34 + bone marrow cells (which is indicative of cells in S-phase) at two different time points following treatment with vehicle or AP-1.
  • EdU 5-ethynyl-2′-deoxyuridine
  • FIG. 8 shows the effect of pretreatment with AP-1 on topotecan induced DNA damage as measured by ⁇ H2AX incorporation.
  • FIG. 9 shows mRNA expression levels of p21, p53 upregulated modulator of apoptosis (PUMA), and Noxa in mouse bone marrow cells following in vivo treatment with a single dose of AP-1.
  • PUMA p53 upregulated modulator of apoptosis
  • FIG. 10 shows EdU incorporation in hematopoietic stem and progenitor cells following in vivo treatment with a single dose of AP-1 at 10 mg/kg.
  • FIG. 11 shows EdU incorporation in lineage negative, Kit positive hematopoietic stem and progenitor cells following in vivo treatment with a single dose of AP-1.
  • FIG. 12 shows serum levels of macrophage inhibitory cytokine-1 (MIC-1) in mice following treatment with a single dose of AP-1.
  • FIG. 13 shows p53, p21, and bromodeoxyuridine (BrdU) staining in MCF-7 mouse tumors following treatment with 20 mg/kg AP-1.
  • FIG. 14 shows quantification of p53, p21, poly(ADP-ribose) polymerase (PARP), and BrdU staining in MCF-7 tumor tissue following treatment with 20 mg/kg AP-1.
  • PARP poly(ADP-ribose) polymerase
  • FIG. 15 shows MCF-7.1 tumor volume in mice following treatment with vehicle, AP-1, Abraxane®, or AP-1 in combination with Abraxane®.
  • FIG. 16A and FIG. 16B show neutrophil levels is mice following treatment with vehicle, AP-1, topotecan, or a combination of AP-1 and topotecan.
  • FIG. 16C shows neutrophil levels in mice of two different treatment groups.
  • FIG. 16D shows neutrophil levels in mice of two different treatment groups.
  • FIG. 17A shows median tumor volume and mouse survival in a MC38 tumor mouse cancer model following treatment with vehicle, AP-1, topotecan, or a combination of AP-1 and topotecan.
  • FIG. 17B shows median tumor volume and mouse survival in a H69 tumor mouse cancer model following treatment with vehicle, AP-1, topotecan, or a combination of AP-1 and topotecan.
  • FIG. 18A shows neutrophil levels in mice following treatment with vehicle, AP-1, carboplatin and paclitaxel, or carboplatin and paclitaxel in combination with AP-1.
  • FIG. 18B shows neutrophil levels in mice of two separate treatment groups.
  • FIG. 19 shows neutrophil levels in mice following treatment with vehicle, AP-1, docetaxel, or AP-1 in combination with docetaxel.
  • FIG. 21 shows a schematic of the study design for a small cell lung cancer Phase 1b dose expansion study.
  • FIG. 23 shows histological sections of gut tissue from mice treated with topotecan alone or topotecan in combination with AP-1.
  • FIG. 24A shows histological scores of hypertrophy/hyperplasia in intestinal tissue of mice following treatment with vehicle, AP-1, topotecan, or a combination of AP-1 and topotecan.
  • FIG. 24B shows histological scores of hypertrophy/hyperplasia in intestinal tissue of mice in two separate treatment groups.
  • Anticancer therapies such as, for example, chemotherapeutic agents can have dose limiting side effects that can limit the efficacy of such therapies.
  • Dose limiting side effects can include, for example, myelosuppression and mucositis. Mucositis can lead to painful inflammation and ulceration of mucous membranes lining the digestive tract. Ulcerations can lead to weight loss, infection, and/or sepsis.
  • Myelosuppression can lead to a decrease in the production of cells responsible for providing immunity (leukocytes), carrying oxygen (erythrocytes), and the mediation of blood clotting (thrombocytes).
  • Myelosuppression can have serious consequences for a subject and can result in a weakened immune system, anemia, neutropenia, thrombocytopenia, and/or spontaneous and severe bleeding. Mucositis and myelosuppression can result from anticancer therapy-induced cytotoxicity in cells of the digestive tract and bone marrow, respectively. In some instances, inducing cell cycle arrest in cells can protect the cells from the cytotoxic effects of anticancer therapies (e.g., chemotherapeutic agents).
  • anticancer therapies e.g., chemotherapeutic agents
  • Cell cycle arrest can be induced via activation of the human transcription factor protein p53, which is encoded by the TP53 gene.
  • the E3 ubiquitin ligase MDM2 also known as HDM2, negatively regulates p53 function through a direct binding interaction that neutralizes the p53 transactivation activity. Neutralization of p53 transactivation activity leads to export from the nucleus of p53 protein, which targets p53 for degradation via the ubiquitylation-proteasomal pathway.
  • MDMX (MDM4) is a negative regulator of p53, and significant structural homology exists between the p53 binding interfaces of MDM2 and MDMX.
  • the p53-MDM2 and p53-MDMX protein-protein interactions are mediated by the same 15-residue alpha-helical transactivation domain of p53, which inserts into hydrophobic clefts on the surface of MDM2 and MDMX.
  • Three residues within this domain of p53 (F19, W23, and L26) are essential for binding to MDM2 and MDMX.
  • p53-based peptidomimetic macrocycles that modulate an activity of p53.
  • Peptidomimetic macrocycles of the disclosure can modulate p53 activity by, for example, inhibiting the interactions between p53 and MDM2 and/or p53 and MDMX proteins.
  • p53-based peptidomimetic macrocycles that can be used to mitigate a side effect (e.g., myelosuppression or mucositis) caused by a second pharmaceutically-active agent.
  • a method disclosed herein can comprise treating cancer in subject in need thereof by administering a peptidomimetic macrocycles in combination with a second pharmaceutically-active agent (e.g., a chemotherapeutic agent).
  • a second pharmaceutically-active agent e.g., a chemotherapeutic agent
  • the peptidomimetic macrocycle can induce cell cycle arrest in the bone marrow and/or digestive tract tissue of the subject and mitigate a myelosuppression related side effect (e.g., neutropenia or thrombocytopenia) and/or mucositis caused by the second pharmaceutically-active agent.
  • microcycle refers to a molecule having a chemical structure including a ring or cycle formed by at least 9 covalently bonded atoms.
  • peptidomimetic macrocycle or “crosslinked polypeptide” refers to a compound comprising a plurality of amino acid residues joined by a plurality of peptide bonds and at least one macrocycle-forming linker which forms a macrocycle between a first naturally-occurring or non-naturally-occurring amino acid residue (or analogue) and a second naturally-occurring or non-naturally-occurring amino acid residue (or analogue) within the same molecule.
  • Peptidomimetic macrocycle include embodiments where the macrocycle-forming linker connects the ⁇ -carbon of the first amino acid residue (or analogue) to the ⁇ -carbon of the second amino acid residue (or analogue).
  • the peptidomimetic macrocycles optionally include one or more non-peptide bonds between one or more amino acid residues and/or amino acid analogue residues, and optionally include one or more non-naturally-occurring amino acid residues or amino acid analogue residues in addition to any which form the macrocycle.
  • a “corresponding uncrosslinked polypeptide” when referred to in the context of a peptidomimetic macrocycle is understood to relate to a polypeptide of the same length as the macrocycle and comprising the equivalent natural amino acids of the wild-type sequence corresponding to the macrocycle.
  • AP-1 is an alpha helical hydrocarbon crosslinked polypeptide macrocycle with an amino acid sequence less than 20 amino acids long that is derived from the transactivation domain of wild type human p53 protein.
  • AP-1 contains a phenylalanine, a tryptophan and a leucine amino acid in the same positions relative to each other as in the transactivation domain of wild type human p53 protein.
  • AP-1 has a single cross link spanning amino acids in the i to the i+7 position of the amino acid sequence and has more than three amino acids between the i+7 position and the carboxyl terminus.
  • AP-1 binds to human MDM2 and MDM4 and has an observed mass of 950-975 m/e as measured by electrospray ionization-mass spectrometry.
  • the term “stability” refers to the maintenance of a defined secondary structure in solution by a peptidomimetic macrocycle as measured by circular dichroism, NMR or another biophysical measure, or resistance to proteolytic degradation in vitro or in vivo.
  • secondary structures contemplated herein are ⁇ -helices, 3 10 helices, ⁇ -turns, and ⁇ -pleated sheets.
  • helical stability refers to the maintenance of an ⁇ -helical structure by a peptidomimetic macrocycle as measured by circular dichroism or NMR.
  • a peptidomimetic macrocycle can exhibit at least a 1.25, 1.5, 1.75, or 2-fold increase in ⁇ -helicity as determined by circular dichroism compared to a corresponding uncrosslinked macrocycle.
  • amino acid refers to a molecule containing both an amino group and a carboxyl group. Suitable amino acids include, without limitation, both the D- and L-isomers of the naturally-occurring amino acids, as well as non-naturally-occurring amino acids prepared by organic synthesis or other metabolic routes.
  • amino acid as used herein, includes, without limitation, ⁇ -amino acids, natural amino acids, non-natural amino acids, and amino acid analogues.
  • ⁇ -amino acid refers to a molecule containing both an amino group and a carboxyl group bound to a carbon which is designated the ⁇ -carbon.
  • ⁇ -amino acid refers to a molecule containing both an amino group and a carboxyl group in a ⁇ configuration.
  • naturally-occurring amino acid refers to any one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.
  • “Hydrophobic amino acids” include small hydrophobic amino acids and large hydrophobic amino acids. “Small hydrophobic amino acids” are glycine, alanine, proline, and analogues thereof. “Large hydrophobic amino acids” are valine, leucine, isoleucine, phenylalanine, methionine, tryptophan, and analogues thereof. “Polar amino acids” are serine, threonine, asparagine, glutamine, cysteine, tyrosine, and analogues thereof. “Charged amino acids” are lysine, arginine, histidine, aspartate, glutamate, and analogues thereof.
  • amino acid analogue refers to a molecule which is structurally similar to an amino acid and which can be substituted for an amino acid in the formation of a peptidomimetic macrocycle.
  • Amino acid analogues include, without limitation, ⁇ -amino acids and amino acids wherein the amino or carboxy group is substituted by a similarly reactive group (e.g., substitution of the primary amine with a secondary or tertiary amine, or substitution of the carboxy group with an ester).
  • non-natural amino acid refers to an amino acid which is not one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.
  • Non-natural amino acids or amino acid analogues include, without limitation, structures according to the following:
  • Amino acid analogues include ⁇ -amino acid analogues.
  • ⁇ -amino acid analogues include, but are not limited to, the following: cyclic ⁇ -amino acid analogues; ⁇ -alanine; (R)- ⁇ -phenylalanine; (R)-1,2,3,4-tetrahydro-isoquinoline-3-acetic acid; (R)-3-amino-4-(1-naphthyl)-butyric acid; (R)-3-amino-4-(2,4-dichlorophenyl)butyric acid; (R)-3-amino-4-(2-chlorophenyl)-butyric acid; (R)-3-amino-4-(2-cyanophenyl)-butyric acid; (R)-3-amino-4-(2-fluorophenyl)-butyric acid; (R)-3-amino-4-(2-furyl)-butyric acid;
  • Amino acid analogues include analogues of alanine, valine, glycine or leucine.
  • Examples of amino acid analogues of alanine, valine, glycine, and leucine include, but are not limited to, the following: ⁇ -methoxyglycine; ⁇ -allyl-L-alanine; ⁇ -aminoisobutyric acid; ⁇ -methyl-leucine; ⁇ -(1-naphthyl)-D-alanine; ⁇ -(1-naphthyl)-L-alanine; ⁇ -(2-naphthyl)-D-alanine; ⁇ -(2-naphthyl)-L-alanine; ⁇ -(2-pyridyl)-D-alanine; ⁇ -(2-pyridyl)-L-alanine; ⁇ -(2-thienyl)-D-alanine; ⁇ -(2-thi
  • Amino acid analogues include analogues of arginine or lysine.
  • amino acid analogues of arginine and lysine include, but are not limited to, the following: citrulline; L-2-amino-3-guanidinopropionic acid; L-2-amino-3-ureidopropionic acid; L-citrulline; Lys(Me) 2 -OH; Lys(N 3 )—OH; N ⁇ -benzyloxycarbonyl-L-ornithine; N ⁇ -nitro-D-arginine; N ⁇ -nitro-L-arginine; ⁇ -methyl-ornithine; 2,6-diaminoheptanedioic acid; L-omithine; (N ⁇ -1-(4,4-dimethyl-2,6-dioxo-cyclohex-1-ylidene)ethyl)-D-ornithine; (N ⁇ -1-(4,4-di
  • Amino acid analogues include analogues of aspartic or glutamic acids.
  • Examples of amino acid analogues of aspartic and glutamic acids include, but are not limited to, the following: ⁇ -methyl-D-aspartic acid; ⁇ -methyl-glutamic acid; ⁇ -methyl-L-aspartic acid; ⁇ -methylene-glutamic acid; (N- ⁇ -ethyl)-L-glutamine; [N- ⁇ -(4-aminobenzoyl)]-L-glutamic acid; 2,6-diaminopimelic acid; L- ⁇ -aminosuberic acid; D-2-aminoadipic acid; D- ⁇ -aminosuberic acid; ⁇ -aminopimelic acid; iminodiacetic acid; L-2-aminoadipic acid; threo-3-methyl-aspartic acid; ⁇ -carboxy-D-glutamic acid ⁇ , ⁇ -di-t-butyl este
  • Amino acid analogues include analogues of cysteine and methionine.
  • amino acid analogues of cysteine and methionine include, but are not limited to, Cys(farnesyl)-OH, Cys(farnesyl)-OMe, ⁇ -methyl-methionine, Cys(2-hydroxyethyl)-OH, Cys(3-aminopropyl)-OH, 2-amino-4-(ethylthio)butyric acid, buthionine, buthioninesulfoximine, ethionine, methionine methylsulfonium chloride, selenomethionine, cysteic acid, [2-(4-pyridyl)ethyl]-DL-penicillamine, [2-(4-pyridyl)ethyl]-L-cysteine, 4-methoxybenzyl-D-penicillamine, 4-methoxybenzyl-L-penicill
  • Amino acid analogues include analogues of phenylalanine and tyrosine.
  • amino acid analogues of phenylalanine and tyrosine include ⁇ -methyl-phenylalanine, ⁇ -hydroxyphenylalanine, ⁇ -methyl-3-methoxy-DL-phenylalanine, ⁇ -methyl-D-phenylalanine, ⁇ -methyl-L-phenylalanine, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, 2,4-dichloro-phenylalanine, 2-(trifluoromethyl)-D-phenylalanine, 2-(trifluoromethyl)-L-phenylalanine, 2-bromo-D-phenylalanine, 2-bromo-L-phenylalanine, 2-chloro-D-phenylalanine, 2-chloro-L-phenylalanine, 2-cyano-D-phenylalanine, 2-cyano-L-
  • Amino acid analogues include analogues of proline.
  • Examples of amino acid analogues of proline include, but are not limited to, 3,4-dehydro-proline, 4-fluoro-proline, cis-4-hydroxy-proline, thiazolidine-2-carboxylic acid, and trans-4-fluoro-proline.
  • Amino acid analogues include analogues of serine and threonine.
  • Examples of amino acid analogues of serine and threonine include, but are not limited to, 3-amino-2-hydroxy-5-methylhexanoic acid, 2-amino-3-hydroxy-4-methylpentanoic acid, 2-amino-3-ethoxybutanoic acid, 2-amino-3-methoxybutanoic acid, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-amino-3-benzyloxypropionic acid, 2-amino-3-benzyloxypropionic acid, 2-amino-3-ethoxypropionic acid, 4-amino-3-hydroxybutanoic acid, and ⁇ -methylserine.
  • Amino acid analogues include analogues of tryptophan.
  • Examples of amino acid analogues of tryptophan include, but are not limited to, the following: ⁇ -methyl-tryptophan; ⁇ -(3-benzothienyl)-D-alanine; ⁇ -(3-benzothienyl)-L-alanine; 1-methyl-tryptophan; 4-methyl-tryptophan; 5-benzyloxy-tryptophan; 5-bromo-tryptophan; 5-chloro-tryptophan; 5-fluoro-tryptophan; 5-hydroxy-tryptophan; 5-hydroxy-L-tryptophan; 5-methoxy-tryptophan; 5-methoxy-L-tryptophan; 5-methyl-tryptophan; 6-bromo-tryptophan; 6-chloro-D-tryptophan; 6-chloro-tryptophan; 6-fluoro-tryptophan; 6-methyl-tryptophan; 7-benzy
  • amino acid analogues are racemic.
  • the D isomer of the amino acid analogue is used.
  • the L isomer of the amino acid analogue is used.
  • the amino acid analogue comprises chiral centers that are in the R or S configuration.
  • the amino group(s) of a ⁇ -amino acid analogue is substituted with a protecting group, e.g., tert-butyloxycarbonyl (BOC group), 9-fluorenylmethyloxycarbonyl (FMOC), tosyl, and the like.
  • the carboxylic acid functional group of a ⁇ -amino acid analogue is protected, e.g., as its ester derivative.
  • the salt of the amino acid analogue is used.
  • non-essential amino acid residue is a residue that can be altered from the wild-type sequence of a polypeptide without abolishing or substantially abolishing its essential biological or biochemical activity (e.g., receptor binding or activation).
  • essential amino acid residue is a residue that, when altered from the wild-type sequence of the polypeptide, results in abolishing or substantially abolishing the polypeptide's essential biological or biochemical activity.
  • a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
  • Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., K, R, H), acidic side chains (e.g., D, E), uncharged polar side chains (e.g., G, N, Q, S, T, Y, C), nonpolar side chains (e.g., A, V, L, I, P, F, M, W), beta-branched side chains (e.g., T, V, I) and aromatic side chains (e.g., Y, F, W, H).
  • basic side chains e.g., K, R, H
  • acidic side chains e.g., D, E
  • uncharged polar side chains e.g., G, N, Q, S, T, Y, C
  • nonpolar side chains e.g., A, V, L
  • a predicted nonessential amino acid residue in a polypeptide is replaced with another amino acid residue from the same side chain family.
  • Other examples of acceptable substitutions are substitutions based on isosteric considerations (e.g., norleucine for methionine) or other properties (e.g., 2-thienylalanine for phenylalanine, or 6-Cl-tryptophan for tryptophan).
  • capping group refers to the chemical moiety occurring at either the carboxy or amino terminus of the polypeptide chain of the subject peptidomimetic macrocycle.
  • the capping group of a carboxy terminus includes an unmodified carboxylic acid (i.e. —COOH) or a carboxylic acid with a substituent.
  • the carboxy terminus can be substituted with an amino group to yield a carboxamide at the C-terminus.
  • substituents include but are not limited to primary, secondary, and tertiary amines, including pegylated secondary amines.
  • Representative secondary amine capping groups for the C-terminus include:
  • the capping group of an amino terminus includes an unmodified amine (i.e. —NH 2 ) or an amine with a substituent.
  • the amino terminus can be substituted with an acyl group to yield a carboxamide at the N-terminus.
  • substituents include but are not limited to substituted acyl groups, including C 1 -C 6 carbonyls, C 7 -C 30 carbonyls, and pegylated carbamates.
  • Representative capping groups for the N-terminus include, but are not limited to, 4-FBzl (4-fluoro-benzyl) and the following:
  • member refers to the atoms that form or can form the macrocycle, and excludes substituent or side chain atoms.
  • cyclodecane, 1,2-difluoro-decane and 1,3-dimethyl cyclodecane are all considered ten-membered macrocycles as the hydrogen or fluoro substituents or methyl side chains do not participate in forming the macrocycle.
  • amino acid side chain refers to a moiety attached to the ⁇ -carbon (or another backbone atom) in an amino acid.
  • amino acid side chain for alanine is methyl
  • amino acid side chain for phenylalanine is phenylmethyl
  • amino acid side chain for cysteine is thiomethyl
  • amino acid side chain for aspartate is carboxymethyl
  • amino acid side chain for tyrosine is 4-hydroxyphenylmethyl, etc.
  • Other non-naturally-occurring amino acid side chains are also included, for example, those that occur in nature (e.g., an amino acid metabolite) or those that are made synthetically (e.g., an ⁇ , ⁇ di-substituted amino acid).
  • ⁇ , ⁇ di-substituted amino acid refers to a molecule or moiety containing both an amino group and a carboxyl group bound to a carbon (the ⁇ -carbon) that is attached to two natural or non-natural amino acid side chains.
  • polypeptide encompasses two or more naturally- or non-naturally-occurring amino acids joined by a covalent bond (e.g., an amide bond).
  • Polypeptides as described herein include full length proteins (e.g., fully processed proteins) as well as shorter amino acid sequences (e.g., fragments of naturally-occurring proteins or synthetic polypeptide fragments).
  • first C-terminal amino acid refers to the amino acid which is closest to the C-terminus.
  • second C-terminal amino acid refers to the amino acid attached at the N-terminus of the first C-terminal amino acid.
  • macrocyclization reagent or “macrocycle-forming reagent” as used herein refers to any reagent which can be used to prepare a peptidomimetic macrocycle by mediating the reaction between two reactive groups.
  • Reactive groups can be, for example, an azide and alkyne, in which case macrocyclization reagents include, without limitation, Cu reagents such as reagents which provide a reactive Cu(I) species, such as CuBr, CuI or CuOTf, as well as Cu(II) salts such as Cu(CO 2 CH 3 ) 2 , CuSO 4 , and CuCl 2 that can be converted in situ to an active Cu(I) reagent by the addition of a reducing agent such as ascorbic acid or sodium ascorbate.
  • a reducing agent such as ascorbic acid or sodium ascorbate.
  • Macrocyclization reagents can additionally include, for example, Ru reagents known in the art such as Cp*RuCl(PPh 3 ) 2 , [Cp*RuCl] 4 or other Ru reagents which can provide a reactive Ru(II) species.
  • the reactive groups are terminal olefins.
  • the macrocyclization reagents or macrocycle-forming reagents are metathesis catalysts including, but not limited to, stabilized, late transition metal carbene complex catalysts such as Group VIII transition metal carbene catalysts.
  • such catalysts are Ru and Os metal centers having a +2 oxidation state, an electron count of 16 and pentacoordinated.
  • catalysts have W or Mo centers.
  • the reactive groups are thiol groups.
  • the macrocyclization reagent is, for example, a linker functionalized with two thiol-reactive groups such as halogen groups.
  • halo or halogen refers to fluorine, chlorine, bromine or iodine or a radical thereof.
  • alkyl refers to a hydrocarbon chain that is a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C 1 -C 10 indicates that the group has from 1 to 10 (inclusive) carbon atoms in it. In the absence of any numerical designation, “alkyl” is a chain (straight or branched) having 1 to 20 (inclusive) carbon atoms.
  • alkylene refers to a divalent alkyl (i.e., —R—).
  • alkenyl refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon double bonds.
  • the alkenyl moiety contains the indicated number of carbon atoms. For example, C 2 -C 10 indicates that the group has from 2 to 10 (inclusive) carbon atoms.
  • lower alkenyl refers to a C 2 -C 6 alkenyl chain. In the absence of any numerical designation, “alkenyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms.
  • alkynyl refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon triple bonds.
  • the alkynyl moiety contains the indicated number of carbon atoms.
  • C 2 -C 10 indicates that the group has from 2 to 10 (inclusive) carbon atoms.
  • lower alkynyl refers to a C 2 -C 6 alkynyl chain.
  • alkynyl is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms.
  • aryl refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like.
  • arylalkoxy refers to an alkoxy substituted with aryl.
  • Arylalkyl refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with a C 1 -C 5 alkyl group, as defined above.
  • Representative examples of an arylalkyl group include, but are not limited to, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-propylphenyl, 3-propylphenyl, 4-propylphenyl, 2-butylphenyl, 3-butylphenyl, 4-butylphenyl, 2-pentylphenyl, 3-pentylphenyl, 4-pentylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 2-isobutylphenyl, 3-isobutylphenyl, 4-isopropylphenyl
  • Arylamido refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with one or more —C(O)NH 2 groups.
  • Representative examples of an arylamido group include 2-C(O)NH 2 -phenyl, 3-C(O)NH 2 -phenyl, 4-C(O)NH 2 -phenyl, 2-C(O)NH 2 -pyridyl, 3-C(O)NH 2 -pyridyl, and 4-C(O)NH 2 -pyridyl.
  • Alkylheterocycle refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a heterocycle.
  • Representative examples of an alkylheterocycle group include, but are not limited to, —CH 2 CH 2 -morpholine, —CH 2 CH 2 -piperidine, —CH 2 CH 2 CH 2 -morpholine, and —CH 2 CH 2 CH 2 -imidazole.
  • Alkylamido refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a —C(O)NH 2 group.
  • an alkylamido group include, but are not limited to, —CH 2 —C(O)NH 2 , —CH 2 CH 2 —C(O)NH 2 , —CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH(C(O)NH 2 )CH 3 , —CH 2 CH(C(O)NH 2 )CH 2 CH 3 , —CH(C(O)NH 2 )CH 2 CH 3 , —C(CH 3 ) 2 CH 2 C(O)NH 2 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3
  • Alkanol refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a hydroxyl group.
  • Representative examples of an alkanol group include, but are not limited to, —CH 2 OH, —CH 2 CH 2 OH, —CH 2 CH 2 CH 2 OH, —CH 2 CH 2 CH 2 CH 2 OH, —CH 2 CH 2 CH 2 CH 2 CH 2 OH, —CH 2 CH(OH)CH 3 , —CH 2 CH(OH)CH 2 CH 3 , —CH(OH)CH 3 and —C(CH 3 ) 2 CH 2 OH.
  • Alkylcarboxy refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a —COOH group.
  • Representative examples of an alkylcarboxy group include, but are not limited to, —CH 2 COOH, —CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH(COOH)CH 3 , —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH(COOH)CH 2 CH 3 , —CH(COOH)CH 2 CH 3 and —C(CH 3 ) 2 CH 2 COOH.
  • cycloalkyl as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally is optionally substituted.
  • Some cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
  • heteroaryl refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent.
  • heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like.
  • heteroarylalkyl or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl.
  • heteroarylalkoxy refers to an alkoxy substituted with heteroaryl.
  • heterocyclyl refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring are substituted by a substituent.
  • heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
  • substituted refers to a group replacing a second atom or group such as a hydrogen atom on any molecule, compound or moiety.
  • Suitable substituents include, without limitation, halo, hydroxy, mercapto, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, thioalkoxy, aryloxy, amino, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, and cyano groups.
  • the compounds disclosed herein contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are included unless expressly provided otherwise.
  • the compounds disclosed herein are also represented in multiple tautomeric forms, in such instances, the compounds include all tautomeric forms of the compounds described herein (e.g., if alkylation of a ring system results in alkylation at multiple sites, the disclosure includes all such reaction products). All such isomeric forms of such compounds are included unless expressly provided otherwise. All crystal forms of the compounds described herein are included unless expressly provided otherwise.
  • the terms “increase” and “decrease” mean, respectively, to cause a statistically significantly (i.e., p ⁇ 0.1) increase or decrease of at least 5%.
  • variable is equal to any of the values within that range.
  • variable is equal to any integer value within the numerical range, including the end-points of the range.
  • variable is equal to any real value within the numerical range, including the end-points of the range.
  • a variable which is described as having values between 0 and 2 takes the values 0, 1 or 2 if the variable is inherently discrete, and takes the values 0.0, 0.1, 0.01, 0.001, or any other real values ⁇ 0 and ⁇ 2 if the variable is inherently continuous.
  • on average represents the mean value derived from performing at least three independent replicates for each data point.
  • biological activity encompasses structural and functional properties of a macrocycle.
  • Biological activity is, for example, structural stability, alpha-helicity, affinity for a target, resistance to proteolytic degradation, cell penetrability, intracellular stability, in vivo stability, or any combination thereof.
  • binding affinity refers to the strength of a binding interaction, for example between a peptidomimetic macrocycle and a target. Binding affinity can be expressed, for example, as equilibrium dissociation constant (“K D ”), which is expressed in units which are a measure of concentration (e.g. M, mM, ⁇ M, nM etc). Numerically, binding affinity and K D values vary inversely, such that a lower binding affinity corresponds to a higher K D value, while a higher binding affinity corresponds to a lower K D value. Where high binding affinity is desirable, “improved” binding affinity refers to higher binding affinity and therefore lower K D values.
  • K D equilibrium dissociation constant
  • treatment is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.
  • in vitro efficacy refers to the extent to which a test compound, such as a peptidomimetic macrocycle, produces a beneficial result in an in vitro test system or assay. In vitro efficacy can be measured, for example, as an “IC 50 ” or “EC 50 ” value, which represents the concentration of the test compound which produces 50% of the maximal effect in the test system.
  • ratio of in vitro efficacies refers to the ratio of IC 50 or EC 50 values from a first assay (the numerator) versus a second assay (the denominator). Consequently, an improved in vitro efficacy ratio for Assay 1 versus Assay 2 refers to a lower value for the ratio expressed as IC 50 (Assay 1)/IC 50 (Assay 2) or alternatively as EC 50 (Assay 1)/EC 50 (Assay 2).
  • This concept can also be characterized as “improved selectivity” in Assay 1 versus Assay 2, which can be due either to a decrease in the IC 50 or EC 50 value for Target 1 or an increase in the value for the IC 50 or EC 50 value for Target 2.
  • biological sample means any fluid or other material derived from the body of a normal or diseased subject, such as blood, bone marrow, serum, plasma, lymph, urine, saliva, tears, cerebrospinal fluid, milk, amniotic fluid, bile, ascites fluid, pus, and the like. Also included within the meaning of the term “biological sample” is an organ or tissue extract and culture fluid in which any cells or tissue preparation from a subject has been incubated.
  • the biological samples can be any samples from which genetic material can be obtained.
  • Biological samples can also include solid or liquid cancer cell samples or specimens.
  • the cancer cell sample can be a cancer cell tissue sample. In some embodiments, the cancer cell tissue sample can be obtained from surgically excised tissue.
  • Non-limiting examples of sources of biological samples include fine needle aspiration, core needle biopsy, vacuum assisted biopsy, incisional biopsy, excisional biopsy, punch biopsy, shave biopsy or skin biopsy.
  • the biological samples comprise fine needle aspiration samples.
  • the biological samples comprise tissue samples, including, for example, excisional biopsy, incisional biopsy, or other biopsy.
  • the biological samples can comprise a mixture of two or more sources; for example, fine needle aspirates and tissue samples. Tissue samples and cellular samples can also be obtained without invasive surgery, for example by punctuating the chest wall or the abdominal wall or from masses of breast, thyroid or other sites with a fine needle and withdrawing cellular material (fine needle aspiration biopsy).
  • a biological sample is a bone marrow aspirate sample.
  • a biological sample can be obtained by methods known in the art such as the biopsy methods provided herein, swabbing, scraping, phlebotomy, or any other suitable method.
  • solid tumor or “solid cancer” as used herein refers to tumors that usually do not contain cysts or liquid areas. Solid tumors as used herein include sarcomas, carcinomas and lymphomas. In various embodiments, leukemia (cancer of blood) is not solid tumor.
  • liquid cancer refers to cancer cells that are present in body fluids, such as blood, lymph and bone marrow.
  • Liquid cancers include leukemia, myeloma and liquid lymphomas.
  • Liquid lymphomas include lymphomas that contain cysts or liquid areas.
  • Liquid cancers as used herein do not include solid tumors, such as sarcomas and carcinomas or solid lymphomas that do not contain cysts or liquid areas.
  • a method described herein can be used to treat cancer.
  • Types of cancer that can be treated with a method of the disclosure include, without limitation, solid tumor cancers and liquid cancers.
  • a method of treating cancer described herein comprises administration of a peptidomimetic macrocycle in combination with a second pharmaceutically-active agent.
  • Solid tumor cancers that can be treated by the methods provided herein include, but are not limited to, sarcomas, carcinomas, and lymphomas.
  • solid tumors that can be treated in accordance with the methods described include, but are not limited to, cancer of the breast, liver, neuroblastoma, head, neck, eye, mouth, throat, esophagus, esophagus, chest, bone, lung, kidney, colon, rectum or other gastrointestinal tract organs, stomach, spleen, skeletal muscle, subcutaneous tissue, prostate, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, and brain or central nervous system.
  • Solid tumors that can be treated by the instant methods include tumors and/or metastasis (wherever located) other than lymphatic cancer, for example brain and other central nervous system tumors (including but not limited to tumors of the meninges, brain, spinal cord, cranial nerves and other parts of central nervous system, e.g.
  • glioblastomas or medulloblastomas head and/or neck cancer; breast tumors; circulatory system tumors (including but not limited to heart, mediastinum and pleura, and other intrathoracic organs, vascular tumors and tumor-associated vascular tissue); excretory system tumors (including but not limited to tumors of kidney, renal pelvis, ureter, bladder, other and unspecified urinary organs); gastrointestinal tract tumors (including but not limited to tumors of the esophagus, stomach, small intestine, colon, colorectal, rectosigmoid junction, rectum, anus and anal canal, tumors involving the liver and intrahepatic bile ducts, gall bladder, other and unspecified parts of biliary tract, pancreas, other and digestive organs); oral cavity tumors (including but not limited to tumors of lip, tongue, gum, floor of mouth, palate, and other parts of mouth, parotid gland, and other parts of the salivary glands, tonsil, or
  • small cell lung cancer or non-small cell lung cancer skeletal system tumors (including but not limited to tumors of bone and articular cartilage of limbs, bone articular cartilage and other sites); skin tumors (including but not limited to malignant melanoma of the skin, non-melanoma skin cancer, basal cell carcinoma of skin, squamous cell carcinoma of skin, mesothelioma, Kaposi's sarcoma); and tumors involving other tissues including peripheral nerves and autonomic nervous system, connective and soft tissue, retroperitoneum and peritoneum, eye and adnexa, thyroid, adrenal gland and other endocrine glands and related structures, secondary and unspecified malignant neoplasm of lymph nodes, secondary malignant neoplasm of respiratory and digestive systems and secondary malignant neoplasm of other sites.
  • skeletal system tumors including but not limited to tumors of bone and articular cartilage of limbs, bone articular cartilage and other sites
  • the solid tumor treated by the methods of the instant disclosure is pancreatic cancer, bladder cancer, colon cancer, liver cancer, colorectal cancer (colon cancer or rectal cancer), breast cancer, prostate cancer, renal cancer, hepatocellular cancer, lung cancer, ovarian cancer, cervical cancer, gastric cancer, esophageal cancer, head and neck cancer, melanoma, neuroendocrine cancers, CNS cancers, brain tumors, bone cancer, skin cancer, ocular tumor, choriocarcinoma (tumor of the placenta), sarcoma or soft tissue cancer.
  • the solid tumor to be treated by the methods of the instant disclosure is selected bladder cancer, bone cancer, breast cancer, cervical cancer, CNS cancer, colon cancer, ocular tumor, renal cancer, liver cancer, lung cancer, pancreatic cancer, choriocarcinoma (tumor of the placenta), prostate cancer, sarcoma, skin cancer, soft tissue cancer or gastric cancer.
  • the solid tumor treated by the methods of the instant disclosure is breast cancer.
  • breast cancer that can be treated by the instant methods include ductal carcinoma in situ (DCIS or intraductal carcinoma), lobular carcinoma in situ (LCIS), invasive (or infiltrating) ductal carcinoma, invasive (or infiltrating) lobular carcinoma, inflammatory breast cancer, triple-negative breast cancer, paget disease of the nipple, phyllodes tumor (phyllodes tumor or cystosarcoma phyllodes), angiosarcoma, adenoid cystic (or adenocystic) carcinoma, low-grade adenosquamous carcinoma, medullary carcinoma, papillary carcinoma, tubular carcinoma, metaplastic carcinoma, micropapillary carcinoma, and mixed carcinoma.
  • DCIS ductal carcinoma in situ
  • LCIS lobular carcinoma in situ
  • invasive (or infiltrating) ductal carcinoma invasive (or infiltrating) lobular carcinoma
  • inflammatory breast cancer triple-negative
  • the solid tumor treated by the methods of the instant disclosure is bone cancer.
  • bone cancer that can be treated by the instant methods include osteosarcoma, chondrosarcoma, the Ewing Sarcoma Family of Tumors (ESFTs).
  • the solid tumor treated by the methods of the instant disclosure is skin cancer.
  • skin cancer that can be treated by the instant methods include melanoma, basal cell skin cancer, and squamous cell skin cancer.
  • the solid tumor treated by the methods of the instant disclosure is ocular tumor.
  • ocular tumor that can be treated by the methods of the instant disclosure include ocular tumor is choroidal nevus, choroidal melanoma, choroidal metastasis, choroidal hemangioma, choroidal osteoma, iris melanoma, uveal melanoma, intraocular lymphoma, melanocytoma, metastasis retinal capillary hemangiomas, congenital hypertrophy of the RPE, RPE adenoma or retinoblastoma.
  • Liquid cancer cancers that can be treated by the methods provided herein include, but are not limited to, leukemias, myelomas, and liquid lymphomas.
  • liquid cancers that can be treated in accordance with the methods described include, but are not limited to, liquid lymphomas, leukemias, and myelomas.
  • Non-limiting examples of liquid lymphomas and leukemias that can be treated in accordance with the methods described include chronic lymphocytic leukemia/small lymphocytic lymphoma, B-cell prolymphocytic leukemia, lymphoplasmacytic lymphoma (such as Waldenstrom macroglobulinemia), splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma, monoclonal immunoglobulin deposition diseases, heavy chain diseases, extranodal marginal zone B cell lymphoma, also called malt lymphoma, nodal marginal zone B cell lymphoma (nmzl), follicular lymphoma, mantle cell lymphoma, diffuse large B cell lymphoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, Burkitt lymphoma/leukemia, T cell prolymphocytic leukemia, T cell large granular
  • liquid cancers include cancers involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof.
  • disorders include: acute leukemias, e.g., erythroblastic leukemia, and acute megakaryoblastic leukemia.
  • myeloid disorders include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL), which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), multiple myeloma, hairy cell leukemia (HLL), and Waldenstrom's macroglobulinemia (WM).
  • ALL acute lymphoblastic leukemia
  • ALL includes B-lineage ALL and T-lineage ALL
  • CLL chronic lymphocytic leukemia
  • PLL prolymphocytic leukemia
  • HLL hairy cell leukemia
  • W Waldenstrom's macroglobulinemia
  • malignant liquid lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), peripheral T-cell lymphoma (PTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease, and Reed-Sternberg disease.
  • ATL adult T cell leukemia/lymphoma
  • CTCL cutaneous T-cell lymphoma
  • PTCL peripheral T-cell lymphoma
  • LGF large granular lymphocytic leukemia
  • Hodgkin's disease Hodgkin's disease
  • Reed-Sternberg disease Reed-Sternberg disease.
  • liquid cancers include, but are not limited to, acute lymphocytic leukemia (ALL); T-cell acute lymphocytic leukemia (T-ALL); anaplastic large cell lymphoma (ALCL); chronic myelogenous leukemia (CML); acute myeloid leukemia (AML); chronic lymphocytic leukemia (CLL); B-cell chronic lymphocytic leukemia (B-CLL); diffuse large B-cell lymphomas (DLBCL); hyper eosinophilia/chronic eosinophilia; and Burkitt's lymphoma.
  • ALL acute lymphocytic leukemia
  • T-ALL T-cell acute lymphocytic leukemia
  • AML acute myeloid leukemia
  • CLL chronic lymphocytic leukemia
  • B-CLL B-cell chronic lymphocytic leukemia
  • DLBCL diffuse large B-cell lymphomas
  • the cancer comprises an acute lymphoblastic leukemia; acute myeloid leukemia; AIDS-related cancers; AIDS-related lymphoma; chronic lymphocytic leukemia; chronic myelogenous leukemia; chronic myeloproliferative disorders; adult T cell leukemia/lymphoma (ATL); cutaneous T-cell lymphoma (CTCL); peripheral T-cell lymphoma (PTCL); Hodgkin lymphoma; multiple myeloma; multiple myeloma/plasma cell neoplasm; Non-Hodgkin lymphoma; or primary central nervous system (CNS) lymphoma.
  • ATL adult T cell leukemia/lymphoma
  • CTCL cutaneous T-cell lymphoma
  • PTCL peripheral T-cell lymphoma
  • Hodgkin lymphoma multiple myeloma; multiple myeloma/plasma cell neoplasm
  • Non-Hodgkin lymphoma or
  • the liquid cancer can be B-cell chronic lymphocytic leukemia, B-cell lymphoma-DLBCL, B-cell lymphoma-DLBCL-germinal center-like, B-cell lymphoma-DLBCL-activated B-cell-like, or Burkitt's lymphoma.
  • a subject treated in accordance with the methods provided herein is a human who has or is diagnosed with cancer with a p53 deactivating mutation and/or lacking active p53.
  • a subject treated for cancer in accordance with the methods provided herein is a human predisposed or susceptible to cancer with a p53 deactivating mutation and/or lacking active p53.
  • a subject treated for cancer in accordance with the methods provided herein is a human at risk of developing cancer with a p53 deactivating mutation and/or lacking active p53.
  • a p53 deactivating mutation in some examples can be a mutation in the DNA-binding domain of the p53 protein.
  • the p53 deactivating mutation can be a missense mutation.
  • the cancer can be determined to have one or more p53 deactivating mutations selected from mutations at one or more of residues R175, G245, R248, R249, R273, and R282.
  • the presence of a p53 deactivating mutation and/or the lack of wild type p53 in the cancer can be determined by any suitable method known in art, for example by sequencing, array-based testing, RNA analysis and amplifications methods like PCR.
  • the human subject is refractory and/or intolerant to one or more other treatments of the cancer. In some embodiments, the human subject has had at least one unsuccessful prior treatment and/or therapy of the cancer.
  • a subject treated for cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a cancer. In other embodiments, a subject treated for cancer in accordance with the methods provided herein is a human, predisposed or susceptible to a cancer. In some embodiments, a subject treated for cancer in accordance with the methods provided herein is a human, at risk of developing a cancer.
  • a subject treated for a cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a cancer, determined to have a p53 deactivating mutation and/or lack wild type p53.
  • a subject treated for cancer in accordance with the methods provided herein is a human, predisposed or susceptible to a cancer, determined to have a p53 deactivating mutation and/or lack wild type p53.
  • a subject treated for cancer in accordance with the methods provided herein is a human, at risk of developing a tumor, determined to have a p53 deactivating mutation and/or expressing wild type p53.
  • a p53 deactivating mutation can lead to loss of (or a decrease in) the in vitro apoptotic activity of p53.
  • Non-limiting examples of p53 deactivating mutations are shown in the following table:
  • Amino acid changes are reported as: the amino acid being substituted followed by the position of the amino acid being substituted in the wild type p53 sequence, followed by the amino acid used for substitution.
  • L344P indicates that the lysine (K) at the 344 position in the wild type sequence is replaced by a proline (P).
  • the subject treated for cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a tumor that is p53 negative. In some embodiments, a subject treated for cancer in accordance with the methods provided herein is a human, predisposed or susceptible to a cancer that is p53 negative. In some embodiments, a subject treated for cancer in accordance with the methods provided herein is a human, at risk of developing a cancer that is p53 negative.
  • the subject treated for cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a tumor that expresses p53 with a partial loss of function mutation.
  • a subject treated for cancer in accordance with the methods provided herein is a human, predisposed or susceptible to a cancer that expresses p53 with partial loss of function mutation.
  • a subject treated for tumor in accordance with the methods provided herein is a human, at risk of developing a cancer that expresses p53 with partial loss of function mutation.
  • a partial loss of p53 function mutation can cause the mutant p53 to exhibit some level of function of normal p53, but to a lesser or slower extent.
  • a partial loss of p53 function can mean that the cells become arrested in cell division to a lesser or slower extent.
  • the subject treated for cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a tumor that expresses p53 with a copy loss mutation and a deactivating mutation.
  • a subject treated for cancer in accordance with the methods provided herein is a human, predisposed or susceptible to a tumor that expresses p53 with a copy loss mutation and a deactivating mutation.
  • a subject treated for cancer in accordance with the methods provided herein is a human, at risk of developing a tumor that expresses p53 with a copy loss mutation and a deactivating mutation.
  • the subject treated for cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a cancer that expresses p53 with a copy loss mutation.
  • a subject treated for cancer in accordance with the methods provided herein is a human, predisposed or susceptible to a tumor that expresses p53 with a copy loss mutation.
  • a subject treated for cancer in accordance with the methods provided herein is a human, at risk of developing a cancer that expresses p53 with a copy loss mutation.
  • a subject treated for cancer in accordance with the methods provided herein is a human, who has or is diagnosed with a tumor, determined to have a dominant p53 deactivating mutation.
  • Dominant p53 deactivating mutation or dominant negative mutation, as used herein, is a mutation wherein the mutated p53 inhibits or disrupt the activity of the wild-type p53 gene.
  • a subject treated for cancer in accordance with the methods provided herein is a human with non-cancerous tissue comprising a functional p53 protein.
  • the non-cancerous tissue comprising a functional p53 protein is bone marrow or tissue of the digestive tract (i.e., digestive tract tissue).
  • the subject is a human lacking a p53 deactivating mutation and/or expressing wild type p53.
  • a p53 deactivating mutation in some examples can be a mutation in a DNA-binding domain of the p53 protein.
  • the p53 deactivating mutation can be a missense mutation.
  • the bone marrow of the subject can be determined to lack one or more p53 deactivating mutations selected from mutations at one or more of residues R175, G245, R248, R249, R273, and R282.
  • the lack of a p53 deactivating mutation and/or the presence of wild type p53 in a non-cancerous tissue of the subject can be determined by any suitable method, for example by sequencing, array-based testing, RNA analysis and amplifications methods such as PCR.
  • the subject treated for cancer in accordance with the methods provided herein is a human with non-cancerous tissue (e.g., bone marrow or tissue of the digestive tract) that expresses p53 with one or more silent mutations.
  • Silent mutations can be mutations that cause no change in the encoded p53 amino acid sequence.
  • a subject treated for cancer in accordance with the methods provided herein is a human with non-cancerous tissue (e.g., bone marrow or tissue of the digestive tract) determined to lack a dominant p53 deactivating mutation.
  • non-cancerous tissue e.g., bone marrow or tissue of the digestive tract
  • the subject treated for cancer in accordance with the methods provided herein is a human with non-cancerous tissue (e.g., bone marrow or tissue of the digestive tract) that expresses p53 with a partial loss of function mutation.
  • non-cancerous tissue e.g., bone marrow or tissue of the digestive tract
  • a subject with a cancer having a p53-deactivating mutations and non-cancerous tissue comprising functional p53 protein is a candidate for cancer treatment with a method disclosed herein.
  • Cancer cells and/or non-cancerous tissue from a subject can be assayed in order to determine the presence or absence of p53-deactivating mutations and/or the expression of wild type p53 in cancer/non-cancerous tissue prior to treatment with a compound of the disclosure.
  • the non-cancerous tissue is bone marrow.
  • the non-cancerous tissue is tissue of the digestive tract.
  • the activity of the p53 pathway can be determined by the mutational status of genes involved in the p53 pathways, including, for example, AKT1, AKT2, AKT3, ALK, BRAF, CDK4, CDKN2A, DDR2, EGFR, ERBB2 (HER2), FGFR1, FGFR3, GNA11, GNQ, GNAS, KDR, KIT, KRAS, MAP2K1 (MEK1), MET, HRAS, NOTCH1, NRAS, NTRK2, PIK3CA, NF1, PTEN, RAC1, RB1, NTRK3, STK11, PIK3R1, TSC1, TSC2, RET, TP53, and VHL.
  • genes involved in the p53 pathways including, for example, AKT1, AKT2, AKT3, ALK, BRAF, CDK4, CDKN2A, DDR2, EGFR, ERBB2 (HER2), FGFR1, FGFR3, GNA11, GNQ, GNAS, KDR, KIT,
  • Genes that modulate the activity of p53 can also be assessed, including, for example, kinases: ABL1, JAK1, JAAK2, JAK3; receptor tyrosine kinases: FLT3 and KIT; receptors: CSF3R, IL7R, MPL, and NOTCH1; transcription factors: BCOR, CEBPA, CREBBP, ETV6, GATA1, GATA2.
  • MLL MLL, KZF1, PAX5, RUNX1, STAT3, WT1, and TP53; epigenetic factors: ASXL1, DNMT3A, EZH2, KDM6A (UTX), SUZ12, TET2, PTPN11, SF3B1, SRSF2, U2AF35, and ZRSR2; RAS proteins: HRAS, KRAS, and NRAS; adaptors CBL and CBL-B; FBXW7, IDH1, IDH2, and NPM1.
  • Cancer cell samples can be obtained, for example, from solid or liquid tumors via primary or metastatic tumor resection (e.g. pneumonectomy, lobetomy, wedge resection, and craniotomy) primary or metastatic disease biopsy (e.g. transbronchial or needle core), pleural or ascites fluid (e.g. FFPE cell pellet), or macro-dissection of tumor rich areas (solid tumors).
  • primary or metastatic tumor resection e.g. pneumonectomy, lobetomy, wedge resection, and craniotomy
  • primary or metastatic disease biopsy e.g. transbronchial or needle core
  • pleural or ascites fluid e.g. FFPE cell pellet
  • macro-dissection of tumor rich areas solid tumors.
  • cancerous tissue can be isolated from surrounding normal tissues.
  • the tissue can be isolated from paraffin or cryostat sections.
  • Cancer cells can also be separated from normal cells by flow cytometry.
  • Non-cancerous tissue samples can be obtained, for example, from bone marrow, bone marrow aspirate, bone marrow clot, a bone marrow biopsy, digestive tract tissues such as intestinal lining, stomach lining, and mucous membranes; liver, spleen pancreas, skin, lungs, heart, kidney, gall bladder, appendix, brain, mouth, tongue, throat, ocular tissue, fat, muscle, and lymph nodes.
  • PCR polymerase chain reaction
  • RFLP restriction fragment length polymorphism
  • microarray Southern blot, northern blot, western blot, eastern blot, hematoxylin and eosin (H&E) staining, microscopic assessment of tumors, DNA sequencing, RNA sequencing, next-generation DNA sequencing (NGS) (e.g. extraction, purification, quantification, and amplification of DNA, library preparation) immunohistochemistry, and fluorescent in situ hybridization (FISH).
  • NGS next-generation DNA sequencing
  • FISH fluorescent in situ hybridization
  • a microarray allows a researcher to investigate multiple DNA sequences attached to a surface, for example, a DNA chip made of glass or silicon, or a polymeric bead or resin.
  • the DNA sequences are hybridized with fluorescent or luminescent probes.
  • the microarray can indicate the presence of oligonucleotide sequences in a sample based on hybridization of sample sequences to the probes, followed by washing and subsequent detection of the probes. Quantification of the fluorescent or luminescent signal indicates the presence of known oligonucleotide sequences in the sample.
  • a microarray allows a researcher to investigate multiple DNA sequences attached to a surface, for example, a DNA chip made of glass or silicon, or a polymeric bead or resin.
  • the DNA sequences are hybridized with fluorescent or luminescent probes.
  • the microarray can indicate the presence of oligonucleotide sequences in a sample based on hybridization of sample sequences to the probes, followed by washing and subsequent detection of the probes. Quantification of the fluorescent or luminescent signal indicates the presence of known oligonucleotide sequences in the sample.
  • an assay comprises amplifying a biomolecule from a biological sample such as a bone marrow or cancer sample.
  • the biomolecule can be a nucleic acid molecule, such as DNA or RNA.
  • the assay comprises circularization of a nucleic acid molecule, followed by digestion of the circularized nucleic acid molecule.
  • the assay comprises contacting an organism, or a biochemical sample collected from an organism, such as a nucleic acid sample, with a library of oligonucleotides, such as PCR primers.
  • the library can contain any number of oligonucleotide molecules.
  • the oligonucleotide molecules can bind individual DNA or RNA motifs, or any combination of motifs described herein.
  • the motifs can be any distance apart, and the distance can be known or unknown.
  • two or more oligonucleotides in the same library bind motifs a known distance apart in a parent nucleic acid sequence. Binding of the primers to the parent sequence can take place based on the complementarity of the primers to the parent sequence. Binding can take place, for example, under annealing, or under stringent conditions.
  • the results of an assay are used to design a new oligonucleotide sequence for future use. In some embodiments, the results of an assay are used to design a new oligonucleotide library for future use. In some embodiments, the results of an assay are used to revise, refine, or update an existing oligonucleotide library for future use. For example, an assay can reveal that a previously-undocumented nucleic acid sequence is associated with the presence of a target material. This information can be used to design or redesign nucleic acid molecules and libraries.
  • one or more nucleic acid molecules in a library comprise a barcode tag. In some embodiments, one or more of the nucleic acid molecules in a library comprise type I or type II restriction sites suitable for circularization and cutting an amplified sample nucleic acid sequence. Such primers can be used to circularize a PCR product and cut the PCR product to provide a product nucleic acid sequence with a sequence that is organized differently from the nucleic acid sequence native to the sample organism.
  • Non-limiting examples of methods for finding an amplified sequence include DNA sequencing, whole transcriptome shotgun sequencing (WTSS, or RNA-seq), mass spectrometry (MS), microarray, pyrosequencing, column purification analysis, polyacrylamide gel electrophoresis, and index tag sequencing of a PCR product generated from an index-tagged primer.
  • more than one nucleic acid sequence in the sample organism is amplified.
  • methods of separating different nucleic acid sequences in a PCR product mixture include column purification, high performance liquid chromatography (HPLC), HPLC/MS, polyacrylamide gel electrophoresis, size exclusion chromatography.
  • the amplified nucleic acid molecules can be identified by sequencing. Nucleic acid sequencing can be done on automated instrumentation. Sequencing experiments can be done in parallel to analyze tens, hundreds, or thousands of sequences simultaneously. Non-limiting examples of sequencing techniques follow.
  • DNA is amplified within a water droplet containing a single DNA template bound to a primer-coated bead in an oil solution. Nucleotides are added to a growing sequence, and the addition of each base is evidenced by visual light.
  • Ion semiconductor sequencing detects the addition of a nucleic acid residue as an electrical signal associated with a hydrogen ion liberated during synthesis.
  • a reaction well containing a template is flooded with the four types of nucleotide building blocks, one at a time. The timing of the electrical signal identifies which building block was added and identifies the corresponding residue in the template.
  • DNA nanoball uses rolling circle replication to amplify DNA into nanoballs. Unchained sequencing by ligation of the nanoballs reveals the DNA sequence.
  • nucleic acid molecules are annealed to primers on a slide and amplified.
  • Four types of fluorescent dye residues each complementary to a native nucleobase, are added, the residue complementary to the next base in the nucleic acid sequence is added, and unincorporated dyes are rinsed from the slide.
  • Four types of reversible terminator bases (RT-bases) are added, and non-incorporated nucleotides are washed away. Fluorescence indicates the addition of a dye residue, thus identifying the complementary base in the template sequence. The dye residue is chemically removed, and the cycle repeats.
  • Detection of the presence or absence of point mutations can be accomplished by molecular cloning of the p53 allele(s) present in the cancer cell tissue and sequencing that allele(s).
  • the polymerase chain reaction can be used to amplify p53 gene sequences directly from a genomic DNA preparation from a biological sample such as bone marrow, tissue of the digestive tract, cancer cells, or cancer tissue. The DNA sequence of the amplified sequences can then be determined. Specific deletions of p53 genes can also be detected. For example, restriction fragment length polymorphism (RFLP) probes for the p53 gene or surrounding marker genes can be used to score loss of a p53 allele.
  • RFLP restriction fragment length polymorphism
  • Loss of wild type p53 genes can also be detected on the basis of the loss of a wild type expression product of the p53 gene.
  • Such expression products include both the mRNA as well as the p53 protein product itself.
  • Point mutations can be detected by sequencing the mRNA directly or via molecular cloning of cDNA made from the mRNA. The sequence of the cloned cDNA can be determined using DNA sequencing techniques. The cDNA can also be sequenced via polymerase chain reaction (PCR).
  • mismatch detection can be used to detect the presence or absence of point mutations in the p53 gene or the mRNA product.
  • the method can involve the use of a labeled riboprobe that is complementary to the human wild type p53 gene.
  • the riboprobe and either mRNA or DNA isolated from the cancer cell tissue are annealed (hybridized) together and subsequently digested with the enzyme RNase A, which is able to detect some mismatches in a duplex RNA structure. If a mismatch is detected by RNase A, the enzyme cleaves at the site of the mismatch.
  • RNA product is seen that is smaller than is the full-length duplex RNA for the riboprobe and the p53 mRNA or DNA.
  • the riboprobe need not be the full length of the p53 mRNA or gene but can be a segment of either. If the riboprobe comprises only a segment of the p53 mRNA, then a number of these probes can be used to screen the whole mRNA sequence for mismatches.
  • DNA probes can be used to detect the presence or absence mismatches, through enzymatic or chemical cleavage.
  • mismatches can be detected by shifts in the electrophoretic mobility of mismatched duplexes relative to matched duplexes.
  • riboprobes or DNA probes the cellular mRNA or DNA, which might contain a mutation, can be amplified using PCR before hybridization.
  • DNA sequences of the p53 gene from a biological sample such as bone marrow, tissue of the digestive tract, cancer cells, or cancerous tissue, which have been amplified by use of polymerase chain reaction, can also be screened using allele-specific probes.
  • These probes are nucleic acid oligomers, each of which contains a region of the p53 gene sequence harboring a known mutation.
  • one oligomer can be about 30 nucleotides in length, corresponding to a portion of the p53 gene sequence.
  • the oligomer encodes an alanine, rather than the wild type codon valine.
  • the PCR amplification products can be screened to identify the presence of a previously-identified mutation in the p53 gene.
  • Hybridization of allele-specific probes with amplified p53 sequences can be performed, for example, on a nylon filter. Hybridization to a particular probe indicates the presence of the same mutation in the biological sample as in the allele-specific probe.
  • p53 gene structural changes in a biological sample such as bone marrow, tissue of the digestive tract, cancer cells, or cancerous tissue can be facilitated through the application of a diverse series of high resolution, high throughput microarray platforms.
  • two types of array include those that carry PCR products from cloned nucleic acids (e.g. cDNA, BACs, cosmids) and those that use oligonucleotides.
  • the methods can provide a way to survey genome wide DNA copy number abnormalities and expression levels to allow correlations between losses, gains and amplifications in cancer cells with genes that are over- and under-expressed in the same samples.
  • the gene expression arrays that provide estimates of mRNA levels in biological samples have given rise to exon-specific arrays that can identify both gene expression levels, alternative splicing events and mRNA processing alterations.
  • Oligonucleotide arrays can be used to interrogate single nucleotide polymorphisms (SNPs) throughout the genome for linkage and association studies and these have been adapted to quantify copy number abnormalities and loss of heterozygosity events.
  • DNA sequencing arrays can allow resequencing of chromosome regions, exomes, and whole genomes.
  • Single nucleotide polymorphism (SNP)-based arrays or other gene arrays or chips can determine the presence or absence of wild type p53 allele and the structure of mutations.
  • SNPs can be synonymous or nonsynonymous substitutions. Synonymous SNP substitutions do not result in a change of amino acid in the protein due to the degeneracy of the genetic code, but can affect function in other ways. For example, a seemingly silent mutation in a gene that codes for a membrane transport protein can slow down translation, allowing the peptide chain to misfold, and produce a less functional mutant membrane transport protein.
  • Nonsynonymous SNP substitutions can be missense substitutions or nonsense substitutions.
  • Missense substitutions occur when a single base change results in change in amino acid sequence of the protein and malfunction thereof leads to disease.
  • Nonsense substitutions occur when a point mutation results in a premature stop codon, or a nonsense codon in the transcribed mRNA, which results in a truncated and usually, nonfunctional, protein product.
  • SNPs are highly conserved throughout evolution and within a population, the map of SNPs serves as an excellent genotypic marker for research.
  • a SNP array can be a useful tool to study the whole genome.
  • SNP-based arrays can be used for studying the Loss Of Heterozygosity (LOH).
  • LOH is a form of allelic imbalance that can result from the complete loss of an allele or from an increase in copy number of one allele relative to the other.
  • chip-based methods e.g., comparative genomic hybridization
  • SNP-based arrays have the additional advantage of detecting copy number neutral LOH due to uniparental disomy (UPD).
  • UPD uniparental disomy
  • UPD uniparental disomy
  • UPD uniparental disomy
  • this occurrence can be pathologic when the wild type allele (e.g., from the mother) is missing and instead two copies of the heterozygous allele (e.g., from the father) are present.
  • This usage of SNP-based arrays has a huge potential in cancer diagnostics as LOH is a prominent characteristic of most human cancers.
  • SNP-based array technologies have shown that cancers (e.g. gastric cancer, liver cancer, etc.) and hematologic malignancies (ALL, MDS, CML etc) have a high rate of LOH due to genomic deletions or UPD and genomic gains.
  • using high density SNP-based arrays to detect LOH can allow for the identification of pattern of allelic imbalance to determine the presence of wild type p53 allele.
  • Mutations of wild type p53 genes can also be detected on the basis of the mutation of a wild type expression product of the p53 gene.
  • Such expression products include both the mRNA and the p53 protein product itself.
  • Point mutations can be detected by sequencing the mRNA directly or via molecular cloning of cDNA made from the mRNA. The sequence of the cloned cDNA can be determined using DNA sequencing techniques. The cDNA can also be sequenced via the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • a panel of monoclonal antibodies can be used in which each of the epitopes involved in p53 functions are represented by a monoclonal antibody.
  • Loss or perturbation of binding of a monoclonal antibody in the panel can indicate mutational alteration of the p53 protein and thus of the p53 gene itself.
  • Mutant p53 genes or gene products can also be detected in body samples, including, for example, bone marrow, tissue of the digestive tract, cancer cells, cancerous tissues, serum, stool, urine, and sputum. The same techniques discussed above for detection of mutant p53 genes or gene products in tissues can be applied to other body samples.
  • Loss of wild type p53 genes can also be detected by screening for loss of wild type p53 protein function.
  • Protein p53 binds to the SV40 large T antigen as well as to the adenovirus E1B antigen. Loss of the ability of the p53 protein to bind to either or both of these antigens indicates a mutational alteration in the protein and reflects a mutational alteration of the gene.
  • a panel of monoclonal antibodies can be used in which each of the epitopes involved in p53 functions is represented by a monoclonal antibody. Loss or perturbation of binding of a monoclonal antibody in the panel would indicate mutational alteration of the p53 protein and thus of the p53 gene. Any method for detecting an altered p53 protein can be used to detect loss of wild type p53 genes.
  • Wild type p53 and/or p53 mutations in cancerous or non-cancerous tissue can be detected any time before, during, or after the administration of a peptidomimetic macrocycle and/or another pharmaceutically-active agent.
  • the detection is performed before administration of a peptidomimetic macrocycle or other pharmaceutically-active agent, for example about 5 years-1 month, 4 years-1 month, 3 years-1 month, 2 years-1 month, 1 years-1 month, 5 years-1 week, 4 years-1 week, 3 years-1 month, 2 years-1 week, 1 year-1 week, 5 years-1 day, 4 years-1 day, 3 years-1 days, 2 years-1 day, 1 year-1 day, 15 months-1 month, 15 months-1 week, 15 months-1 day, 12 months-1 month, 12 months-1 week, 12 months-1 day, 6 months-1 month, 6 months-1 week, 6 months-1 day, 3 months-1 month, 3 months-1 week, or 3 months-1 day prior to the first administration of the peptidomimetic macrocycle or other pharmaceutically-active agent.
  • wild type p53 and/or p53 mutations are detected up to 6 years, up to 5 years, up to 4 years, up to 3 years, up to 24 months, up to 23 months, up to 22 months, up to 21 months, up to 20 months, up to 19 months, up to 18 months, up to 17 months, up to 16 months, up to 15 months, up to 14 months, up to 13 months, up to 12 months, up to 11 months, up to 10 months, up to 9 months, up to 8 months, up to 7 months, up to 6 months, up to 5 months, up to 4 months, up to 3 months, up to 2 months, up to 1 months, up to 4 weeks (28 days), up to 3 weeks (21 days), up to 2 weeks (14 days), up to 1 week (7 days), up to 6 days, up to 5 days, up to 4 days, up to 3 days, up to 2 days or up to 1 day before the first administration of the peptidomimetic macrocycle or other pharmaceutically-active agent to the subject.
  • a method disclosed herein can comprise administration of a peptidomimetic macrocycle in combination with a second pharmaceutically-active agent.
  • the peptidomimetic macrocycle can serve as a myelopreservation agent.
  • a myelopreservation agent can prevent, reduce, or reduce a likelihood of myelosuppressive side effects of a pharmaceutically-active agent.
  • Myelosuppressive side effects can be due to cytotoxic effects of a pharmaceutically-active agent on bone marrow cells.
  • Non-limiting examples of myelosuppressive side effects include anemia, leukopenia, neutropenia, thrombocytopenia, and pancytopenia.
  • cells undergoing cell cycle arrest are resistant to the cytotoxic effects of a pharmaceutically-active agent.
  • Cell cycle arrest can be induced by, for example, activation of p53.
  • a method of treating cancer disclosed herein comprises inducing cell cycle arrest in bone marrow via p53 activation in order to reduce the myelosuppressive side effects of a pharmaceutically-active agent.
  • p53 activation can be induced by, for example, inhibition of MDM2 and/or MDMX proteins via administration of a peptidomimetic macrocycle disclosed herein.
  • the peptidomimetic macrocycle binds to MDM2 and/or MDMX proteins.
  • the peptidomimetic macrocycle is administered at a dose that is less than a dose needed to induce apoptosis in a tissue such as bone marrow.
  • a peptidomimetic macrocycle disclosed herein can prevent, reduce, or reduce a likelihood of mucositis caused by a second pharmaceutically-active agent.
  • Mucositis can be due to cytotoxic effects of a pharmaceutically-active agent on the cells lining the digestive tract. Cell death along the digestive tract can lead to thinning of the epithelium, resulting in mucosal destruction.
  • cells of the digestive tract undergoing cell cycle arrest are resistant to the cytotoxic effects of a pharmaceutically active agent (e.g., a chemotherapeutic agent). Cell cycle arrest can be induced by, for example, activation of p53.
  • a pharmaceutically active agent e.g., a chemotherapeutic agent
  • a method of treating cancer disclosed herein comprises inducing cell cycle arrest in the digestive tract via p53 activation in order to reduce mucositis caused by a pharmaceutically-active agent.
  • p53 activation can be induced by, for example, inhibition of MDM2 and/or MDMX proteins via administration of a peptidomimetic macrocycle.
  • the peptidomimetic macrocycle binds to MDM2 and/or MDMX proteins.
  • the peptidomimetic macrocycle is administered at a dose that is less than a dose needed to induce apoptosis in tissue such as digestive tract tissue.
  • a peptidomimetic macrocycle has the Formula (I):
  • v and w are integers from 1-30. In some embodiments, w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6.
  • w is an integer from 3-10, for example 3-6, 3-8, 6-8, or 6-10. In some embodiments, w is 3. In other embodiments, w is 6. In some embodiments, v is an integer from 1-1000, for example 1-500, 1-200, 1-100, 1-50, 1-30, 1-20, or 1-10. In some embodiments, v is 2.
  • L 1 and L 2 either alone or in combination, do not form a triazole or a thioether.
  • At least one of R 1 and R 2 is alkyl that is unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl that is unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 3. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments wherein the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments wherein the amino acids are identical, e.g.
  • each compound can encompass peptidomimetic macrocycles which are the same or different.
  • a compound can comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.
  • the peptidomimetic macrocycle comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing for intra-helical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • peptidomimetic macrocycles are also provided of the formula:
  • v and w are integers from 1-30. In some embodiments, w is an integer from 3-1000, for example 3-500, 3-200, 3-100, 3-50, 3-30, 3-20, or 3-10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6.
  • At least three of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -His5-Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 -X 1 -Ser 12 (SEQ ID NO: 1945).
  • At least four of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -His 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 -X 11 -Ser 12 (SEQ ID NO: 1945).
  • At least five of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -His 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 -X 11 -Ser 12 (SEQ ID NO: 1945).
  • At least six of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -His5-Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 -X 11 -Ser 12 (SEQ ID NO: 1945).
  • At least seven of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -His5-Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 -X 11 -Ser 12 (SEQ ID NO: 1945).
  • a peptidomimetic macrocycle has the Formula:
  • At least three of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -Glu 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 /Cba 10 -X 11 -Ala 12 (SEQ ID NO: 1946).
  • At least four of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -Glu 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 /Cba 10 -X 11 -Ala 12 (SEQ ID NO: 1946).
  • At least five of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -Glu 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 /Cba 10 -X 11 -Ala 12 (SEQ ID NO: 1946).
  • At least six of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -Glu 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 /Cba 10 -X11-Ala 12 (SEQ ID NO: 1946).
  • At least seven of Xaa 3 , Xaa 5 , Xaa 6 , Xaa 7 , Xaa 8 , Xaa 9 , and Xaa 10 are the same amino acid as the amino acid at the corresponding position of the sequence Phe 3 -X 4 -Glu 5 -Tyr 6 -Trp 7 -Ala 8 -Gln 9 -Leu 10 /Cba 10 -X11-Ala 12 (SEQ ID NO: 1946).
  • w is an integer from 3-10, for example 3-6, 3-8, 6-8, or 6-10. In some embodiments, w is 3. In other embodiments, w is 6. In some embodiments, v is an integer from 1-10. In some embodiments, v is 2.
  • L 1 and L 2 either alone or in combination, do not form a triazole or a thioether.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 3. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In some embodiments, the sum of x+y+z is 3 or 6. In some embodiments, the sum of x+y+z is 3. In other embodiments, the sum of x+y+z is 6.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments wherein the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments wherein the amino acids are identical, e.g.
  • each compound can encompass peptidomimetic macrocycles which are the same or different.
  • a compound can comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.
  • the peptidomimetic macrocycle comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing intra-helical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • a peptidomimetic macrocycle of Formula (I) has Formula (Ia):
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -.
  • each L 1 and L 2 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, heteroarylene, or [—R 4 —K—R 4 —] n , each being optionally substituted with R 5 ;
  • each R 4 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each K is independently O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ; and n is an integer from 1-5.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 2. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments wherein the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • each compound can encompass peptidomimetic macrocycles which are the same or different.
  • a compound can comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.
  • the peptidomimetic macrocycle comprises a secondary structure which is a helix and R 8 is —H, allowing intra-helical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as a helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • the peptidomimetic macrocycle of Formula (I) is:
  • each R 1 and R 2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • the peptidomimetic macrocycle of Formula (I) is:
  • each R 1 ′ and R 2 ′ is independently an amino acid.
  • the peptidomimetic macrocycle of Formula (I) is a compound of any of the formulas shown below:
  • AA represents any natural or non-natural amino acid side chain and “ ” is [D] v , [E] w as defined above, and n is an integer between 0 and 20, 50, 100, 200, 300, 400 or 500. In some embodiments, n is 0. In other embodiments, n is less than 50.
  • Non-limiting examples of embodiments of the macrocycle-forming linker L are shown below.
  • D and/or E in the compound of Formula I are further modified to facilitate cellular uptake.
  • lipidating or PEGylating a peptidomimetic macrocycle facilitates cellular uptake, increases bioavailability, increases blood circulation, alters pharmacokinetics, decreases immunogenicity and/or decreases the needed frequency of administration.
  • At least one of [D] and [E] in the compound of Formula I represents a moiety comprising an additional macrocycle-forming linker such that the peptidomimetic macrocycle comprises at least two macrocycle-forming linkers.
  • a peptidomimetic macrocycle comprises two macrocycle-forming linkers.
  • u is 2.
  • the peptidomimetic macrocycles have the Formula (I):
  • At least one of R 1 and R 2 is alkyl that is unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl that are unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 2. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments wherein the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • each of the first two amino acid represented by E comprises an uncharged side chain or a negatively charged side chain. In some embodiments, each of the first three amino acid represented by E comprises an uncharged side chain or a negatively charged side chain. In some embodiments, each of the first four amino acid represented by E comprises an uncharged side chain or a negatively charged side chain. In some embodiments, one or more or each of the amino acid that is i+1, i+2, i+3, i+4, i+5, and/or i+6 with respect to Xaa 13 represented by E comprises an uncharged side chain or a negatively charged side chain.
  • the first C-terminal amino acid and/or the second C-terminal amino acid represented by E comprise a hydrophobic side chain.
  • the first C-terminal amino acid and/or the second C-terminal amino acid represented by E comprises a hydrophobic side chain, for example a small hydrophobic side chain.
  • the first C-terminal amino acid, the second C-terminal amino acid, and/or the third C-terminal amino acid represented by E comprise a hydrophobic side chain.
  • the first C-terminal amino acid, the second C-terminal amino acid, and/or the third C-terminal amino acid represented by E comprises a hydrophobic side chain, for example a small hydrophobic side chain.
  • one or more or each of the amino acid that is i+1, i+2, i+3, i+4, i+5, and/or i+6 with respect to Xaa 13 represented by E comprises an uncharged side chain or a negatively charged side chain.
  • w is between 1 and 1000.
  • the first amino acid represented by E comprises a small hydrophobic side chain.
  • w is between 2 and 1000.
  • the second amino acid represented by E comprises a small hydrophobic side chain.
  • w is between 3 and 1000.
  • the third amino acid represented by E comprises a small hydrophobic side chain.
  • the third amino acid represented by E comprises a small hydrophobic side chain.
  • w is between 4 and 1000.
  • w is between 5 and 1000.
  • w is between 6 and 1000.
  • w is between 7 and 1000.
  • w is between 8 and 1000.
  • the peptidomimetic macrocycle comprises a secondary structure which is a helix and R 8 is —H, allowing intra-helical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as a helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • L is a macrocycle-forming linker of the formula
  • L is a macrocycle-forming linker of the formula
  • Amino acids which are used in the formation of triazole crosslinkers are represented according to the legend indicated below. Stereochemistry at the alpha position of each amino acid is S unless otherwise indicated.
  • azide amino acids the number of carbon atoms indicated refers to the number of methylene units between the alpha carbon and the terminal azide.
  • alkyne amino acids the number of carbon atoms indicated is the number of methylene units between the alpha position and the triazole moiety plus the two carbon atoms within the triazole group derived from the alkyne.
  • any of the macrocycle-forming linkers described herein can be used in any combination with any of the sequences shown in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a and also with any of the R— substituents indicated herein.
  • the peptidomimetic macrocycle comprises at least one ⁇ -helix motif.
  • A, B and/or C in the compound of Formula I include one or more ⁇ -helices.
  • ⁇ -helices include between 3 and 4 amino acid residues per turn.
  • the ⁇ -helix of the peptidomimetic macrocycle includes 1 to 5 turns and, therefore, 3 to 20 amino acid residues.
  • the ⁇ -helix includes 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns.
  • the macrocycle-forming linker stabilizes an ⁇ -helix motif included within the peptidomimetic macrocycle.
  • the length of the macrocycle-forming linker L from a first C ⁇ to a second C ⁇ is selected to increase the stability of an ⁇ -helix.
  • the macrocycle-forming linker spans from 1 turn to 5 turns of the ⁇ -helix. In some embodiments, the macrocycle-forming linker spans approximately 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns of the ⁇ -helix. In some embodiments, the length of the macrocycle-forming linker is approximately 5 ⁇ to 9 ⁇ per turn of the ⁇ -helix, or approximately 6 ⁇ to 8 ⁇ per turn of the ⁇ -helix.
  • the length is equal to approximately 5 carbon-carbon bonds to 13 carbon-carbon bonds, approximately 7 carbon-carbon bonds to 11 carbon-carbon bonds, or approximately 9 carbon-carbon bonds.
  • the length is equal to approximately 8 carbon-carbon bonds to 16 carbon-carbon bonds, approximately 10 carbon-carbon bonds to 14 carbon-carbon bonds, or approximately 12 carbon-carbon bonds.
  • the macrocycle-forming linker spans approximately 3 turns of an ⁇ -helix, the length is equal to approximately 14 carbon-carbon bonds to 22 carbon-carbon bonds, approximately 16 carbon-carbon bonds to 20 carbon-carbon bonds, or approximately 18 carbon-carbon bonds.
  • the length is equal to approximately 20 carbon-carbon bonds to 28 carbon-carbon bonds, approximately 22 carbon-carbon bonds to 26 carbon-carbon bonds, or approximately 24 carbon-carbon bonds.
  • the macrocycle-forming linker spans approximately 5 turns of an ⁇ -helix, the length is equal to approximately 26 carbon-carbon bonds to 34 carbon-carbon bonds, approximately 28 carbon-carbon bonds to 32 carbon-carbon bonds, or approximately 30 carbon-carbon bonds.
  • the linkage contains approximately 4 atoms to 12 atoms, approximately 6 atoms to 10 atoms, or approximately 8 atoms.
  • the linkage contains approximately 7 atoms to 15 atoms, approximately 9 atoms to 13 atoms, or approximately 11 atoms.
  • the linkage contains approximately 13 atoms to 21 atoms, approximately 15 atoms to 19 atoms, or approximately 17 atoms.
  • the linkage contains approximately 19 atoms to 27 atoms, approximately 21 atoms to 25 atoms, or approximately 23 atoms.
  • the linkage contains approximately 25 atoms to 33 atoms, approximately 27 atoms to 31 atoms, or approximately 29 atoms.
  • the resulting macrocycle forms a ring containing approximately 17 members to 25 members, approximately 19 members to 23 members, or approximately 21 members.
  • the macrocycle-forming linker spans approximately 2 turns of the ⁇ -helix
  • the resulting macrocycle forms a ring containing approximately 29 members to 37 members, approximately 31 members to 35 members, or approximately 33 members.
  • the macrocycle-forming linker spans approximately 3 turns of the ⁇ -helix
  • the resulting macrocycle forms a ring containing approximately 44 members to 52 members, approximately 46 members to 50 members, or approximately 48 members.
  • the resulting macrocycle forms a ring containing approximately 59 members to 67 members, approximately 61 members to 65 members, or approximately 63 members.
  • the macrocycle-forming linker spans approximately 5 turns of the ⁇ -helix, the resulting macrocycle forms a ring containing approximately 74 members to 82 members, approximately 76 members to 80 members, or approximately 78 members.
  • L 1 and L 2 either alone or in combination, do not form a triazole or a thioether.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 1. In other embodiments, x+y+z is at least 2. In other embodiments, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments wherein the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments wherein the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing intra-helical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • Non-limiting examples of embodiments of the macrocycle-forming linker -L 1 -L 2 - are shown below.
  • the peptidomimetic macrocycle has the Formula (III) or Formula (IIIa):
  • the peptidomimetic macrocycle has the Formula (III) or Formula (IIIa):
  • the peptidomimetic macrocycle of the invention has the formula defined above, wherein:
  • the peptidomimetic macrocycle has the formula defined above wherein one of L a and L b is a bis-thioether-containing macrocycle-forming linker. In some embodiments, one of L a and L b is a macrocycle-forming linker of the formula -L 1 -S-L 2 -S-L 3 -.
  • the peptidomimetic macrocycle has the formula defined above wherein one of L a and L b is a bis-sulfone-containing macrocycle-forming linker. In some embodiments, one of L a and L b is a macrocycle-forming linker of the formula -L 1 -SO 2 -L 2 -SO 2 -L 3 -.
  • the peptidomimetic macrocycle has the formula defined above wherein one of L a and L b is a bis-sulfoxide-containing macrocycle-forming linker. In some embodiments, one of L a and L b is a macrocycle-forming linker of the formula -L 1 -S(O)-L 2 -S(O)-L 3 -.
  • a peptidomimetic macrocycle of the invention comprises one or more secondary structures.
  • the peptidomimetic macrocycle comprises a secondary structure that is an ⁇ -helix.
  • the peptidomimetic macrocycle comprises a secondary structure that is a ⁇ -hairpin turn.
  • u a is 0. In some embodiments, u a is 0, and L b is a macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure. In some embodiments, u a is 0, and L b is a macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure. In some embodiments, u a is 0, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure. In some embodiments, u a is 0, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure.
  • u b is 0. In some embodiments, u b is 0, and L a is a macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure. In some embodiments, u b is 0, and L a is a macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure. In some embodiments, u b is 0, and L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure. In some embodiments, u b is 0, and L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure.
  • the peptidomimetic macrocycle comprises only ⁇ -helical secondary structures. In other embodiments, the peptidomimetic macrocycle comprises only ⁇ -hairpin secondary structures.
  • the peptidomimetic macrocycle comprises a combination of secondary structures, wherein the secondary structures are ⁇ -helical and ⁇ -hairpin structures.
  • L a and L b are a combination of hydrocarbon-, triazole, or sulfur-containing macrocycle-forming linkers.
  • the peptidomimetic macrocycle comprises L a and L b , wherein L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure, and L b is a triazole-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure.
  • the peptidomimetic macrocycle comprises L a and L b , wherein L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure, and L b is a triazole-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure.
  • the peptidomimetic macrocycle comprises L a and L b , wherein L a is a triazole-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ( ⁇ -hairpin structure.
  • the peptidomimetic macrocycle comprises L a and L b , wherein L a is a triazole-containing macrocycle-forming linker that crosslinks a ( ⁇ -hairpin structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure.
  • u a is 1, u b is 1, L a is a triazole-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure.
  • u a is 1, u b is 1, L a is a triazole-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure.
  • u a is 1, u b is 1, L a is a triazole-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure.
  • u a is 1, u b is 1, L a is a triazole-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure, and L b is a triazole-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure, and L b is a triazole-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure, and L b is a triazole-containing macrocycle-forming linker that crosslinks an ⁇ -helical secondary structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure, and L b is a triazole-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin secondary structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker with an ⁇ -helical secondary structure, and L b is a sulfur-containing macrocycle-forming linker.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker with a ⁇ -hairpin secondary structure, and L b is a sulfur-containing macrocycle-forming linker.
  • u a is 1, u b is 1, L a is a sulfur-containing macrocycle-forming linker, and L b is a hydrocarbon-containing macrocycle-forming linker with an ⁇ -helical secondary structure.
  • u a is 1, u b is 1, L a is a sulfur-containing macrocycle-forming linker, and L b is a hydrocarbon-containing macrocycle-forming linker with a ⁇ -hairpin secondary structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks a 3-hairpin structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks an ⁇ -helical structure.
  • u a is 1, u b is 1, L a is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure, and L b is a hydrocarbon-containing macrocycle-forming linker that crosslinks a ⁇ -hairpin structure.
  • R b1 is H.
  • any compounds are also meant to encompass compounds which differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the described structures except for the replacement of a hydrogen atom by deuterium or tritium, or the replacement of a carbon atom by 13 C or 14 C are contemplated.
  • the compounds disclosed herein can contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds.
  • the compounds can be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C).
  • radioactive isotopes such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C).
  • one or more carbon atoms is replaced with a silicon atom. All isotopic variations of the compounds disclosed herein, whether radioactive or not, are contemplated herein.
  • the peptidomimetic macrocycle comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • the peptidomimetic macrocycle comprises an amino acid sequence that is at least 60% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • the peptidomimetic macrocycle comprises an amino acid sequence that is at least 65% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a. In some embodiments, the peptidomimetic macrocycle comprises an amino acid sequence that is at least 70% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a. In some embodiments, the peptidomimetic macrocycle comprises an amino acid sequence that is at least 75% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • the peptidomimetic macrocycle is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a. In some embodiments, the peptidomimetic macrocycle is at least 60% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • the peptidomimetic macrocycle is at least 65% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a. In some embodiments, the peptidomimetic macrocycle is at least 70% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a. In some embodiments, the peptidomimetic macrocycle is at least 75% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • a peptidomimetic macrocycle has an amino acid sequence comprising a carboxy terminus, a cross link spanning amino acids in the i to i+7 position of the amino acid sequence, and at least 1, at least 2, at least 3, at least 4, at least 5, 1-100, 2-100, 3-100, 4-100, 5-100, 1-10, 2-10, 3-10, 4-10, or 5-10 amino acids between the i+7 position of the amino acid sequence and the carboxy terminus.
  • Peptidomimetic macrocycles can be prepared by any of a variety of methods known in the art. For example, any of the residues indicated by “$” or “$r8” in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a can be substituted with a residue capable of forming a crosslinker with a second residue in the same molecule or a precursor of such a residue.
  • ⁇ , ⁇ -Disubstituted amino acids and amino acid precursors can be employed in synthesis of the peptidomimetic macrocycle precursor polypeptides.
  • the “S5-olefin amino acid” is (S)- ⁇ -(2′-pentenyl) alanine and the “R 8 olefin amino acid” is (R)- ⁇ -(2′-octenyl) alanine.
  • the terminal olefins are reacted with a metathesis catalyst, leading to the formation of the peptidomimetic macrocycle.
  • the following amino acids can be employed in the synthesis of the peptidomimetic macrocycle:
  • the peptidomimetic macrocycles are of Formula IV or IVa.
  • amino acid precursors are used containing an additional substituent R— at the alpha position.
  • Such amino acids are incorporated into the macrocycle precursor at the desired positions, which can be at the positions where the crosslinker is substituted or, alternatively, elsewhere in the sequence of the macrocycle precursor. Cyclization of the precursor is then effected according to the indicated method.
  • compositions include, for example, acid-addition salts and base-addition salts.
  • the acid that is added to the compound to form an acid-addition salt can be an organic acid or an inorganic acid.
  • a base that is added to the compound to form a base-addition salt can be an organic base or an inorganic base.
  • a pharmaceutically-acceptable salt is a metal salt.
  • a pharmaceutically-acceptable salt is an ammonium salt.
  • Metal salts can arise from the addition of an inorganic base to a compound of the invention.
  • the inorganic base consists of a metal cation paired with a basic counterion, such as, for example, hydroxide, carbonate, bicarbonate, or phosphate.
  • the metal can be an alkali metal, alkaline earth metal, transition metal, or main group metal.
  • the metal is lithium, sodium, potassium, cesium, cerium, magnesium, manganese, iron, calcium, strontium, cobalt, titanium, aluminum, copper, cadmium, or zinc.
  • a metal salt is a lithium salt, a sodium salt, a potassium salt, a cesium salt, a cerium salt, a magnesium salt, a manganese salt, an iron salt, a calcium salt, a strontium salt, a cobalt salt, a titanium salt, an aluminum salt, a copper salt, a cadmium salt, or a zinc salt.
  • Ammonium salts can arise from the addition of ammonia or an organic amine to a compound of the invention.
  • the organic amine is triethyl amine, diisopropyl amine, ethanol amine, diethanol amine, triethanol amine, morpholine, N-methylmorpholine, piperidine, N-methylpiperidine, N-ethylpiperidine, dibenzylamine, piperazine, pyridine, pyrrazole, pipyrrazole, imidazole, pyrazine, or pipyrazine.
  • an ammonium salt is a triethyl amine salt, a diisopropyl amine salt, an ethanol amine salt, a diethanol amine salt, a triethanol amine salt, a morpholine salt, an N-methylmorpholine salt, a piperidine salt, an N-methylpiperidine salt, an N-ethylpiperidine salt, a dibenzylamine salt, a piperazine salt, a pyridine salt, a pyrrazole salt, a pipyrrazole salt, an imidazole salt, a pyrazine salt, or a pipyrazine salt.
  • Acid addition salts can arise from the addition of an acid to a compound of the invention.
  • the acid is organic.
  • the acid is inorganic.
  • the acid is hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, nitrous acid, sulfuric acid, sulfurous acid, a phosphoric acid, isonicotinic acid, lactic acid, salicylic acid, tartaric acid, ascorbic acid, gentisinic acid, gluconic acid, glucaronic acid, saccaric acid, formic acid, benzoic acid, glutamic acid, pantothenic acid, acetic acid, propionic acid, butyric acid, fumaric acid, succinic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, oxalic acid, or maleic acid.
  • Suitable acid salts include acetate, adipate, benzoate, benzenesulfonate, butyrate, citrate, digluconate, dodecylsulfate, formate, fumarate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, tosylate and undecanoate.
  • Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N-(alkyl) 4 + salts.
  • the salt is a hydrochloride salt, a hydrobromide salt, a hydroiodide salt, a nitrate salt, a nitrite salt, a sulfate salt, a sulfite salt, a phosphate salt, isonicotinate salt, a lactate salt, a salicylate salt, a tartrate salt, an ascorbate salt, a gentisinate salt, a gluconate salt, a glucaronate salt, a saccarate salt, a formate salt, a benzoate salt, a glutamate salt, a pantothenate salt, an acetate salt, a propionate salt, a butyrate salt, a fumarate salt, a succinate salt, a methanesulfonate (mesylate) salt, an ethanesulfonate salt, a benzenesulfonate salt, a p-toluenesul
  • a compound herein can be least 1% pure, at least 2% pure, at least 3% pure, at least 4% pure, at least 5% pure, at least 6% pure, at least 7% pure, at least 8% pure, at least 9% pure, at least 10% pure, at least 11% pure, at least 12% pure, at least 13% pure, at least 14% pure, at least 15% pure, at least 16% pure, at least 17% pure, at least 18% pure, at least 19% pure, at least 20% pure, at least 21% pure, at least 22% pure, at least 23% pure, at least 24% pure, at least 25% pure, at least 26% pure, at least 27% pure, at least 28% pure, at least 29% pure, at least 30% pure, at least 31% pure, at least 32% pure, at least 33% pure, at least 34% pure, at least 35% pure, at least 36% pure, at least 37% pure, at least 38% pure, at least 39% pure, at least 40% pure, at least 41% pure, at
  • compositions disclosed herein include peptidomimetic macrocycles and pharmaceutically-acceptable derivatives or prodrugs thereof.
  • a “pharmaceutically-acceptable derivative” means any pharmaceutically-acceptable salt, ester, salt of an ester, pro-drug or other derivative of a compound disclosed herein which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound disclosed herein.
  • Particularly favored pharmaceutically-acceptable derivatives are those that increase the bioavailability of the compounds when administered to a mammal (e.g., by increasing absorption into the blood of an orally administered compound) or which increases delivery of the active compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species.
  • Some pharmaceutically-acceptable derivatives include a chemical group which increases aqueous solubility or active transport across the gastrointestinal mucosa.
  • peptidomimetic macrocycles are modified by covalently or non-covalently joining appropriate functional groups to enhance selective biological properties.
  • modifications include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism, and alter rate of excretion.
  • pharmaceutically-acceptable carriers include either solid or liquid carriers.
  • Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
  • a solid carrier can be one or more substances, which also acts as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
  • the carrier is a finely divided solid, which is in a mixture with the finely divided active component.
  • the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
  • Suitable solid excipients are carbohydrate or protein fillers include, but are not limited to sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; and gums including arabic and tragacanth; as well as proteins such as gelatin and collagen.
  • disintegrating or solubilizing agents are added, such as the crosslinked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions.
  • liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
  • the pharmaceutical preparation can be in unit dosage form. In such form the preparation is subdivided into unit doses containing appropriate quantities of the active component.
  • the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packaged tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
  • compositions disclosed herein comprise a combination of a peptidomimetic macrocycle and one or more additional therapeutic or prophylactic agents
  • both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen.
  • the additional agents are administered separately, as part of a multiple dose regimen, from one or more compounds disclosed herein.
  • those agents are part of a single dosage form, mixed together with the compounds disclosed herein in a single composition.
  • a pharmaceutical composition disclosed herein comprises a peptidomimetic macrocycle at a concentration of about 5 mg/mL to about 50 mg/mL. In some embodiments, a pharmaceutical composition disclosed herein comprises a peptidomimetic macrocycle at a concentration of about 5 mg/mL to about 10 mg/mL, about 5 mg/mL to about 15 mg/mL, about 5 mg/mL to about 20 mg/mL, about 5 mg/mL to about 30 mg/mL, about 5 mg/mL to about 40 mg/mL, about 5 mg/mL to about 50 mg/mL, about 10 mg/mL to about 15 mg/mL, about 10 mg/mL to about 20 mg/mL, about 10 mg/mL to about 30 mg/mL, about 10 mg/mL to about 40 mg/mL, about 10 mg/mL to about 50 mg/mL, about 15 mg/mL to about 20 mg/mL, about 15 mg/mL to about 30 mg/mL, about 15 mg/mL,
  • a pharmaceutical composition disclosed herein comprises a peptidomimetic macrocycle at a concentration of about 5 mg/mL, about 10 mg/mL, about 15 mg/mL, about 20 mg/mL, about 30 mg/mL, about 40 mg/mL, or about 50 mg/mL. In some embodiments, a pharmaceutical composition disclosed herein comprises a peptidomimetic macrocycle at a concentration of at least about 5 mg/mL, about 10 mg/mL, about 15 mg/mL, about 20 mg/mL, about 30 mg/mL, or about 40 mg/mL.
  • a pharmaceutical composition disclosed herein comprises a peptidomimetic macrocycle at a concentration of at most about 10 mg/mL, about 15 mg/mL, about 20 mg/mL, about 30 mg/mL, about 40 mg/mL, or about 50 mg/mL.
  • a pharmaceutical composition disclosed herein comprises trehalose.
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is about 10 mg/mL to about 500 mg/mL.
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is about 10 mg/mL to about 20 mg/mL, about 10 mg/mL to about 30 mg/mL, about 10 mg/mL to about 40 mg/mL, about 10 mg/mL to about 50 mg/mL, about 10 mg/mL to about 60 mg/mL, about 10 mg/mL to about 70 mg/mL, about 10 mg/mL to about 80 mg/mL, about 10 mg/mL to about 90 mg/mL, about 10 mg/mL to about 100 mg/mL, about 10 mg/mL to about 250 mg/mL, about 10 mg/mL to about 500 mg/mL, about 20 mg/mL to about 30 mg/mL, about 20 mg/mL to about 40 mg/mL
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is about 10 mg/mL, about 20 mg/mL, about 30 mg/mL, about 40 mg/mL, about 50 mg/mL, about 60 mg/mL, about 70 mg/mL, about 80 mg/mL, about 90 mg/mL, about 100 mg/mL, about 250 mg/mL, or about 500 mg/mL.
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is at least about 10 mg/mL, about 20 mg/mL, about 30 mg/mL, about 40 mg/mL, about 50 mg/mL, about 60 mg/mL, about 70 mg/mL, about 80 mg/mL, about 90 mg/mL, about 100 mg/mL, or about 250 mg/mL.
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is at most about 20 mg/mL, about 30 mg/mL, about 40 mg/mL, about 50 mg/mL, about 60 mg/mL, about 70 mg/mL, about 80 mg/mL, about 90 mg/mL, about 100 mg/mL, about 250 mg/mL, or about 500 mg/mL.
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is about 100 mM to about 500 mM. In some embodiments, the concentration of trehalose in a pharmaceutical composition disclosed herein is about 100 mM to about 200 mM, about 100 mM to about 220 mM, about 100 mM to about 240 mM, about 100 mM to about 260 mM, about 100 mM to about 280 mM, about 100 mM to about 300 mM, about 100 mM to about 350 mM, about 100 mM to about 400 mM, about 100 mM to about 450 mM, about 100 mM to about 500 mM, about 200 mM to about 220 mM, about 200 mM to about 240 mM, about 200 mM to about 260 mM, about 200 mM to about 280 mM, about 200 mM to about 300 mM, about 200 mM to about 350 mM,
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is about 100 mM, about 200 mM, about 220 mM, about 240 mM, about 260 mM, about 280 mM, about 300 mM, about 350 mM, about 400 mM, about 450 mM, or about 500 mM. In some embodiments, the concentration of trehalose in a pharmaceutical composition disclosed herein is at least about 100 mM, about 200 mM, about 220 mM, about 240 mM, about 260 mM, about 280 mM, about 300 mM, about 350 mM, about 400 mM, or about 450 mM.
  • the concentration of trehalose in a pharmaceutical composition disclosed herein is at most about 200 mM, about 220 mM, about 240 mM, about 260 mM, about 280 mM, about 300 mM, about 350 mM, about 400 mM, about 450 mM, or about 500 mM.
  • a pharmaceutical composition disclosed herein comprises a tonicity adjusting agent.
  • the concentration of the tonicity adjusting agent is about 100 mM to about 500 mM.
  • the concentration of the tonicity adjusting agent is about 100 mM to about 200 mM, about 100 mM to about 220 mM, about 100 mM to about 240 mM, about 100 mM to about 260 mM, about 100 mM to about 280 mM, about 100 mM to about 300 mM, about 100 mM to about 350 mM, about 100 mM to about 400 mM, about 100 mM to about 450 mM, about 100 mM to about 500 mM, about 200 mM to about 220 mM, about 200 mM to about 240 mM, about 200 mM to about 260 mM, about 200 mM to about 280 mM, about 200 mM to about 300 mM,
  • the concentration of the tonicity adjusting agent is about 100 mM, about 200 mM, about 220 mM, about 240 mM, about 260 mM, about 280 mM, about 300 mM, about 350 mM, about 400 mM, about 450 mM, or about 500 mM. In some embodiments, the concentration of the tonicity adjusting agent is at least about 100 mM, about 200 mM, about 220 mM, about 240 mM, about 260 mM, about 280 mM, about 300 mM, about 350 mM, about 400 mM, or about 450 mM.
  • the concentration of the tonicity adjusting agent is at most about 200 mM, about 220 mM, about 240 mM, about 260 mM, about 280 mM, about 300 mM, about 350 mM, about 400 mM, about 450 mM, or about 500 mM.
  • the tonicity adjusting agent is trehalose.
  • a pharmaceutical composition of the disclosure can comprise polysorbate.
  • polysorbate acts as a stabilizing agent.
  • polysorbate is present in a pharmaceutical composition disclosed herein at a concentration of about 50 ppm to about 500 ppm.
  • polysorbate is present in a pharmaceutical composition disclosed herein at a concentration of about 50 ppm to about 100 ppm, about 50 ppm to about 150 ppm, about 50 ppm to about 200 ppm, about 50 ppm to about 250 ppm, about 50 ppm to about 300 ppm, about 50 ppm to about 350 ppm, about 50 ppm to about 400 ppm, about 50 ppm to about 450 ppm, about 50 ppm to about 500 ppm, about 100 ppm to about 150 ppm, about 100 ppm to about 200 ppm, about 100 ppm to about 250 ppm, about 100 ppm to about 300 ppm, about 100 ppm to about 350 ppm,
  • polysorbate is present in a pharmaceutical composition disclosed herein at a concentration of about 50 ppm, about 100 ppm, about 150 ppm, about 200 ppm, about 250 ppm, about 300 ppm, about 350 ppm, about 400 ppm, about 450 ppm, or about 500 ppm. In some embodiments, polysorbate is present in a pharmaceutical composition disclosed herein at a concentration of at least about 50 ppm, about 100 ppm, about 150 ppm, about 200 ppm, about 250 ppm, about 300 ppm, about 350 ppm, about 400 ppm, or about 450 ppm.
  • polysorbate is present in a pharmaceutical composition disclosed herein at a concentration of at most about 100 ppm, about 150 ppm, about 200 ppm, about 250 ppm, about 300 ppm, about 350 ppm, about 400 ppm, about 450 ppm, or about 500 ppm.
  • Non-limiting examples of a polysorbate present in a pharmaceutical composition disclosed herein include polysorbate 20, polysorbate 21, polysorbate 40, polysorbate 60, polysorbate 61, polysorbate 65, polysorbate 80, polysorbate 81, polysorbate 85 or polysorbate 120.
  • the disclosure provides a pharmaceutical formulation comprising a therapeutically-effective amount of one or more of the peptidomimetic macrocycles described above, formulated together with one or more pharmaceutically-acceptable carriers (additives) and/or diluents.
  • one or more of the peptidomimetic macrocycles described herein are formulated for parenteral administration, one or more peptidomimetic macrocycles disclosed herein can be formulated as aqueous or non-aqueous solutions, dispersions, suspensions or emulsions or sterile powders which can be reconstituted into sterile injectable solutions or dispersions just prior to use.
  • Such formulations can comprise sugars, alcohols, antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
  • These compositions can also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms upon the subject compounds can be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It can also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions.
  • the injectable pharmaceutical form can be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • the formulation can be diluted prior to use with, for example, an isotonic saline solution or a dextrose solution.
  • the peptidomimetic macrocycle is formulated as an aqueous solution and is administered intravenously.
  • a therapeutically effective amount of a peptidomimetic macrocycle of the disclosure can be administered in either single or multiple doses by any of the accepted modes of administration.
  • the peptidomimetic macrocycles of the disclosure are administered parenterally, for example, by subcutaneous, intramuscular, intrathecal, intravenous or epidural injection.
  • the peptidomimetic macrocycle is administered intravenously, intra-arterially, subcutaneously or by infusion.
  • the peptidomimetic macrocycle is administered intravenously.
  • the peptidomimetic macrocycle is administered intra-arterially.
  • the peptidomimetic macrocycles of the present disclosure are formulated into pharmaceutically-acceptable dosage forms.
  • the peptidomimetic macrocycles according to the disclosure can be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other pharmaceuticals.
  • a peptidomimetic macrocycle is administered in combination with an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the additional pharmaceutically-active agent is administered parenterally, for example, by subcutaneous, intramuscular, intrathecal, intravenous or epidural injection.
  • a peptidomimetic macrocycle and an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein can be administered via the same or different administration routes.
  • the peptidomimetic macrocycle can be administered intravenously and the additional pharmaceutically-active agent can be administered orally.
  • both the peptidomimetic macrocycle and the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, are administered intravenously.
  • the cancer possesses a p53 deactivating mutation and/or lacks wild type p53.
  • the cancer is determined to possess a p53 deactivating mutation and/or lacks wild type p53 prior to the beginning of treatment.
  • the subject possesses wild-type p53 in non-cancerous tissues such as the bone marrow or tissue of the digestive tract.
  • combination therapies for the treatment of cancer which involve the administration of an effective amount of a peptidomimetic macrocycle disclosed herein in combination with an effective amount of an additional pharmaceutically-active agent to a subject with a p53-mutant cancer and bone marrow expressing wild type p53.
  • combination therapies for the treatment of cancer which involve the administration of an effective amount of a peptidomimetic macrocycle disclosed herein in combination with an effective amount of an additional pharmaceutically-active agent to a subject with a cancer lacking wild type p53 and bone marrow expressing wild type p53.
  • combination therapies for the treatment of cancer which involve the administration of an effective amount of a peptidomimetic macrocycle disclosed herein in combination with an effective amount of an additional pharmaceutically-active agent to a subject with a p53-mutant cancer and tissue of the digestive tract expressing wild type p53.
  • combination therapies for the treatment of cancer which involve the administration of an effective amount of a peptidomimetic macrocycle disclosed herein in combination with an effective amount of an additional pharmaceutically-active agent to a subject with a cancer lacking wild type p53 and tissue of the digestive tract expressing wild type p53.
  • the term “in combination,” refers, in the context of the administration of the peptidomimetic macrocycles, to the administration of the peptidomimetic macrocycles prior to, concurrently with, or subsequent to the administration of one or more additional therapies (e.g., pharmaceutically-active agents, surgery, or radiation) for use in treating cancer.
  • additional therapies e.g., pharmaceutically-active agents, surgery, or radiation
  • the use of the term “in combination” does not restrict the order in which the peptidomimetic macrocycles and one or more additional therapies are administered to a subject.
  • the peptidomimetic macrocycles or a composition comprising the same and the at least one additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, or a composition comprising same can be administered simultaneously (i.e., simultaneous administration) and/or sequentially (i.e., sequential administration).
  • the peptidomimetic macrocycles and the at least one additional pharmaceutically-active agent are administered simultaneously, either in the same composition or in separate compositions.
  • simultaneous administration of a peptidomimetic macrocycle and at least one additional pharmaceutically-active agent involves administration of the peptidomimetic macrocycle and additional pharmaceutically-active agent with a time separation of no more than a few minutes, for example, less than about 15 minutes, less than about 10, less than about 5, or less than about 1 minute.
  • the peptidomimetic macrocycle and the at least one additional pharmaceutically-active agent can be contained in the same composition (e.g., a composition comprising both the peptidomimetic macrocycle and the at least additional pharmaceutically-active agent) or in separate compositions (e.g., the peptidomimetic macrocycle is contained in one composition and the at least additional pharmaceutically-active agent is contained in another composition).
  • the peptidomimetic macrocycles and the at least one additional pharmaceutically-active agent are administered sequentially, i.e., the peptidomimetic macrocycle is administered either prior to or after the administration of the additional pharmaceutically-active agent.
  • sequential administration means that the peptidomimetic macrocycle and the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, are administered with a time separation of more than a few minutes, for example, more than about 15 minutes, more than about 20 or more minutes, more than about 30 or more minutes, more than about 40 or more minutes, more than about 50 or more minutes, or more than about 60 or more minutes.
  • the peptidomimetic macrocycle is administered before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered before the peptidomimetic macrocycle.
  • the peptidomimetic macrocycle and the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, can be contained in separate compositions, which may be contained in the same or different packages.
  • the administration of the peptidomimetic macrocycles and the additional pharmaceutically-active agent are concurrent, i.e., the administration period of the peptidomimetic macrocycles and that of the agent overlap with each other.
  • the administration of the peptidomimetic macrocycles and the additional pharmaceutically-active agent are non-concurrent.
  • the administration of the peptidomimetic macrocycles is terminated before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered.
  • the administration of the additional pharmaceutically-active agent is terminated before the peptidomimetic macrocycle is administered.
  • the time period between these two non-concurrent administrations can range from being days apart to being weeks apart.
  • the dosing frequency of the peptidomimetic macrocycle and the at least one additional pharmaceutically-active agent can be adjusted over the course of the treatment, based on the judgment of an administering physician.
  • the peptidomimetic macrocycle and the at least one additional pharmaceutically-active agent can be administered at different dosing frequency or intervals.
  • the peptidomimetic macrocycle can be daily, while the at least one additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, can be administered more or less frequently.
  • both the peptidomimetic and the at least one additional pharmaceutically-active agent can be administered daily.
  • treatment with the peptidomimetic macrocycle can begin 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 days prior to treatment with the additional pharmaceutically-active agent.
  • the peptidomimetic macrocycle and the at least one additional pharmaceutically-active agent can be administered using the same route of administration or using different routes of administration.
  • the combination of the peptidomimetic macrocycles and one or more additional therapies can be administered to a subject in the same pharmaceutical composition.
  • the peptidomimetic macrocycles and one or more additional therapies can be administered concurrently to a subject in separate pharmaceutical compositions.
  • the peptidomimetic macrocycles and one or more additional therapies can be administered sequentially to a subject in separate pharmaceutical compositions.
  • Pharmaceutical compositions containing peptidomimetic macrocycles or one or more additional therapies can be administered to a subject by the same or different routes of administration.
  • the combination therapies provided herein can involve administering to a subject to in need thereof the peptidomimetic macrocycles in combination with other therapies for treating cancer.
  • Other therapies for cancer or a condition associated therewith can be aimed at controlling or relieving one or more symptoms.
  • the combination therapies provided herein involve administering to a subject to in need thereof a pain reliever, or other therapies aimed at alleviating or controlling one or more symptoms associated with or a condition associated therewith.
  • Combination treatments disclosed herein can be administered with a variety of dosing regimens.
  • the timing and selected dosage level of administration of a peptidomimetic macrocycle or an additional pharmaceutically-active agent can depend on a variety of factors including the activity of the particular peptidomimetic macrocycle employed, the route of administration, the rate of excretion or metabolism of the particular peptidomimetic macrocycle being employed, the duration of the treatment, the particular pharmaceutically-active agent used in combination with the particular peptidomimetic macrocycle employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and other factors.
  • the dosage values can also vary with the severity of the condition to be alleviated. For any particular subject, specific dosage regimens can be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.
  • a medical professional such as a physician or veterinarian, can readily determine and prescribe the effective amount of the pharmaceutical composition required.
  • a physician or veterinarian could start doses of the compounds of the disclosure employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • a suitable daily dose of a peptidomimetic macrocycle of the disclosure can be an amount of the peptidomimetic macrocycle which is the lowest dose effective to induce cell cycle arrest in a tissue with a functional p53 protein. In some embodiments, a suitable dose or a peptidomimetic macrocycle of the disclosure is less than an amount of the peptidomimetic macrocycle that is needed to induce apoptosis in a tissue with a functional p53 protein. Such an effective dose can depend upon the factors described above.
  • any particular peptidomimetic macrocycle or other pharmaceutically-active agent that will yield the most effective treatment in a given patient can, in some instances, depend upon the activity, pharmacokinetics, and bioavailability of a particular peptidomimetic macrocycle, physiological condition of the patient (including age, sex, disease type and stage, general physical condition, responsiveness to a given dosage and type of medication), route of administration, and the like.
  • Dosage can be based on the amount of the peptidomimetic macrocycle per kg body weight of the patient. Other amounts are known to those of skill in the art and readily determined. Alternatively, the dosage of the subject disclosure can be determined by reference to the plasma concentrations of the peptidomimetic macrocycle. For example, the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity (AUC) can be used.
  • Cmax maximum plasma concentration
  • AUC area under the plasma concentration-time curve from time 0 to infinity
  • the subject is a human subject.
  • Doses of a peptidomimetic macrocycle and/or additional pharmaceutically-active agent disclosed herein can be in the range of about 0.01 mg/kg to about 1000 mg/kg per day (e.g., about 0.01 mg/kg to about 100 mg/kg per day, about 0.01 mg/kg to about 10 mg/kg per day, about 0.01 mg/kg to about 3.2 mg/kg per day, about 0.1 mg/kg to about 100 mg/kg per day, about 0.1 mg/kg to about 50 mg/kg per day, about 0.1 mg/kg to about 10 mg/kg per day, about 0.1 mg/kg to about 3.2 mg/kg per day, at most about 3.2 mg/kg per day) of one or each component of the combinations described herein.
  • doses of a peptidomimetic macrocycle employed for human treatment are in the range of about 0.01 mg/kg to about 100 mg/kg per day (e.g., about 0.01 mg/kg to about 10 mg/kg per day, about 0.1 mg/kg to about 100 mg/kg per day, about 0.1 mg/kg to about 50 mg/kg per day, about 0.1 mg/kg to about 10 mg/kg per day, about 1 mg/kg per day).
  • doses of the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, employed for human treatment can be in the range of about 0.01 mg/kg to about 100 mg/kg per day (e.g., about 0.1 mg/kg to about 100 mg/kg per day, about 0.1 mg/kg to about 50 mg/kg per day, about 10 mg/kg per day or about 30 mg/kg per day).
  • the desired dose may be conveniently administered in a single dose, or as multiple doses administered at appropriate intervals, for example as two, three, four or more sub-doses per day.
  • the dosage of a peptidomimetic macrocycle may be given at relatively lower dosages.
  • the dosage of a peptidomimetic macrocycle may be from about 1 ng/kg to about 100 mg/kg.
  • the dosage of a peptidomimetic macrocycle may be at any dosage including, but not limited to, about 1 ⁇ g/kg, 25 ⁇ g/kg, 50 ⁇ g/kg, 75 ⁇ g/kg, 100 ⁇ g/kg, 125 ⁇ g/kg, 150 ⁇ g/kg, 175 ⁇ g/kg, 200 ⁇ g/kg, 225 ⁇ g/kg, 250 ⁇ g/kg, 275 ⁇ g/kg, 300 ⁇ g/kg, 325 ⁇ g/kg, 350 ⁇ g/kg, 375 ⁇ g/kg, 400 ⁇ g/kg, 425 ⁇ g/kg, 450 ⁇ g/kg, 475 ⁇ g/kg, 500 ⁇ g/kg, 525 ⁇ g/kg, 550 ⁇ g/kg, 575 ⁇ g/kg, 600 ⁇ g/kg, 625 ⁇ g/kg, 650 ⁇ g/kg, 675 ⁇ g/kg, 700 ⁇ g/kg, 725 ⁇ g/kg, 750
  • the dosage of the additional pharmaceutically-active agent may be from about 1 ng/kg to about 100 mg/kg.
  • the dosage of the additional pharmaceutically-active agent may be at any dosage including, but not limited to, about 1 ⁇ g/kg, 25 ⁇ g/kg, 50 ⁇ g/kg, 75 ⁇ g/kg, 100 ⁇ g/kg, 125 ⁇ g/kg, 150 ⁇ g/kg, 175 ⁇ g/kg, 200 ⁇ g/kg, 225 ⁇ g/kg, 250 ⁇ g/kg, 275 ⁇ g/kg, 300 ⁇ g/kg, 325 ⁇ g/kg, 350 ⁇ g/kg, 375 ⁇ g/kg, 400 ⁇ g/kg, 425 ⁇ g/kg, 450 ⁇ g/kg, 475 ⁇ g/kg, 500 ⁇ g/kg, 525 ⁇ g/kg, 550 ⁇ g/kg, 575 ⁇ g/kg, 600 ⁇ g/kg, 625
  • the dosage of the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is provided as an amount of agent per body surface area of a subject (e.g. mg/m 2 ). In some embodiments, the dosage of the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is about 0.1 mg/m 2 to about 100 mg/m 2 .
  • the dosage of the additional pharmaceutically-active agent is about 0.1 mg/m 2 to about 0.25 mg/m 2 , about 0.1 mg/m 2 to about 0.5 mg/m 2 , about 0.1 mg/m 2 to about 0.75 mg/m 2 , about 0.1 mg/m 2 to about 1 mg/m 2 , about 0.1 mg/m 2 to about 1.5 mg/m 2 , about 0.1 mg/m 2 to about 2 mg/m 2 , about 0.1 mg/m 2 to about 2.5 mg/m 2 , about 0.1 mg/m 2 to about 5 mg/m 2 , about 0.1 mg/m 2 to about 10 mg/m 2 , about 0.1 mg/m 2 to about 75 mg/m 2 , about 0.1 mg/m 2 to about 100 mg/m 2 , about 0.25 mg/m 2 to about 0.5 mg/m 2 , about 0.25 mg/m 2 to about 0.75 mg/m 2 , about 0.25 mg/m 2 to about 1 mg/m 2
  • the dosage of the additional pharmaceutically-active agent is about 0.1 mg/m 2 , about 0.25 mg/m 2 , about 0.5 mg/m 2 , about 0.75 mg/m 2 , about 1 mg/m 2 , about 1.5 mg/m 2 , about 2 mg/m 2 , about 2.3 mg/m 2 , about 2.5 mg/m 2 , about 5 mg/m 2 , about 10 mg/m 2 , about 75 mg/m 2 , or about 100 mg/m 2 .
  • the dosage of the additional pharmaceutically-active agent is at least about 0.1 mg/m 2 , about 0.25 mg/m 2 , about 0.5 mg/m 2 , about 0.75 mg/m 2 , about 1 mg/m 2 , about 1.5 mg/m 2 , about 2 mg/m 2 , about 2.5 mg/m 2 , or about 5 mg/m 2 .
  • the dosage of the additional pharmaceutically-active agent is at most about 0.25 mg/m 2 , about 0.5 mg/m 2 , about 0.75 mg/m 2 , about 1 mg/m 2 , about 1.5 mg/m 2 , about 2 mg/m 2 , about 2.5 mg/m 2 , about 5 mg/m 2 , about 10 mg/m 2 , or about 75 mg/m 2 .
  • the dosage of the additional pharmaceutically-active agent is the approved dosage from the label of the additional pharmaceutically-active agent. In some embodiments, the dosage of the additional pharmaceutically-active agent is 1.5 mg/m 2 or 2.3 mg/m 2 topotecan or a pharmaceutically acceptable salt thereof. In some embodiments, the dosage of the additional pharmaceutically-active agent is 75 mg/m 2 topotecan or a pharmaceutically-acceptable salt thereof. In some embodiments, the approved dosages of the additional pharmaceutically-active agents can be reduced to address adverse side effects such as renal impairment or liver impairment.
  • the peptidomimetic macrocycle and the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, can be provided in a single unit dosage form for being taken together or as separate entities (e.g. in separate containers).
  • the peptidomimetic macrocycle and the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein can be administered simultaneously or with a certain time difference. This time difference can be, for example, between about 0.1 hours to about 1 week.
  • the time difference is about 0.1 hours to about 6 days, about 0.1 hours to about 5 days, about 0.1 hours to about 4 days, about 0.1 hours to about 3 days, about 0.1 hours to about 48 hours, about 0.1 hours to about 36 hours, about 0.1 hours to about 24 hours, about 0.1 hours to about 12 hours, about 0.1 hours to about 6 hours, about 0.1 hours to about 1 hour, about 0.1 hours to about 0.5 hours, about 0.5 hours to about 1 week, about 0.5 hours to about 6 days, about 0.5 hours to about 5 days, about 0.5 hours to about 4 days, about 0.5 hours to about 3 days, about 0.5 hours to about 48 hours, about 0.5 hours to about 36 hours, about 0.5 hours to about 24 hours, about 0.5 hours to about 12 hours, about 0.5 hours to about 6 hours, about 0.5 hours to about 1 hour, about 1 hour to about 1 week, about 1 hour to about 6 days, about 1 hour to about 5 days, about 1 hour to about 4 days, about 1 hour to about 3 days, about 1 hour to about 48 hours,
  • the time period is about 1 week, about 6 days, about 5 days, about 4 days, about 3 days, about 48 hours, about 36 hours, about 12 hours, about 6 hours, about 0.5 hours, or about 0.1 hours. In some embodiments, the time period is at most about 1 week, at most about 6 days, at most about 5 days, at most about 4 days, at most about 3 days, at most about 48 hours, at most about 36 hours, at most about 12 hours, at most about 6 hours, or at most about 0.5 hours.
  • the time period is at least about 6 days, at least about 5 days, at least about 4 days, at least about 3 days, at least about 48 hours, at least about 36 hours, at least about 12 hours, at least about 6 hours, at least about 0.5 hours, or at least about 0.1 hours.
  • the peptidomimetic macrocycle is administered first, followed by the time difference, followed by administration of the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein is administered, followed by the time difference, followed by administration of a peptidomimetic macrocycle.
  • the peptidomimetic macrocycle is administered about 0.1 hours, about 0.2 hours, about 0.3 hours, about 0.4 hours, about 0.5 hours, about 1 hour, about 6 hours, about 12 hours, about 24 hours, about 36 hours, about 48 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 1 week before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered. In some embodiments, the peptidomimetic macrocycle is administered about 1 day before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered.
  • the peptidomimetic macrocycle is administered about 0.1 hours, about 0.2 hours, about 0.3 hours, about 0.4 hours, about 0.5 hours, about 1 hour, about 6 hours, about 12 hours, about 24 hours, about 36 hours, about 48 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 1 week after the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered.
  • the peptidomimetic macrocycle is administered about 6 hours after the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered.
  • the peptidomimetic macrocycle is administered chronologically before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the peptidomimetic macrocycle is administered from about 0.1 hours to about 1 week, about 0.1 hours to about 6 days, about 0.1 hours to about 5 days, about 0.1 hours to about 4 days, about 0.1 hours to about 3 days, about 0.1 hours to about 48 hours, about 0.1 hours to about 36 hours, about 0.1 hours to about 24 hours, about 0.1 hours to about 12 hours, about 0.1 hours to about 6 hours, about 0.1 hours to about 1 hour, about 0.1 hours to about 0.5 hours, about 0.5 hours to about 1 week, about 0.5 hours to about 6 days, about 0.5 hours to about 5 days, about 0.5 hours to about 4 days, about 0.5 hours to about 3 days, about 0.5 hours to about 48 hours, about 0.5 hours to about 36 hours, about 0.5 hours to about 24 hours, about 0.5 hours to about 12 hours, about 0.5 hours to about 6 hours, about 0.5 hours to about 36 hours
  • the peptidomimetic macrocycle is administered at least about 6 days, at least about 5 days, at least about 4 days, at least about 3 days, at least about 48 hours, at least about 36 hours, at least about 12 hours, at least about 6 hours, at least about 0.5 hours, at least about 0.1 hours or any combination thereof, before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered.
  • the peptidomimetic macrocycle can be administered at least 1 day before a topoisomerase inhibitor (e.g., topotecan) is administered.
  • the peptidomimetic macrocycle is administered at most about 1 week, at most about 6 days, at most about 5 days, at most about 4 days, at most about 3 days, at most about 48 hours, at most about 36 hours, at most about 12 hours, at most about 6 hours, at most about 0.5 hours or any combination thereof, before the additional pharmaceutically-active agent is administered.
  • the peptidomimetic macrocycle can be administered at most about 1 week, at most about 6 days, at most about 5 days, at most about 4 days, at most about 3 days, at most about 48 hours, at most about 36 hours, at most about 12 hours, at most about 6 hours, at most about 0.5 hours or any combination thereof, before a topoisomerase inhibitor (e.g. topotecan) is administered.
  • a topoisomerase inhibitor e.g. topotecan
  • the peptidomimetic macrocycle is administered about 1 week, about 6 days, about 5 days, about 4 days, about 3 days, about 48 hours, about 36 hours, about 24 hours, about 12 hours, about 8 hours, about 6 hours, about 0.5 hours, about 0.1 hours, or any combination thereof, before the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered.
  • the peptidomimetic macrocycle can be administered about 1 week, about 6 days, about 5 days, about 4 days, about 3 days, about 48 hours, about 36 hours, about 12 hours, about 6 hours, about 0.5 hours, about 0.1 hours, or any combination thereof, before a topoisomerase inhibitor (e.g. topotecan) is administered.
  • a topoisomerase inhibitor e.g. topotecan
  • the peptidomimetic macrocycle is administered chronologically at the same time as the at least one additional pharmaceutically active agent, for example, any additional therapeutic agent described herein.
  • the peptidomimetic macrocycle is administered chronologically after the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered from 0.1 hours to about 1 week, about 0.1 hours to about 6 days, about 0.1 hours to about 5 days, about 0.1 hours to about 4 days, about 0.1 hours to about 3 days, about 0.1 hours to about 48 hours, about 0.1 hours to about 36 hours, about 0.1 hours to about 24 hours, about 0.1 hours to about 12 hours, about 0.1 hours to about 6 hours, about 0.1 hours to about 1 hour, about 0.1 hours to about 0.5 hours, about 0.5 hours to about 1 week, about 0.5 hours to about 6 days, about 0.5 hours to about 5 days, about 0.5 hours to about 4 days, about 0.5 hours to about 3 days, about 0.5 hours to about 48 hours, about 0.5 hours to about 36 hours, about 0.5 hours to about 24 hours, about 0.5 hours to about 12 hours, about
  • the additional pharmaceutically-active agent is administered at least about 0.1 hours, at least about 0.5 hours at least about 1 hour, at least about 6 hours, at least about 12 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, at least about 1 week, at least about 2 weeks, at least about 3 weeks, at least about 4 weeks, at least about 1 month, or any combination thereof, after the peptidomimetic macrocycle is administered.
  • a topoisomerase inhibitor (e.g. topotecan) is administered at most about 0.1 hours, at most about 0.5 hours, at most about 1 hour, at most about 6 hours, at most about 12 hours, at most about 24 hours, at most about 36 hours, at most about 48 hours, at most about 3 days, at most about 4 days, at most about 5 days, at most about 6 days, at most about 1 week, at most about 2 weeks, at most about 3 weeks, at most about 4 weeks, at most about 1 month, or any combination thereof, after the peptidomimetic macrocycle is administered.
  • a topoisomerase inhibitor e.g. topotecan
  • topotecan can be administered at most about 0.1 hours, at most about 0.5 hours at most about 1 hour at most about 6 hours, at most about 12 hours, at most about 24 hours, at most about 36 hours, at most about 48 hours, at most about 3 days, at most about 4 days, at most about 5 days, at most about 6 days, at most about 1 week, at most about 2 weeks, at most about 3 weeks, at most about 4 weeks, at most about 1 month, or any combination thereof, after the peptidomimetic macrocycle is administered.
  • a pharmaceutically active agent e.g. topotecan, docetaxel, carboplatin, paclitaxel, or any combination thereof
  • a pharmaceutically active agent is administered about 0.1 hours, about 0.5 hours, about 1 hour, about 6 hours, about 8 hours about 12 hours, about 24 hours, about 36 hours, about 48 hours, about 3 days, about 4 days, about 5 days, about 6 days, about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 1 month, or any combination thereof, after the peptidomimetic macrocycle is administered.
  • contemplated herein is a drug holiday utilized among the administration of a peptidomimetic macrocycle and an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • a drug holiday can be a period of days after the administration of the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, and before the administration of a peptidomimetic macrocycle.
  • a drug holiday can be a period of days after the administration of a peptidomimetic macrocycle and before the administration of the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • a drug holiday can be a period of days after the sequential administration of one or more of a peptidomimetic macrocycle and an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, and before the administration of the peptidomimetic macrocycle, the additional pharmaceutically-active agent, or another therapeutic agent.
  • a drug holiday can be a period of days after the sequential administration of a peptidomimetic macrocycle first, followed administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, and before the administration of the peptidomimetic macrocycle again.
  • a drug holiday can be a period of days after the sequential administration of an additional pharmaceutically-active agent first, followed administration of a peptidomimetic macrocycle and before the administration of the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the drug holiday can be a period of 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, or 28 days; or from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 days, 1-4, 2-4,or 3-4 weeks; or from 1-12, 2-12, 3-12, 4-12, 5
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, will be administered first in the sequence, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, will be administered first in the sequence, followed by administration of a peptidomimetic macrocycle, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months, followed by an optional drug holiday; followed by administration of a peptidomimetic macrocycle for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24,
  • a topoisomerase inhibitor is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months; followed by a drug holiday of from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months, followed by administration of a peptidomimetic macrocycle for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24
  • a topoisomerase inhibitor is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months; followed by administration of a peptidomimetic macrocycle for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30
  • a peptidomimetic macrocycle will be administered first in the sequence, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • a peptidomimetic macrocycle will be administered first in the sequence, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle.
  • a peptidomimetic macrocycle is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months, followed by an optional drug holiday; followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24
  • a peptidomimetic macrocycle is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months; followed by a drug holiday of from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4
  • a peptidomimetic macrocycle is administered from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24,
  • a peptidomimetic macrocycle is administered for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30, 2-30, 3-30, 4-30, 5-30, 6-30, 7-30, 8-30, 9, ⁇ 30, 10-30, 11-30, 12-30, 13-30, 14-30, 15-30, 16-30, 17-30, 18-30, 19-30, 20-30, 21-30, 22-30, 23-30, 24-30, 25-30, 26-30, 27-30, 28-30, or 29-30 consecutive days, 1-4, 2-4,or 3-4 consecutive weeks; or from 1-12, 2-12, 3-12, 4-12, 5-12, 6-12, 7-12, 8-12, 9-12, 10-12, or 11-12 consecutive months; followed by administration of a topoisomerase inhibitor for from 1-24, 2-24, 3-24, 4-24, 5-24, 6-24, 7-24, 8-24, 9-24, 10-24, 11-24, or 12-24 consecutive hours; from 1-30
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, will be administered first in the sequence, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle.
  • a topoisomerase inhibitor will be administered first in the sequence, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle, followed by an optional drug holiday, followed by administration of a topoisomerase inhibitor.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 1 to 30 consecutive days, followed by an optional drug holiday, followed by administration of peptidomimetic macrocycle for from 1 to 30 consecutive days.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 1 to 21 consecutive days, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle for from 1 to 21 consecutive days.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 1 to 14 consecutive days, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle for from 1 to 14 consecutive days.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for 14 consecutive days, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle for 7 consecutive days.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for 7 consecutive days, followed by an optional drug holiday, followed by administration of a peptidomimetic macrocycle for 7 consecutive days.
  • a peptidomimetic macrocycle is administered for from 1 to 30 consecutive days, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for from 1 to 30 consecutive days.
  • a peptidomimetic macrocycle is administered for from 1 to 21 consecutive days, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for from 1 to 21 consecutive days.
  • a peptidomimetic macrocycle is administered for from 1 to 14 consecutive days, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for from 1 to 14 consecutive days.
  • a peptidomimetic macrocycle is administered for 14 consecutive days, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for 14 consecutive days.
  • a peptidomimetic macrocycle is administered for 7 consecutive days, followed by an optional drug holiday, followed by administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for 7 consecutive days.
  • one of a peptidomimetic macrocycle and an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 2 to 30 consecutive days, followed by an optional drug holiday, followed by administration of the other of a peptidomimetic macrocycle and an additional pharmaceutically-active agent from between 2 to 30 consecutive days.
  • one of a peptidomimetic macrocycle and an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, is administered for from 2 to 21 consecutive days, followed by an optional drug holiday, followed by administration of the other of a peptidomimetic macrocycle and an additional pharmaceutically-active agent for from 2 to 21 consecutive days.
  • one of a peptidomimetic macrocycle and an additional pharmaceutically-active agent is administered for from 2 to 14 consecutive days, followed by a drug holiday of from 1 to 14 days, followed by administration of the other of a peptidomimetic macrocycle and an additional pharmaceutically-active agent for from 2 to 14 consecutive days.
  • one of a peptidomimetic macrocycle and an additional pharmaceutically-active agent is administered for from 3 to 7 consecutive days, followed by a drug holiday of from 3 to 10 days, followed by administration of the other of a peptidomimetic macrocycle and an additional pharmaceutically-active agent for from 3 to 7 consecutive days.
  • a peptidomimetic macrocycle is administered once, twice, or thrice daily for 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, consecutive days followed by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 days of rest (e.g., no administration of the peptidomimetic macrocycle/discontinuation of treatment) in a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 day cycle; and the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is administered prior to, concomitantly with, or subsequent to administration of the peptidomimetic macrocycle on one or more days (e.g., on day 1 of cycle 1).
  • the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein
  • the combination therapy is administered for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 13 cycles of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or more days. In some embodiments, the combination therapy is administered for 1 to 12 or 13 cycles of 28 days (e.g., about 12 months).
  • the components of the combination therapies described herein are cyclically administered to a patient.
  • a secondary active agent is co-administered in a cyclic administration with the combination therapies provided herein. Cycling therapy involves the administration of an active agent for a period of time, followed by a rest for a period of time, and repeating this sequential administration. Cycling therapy can be performed independently for each active agent (e.g., a peptidomimetic macrocycle and an additional pharmaceutically-active agent, and/or a secondary agent) over a prescribed duration of time.
  • each active agent is dependent upon one or more of the active agents administered to the subject.
  • administration of a peptidomimetic macrocycle or an additional pharmaceutically-active agent for example, any therapeutic agent disclosed herein, fixes the day(s) or duration of administration of the peptidomimetic macrocycle and the additional therapeutically-active agent.
  • the frequency of administration is in the range of about a daily dose to about a monthly dose.
  • administration is once a day, twice a day, three times a day, four times a day, once every other day, twice a week, once every week, once every two weeks, once every three weeks, or once every four weeks.
  • a compound for use in combination therapies described herein is administered once a day.
  • a compound for use in combination therapies described herein is administered twice a day.
  • a compound for use in combination therapies described herein is administered three times a day.
  • a compound for use in combination therapies described herein is administered four times a day.
  • the frequency of administration of a peptidomimetic macrocycle is in the range of about a daily dose to about a monthly dose.
  • administration of a peptidomimetic macrocycle is once a day, twice a day, three times a day, four times a day, once every other day, twice a week, once every week, once every two weeks, once every three weeks, or once every four weeks.
  • a peptidomimetic macrocycle for use in combination therapies described herein is administered once a day.
  • a peptidomimetic macrocycle for use in combination therapies described herein is administered twice a day.
  • a peptidomimetic macrocycle for use in combination therapies described herein is administered three times a day.
  • a peptidomimetic macrocycle for use in combination therapies described herein is administered four times a day.
  • the frequency of administration of an additional pharmaceutically-active agent is in the range of about a daily dose to about a monthly dose.
  • administration of an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein is once a day, twice a day, three times a day, four times a day, once every other day, twice a week, once every week, once every two weeks, once every three weeks, or once every four weeks.
  • an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, for use in combination therapies described herein is administered once a day. In some embodiments, an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for use in combination therapies described herein is administered twice a day. In some embodiments, an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for use in combination therapies described herein is administered three times a day. In some embodiments, an additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, for use in combination therapies described herein is administered four times a day.
  • a compound for use in combination therapies described herein is administered once per day from one day to six months, from one week to three months, from one week to four weeks, from one week to three weeks, or from one week to two weeks. In some embodiments, a compound for use in combination therapies described herein is administered once per day for one week, two weeks, three weeks, or four weeks. In some embodiments, a compound for use in combination therapies described herein is administered once per day for one week. In some embodiments, a compound for use in combination therapies described herein is administered once per day for two weeks. In some embodiments, a compound for use in combination therapies described herein is administered once per day for three weeks. In some embodiments, a compound for use in combination therapies described herein is administered once per day for four weeks.
  • Therapeutic compositions may be administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more times, and they may be administered every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 hours, or 1, 2, 3, 4, 5, 6, 7 days, or 1, 2, 3, 4, 5 weeks, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months.
  • the periodic administration of a peptidomimetic macrocycle and/or the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein is affected daily. In some embodiments, the periodic administration of a peptidomimetic macrocycle and/or the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is affected twice daily at one half the amount.
  • the periodic administration of a peptidomimetic macrocycle and/or the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein, is affected once every 3 to 11 days; or once every 5 to 9 days; or once every 7 days; or once every 24 hours.
  • the periodic administration of a peptidomimetic macrocycle and/or the additional pharmaceutically-active agent is effected once every 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 6 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, or 30 days.
  • the periodic administration of a peptidomimetic macrocycle and/or additional pharmaceutically-active agent is affected one, twice, or thrice daily.
  • the periodic administration of the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, may be affected once every 16-32 hours; or once every 18-30 hours; or once every 20-28 hours; or once every 22-26 hours.
  • the administration of a peptidomimetic macrocycle substantially precedes the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein.
  • the administration of the additional pharmaceutically-active agent, for example, any additional therapeutic agent described herein substantially precedes the administration of a peptidomimetic macrocycle.
  • a peptidomimetic macrocycle and the additional pharmaceutically-active agent may be administered for a period of time of at least 4 days.
  • the period of time may be 5 days to 5 years; or 10 days to 3 years; or 2 weeks to 1 year; or 1 month to 6 months; or 3 months to 4 months.
  • a peptidomimetic macrocycle and the additional pharmaceutically-active agent for example, any additional therapeutic agent described herein, may be administered for the lifetime of the subject.
  • a peptidomimetic macrocycle and the additional pharmaceutically-active agent are administered during a treatment period.
  • a treatment period disclosed herein can be, for example, a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30-day treatment period.
  • the first day of a treatment period can be denoted as, for example, day 0 or day 1.
  • a 22-day treatment period can begin on day 0 and end on day 21.
  • a 22-day treatment period can begin on day 1 and end on day 22.
  • a peptidomimetic macrocycle and/or an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein can be administered on any of Days 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and/or 30 of a treatment period.
  • a peptidomimetic macrocycle and/or an additional pharmaceutically-active agent for example, any additional therapeutic agent described herein can be administered on one or more days of a treatment period. In some instances, neither a peptidomimetic macrocycle or an additional pharmaceutically-active agent is administered on one or more days of a treatment period.
  • the peptidomimetic macrocycle and the additional pharmaceutically-active agent are both administered on some days of a treatment period while on other days of the treatment period only one of the macrocycle or the additional pharmaceutically-active agent is administered.
  • a peptidomimetic macrocycle can be administered on Days 1, 2, 3, 4, and 5 of a treatment period and an additional pharmaceutically-active agent (e.g., any additional therapeutic agent described herein) can be administered on Days 2, 3, 4, 5, and 6 of the treatment period.
  • a peptidomimetic macrocycle can be administered on Days 0, 1, 2, 3, and 4 of a treatment period and an additional pharmaceutically-active agent (e.g., any additional therapeutic agent described herein) can be administered on Days 1, 2, 3, 4, and 5 of the treatment period.
  • a peptidomimetic macrocycle can be administered on Days 0, 1, and 2 of a treatment period and an additional pharmaceutically-active agent (e.g., any additional therapeutic agent described herein) can be administered on Day 1 of the treatment period.
  • a peptidomimetic macrocycle can be administered on Days 1, 2, and 3 of a treatment period and an additional pharmaceutically-active agent (e.g., any additional therapeutic agent described herein) can be administered on Day 2 of the treatment period.
  • a treatment period is part of a treatment cycle.
  • a peptidomimetic macrocycle can be administered on days 1, 2, 3, 4, and 5 of the cycle
  • an additional pharmaceutically-active agent e.g., any additional therapeutic agent described herein
  • days 2, 3, 4, 5, and 6 of the cycle neither the macrocycle nor the additional agent can be administered on days 7-22 of the cycle.
  • a peptidomimetic macrocycle can be administered on days 1, 2, and 3 of a cycle denoted to begin on Day 1 and end on Day 22, an additional pharmaceutically-active agent can be administered on day 2 of the cycle, and neither the macrocycle nor the additional agent can be administered on days 4-22 of the cycle.
  • multiple treatment cycles can be administered.
  • method disclosed herein can comprise administering 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more treatment cycles.
  • a method disclosed herein comprises administering at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, or at least 15 treatment cycles.
  • a method of the disclosure comprises administering a peptidomimetic macrocycle in combination with topotecan according to the example treatment schedule shown, below, with the number of administered treatment cycles varying:
  • a method of the disclosure comprises administering a peptidomimetic macrocycle in combination with docetaxel according to the example treatment schedule shown, below, with the number of administered treatment cycles varying:
  • the peptidomimetic macrocycle and/or additional pharmaceutically-active agent is administered gradually over a period of time.
  • a desired amount of peptidomimetic macrocycle or additional pharmaceutically-active agent can be administered gradually over a period of from about 0.1 h-24 h.
  • a desired amount of peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 0.1 h, 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 13 h, 14 h, 15 h, 16 h, 17 h, 18 h, 19 h, 20 h, 21 h, 22 h, 23 h, or 24 h.
  • a desired amount of peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 0.25-12 h, for example over a period of 0.25-1 h, 0.25-2 h, 0.25-3 h, 0.25-4 h, 0.25-6 h, 0.25-8 h, 0.25-10 h. In some examples, a desired amount of peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 0.25-2 h. In some examples, a desired amount of a peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 0.25-1 h.
  • a desired amount of a peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 0.25 h, 0.3 h, 0.4 h, 0.5 h, 0.6 h, 0.7 h, 0.8 h, 0.9 h, 1.0 h, 1.1 h, 1.2 h, 1.3 h, 1.4 h, 1.5 h, 1.6 h, 1.7 h, 1.8 h, 1.9 h, or 2.0 h.
  • a desired amount of a peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 1 h.
  • a desired amount of a peptidomimetic macrocycle or additional pharmaceutically-active agent is administered gradually over a period of 2 h.
  • one or more peptidomimetic macrocycles of the disclosure or an additional pharmaceutically-active agent is administered for more than 1 day, 1 week, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, 13 months, 14 months, 15 months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22 months, 23 months, or 24 months.
  • one or more peptidomimetic macrocycle of the disclosure is administered for less than 1 week, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, 13 months, 14 months, 15 months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22 months, 23 months, or 24 months.
  • one or more peptidomimetic macrocycles of the disclosure and/or an additional pharmaceutically-active agent, for example any additional therapeutic agent disclosed herein, is administered chronically on an ongoing basis.
  • administration of one or more peptidomimetic macrocycle of the disclosure is continued until documentation of disease progression, unacceptable toxicity, or patient or physician decision to discontinue administration.
  • the administration of the peptidomimetic macrocycles and one or more additional therapies in accordance with the methods presented herein have an additive effect relative the administration of the peptidomimetic macrocycles or said one or more additional therapies alone.
  • the administration of the peptidomimetic macrocycles and one or more additional therapies in accordance with the methods presented herein have a synergistic effect relative to the administration of the peptidomimetic macrocycles or said one or more additional therapies alone.
  • administration of the peptidomimetic macrocycles in combination with one or more additional therapies has a synergistic effect.
  • a synergistic effect of two or more agents is an effect of the combination of the two or more agents, which effect is greater than the additive effects of the two or more agents.
  • a synergistic effect of a combination therapy permits the use of lower dosages (e.g., sub-optimal doses) of the peptidomimetic macrocycles or an additional therapy and/or less frequent administration of the peptidomimetic macrocycles or an additional therapy to a subject.
  • the ability to utilize lower dosages of the peptidomimetic macrocycles or of an additional therapy and/or to administer the peptidomimetic macrocycles or said additional therapy less frequently reduces the toxicity associated with the administration of the peptidomimetic macrocycles or of said additional therapy to a subject without reducing the efficacy of the peptidomimetic macrocycles or of said additional therapy in the treatment of cancer.
  • a synergistic effect results in improved efficacy of the peptidomimetic macrocycles and each of said additional therapies in treating cancer.
  • a synergistic effect of a combination of the peptidomimetic macrocycles and one or more additional therapies avoids or reduces adverse or unwanted side effects associated with the use of any single therapy.
  • additional therapies e.g., pharmaceutically-active agents
  • side effects that can be reduced by a synergistic effect of a combination of a peptidomimetic macrocycle of the disclosure and an additional therapy are mucositis, side effects associated with myelosuppression such as neutropenia and thrombocytopenia; neurotoxicity, diarrhea, hair loss, vomiting, and nausea.
  • a synergistic effect of a combination of a peptidomimetic macrocycle of the disclosure and one or more additional therapies is a myelopreservative effect.
  • a reduction in mucositis, neutropenia, thrombocytopenia, or myelosuppression is due to peptidomimetic macrocycle-induced cell cycle arrest in tissues such as, for example, bone marrow and/or digestive tract tissue.
  • the reduction in side effects caused by a combination of a peptidomimetic macrocycle of the disclosure and an additional therapy allows for an increase in the maximum tolerated dose of the peptidomimetic macrocycle or additional therapy compared to the maximum tolerated dose of the peptidomimetic macrocycle or additional therapy when either the peptidomimetic macrocycle or additional therapy is administered alone.
  • administration of a peptidomimetic macrocycle in combination with an additional pharmaceutically-active agent does not reduce an effect of the additional pharmaceutically-active agent.
  • expected survival and/or tumor growth inhibition in a subject can be the same following administration of the additional pharmaceutically-active agent alone or following administration of the additional pharmaceutically active agent in combination with a peptidomimetic macrocycle disclosed herein.
  • administration of a peptidomimetic macrocycle in combination with an additional pharmaceutically-active agent can reduce an effect (e.g.
  • expected survival of a subject or tumor growth inhibition of the additional pharmaceutically-active agent by less than about 1%, less than about 2%, less than about 3%, less than about 4%, less than about 5%, less than about 6%, less than about 7%, less than about 8%, less than about 9%, or less than about 10% compared to the effect caused by administration of the additional pharmaceutically-active agent alone.
  • Additional therapies disclosed herein can include, for example, pharmaceutically-active agents.
  • pharmaceutically-active agents that can be used in combination with the peptidomimetic macrocycles include: hormonal agents (e.g., aromatase inhibitor, selective estrogen receptor modulator (SERM), and estrogen receptor antagonist), chemotherapeutic agents (e.g., microtubule disassembly blockers, antimetabolites, topoisomerase inhibitors, and DNA crosslinkers or damaging agents), and anti-antigenic agents (e.g., VEGF antagonists, receptor antagonists, integrin antagonists, vascular targeting agents (VTA)/vascular disrupting agents (VDA)).
  • an additional therapy disclosed herein is radiation therapy or conventional surgery.
  • Non-limiting examples of hormonal agents that can be used in combination with the peptidomimetic macrocycles include aromatase inhibitors, SERMs, and estrogen receptor antagonists.
  • Hormonal agents that are aromatase inhibitors can be steroidal or no steroidal.
  • Non-limiting examples of no steroidal hormonal agents include letrozole, anastrozole, aminoglutethimide, fadrozole, and vorozole.
  • Non-limiting examples of steroidal hormonal agents include aromasin (exemestane), formestane, and testolactone.
  • Non-limiting examples of hormonal agents that are SERMs include tamoxifen (branded/marketed as Nolvadex®), afimoxifene, arzoxifene, avalycoxifene, clomifene, femarelle, lasofoxifene, ormeloxifene, raloxifene, and toremifene.
  • Non-limiting examples of hormonal agents that are estrogen receptor antagonists include fulvestrant.
  • Other hormonal agents include but are not limited to abiraterone and lonaprisan.
  • Chemotherapeutic agents that are antimetabolites include, but are not limited to, folate antimetabolites (e.g., methotrexate, aminopterin, pemetrexed, raltitrexed); purine antimetabolites (e.g., cladribine, clofarabine, fludarabine, mercaptopurine, pentostatin, thioguanine); pyrimidine antimetabolites (e.g., 5-fluorouracil, capcitabine, gemcitabine (GEMZAR®), cytarabine, decitabine, floxuridine, tegafur, capecitabine); and deoxyribonucleotide antimetabolites (e.g., hydroxyurea).
  • folate antimetabolites e.g., methotrexate, aminopterin, pemetrexed, raltitrexed
  • purine antimetabolites e.g., cladribine, clofarabine, fludarabine,
  • Chemotherapeutic agents that are topoisomerase inhibitors include, but are not limited to, class I topoisomerase inhibitors such as topotecan (branded/marketed as HYCAMTIN®) irinotecan, rubitecan, and belotecan; class II topoisomerase inhibitors (e.g., etoposide or VP-16, and teniposide); anthracyclines (e.g., doxorubicin, epirubicin, Doxil, aclarubicin, amrubicin, daunorubicin, idarubicin, pirarubicin, valrubicin, and zorubicin); and anthracenediones (e.g., mitoxantrone, and pixantrone).
  • class I topoisomerase inhibitors such as topotecan (branded/marketed as HYCAMTIN®) irinotecan, rubitecan, and belotecan
  • Chemotherapeutic agents that are DNA crosslinkers include, but are not limited to, alkylating agents (e.g., cyclophosphamide, mechlorethamine, ifosfamide (branded/marketed as IFEX®), trofosfamide, chlorambucil, melphalan, prednimustine, bendamustine, uramustine, estramustine, carmustine (branded/marketed as BiCNU®), lomustine, semustine, fotemustine, nimustine, ranimustine, streptozocin, busulfan, mannosulfan, treosulfan, carboquone, N,N′N′-triethyl enethiophosphoramide, triaziquone, triethylenemelamine); alkylating-like agents (e.g., carboplatin (branded/marketed as PARAPLATIN®), cisplatin, oxaliplatin, nedaplatin, trip
  • Non-limiting examples of other therapies that can be administered to a subject in combination with the peptidomimetic macrocycles include: (1) a statin such as lovastatin (e.g., branded/marketed as MEVACOR®); (2) an mTOR inhibitor such as sirolimus which is also known as Rapamycin (e.g., branded/marketed as RAPAMUNE®), temsirolimus (e.g., branded/marketed as TORISEL®), evorolimus (e.g., branded/marketed as AFINITOR®), and deforolimus; (3) a farnesyltransferase inhibitor agent such as tipifarnib; (4) an antifibrotic agent such as pirfenidone; (5) a pegylated interferon such as PEG-interferon alfa-2b; (6) a CNS stimulant such as methylphenidate (branded/marketed as RITALIN®); (7) a HER-2 antagonist such as anti-HER-2 antibody (e.
  • an antineoplastic agent can be administered to a subject in combination with a peptidomimetic macrocycle.
  • antineoplastic agents can include topoisomerase inhibitors such as, for example, topotecan.
  • a peptidomimetic macrocycles disclosed herein can inhibit one or more transporter enzymes (e.g., OATP1B1, OATP1B3, BSEP) at concentrations that can be clinically relevant. Therefore, such a peptidomimetic macrocycles disclosed herein can interact with medications that are predominantly cleared by hepatobiliary transporters.
  • transporter enzymes e.g., OATP1B1, OATP1B3, BSEP
  • methotrexate and statins are not dosed within 48 hrs, 36 hrs, 24 hrs, or 12 hrs ((for example within 24 hrs) of the administration of such a peptidomimetic macrocycle.
  • statins e.g., atorvastatin, fluvastatin lovastatin, pitavastatin pravastatin, rosuvastatin and simvastatin
  • Non-limiting examples of medications that can be affected by co-administration of such a peptidomimetic macrocycle disclosed herein are listed in the following table:
  • one or more of the medications selected from the table above is not dosed within 48 hrs, 36 hrs, 24 hrs, or 12 hrs (for example within 24 h) of the administration of such a peptidomimetic macrocycle.
  • the response in individual patients can be characterized as a complete response, a partial response, stable disease, and progressive disease.
  • the response is complete response (CR).
  • Complete response in some examples can be defined as disappearance of all target lesions i.e. any pathological lymph nodes (whether target or non-target) must have reduction in short axis to ⁇ 10 mm.
  • the response is a partial response (PR). Partial response can be defined to mean at least 30% decrease in the sum of diameters of target lesions, taking as reference the baseline sum diameters.
  • the response is progressive disease (PD).
  • Progressive disease can be defined as at least a 20% increase in the sum of diameters of target lesions, taking as reference the smallest sum on study (this includes the baseline sum if that is the smallest) and an absolute increase of at least 5 mm in the sum of diameters of target lesions. The appearance of one or more new lesions can also be considered as progression.
  • the disease can be stable disease (SD). Stable disease can be characterized by neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD, taking as reference the smallest sum diameters while on study.
  • the response is a pathological complete response.
  • a pathological complete response e.g., as determined by a pathologist following examination of tissue removed at the time of surgery or biopsy, generally refers to an absence of histological evidence of invasive tumor cells in the surgical specimen.
  • peptidomimetic macrocycles are assayed, for example, by using the methods described below.
  • a peptidomimetic macrocycle has improved biological properties relative to a corresponding polypeptide lacking the substituents described herein.
  • polypeptides with ⁇ -helical domains will reach a dynamic equilibrium between random coil structures and ⁇ -helical structures, often expressed as a “percent helicity”.
  • alpha-helical domains are predominantly random coils in solution, with ⁇ -helical content usually under 25%.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, an alpha-helicity that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide.
  • macrocycles will possess an alpha-helicity of greater than 50%.
  • an aqueous solution e.g.
  • Circular dichroism (CD) spectra are obtained on a spectropolarimeter using standard measurement parameters (e.g. temperature, 20° C.; wavelength, 190-260 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; path length, 0.1 cm).
  • the ⁇ -helical content of each peptide is calculated by dividing the mean residue ellipticity (e.g. [ ⁇ D]222obs) by the reported value for a model helical decapeptide.
  • a peptidomimetic macrocycle comprising a secondary structure such as an ⁇ -helix exhibits, for example, a higher melting temperature than a corresponding uncrosslinked polypeptide.
  • Peptidomimetic macrocycles exhibit Tm of >60° C. representing a highly stable structure in aqueous solutions.
  • Tm is determined by measuring the change in ellipticity over a temperature range (e.g. 4 to 95° C.) on a spectropolarimeter using standard parameters (e.g. wavelength 222 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; temperature increase rate: 1° C./min; path length, 0.1 cm).
  • the amide bond of the peptide backbone is susceptible to hydrolysis by proteases, thereby rendering peptidic compounds vulnerable to rapid degradation in vivo. Peptide helix formation, however, buries the amide backbone and therefore can shield the amide from proteolytic cleavage.
  • the peptidomimetic macrocycles can be subjected to in vitro trypsin proteolysis to assess for any change in degradation rate compared to a corresponding uncrosslinked polypeptide. For example, the peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide are incubated with trypsin agarose and the reactions quenched at various time points by centrifugation and subsequent HPLC injection to quantitate the residual substrate by ultraviolet absorption at 280 nm.
  • the peptidomimetic macrocycle and peptidomimetic precursor (5 mcg) are incubated with trypsin agarose (S/E ⁇ 125) for 0, 10, 20, 90, and 180 minutes. Reactions are quenched by tabletop centrifugation at high speed; remaining substrate in the isolated supernatant is quantified by HPLC-based peak detection at 280 nm.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, an ex vivo half-life that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide, and possess an ex vivo half-life of 12 hours or more.
  • assays can be used. For example, a peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide (2 mcg) are incubated with fresh mouse, rat and/or human serum (2 mL) at 37° C. for 0, 1, 2, 4, 8, and 24 hours.
  • the samples are extracted by transferring 100 L of sera to 2 mL centrifuge tubes followed by the addition of 10 ⁇ L of 50% formic acid and 500 ⁇ L acetonitrile and centrifugation at 14,000 RPM for 10 min at 4+2° C. The supernatants are then transferred to fresh 2 mL tubes and evaporated on Turbovap under N 2 ⁇ 10 psi, 37° C. The samples are reconstituted in 100 ⁇ L of 50:50 acetonitrile:water and submitted to LC-MS/MS analysis.
  • FPA fluorescence polarization assay
  • fluoresceinated peptidomimetic macrocycles (25 nM) are incubated with the acceptor protein (25-1000 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer. K d values can be determined by nonlinear regression analysis using, for example, GraphPad Prism software.
  • a peptidomimetic macrocycle shows, in some embodiments, similar or lower K d than a corresponding uncrosslinked polypeptide.
  • a fluorescence polarization assay utilizing a fluoresceinated peptidomimetic macrocycle derived from a peptidomimetic precursor sequence is used, for example.
  • the FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer.
  • fluorescent tracers e.g., FITC
  • FITC-labeled peptides bound to a large protein When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution).
  • a compound that antagonizes the interaction between the fluoresceinated peptidomimetic macrocycle and an acceptor protein is detected in a competitive binding FPA experiment.
  • putative antagonist compounds (1 nM to 1 mM) and a fluoresceinated peptidomimetic macrocycle (25 nM) are incubated with the acceptor protein (50 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature.
  • Antagonist binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer.
  • K d values can be determined by nonlinear regression analysis. Any class of molecule, such as small organic molecules, peptides, oligonucleotides or proteins can be examined as putative antagonists in this assay.
  • an affinity-selection mass spectrometry assay is used, for example.
  • Protein-ligand binding experiments are conducted according to the following representative procedure outlined for a system-wide control experiment using 1 ⁇ M peptidomimetic macrocycle plus 5 ⁇ M hMDM2.
  • a 1 ⁇ L DMSO aliquot of a 40 ⁇ M stock solution of peptidomimetic macrocycle is dissolved in 19 ⁇ L of PBS (50 mM, pH 7.5 Phosphate buffer containing 150 mM NaCl).
  • the resulting solution is mixed by repeated pipetting and clarified by centrifugation at 10,000 g for 10 min.
  • Samples containing a target protein, protein-ligand complexes, and unbound compounds are injected onto an SEC column, where the complexes are separated from non-binding component by a rapid SEC step.
  • the SEC column eluate is monitored using UV detectors to confirm that the early-eluting protein fraction, which elutes in the void volume of the SEC column, is well resolved from unbound components that are retained on the column.
  • the fraction enters a sample loop where the fraction is excised from the flow stream of the SEC stage and transferred directly to the LC-MS via a valving mechanism.
  • the (M+3H) 3+ ion of the peptidomimetic macrocycle is observed by ESI-MS at the expected m/z, confirming the detection of the protein-ligand complex.
  • Protein-ligand K d titrations experiments are conducted as follows: 2 ⁇ L DMSO aliquots of a serially diluted stock solution of titrant peptidomimetic macrocycle (5, 2.5, . . . , 0.098 mM) are prepared then dissolved in 38 ⁇ L of PBS. The resulting solutions are mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min. To 4.0 ⁇ L aliquots of the resulting supernatants is added 4.0 ⁇ L of 10 ⁇ M hMDM2 in PBS.
  • Each 8.0 ⁇ L experimental sample thus contains 40 pmol (1.5 ⁇ g) of protein at 5.0 ⁇ M concentration in PBS, varying concentrations (125, 62.5, . . . , 0.24 ⁇ M) of the titrant peptide, and 2.5% DMSO.
  • Duplicate samples thus prepared for each concentration point are incubated at room temperature for 30 min, then chilled to 4° C. prior to SEC-LC-MS analysis of 2.0 ⁇ L injections.
  • an affinity selection mass spectrometry assay is performed, for example.
  • a mixture of ligands at 40 ⁇ M per component is prepared by combining 2 ⁇ L aliquots of 400 ⁇ M stocks of each of the three compounds with 14 ⁇ L of DMSO. Then, 1 ⁇ L aliquots of this 40 ⁇ M per component mixture are combined with 1 ⁇ L DMSO aliquots of a serially diluted stock solution of titrant peptidomimetic macrocycle (10, 5, 2.5, . . . , 0.078 mM). These 2 ⁇ L samples are dissolved in 38 ⁇ L of PBS.
  • the resulting solutions are mixed by repeated pipetting and clarified by centrifugation at 10,000 g for 10 min.
  • To 4.0 ⁇ L aliquots of the resulting supernatants is added 4.0 ⁇ L of 10 ⁇ M hMDM2 protein in PBS.
  • Each 8.0 ⁇ L experimental sample thus contains 40 pmol (1.5 ⁇ g) of protein at 5.0 ⁇ M concentration in PBS plus 0.5 ⁇ M ligand, 2.5% DMSO, and varying concentrations (125, 62.5, . . . , 0.98 ⁇ M) of the titrant peptidomimetic macrocycle.
  • Duplicate samples thus prepared for each concentration point are incubated at room temperature for 60 min, then chilled to 4° C. prior to SEC-LC-MS analysis of 2.0 ⁇ L injections.
  • Binding of peptides or peptidomimetic macrocycles to their natural acceptors in intact cells by can be measured immunoprecipitation experiments. For example, intact cells are incubated with fluoresceinated (FITC-labeled) compounds for 4 hrs in the absence of serum, followed by serum replacement and further incubation that ranges from 4-18 hrs. Cells are then pelleted and incubated in lysis buffer (50 mM Tris [pH 7.6], 150 mM NaCl, 1% CHAPS and protease inhibitor cocktail) for 10 minutes at 4° C.
  • FITC-labeled fluoresceinated
  • Extracts are spun by centrifuge at 14,000 rpm for 15 minutes, and supernatants collected and incubated with 10 ⁇ L goat anti-FITC antibody for 2 hrs, rotating at 4° C. followed by further 2 hrs incubation at 4° C. with protein A/G Sepharose (50 L of 50% bead slurry). After quick centrifugation, the pellets are washed in lysis buffer containing increasing salt concentration (e.g., 150, 300, 500 mM). The beads are then re-equilibrated at 150 mM NaCl before addition of SDS-containing sample buffer and boiling.
  • increasing salt concentration e.g. 150, 300, 500 mM
  • the supernatants are optionally electrophoresed using 4%-12% gradient Bis-Tris gels followed by transfer into Immobilon-P membranes. After blocking, blots are optionally incubated with an antibody that detects FITC and also with one or more antibodies that detect proteins that bind to the peptidomimetic macrocycle.
  • a peptidomimetic macrocycle can be, for example, more cell penetrable compared to a corresponding uncrosslinked macrocycle.
  • Peptidomimetic macrocycles with optimized linkers can possess, for example, cell penetrability that is at least two-fold greater than that of a corresponding uncrosslinked macrocycle. Often 20% or more of the applied peptidomimetic macrocycle can be observed to have penetrated the cell after 4 hours.
  • intact cells are incubated with fluorescently-labeled (e.g.
  • the efficacy of certain peptidomimetic macrocycles is determined, for example, in cell-based killing assays using a variety of tumorigenic and non-tumorigenic cell lines and primary cells derived from human or mouse cell populations. Cell viability is monitored, for example, over 24-96 hrs of incubation with peptidomimetic macrocycles (0.5 to 50 ⁇ M) to identify those that kill at EC 50 ⁇ 10 ⁇ M.
  • peptidomimetic macrocycles 0.5 to 50 ⁇ M
  • Several standard assays that measure cell viability are commercially available and are optionally used to assess the efficacy of the peptidomimetic macrocycles.
  • Assays that measure Annexin V and caspase activation are optionally used to assess whether the peptidomimetic macrocycles kill cells by activating the apoptotic machinery.
  • the Cell Titer-glo assay is used which determines cell viability as a function of intracellular ATP concentration.
  • the compounds are, for example, administered to mice and/or rats by IV, IP, PO or inhalation routes at concentrations ranging from 0.1 to 50 mg/kg and blood specimens withdrawn at 0′, 5′, 15′, 30′, 1 hr, 4 hrs, 8 hrs and 24 hours post-injection. Levels of intact compound in 25 ⁇ L of fresh serum are then measured by LC-MS/MS as above.
  • the compounds are, for example, given alone (IP, IV, PO, by inhalation or nasal routes) or in combination with sub-optimal doses of relevant chemotherapy (e.g., cyclophosphamide, doxorubicin, etoposide).
  • relevant chemotherapy e.g., cyclophosphamide, doxorubicin, etoposide.
  • 5 ⁇ 10 6 RS4;11 cells established from the bone marrow of a patient with acute lymphoblastic leukemia) that stably express luciferase are injected by tail vein in NOD-SCID mice 3 hrs after they have been subjected to total body irradiation. If left untreated, this form of leukemia is fatal in 3 weeks in this model.
  • the leukemia is readily monitored, for example, by injecting the mice with D-luciferin (60 mg/kg) and imaging the anesthetized animals.
  • Total body bioluminescence is quantified by integration of photonic flux (photons/sec) by Living Image Software.
  • Peptidomimetic macrocycles alone or in combination with sub-optimal doses of relevant chemotherapeutics agents are, for example, administered to leukemic mice (10 days after injection/day 1 of experiment, in bioluminescence range of 14-16) by tail vein or IP routes at doses ranging from 0.1 mg/kg to 50 mg/kg for 7 to 21 days.
  • the mice are imaged throughout the experiment every other day and survival monitored daily for the duration of the experiment.
  • mice are optionally subjected to necropsy at the end of the experiment.
  • Another animal model is implantation into NOD-SCID mice of DoHH2, a cell line derived from human follicular lymphoma that stably expresses luciferase. These in vivo tests optionally generate preliminary pharmacokinetic, pharmacodynamic and toxicology data.
  • a therapeutically-effective amount (e.g. 2.4 mg/kg) of a peptidomimetic macrocycle of the disclosure is administered intravenously to a group of mice.
  • mRNA is extracted from total bone marrow samples of mice at 0, 4, 8, 16, and 24 hours post macrocycle administration.
  • Murine p21 a downstream mediator of p53 dependent cell cycle arrest
  • Noxa an apoptosis marker
  • PUMA p53 upregulated modulator of apoptosis
  • average p21 mRNA expression in the bone marrow of mice is increased about 7.5 fold to about 10 fold at about 4 hours after peptidomimetic macrocycle administration, and about five fold to about 7.5 fold at about 8 hours after peptidomimetic macrocycle administration, and returns to about baseline levels by about 16 hours post peptidomimetic macrocycle administration.
  • average PUMA mRNA expression is increased about 1 fold to about 3 fold at about 4 hours post peptidomimetic macrocycle administration and returns to about baseline levels at about 8 hours post peptidomimetic macrocycle administration.
  • average Noxa mRNA expression in bone marrow of the mice is unchanged following peptidomimetic macrocycle administration.
  • changes in average p21 mRNA expression, average PUMA mRNA expression, and/or average Noxa mRNA expression in bone marrow of the group of mice occur with at most a 10%, 20%, 30%, 40%, or 50% deviation from corresponding lines illustrated in FIG. 9 .
  • mice are treated with 5 mg/kg, 10 mg/kg, or 20 mg/kg of a peptidomimetic macrocycle via intravenous administration.
  • Cell cycle arrest in the bone marrow of mice is then measured by flow cytometry using 5-ethynyl-2′-deoxyuridine (EdU) incorporation in lineage negative, Kit positive, hematopoietic stem and progenitor cells at pre-treatment (0 hours post treatment), and 4 hours, 8 hours, 16 hours, and 24 hours post treatment.
  • EdU 5-ethynyl-2′-deoxyuridine
  • the percentage of EdU+ cells is about 20% pre-treatment, less than about 5% at about 8 hours post treatment, between about 10% to about 25% at about 16 hours post treatment, and between about 40% to about 50% at about 24 hours post treatment.
  • a change in a percentage of lineage negative, Kit positive, hematopoietic stem and progenitor cells (HSPCs) that are EdU+ occurs with at most a 10%, 20%, 30%, 40%, or 50% deviation from corresponding lines illustrated in FIG. 11 .
  • mice The effect of a peptidomimetic macrocycle of the disclosure on topotecan-induced neutropenia is assessed in a controlled, in vivo study.
  • Four groups of mice are involved in the study, and administration of agents occurs over a 6-day treatment period.
  • the first group of mice (Group 1) is treated with a vehicle control on days 2, 3, 4, 5, and 6 of the treatment period.
  • the second group of mice (Group 2) is treated intravenously with 2.4 mg/kg of a peptidomimetic macrocycle on days 1, 2, 3, 4, and 5 of a 6-day treatment period.
  • the third group of mice (Group 3) is treated with 1.5 mg/kg of topotecan on days 2, 3, 4, 5, and 6 of the 6-day treatment period.
  • the fourth group of mice (Group 4) is treated with 2.4 mg/kg of the peptidomimetic macrocycle on days 1, 2, 3, 4, and 5 of the 6-day treatment period and 1.5 mg/kg of topotecan on days 2, 3, 4, 5, and 6 of the 6-day treatment period. Following the treatment period, complete blood counts are taken to determine the number of neutrophils present per ⁇ L of blood. In some embodiments, the mice of Group 4 have an average of about 588 neutrophils per ⁇ L of blood. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 4 ranges from about 200 to about 1000. In some embodiments, the mice of Group 3 have an average of about 320 neutrophils per ⁇ L of blood.
  • the number of neutrophils per ⁇ L of blood in mice of Group 3 ranges from about 10 to about 500. In some embodiments, the mice of Group 2 have a median number of neutrophils per ⁇ L of blood of about 1000. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 2 ranges from about 200 to about 1800. In some embodiments, the mice of Group 1 have a median number of neutrophils per ⁇ L of blood of about 600. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 1 ranges from about 450 to about 1000.
  • an average number of neutrophils present per ⁇ L of blood in mice of Group 4 is increased by about 20%, 40%, 50%, 60%, 70%, 80%, 100%, 120%, or 140% compared to an average number of neutrophils present per ⁇ L of blood in mice of Group 3.
  • a number of neutrophils present per ⁇ L of blood in mice of Group 4 is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group 3 as illustrated in FIG. 16A or FIG. 16B .
  • a peptidomimetic macrocycle of the disclosure on carboplatin and paclitaxel induced neutropenia is assessed in a controlled, in vivo study.
  • Mice are divided into six treatment groups and administered vehicle control, a peptidomimetic macrocycle alone, a combination of carboplatin and paclitaxel, or a combination of a peptidomimetic macrocycle, carboplatin, and paclitaxel.
  • the administration time(s) of the peptidomimetic macrocycle in relation to carboplatin and paclitaxel vary, with the time of carboplatin/paclitaxel administration being denoted as time 0 hours. Positive times (e.g.
  • AP-1 and paclitaxel are administered intravenously, and carboplatin is administered via intraperitoneal injection.
  • Group 1 is treated with a vehicle control.
  • Group 2 is treated with a peptidomimetic macrocycle (2.4 mg/kg) at times ⁇ 8 hours, ⁇ 1 hour and +8 hours.
  • Group 3 is treated with carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour (C+P).
  • Group 4 is treated with a peptidomimetic macrocycle at times ⁇ 24 hours and ⁇ 1 hour, and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour.
  • Group 5 is treated with a peptidomimetic macrocycle at times ⁇ 8 hours, ⁇ 1 hours and +8 hours, and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour.
  • Group 6 is treated with a peptidomimetic macrocycle at times ⁇ 8 hours and ⁇ 1 hour, and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour.
  • blood is collected from mice and neutrophil levels in blood are determined.
  • the mice of Group 6 have an average of about 225 neutrophils per ⁇ L of blood.
  • the number of neutrophils per ⁇ L of blood in mice of Group 6 ranges from about 100 to about 400.
  • the mice of Group 5 have an average of about 250 neutrophils per ⁇ L of blood. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 5 ranges from about 50 to about 350. In some embodiments, the mice of Group 4 have an average of about 150 neutrophils per ⁇ L of blood. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 4 ranges from about 100 to about 200. In some embodiments, the mice of Group 3 have an average of about 150 neutrophils per ⁇ L of blood. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 3 ranges from about 100 to about 225.
  • the mice of Group 2 have an average of about 225 neutrophils per ⁇ L of blood. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 2 ranges from about 150 to about 375. In some embodiments, the mice of Group 1 have an average of about 275 neutrophils per ⁇ L of blood. In some embodiments, the number of neutrophils per ⁇ L of blood in mice of Group 1 ranges from about 175 to about 475. In some embodiments, an average number of neutrophils present per ⁇ L of blood in mice of Group 5 is increased by about 20%, 40%, 50%, 60%, 70%, 80%, 100%, 120%, or 140% compared to an average number of neutrophils present per mL of blood in mice of Group 3. In some embodiments, a number of neutrophils present per ⁇ L of blood in mice of Group 5 is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group 3 as illustrated in FIG. 18A .
  • mice The effect of a peptidomimetic macrocycle of the disclosure on topotecan-induced mucositis is assessed in a controlled, in vivo study.
  • Four groups of mice (10 mice per group) are involved in the study, and administration of agents occurs over a 6-day treatment period.
  • the first group of mice (Group 1) is treated with a vehicle control on days 2, 3, 4, 5, and 6 of the treatment period.
  • the second group of mice (Group 2) is treated intravenously with 2.4 mg/kg of a peptidomimetic macrocycle on days 1, 2, 3, 4, and 5 of a 6-day treatment period.
  • the third group of mice (Group 3) is treated with 1.5 mg/kg of topotecan on days 2, 3, 4, 5, and 6 of the 6-day treatment period.
  • the fourth group of mice (Group 4) is treated with 2.4 mg/kg of the peptidomimetic macrocycle on days 1, 2, 3, 4, and 5 of the 6-day treatment period and 1.5 mg/kg of topotecan on days 2, 3, 4, 5, and 6 of the 6-day treatment period.
  • Gut samples are then taken from mice on days 7 and 9 post treatment. Histopathology analysis of gut samples is performed to assess hypertrophy/hyperplasia. In some embodiments, all gut samples from mice in Groups 1 and 2 receive a hypertrophy/hyperplasia score of 0. In some embodiments gut samples from about 70% (e.g. 7/10) mice from Group 3 receive a hyperplasia/hypertrophy score of 3, and gut samples from about 30% (e.g.
  • mice receive a hypertrophy/hyperplasia score of 2.
  • gut samples from about 80% (e.g. 8/10) mice from Group 4 receive a hyperplasia/hypertrophy score of 2, and gut samples from about 20% (e.g. 2/10) mice receive a hypertrophy/hyperplasia score of 3.
  • a measure of hypertrophy/hyperplasia in digestive tract tissue in mice of Group 4 is improved compared to a measure of hypertrophy/hyperplasia in digestive tract tissue in mice Group 3 as illustrated in FIG. 24A .
  • combination treatment with a peptidomimetic macrocycle disclosed herein and an additional therapy e.g. any additional therapeutic agent disclosed herein
  • an additional therapy e.g. any additional therapeutic agent disclosed herein
  • patients diagnosed with cancer and in need of treatment can be selected and separated into combination treatment and one or more control groups, wherein the combination treatment group is administered a peptidomimetic macrocycle in combination with an additional therapeutic agent, while the control groups receive a placebo or the additional therapeutic agent alone.
  • the treatment safety and efficacy of the combination treatment can thus be evaluated by performing comparisons of the patient groups with respect to factors such as the presence and severity of side effects, survival, and quality-of-life.
  • the patient group treated with a combination of a peptidomimetic macrocycle and an additional therapeutic agent can show improved long-term survival and/or decreased side effects compared to patient control groups treated with a placebo or the additional therapeutic agent alone.
  • ECOG performance status assigns a 0-5 score to a subject based on the criteria shown in the table below:
  • GRADE ECOG PERFORMANCE STATUS 0 Fully active, able to carry on all pre-disease performance without restriction 1 Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light house work, office work 2 Ambulatory and capable of all selfcare but unable to carry out any work activities; up and about more than 50% of waking hours 3 Capable of only limited selfcare; confined to bed or chair more than 50% of waking hours 4 Completely disabled; cannot carry on any selfcare; totally confined to bed or chair 5 Dead
  • the oily product 4 was purified by flash chromatography (solid loading) on normal phase using EtOAc and hexanes as eluents to give a red solid (1.78 g, 45% yield). M+H calc. 775.21, M+H obs.
  • the oily product 5 was purified by flash chromatography (solid loading) on normal phase using EtOAc and hexanes as eluents to give a red solid (5 g, 71% yield). M+H calc. 761.20, M+H obs.
  • EDTA disodium salt dihydrate (4.89 g, 13.1 mmol, 2 eq.) was added to the suspension, and the resulting suspension was stirred for 2 h.
  • a solution of Fmoc-OSu (2.21 g, 6.55 mmol, 1.1 eq.) in acetone (100 mL) was added, and the reaction was stirred overnight.
  • the reaction was diluted with diethyl ether and 1N HCl.
  • the organic layer was then dried over magnesium sulfate and concentrated in vacuo.
  • the desired product 7 was purified on normal phase using acetone and dichloromethane as eluents to give a white foam (2.6 g, 69% yield). M+H calc.
  • Peptidomimetic macrocycles were designed by replacing two or more naturally-occurring amino acids with the corresponding synthetic amino acids. Substitutions were made at i and i+4, and i and i+7 positions. Peptide synthesis was performed manually or using an automated peptide synthesizer under solid phase conditions using rink amide AM resin and Fmoc main-chain protecting group chemistry.
  • Fmoc-protected amino acids 10 eq. of amino acid and a 1:1:2 molar ratio of coupling reagents HBTU/HOBt/DIEA were employed.
  • Non-natural amino acids (4 eq.) were coupled with a 1:1:2 molar ratio of HATU/HOBt/DIEA.
  • the N-termini of the synthetic peptides were acetylated, and the C-termini were amidated.
  • Fully protected resin-bound peptides were synthesized on a PEG-PS resin (loading 0.45 mmol/g) on a 0.2 mmol scale. Deprotection of the temporary Fmoc group was achieved by 3 ⁇ 10 min treatments of the resin bound peptide with 20% (v/v) piperidine in DMF. After washing with NMP (3 ⁇ ), dichloromethane (3 ⁇ ) and NMP (3 ⁇ ), coupling of each successive amino acid was achieved with 1 ⁇ 60 min incubation with the appropriate pre-activated Fmoc-amino acid derivative.
  • Acetylation of the amino terminus was carried out in the presence of acetic anhydride/DIEA in NMP.
  • the LC-MS analysis of a cleaved and de-protected sample obtained from an aliquot of the fully assembled resin-bound peptide was accomplished in order to verifying the completion of each coupling.
  • tetrahydrofuran (4 ml) and triethylamine (2 ml) were added to the peptide resin (0.2 mmol) in a 40 ml glass vial and shaken for 10 minutes.
  • Fully protected resin-bound peptides were synthesized on a Rink amide MBHA resin (loading 0.62 mmol/g) on a 0.1 mmol scale. Deprotection of the temporary Fmoc group was achieved by 2 ⁇ 20 min treatments of the resin bound peptide with 25% (v/v) piperidine in NMP. After extensive flow washing with NMP and dichloromethane, coupling of each successive amino acid was achieved with 1 ⁇ 60 min incubation with the appropriate pre-activated Fmoc-amino acid derivative.
  • Acetylation of the amino terminus was carried out in the presence of acetic anhydride/DIEA in NMP/NMM.
  • the LC-MS analysis of a cleaved and de-protected sample obtained from an aliquot of the fully assembled resin-bound peptide was accomplished to verify the completion of each coupling reaction.
  • the peptide resin (0.1 mmol) was washed with DCM.
  • Resin was loaded into a microwave vial. The vessel was evacuated and purged with nitrogen. Molybdenum hexacarbonyl (0.01 eq.) was added. Anhydrous chlorobenzene was added to the reaction vessel. Then 2-fluorophenol (1 eq.) was added.
  • the reaction was then loaded into the microwave and held at 130° C. for 10 minutes. The reaction pushed for a longer period time when needed to complete the reaction.
  • the alkyne-metathesized resin-bound peptides were de-protected and cleaved from the solid support by treating the solid support with TFA/H 2 O/TIS (94/3/3 v/v) for 3 h at room temperature. After filtration of the resin, the TFA solution was precipitated in cold diethyl ether and centrifuged to yield the desired product as a solid. The crude product was purified by preparative HPLC.
  • TABLE 1 shows a list of peptidomimetic macrocycles prepared.
  • TABLE 1a shows a selection of peptidomimetic macrocycles.
  • TABLE 1b shows a further selection of peptidomimetic macrocycles.
  • Nle represents norleucine
  • Aib represents 2-aminoisobutyric acid
  • Ac represents acetyl
  • Pr represents propionyl.
  • Amino acids represented as “$” are alpha-Me S5-pentenyl-alanine olefin amino acids connected by an all-carbon crosslinker comprising one double bond.
  • Amino acids represented as “$r5” are alpha-Me R 5 -pentenyl-alanine olefin amino acids connected by an all-carbon comprising one double bond.
  • Amino acids represented as “$s8” are alpha-Me S8-octenyl-alanine olefin amino acids connected by an all-carbon crosslinker comprising one double bond.
  • Amino acids represented as “$r8” are alpha-Me R8-octenyl-alanine olefin amino acids connected by an all-carbon crosslinker comprising one double bond.
  • Ahx represents an aminocyclohexyl linker.
  • the crosslinkers are linear all-carbon crosslinker comprising eight or eleven carbon atoms between the alpha carbons of each amino acid.
  • Amino acids represented as “$/” are alpha-Me S5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “$/r5” are alpha-Me R5-pentenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “$/s8” are alpha-Me S8-octenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “$/r8” are alpha-Me R8-octenyl-alanine olefin amino acids that are not connected by any crosslinker.
  • Amino acids represented as “Amw” are alpha-Me tryptophan amino acids.
  • Amino acids represented as “Aml” are alpha-Me leucine amino acids.
  • Amino acids represented as “Amf” are alpha-Me phenylalanine amino acids.
  • Amino acids represented as “2ff” are 2-fluoro-phenylalanine amino acids.
  • Amino acids represented as “3ff” are 3-fluoro-phenylalanine amino acids.
  • Amino acids represented as “St” are amino acids comprising two pentenyl-alanine olefin side chains, each of which is crosslinked to another amino acid as indicated.
  • Amino acids represented as “St//” are amino acids comprising two pentenyl-alanine olefin side chains that are not crosslinked.
  • Amino acids represented as “% St” are amino acids comprising two pentenyl-alanine olefin side chains, each of which is crosslinked to another amino acid as indicated via fully saturated hydrocarbon crosslinks.
  • Amino acids represented as “Ba” are beta-alanine.
  • the lower-case character “e” or “z” within the designation of a crosslinked amino acid e.g. “$er8” or “$zr8” represents the configuration of the double bond (E or Z, respectively).
  • lower-case letters such as “a” or “f” represent D amino acids (e.g. D-alanine, or D-phenylalanine, respectively).
  • Amino acids designated as “NmW” represent N-methyltryptophan.
  • Amino acids designated as “NmY” represent N-methyltyrosine.
  • Amino acids designated as “NmA” represent N-methylalanine.
  • “Kbio” represents a biotin group attached to the side chain amino group of a lysine residue.
  • Amino acids designated as “Sar” represent sarcosine.
  • Amino acids designated as “Cha” represent cyclohexyl alanine.
  • Amino acids designated as “Cpg” represent cyclopentyl glycine.
  • Amino acids designated as “Chg” represent cyclohexyl glycine.
  • Amino acids designated as “Cba” represent cyclobutyl alanine.
  • Amino acids designated as “F41” represent 4-iodo phenylalanine.
  • “7L” represents N15 isotopic leucine.
  • Amino acids designated as “F3Cl” represent 3-chloro phenylalanine.
  • Amino acids designated as “F4cooh” represent 4-carboxy phenylalanine.
  • Amino acids designated as “F34F2” represent 3,4-difluoro phenylalanine.
  • Amino acids designated as “6clW” represent 6-chloro tryptophan.
  • Amino acids designated as “$rda6” represent alpha-Me R6-hexynyl-alanine alkynyl amino acids, crosslinked via a dialkyne bond to a second alkynyl amino acid.
  • Amino acids designated as “$da5” represent alpha-Me S5-pentynyl-alanine alkynyl amino acids, wherein the alkyne forms one half of a dialkyne bond with a second alkynyl amino acid.
  • Amino acids designated as “$ra9” represent alpha-Me R9-nonynyl-alanine alkynyl amino acids, crosslinked via an alkyne metathesis reaction with a second alkynyl amino acid.
  • Amino acids designated as “$a6” represent alpha-Me S6-hexynyl-alanine alkynyl amino acids, crosslinked via an alkyne metathesis reaction with a second alkynyl amino acid.
  • the designation “iso1” or “iso2” indicates that the peptidomimetic macrocycle is a single isomer.
  • Amino acids designated as “Cit” represent citrulline. Amino acids designated as “Cou4”, “Cou6”, “Cou7” and “Cou8”, respectively, represent the following structures:
  • a peptidomimetic macrocycle is obtained in more than one isomer, for example due to the configuration of a double bond within the structure of the crosslinker (E vs Z).
  • Such isomers can or cannot be separable by conventional chromatographic methods.
  • one isomer has improved biological properties relative to the other isomer.
  • an E crosslinker olefin isomer of a peptidomimetic macrocycle has better solubility, better target affinity, better in vivo or in vitro efficacy, higher helicity, or improved cell permeability relative to its Z counterpart.
  • a Z crosslinker olefin isomer of a peptidomimetic macrocycle has better solubility, better target affinity, better in vivo or in vitro efficacy, higher helicity, or improved cell permeability relative to its E counterpart.
  • TABLE 1c shows non-limiting examples of peptidomimetic macrocycles.
  • peptidomimetic macrocycles include peptidomimetic macrocycles shown in TABLE 2a:
  • the peptides can comprise an N-terminal capping group such as acetyl or an additional linker such as beta-alanine between the capping group and the start of the peptide sequence.
  • peptidomimetic macrocycles include those shown in TABLE 2b.
  • TABLE 2c shows examples of crosslinked and non-crosslinked polypeptides comprising D-amino acids.
  • a peptidomimetic macrocycle comprising a 1,4-triazole group (e.g. SP153)
  • 20% (v/v) 2,6-lutidine in DMF was added to the peptide resin (0.5 mmol) in a 40 ml glass vial and shaken for 10 minutes.
  • Sodium ascorbate (0.25 g, 1.25 mmol) and diisopropylethylamine (0.22 ml, 1.25 mmol) were then added, followed by copper(I) iodide (0.24 g, 1.25 mmol) and the resulting reaction mixture was mechanically shaken 16 hours at ambient temperature.
  • a peptide resin (0.25 mmol) was washed with anhydrous DCM. Resin was loaded into a microwave vial. Vessel was evacuated and purged with nitrogen. Chloro(pentamethylcyclopentadienyl) bis(triphenylphosphine)ruthenium(II), 10% loading, (Strem 44-0117) was added. Anhydrous toluene was added to the reaction vessel. The reaction was then loaded into the microwave and held at 90° C. for 10 minutes. Reaction may need to be pushed a subsequent time for completion.
  • Chloro(1,5-cyclooctadiene)(pentamethylcyclopentadienyl)ruthenium (“Cp*RuCl(cod)”) may be used, for example at room temperature in a solvent comprising toluene.
  • a peptidomimetic macrocycle comprising an iodo-substituted triazole group (e.g. SP457)
  • THF 2 ml
  • N-bromosuccimide 0.25 mmol
  • copper(I) iodide 0.05 g, 0.25 mmol
  • diisopropylethylamine 0.25 mmol
  • Iodo-triazole crosslinkers may be further substituted by a coupling reaction, for example with boronic acids, to result in a peptidomimetic macrocycle such as SP465.
  • a coupling reaction for example with boronic acids
  • DMF 3 ml
  • Phenyl boronic acid 0.4 g, 0.3 mmol
  • tetrakis(triphenylphosphine)palladium(0) 0.006 g, 0.005 mmol
  • potassium carbonate 0.083 g, 0.6 mmol
  • Iodo-triazole crosslinkers may also be further substituted by a coupling reaction, for example with a terminal alkyne (e.g. Sonogashira coupling), to result in a peptidomimetic macrocycle such as SP468.
  • a coupling reaction for example with a terminal alkyne (e.g. Sonogashira coupling)
  • a terminal alkyne e.g. Sonogashira coupling
  • SP468 peptidomimetic macrocycle
  • the triazole-cyclized resin-bound peptides were deprotected and cleaved from the solid support by treatment with TFA/H 2 O/TIS (95/5/5 v/v) for 2.5 h at room temperature. After filtration of the resin the TFA solution was precipitated in cold diethyl ether and centrifuged to yield the desired product as a solid.
  • the crude product was purified by preparative HPLC. For example, purification of cross-linked compounds is achieved by high performance liquid chromatography (HPLC) (Varian ProStar) on a reverse phase C18 column (Varian) to yield the pure compounds. Chemical composition of the pure products is confirmed by LC/MS mass spectrometry (Micromass LCT interfaced with Agilent 1100 HPLC system) and amino acid analysis (Applied Biosystems, model 420A).
  • TABLE 3 and TABLE 3A show lists of peptidomimetic macrocycles of Formula I.
  • Peptidomimetic macrocycle precursors comprising an R8 amino acid at position “i” and an S5 amino acid at position “i+7” were prepared.
  • the amino acid at position “i+3” was a Boc-protected tryptophan, which was incorporated during solid-phase synthesis.
  • the Boc-protected tryptophan amino acid shown below was used during solid phase synthesis:
  • Metathesis was performed using a ruthenium catalyst prior to the cleavage and deprotection steps.
  • the composition obtained following cyclization was determined by HPLC analysis and was found to contain primarily peptidomimetic macrocycles having a crosslinker comprising a trans olefin (“iso2”, comprising the double bond in an E configuration). Unexpectedly, a ratio of 90:10 was observed for the trans and cis products, respectively.
  • Peptidomimetic macrocycles were first dissolved in neat N, N-dimethylacetamide (DMA) to make 20 ⁇ stock solutions over a concentration range of 20-140 mg/mL.
  • the DMA stock solutions were diluted 20-fold in an aqueous vehicle containing 2% Solutol-HS-15, 25 mM histidine, and 45 mg/mL mannitol to obtain final concentrations of 1-7 mg/ml of the peptidomimetic macrocycles in 5% DMA, 2% Solutol-HS-15, 25 mM histidine, and 45 mg/mL mannitol.
  • the final solutions were mixed gently by repeat pipetting or light vortexing.
  • the final solutions were sonicated for 10 min at room temperature in an ultrasonic water bath. Careful visual observations were performed under a hood light using a 7 ⁇ visual amplifier to determine if precipitates existed on the bottom of the flasks or as a suspension. Additional concentration ranges were tested as needed to determine the maximum solubility limit for each peptidomimetic macrocycle.
  • the protein was purified using Ni-NT Agarose followed by Superdex 75 buffered with 50 mM NaPO 4 , pH 8.0, 150 mM NaCl, and 2 mM TCEP, and concentrating to 24 mg/ml.
  • the buffer was exchanged to 20 mM Tris, pH 8.0, 50 mM NaCl, and 2 mM DTT for crystallization experiments.
  • Initial crystals were obtained with the Nextal AMS screen #94, and the final optimized reservoir was 2.6 M AMS, 75 mM Hepes, pH 7.5. Crystals grew routinely as thin plates at 4° C. and were cryo-protected by pulling the crystals through a solution containing concentrated (3.4 M) malonate followed by flash cooling, storage, and shipment in liquid nitrogen.
  • Stock solutions of peptides were prepared in benign CD buffer (20 mM phosphoric acid, pH 2). The stock solutions were used to prepare peptide solutions of 0.05 mg/ml in either benign CD buffer or CD buffer with 50% trifluoroethanol (TFE) for analyses in a 10 mm path length cell. Variable wavelength measurements of peptide solutions were scanned at 4° C. from 195 to 250 nm, in 0.2 nm increments, and a scan rate 50 nm per minute. The average of six scans is reported.
  • the assay was performed according to the following general protocol:
  • MDM2 (41 kD) was diluted into FP buffer (high-salt buffer-200 mM NaCl, 5 mM CHAPS, pH 7.5) to make a 84 nM (2 ⁇ ) working stock solution.
  • 20p1 of the 84 nM (2 ⁇ ) protein stock solution was added into each well of a 96-well black microplate.
  • 1 mM of FAM-labeled linear peptide (in 100% DMSO) was diluted to 100 ⁇ M with DMSO (dilution 1:10). Then, diluted solution was further diluted from 100 ⁇ M to 10 ⁇ M with water (dilution 1:10), and diluted again with FP buffer from 10 ⁇ M to 40 nM (dilution 1:250).
  • the resulting working solution resulted in a 10 nM concentration in each well (dilution 1:4).
  • the diluted FAM-labeled peptides were kept in the dark until use.
  • Unlabeled peptide dose plates were prepared with FP buffer starting with 1 ⁇ M (final) of the peptide. 5-fold serial dilutions were made for 6 points using the following dilution scheme. 10 mM of the solution (in 100% DMSO) with DMSO to 5 mM (dilution 1:2); dilution from 5 mM to 500 ⁇ M with H 2 O (dilution 1:10); and dilution with FP buffer from 500 ⁇ M to 20 ⁇ M (dilution 1:25). 5-fold serial dilutions from 4 ⁇ M (4 ⁇ ) were made for 6 points.
  • MDMX (40 kD) was diluted into FP buffer (high-salt buffer-200 mM NaCl, 5 mM CHAPS, pH 7.5) to make a 10 ⁇ M working stock solution.
  • FP buffer high-salt buffer-200 mM NaCl, 5 mM CHAPS, pH 7.5
  • 30 ⁇ l of the 10 ⁇ M of protein stock solution was added into the A1 and B1 wells of a 96-well black microplate.
  • 30 ⁇ l of FP buffer was added to columns A2 to A12, B2 to B12, C1 to C12, and D1 to D12. 2-fold or 3-fold series dilutions of protein stocks were created from A1, B1 into A2, B2; A2, B2 to A3, B3; . . . to reach the single digit nM concentration at the last dilution point.
  • MDMX (40 kD) was diluted into FP buffer (high-salt buffer 200 mM NaCl, 5 mM CHAPS, pH 7.5) to make a 300 nM (2 ⁇ ) working stock solution. 20 ⁇ l of the 300 nM (2 ⁇ ) of protein stock solution was added into each well of 96-well black microplate. 1 mM (in 100% DMSO) of a FAM-labeled linear peptide was diluted with DMSO to a concentration of 100 ⁇ M (dilution 1:10). The solution was diluted from 100 ⁇ M to 10 ⁇ M with water (dilution 1:10), and diluted further with FP buffer from 10 ⁇ M to 40 nM (dilution 1:250).
  • FP buffer high-salt buffer 200 mM NaCl, 5 mM CHAPS, pH 7.5
  • the final working solution resulted in a concentration of 10 nM per well (dilution 1:4).
  • the diluted FAM-labeled peptide was kept in the dark until use.
  • An unlabeled peptide dose plate was prepared with FP buffer starting with a concentration of 5 ⁇ M (final) of a peptide. 5-fold serial dilutions were prepared for 6 points using the following dilution scheme. 10 mM (in 100% DMSO) of the solution was diluted with DMSO to prepare a 5 mM (dilution 1:2) solution.
  • the solution was diluted from 5 mM to 500 ⁇ M with H 2 O (dilution 1:10), and diluted further with FP buffer from 500 ⁇ M to 20 ⁇ M (dilution 1:25). 5-fold serial dilutions from 20 ⁇ M (4 ⁇ ) were prepared for 6 points. 10 ⁇ l of the serially diluted unlabeled peptides were added to each well, which was filled with 20 ⁇ l of the 300 nM protein solution. 10 ⁇ l of the 10 nM (4 ⁇ ) FAM-labeled peptide solution was added into each well, and the wells were incubated for 3 h before reading.
  • Results from EXAMPLE 8-EXAMPLE 11 are shown in TABLE 5. The following scale is used: “+” represents a value greater than 1000 nM, “++” represents a value greater than 100 and less than or equal to 1000 nM, “+++” represents a value greater than 10 nM and less than or equal to 100 nM, and “++++” represents a value of less than or equal to 10 nM.
  • Example 12 Competition Binding ELISA Assay for MDM2 and MDMX
  • p53-His6 protein (“His6” disclosed as SEQ ID NO: 1948) (30 nM/well) was coated overnight at room temperature in the wells of 96-well plates. On the day of the experiment, the plates were washed with 1 ⁇ PBS-Tween 20 (0.05%) using an automated ELISA plate washer and blocked with ELISA microwell blocking buffer for 30 minutes at room temperature. The excess blocking agent was washed off by washing the plates with 1 ⁇ PBS-Tween 20 (0.05%). The peptides were diluted from 10 mM DMSO stock solutions to 500 ⁇ M working stock solutions using sterile water. Further dilutions were made in 0.5% DMSO to keep the concentration of DMSO constant across the samples.
  • the peptide solutions were added to the wells at 2 ⁇ the desired concentrations in 50 ⁇ L volumes, followed by addition of diluted GST-MDM2 or GST-HMDX protein (final concentration: 10 nM).
  • the samples were incubated at room temperature for 2 h, and the plates were washed with PBS-Tween 20 (0.05%) prior to adding 100 ⁇ L of HRP-conjugated anti-GST antibody diluted to 0.5 ⁇ g/ml in HRP-stabilizing buffer.
  • the plates were incubated with a detection antibody for 30 min, and the plates were washed and incubated with 100 ⁇ L per well of TMB-E substrate solution for up to 30 minutes.
  • the reactions were stopped using 1M HCL, and absorbance was measured at 450 nm using a micro plate reader.
  • the data were analyzed using Graph Pad PRISM software.
  • Cells were trypsinized, counted, and seeded at pre-determined densities in 96-well plates one day prior to conducting the cell viability assay.
  • the following cell densities were used for each cell line: SJSA-1: 7500 cells/well; RKO: 5000 cells/well; RKO-E6: 5000 cells/well; HCT-116: 5000 cells/well; SW-480: 2000 cells/well; and MCF7: 5000 cells/well.
  • the media was replaced with fresh media containing 11% FBS (assay media) at room temperature. 180 ⁇ L of the assay media was added to each well. Control wells were prepared with no cells, and the control wells received 200 ⁇ L of media.
  • Peptide dilutions were made at room temperature, and the diluted peptide solutions were added to the cells at room temperature.
  • 10 mM stock solutions of the peptides were prepared in DMSO.
  • the stock solutions were serially diluted using a 1:3 dilution scheme to obtain 10 mM, 3.3 mM, 1.1 mM, 0.33 mM, 0.11 mM, 0.03 mM, and 0.01 mM solutions in DMSO.
  • the serially DMSO-diluted peptides were diluted 33.3 times using sterile water, resulting in a range of 10 ⁇ working stock solutions.
  • a DMSO/sterile water (3% DMSO) solution was prepared for use in the control well.
  • the working stock solution concentrations ranges were 300 ⁇ M, 100 ⁇ M, 30 ⁇ M, 10 ⁇ M, 3 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, and 0 ⁇ M.
  • the solutions were mixed well at each dilution step using a multichannel pipette.
  • Row H of the plate contained the controls.
  • Wells H1-H3 received 20 ⁇ L of assay media.
  • Rows H4-H9 received 20 ⁇ L of the 3% DMSO-water vehicle.
  • Wells H10-H12 received media alone control with no cells.
  • the MDM2 small molecule inhibitor Nutlin-3a (10 mM) was used as a positive control. Nutlin-3a was diluted using the same dilution scheme used for the peptides.
  • 20 ⁇ L of a 10 ⁇ concentration peptide stock solution was added to the appropriate well to achieve the final concentration in 200 ⁇ L in each well.
  • 20 ⁇ L of 300 ⁇ M peptide solution+180 ⁇ L of cells in media 3 ⁇ M final concentration in 200 ⁇ L volume in wells.
  • the solution was mixed gently a few times using a pipette.
  • the final concentration range was 30 ⁇ M, 10 ⁇ M, 3 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, 0.1 ⁇ M, 0.03 ⁇ M, and 0 ⁇ M. Further dilutions were used for potent peptides.
  • Controls included wells that received no peptides but contained the same concentration of DMSO as the wells containing peptides and wells containing no cells. The plates were incubated for 72 hours at 37° C. in a humidified 5% CO 2 atmosphere.
  • the viability of the cells was determined using MTT reagent.
  • the viability of SJSA-1, RKO, RKO-E6, HCT-116 cells was determined on day 3.
  • the viability of MCF7 cells was determined on day 5.
  • the viability of SW-480 cells was determined on day 6.
  • the plates were cooled to room temperature. 80 L of assay media was removed from each well. 15 ⁇ L of thawed MTT reagent was then added to each well. The plate was incubated for 2 h at 37° C. in a humidified 5% CO 2 atmosphere. 100 ⁇ L of the solubilization reagent was added to each well. The plates were incubated with agitation for 1 h at room temperature and read using a multiplate reader for absorbance at 570 nm. Cell viability was analyzed against the DMSO controls.
  • Results from cell viability assays are shown in TABLE 6 and TABLE 7.
  • “+” represents a value greater than 30 ⁇ M
  • “++” represents a value greater than 1 ⁇ M and less than or equal to 30 ⁇ M
  • “+++” represents a value greater than 5 ⁇ M and less than or equal to 15 ⁇ M
  • “++++” represents a value of less than or equal to 5 ⁇ M.
  • IC 50 ratio represents the ratio of average IC 50 in p53+/+ cells relative to average IC 50 in p53 ⁇ / ⁇ cells.
  • SJSA-1 cells were trypsinized, counted, and seeded at a density of 7500 cells/100 ⁇ L/well in 96-well plates one day prior to running the assay. On the day of the assay, the media was replaced with fresh RPMI-11% FBS assay media. 90 ⁇ L of the assay media was added to each well. The control wells contained no cells and received 100 ⁇ L of the assay media.
  • 10 mM stock solutions of the peptides were prepared in DMSO.
  • the stock solutions were serially diluted using a 1:3 dilution scheme to obtain 10 mM, 3.3 mM, 1.1 mM, 0.33 mM, 0.11 mM, 0.03 mM, and 0.01 mM solutions in DMSO.
  • the solutions were serially diluted 33.3 times using sterile water to provide a range of 10 ⁇ working stock solutions.
  • a DMSO/sterile water (3% DMSO) solution was prepared for use in the control wells.
  • the working stock solution concentration range was 300 ⁇ M, 100 ⁇ M, 30 ⁇ M, 10 ⁇ M, 3 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, and 0 ⁇ M.
  • Row H contained the control wells.
  • Wells H1-H3 received 10 ⁇ L of the assay media.
  • Wells H4-H9 received 10 ⁇ L of the 3% DMSO-water solution.
  • Wells H10-H12 received media alone and contained no cells.
  • the MDM2 small molecule inhibitor Nutlin-3a (10 mM) was used as a positive control. Nutlin-3a was diluted using the same dilution scheme used for the peptides.
  • 10 ⁇ L of a 10 ⁇ peptide solution was added to the appropriate well to achieve a final concentration in a volume of 100 ⁇ L.
  • 10 ⁇ L of 300 ⁇ M peptide+90 ⁇ L of cells in media 30 ⁇ M final concentration in 100 ⁇ L volume in wells.
  • the final concentration range used was 30 ⁇ M, 10 ⁇ M, 3 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, and 0 ⁇ M.
  • Control wells included wells that did not receive peptides but contained the same concentration of DMSO as the wells containing the peptides and wells containing no cells.
  • the media was aspirated from the wells.
  • the cells were washed with 1 ⁇ PBS (without C ⁇ ++/Mg + ) and lysed in 60 ⁇ L of 1 ⁇ cell lysis buffer (10 ⁇ buffer diluted to 1 ⁇ and supplemented with protease inhibitors and phosphatase inhibitors) on ice for 30 min.
  • the plates were centrifuged at 5000 rpm at 4° C. for 8 min.
  • the clear supernatants were collected and frozen at ⁇ 80° C. until further use.
  • the total protein contents of the lysates were measured using a BCA protein detection kit and BSA standards. Each well provided about 6-7 ⁇ g of protein.
  • 50 ⁇ L of the lysate was used per well to set up the p21 ELISA assay.
  • 50 ⁇ L of lysate was used for each well, and each well was set up in triplicate.
  • SJSA-1 cells were trypsinized, counted, and seeded at a density of 7500 cells/100 ⁇ L/well in 96-well plates one day prior to conducting the assay.
  • the media was replaced with fresh RPMI-11% FBS assay media. 180 ⁇ L of the assay media was added to each well. Control wells contained no cells and received 200 ⁇ L of the assay media.
  • 10 mM stock solutions of the peptides were prepared in DMSO.
  • the stock solutions were serially diluted using a 1:3 dilution scheme to obtain 10 mM, 3.3 mM, 1.1 mM, 0.33 mM, 0.11 mM, 0.03 mM, and 0.01 mM solutions in DMSO.
  • the solutions were serially diluted 33.3 times using sterile water to provide a range of 10 ⁇ working stock solutions.
  • a DMSO/sterile water (3% DMSO) solution was prepared for use in the control wells.
  • the working stock solution concentration range was 300 ⁇ M, 100 ⁇ M, 30 ⁇ M, 10 ⁇ M, 3 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, and 0 ⁇ M.
  • Each well was mixed well at each dilution step using a multichannel pipette. 20 ⁇ L of the 10 ⁇ working stock solutions were added to the appropriate wells. Row H of the plates had control wells. Wells H1-H3 received 20 ⁇ L of the assay media. Wells H4-H9 received 20 ⁇ L of the 3% DMSO-water solutions. Wells H10-H12 received media and had no cells.
  • the MDM2 small molecule inhibitor Nutlin-3a (10 mM) was used as a positive control. Nutlin-3a was diluted using the same dilution scheme as the peptides.
  • 10 ⁇ L of the 10 ⁇ stock solutions were added to the appropriate wells to achieve the final concentrations in a total volume of 100 ⁇ L.
  • 10 ⁇ L of 300 ⁇ M peptide+90 ⁇ L of cells in media 30 ⁇ M final concentration in 100 ⁇ L volume in wells.
  • the final concentration range used was 30 ⁇ M, 10 ⁇ M, 3 ⁇ M, 1 ⁇ M, 0.3 ⁇ M, and 0 ⁇ M.
  • Control wells contained no peptides but contained the same concentration of DMSO as the wells containing the peptides and well containing no cells. 48 h after incubation, 80 L of the media was aspirated from each well.
  • SJSA-1 cells were plated out one day in advance in clear, flat-bottom plates at a density of 7500 cells/well with 100 ⁇ L/well of growth media. Row H columns 10-12 were left empty to be treated with media alone. On the day of the assay, the media was exchanged with RPMI 1% FBS media to result in 90 ⁇ L of media per well. 10 mM stock solutions of the peptidomimetic macrocycles were prepared in 100% DMSO. The peptidomimetic macrocycles were diluted serially in 100% DMSO, and further diluted 20-fold in sterile water to prepare working stock solutions in 5% DMSO/water. The concentrations of the peptidomimetic macrocycles ranged from 500 ⁇ M to 62. ⁇ M.
  • cytotoxicity of some chemotherapeutic agents is reduced in cells that are not actively dividing.
  • chemotherapeutic agents e.g. topoisomerase inhibitors
  • p53 activation via administration of a peptidomimetic macrocycle can induce transient, dose-dependent cell cycle arrest, as shown in FIG. 2 .
  • Induction of cell cycle arrest can reduce sensitivity to chemotherapy induced cytotoxicity.
  • the cell cycle of p53 mutant cancer cells is unaffected by the peptidomimetic macrocycle leaving the cells vulnerable to the cytotoxic effects of the chemotherapy, as shown in FIG. 3 .
  • FIG. 4 presents data that shows the effect of AP-1 in p53 wild type cells vs. p53 mutant cells.
  • Various cell lines were grown in RPMI1640, 10% FBS, 2 mM L-alanyl-L-Glutamine, 1 mM Na pyruvate or a special medium in a humidified atmosphere of 5% CO2 at 37° C. Cells were seeded in 384 well plates and AP-1 was added to cells 24 hours post seeding. AP-1 was serially diluted 3.16-fold and assayed over 10 concentrations. 16-bit TIFF images were collected with 4 ⁇ objective.
  • MOLM13 cells were cultured in vitro and treated with a vehicle control or varying concentrations of AP-1 for 24 hours. After the treatment period, the effects of AP-1 on cell cycle arrest and apoptosis were analyzed by propidium iodide and annexin V staining, respectively. As can be seen in FIG. 5 , AP-1 triggered dose dependent apoptosis. When cells were treated with 1 ⁇ M AP-1, cell cycle arrest was induced in cells.
  • CD34 + bone marrow cells were cultured and treated with various concentrations of AP-1. DNA synthesis and the percentage of cells in S-phase was detected via EdU staining of cells as measured via flow cytometry. Results are shown in FIG. 6 and indicate that treatment with AP-1 decreased DNA synthesis and the percentage of cells in S-phase compared to vehicle controls.
  • Bone marrow CD34+ cells were treated with 1 ⁇ M AP-1 or vehicle control in vitro for 24 hours. Following treatment with AP-1 or vehicle, cells were washed and treated with 1 ⁇ M topotecan for 24 hours. DNA damage in topotecan incubated cells was then assessed via measurement of ⁇ -H2AX. As can be seen in FIG. 8 , pre-treatment with AP-1 reduced topotecan induced DNA damaged compared to cells pre-treated with vehicle control as indicated by a decrease in ⁇ -H2AX.
  • mRNA was extracted from total bone marrow samples from mice treated with either 2.4 mg/kg or 10 mg/kg AP-1 at 0, 4, 8, 16, and 24 hours post drug administration.
  • Murine p21 a downstream mediator of p53 dependent cell cycle arrest
  • Noxa an apoptosis marker
  • PUMA p53 upregulated modulator of apoptosis
  • the increase in p21 expression was greater than the increase in PUMA and Noxa expression, while at the 10 mg/kg dose the increase in p21 expression was greater than the increase in PUMA expression, but not greater than the increase in Noxa expression.
  • HSPC hematopoietic stem and progenitor cells
  • mice were treated with 5 mg/kg, 10 mg/kg, or 20 mg/kg AP-1.
  • Cell cycle arrest in the bone marrow of mice was then measured by flow cytometry using EdU incorporation in lineage negative, Kit positive, hematopoietic stem and progenitor cells at pre-treatment (0 hours post treatment), and 4 hours, 8 hours, 16 hours, and 24 hours post treatment.
  • FIG. 11 a decrease in the percentage of EdU+ cells from 0-8 hours post treatment was observed. The decrease reversed from 8-24 hours post treatment.
  • FIG. 12 shows the levels of MIC-1, a clinical biomarker of p53 activation, in the serum of mice before (time 0) or after treatment with AP-1 at a dose of 2.4 mg/kg or 10 mg/kg. Results show that murine MIC-1 levels, as measured by ELISA, peak between 4 and 8 hours post treatment with AP-1, correlating with cell cycle inhibition in vivo, as shown by FIG. 11 .
  • mice bearing MCF-7 tumors were administered a single 20 mg/kg dose of AP-1 intravenously.
  • Tumor samples were collected 16 hours post dose and stained for p 53 , p 21 , PARP, and bromodeoxyuridine (BrdU), which is indicative of cell proliferation.
  • AP-1 treatment increased p53 and p21 expression while also causing cell cycle arrest as indicated by a decrease in BrdU staining.
  • an increase in PARP staining was seen with AP-1 treatment.
  • Quantification of p53, p21, PARP, and BrdU staining at 16, 24, and 48 hours post dose is shown in FIG. 14 .
  • Example 26 Combination Treatment of a MCF-7.1 Mouse Model with AP-1 and Abraxane®
  • MCF-7.1 tumors Female athymic nude mice bearing established, subcutaneous MCF-7.1 tumors were treated intravenously with 5 mg/kg AP-1, 15 mg/kg Abraxane®, 5 mg/kg AP-1 and 15 mg/kg Abraxane®, or vehicle control. Abraxane® was dosed once weekly (qwk), while vehicle and AP-1 was dosed twice weekly. In the combination treatment group, AP-1 was administered 24 hours prior to administration of Abraxane®. As can be seen in FIG. 15 , the MCF-7.1 tumor volume decreased with Abraxane® or Abraxane® AP-1 combination treatment.
  • a preclinical or clinical conclusion can be drawn based upon analysis neutrophil levels of two treatment groups.
  • a preclinical conclusion can be based upon analysis of neutrophil levels in Group A and Group B as illustrated in FIG. 16C or FIG. 16D , where Group A consists of mice treated with 1.5 mg/kg topotecan on days 1-5 of a treatment period, and Group B consists of mice treated with topotecan on days 1-5 of a treatment period and AP-1 24 hours before the first topotecan dose and 30 minutes before each subsequent topotecan dose.
  • C57BL/6 mice bearing established syngeneic MC38 colon cancer tumors, or nu/nu mice bearing established H69 or H211 xenograft tumors were treated with topotecan on days 1-5 and either AP-1 or vehicle on days 0-4. Median tumor volume and mouse survival was assessed. As can be seen in FIG. 17A , FIG. 17B , and FIG. 17C , topotecan treatment led to decreased tumor volumes and increased survival. The anti-tumor activity of topotecan was not diminished by pretreatment with AP-1. In the MC38 and H69 models, pretreatment with AP-1 yielded a modest enhancement of mouse survival.
  • mice were divided into six treatment groups and administered vehicle control, AP-1 alone, a combination of carboplatin and paclitaxel, or a combination of AP-1, carboplatin, and paclitaxel.
  • the administration time(s) of AP-1 in relation to carboplatin and paclitaxel varied, with the time of carboplatin/paclitaxel administration being denoted as time 0 hours. Positive times (e.g. time+8 hours) indicate AP-1 treatments that occurred after treatment with carboplatin/paclitaxel and negative times (e.g., ⁇ 1 hour) indicate AP-1 treatment before carboplatin/paclitaxel administration.
  • AP-1 and paclitaxel were administered intravenously while carboplatin was administered via intraperitoneal injection.
  • Group 1 was treated with a vehicle control.
  • Group 2 was treated with AP-1 (2.4 mg/kg) at times ⁇ 8 hours, ⁇ 1 hour and +8 hours (AP-1 @ ⁇ 8 hr, ⁇ 1 hr, +8 hr).
  • Group 3 was treated with carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour (C+P).
  • Group 4 was treated with AP-1 at times ⁇ 24 hours and ⁇ 1 hour and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour (C+P+AP-1 @ ⁇ 24 hr, ⁇ 1 hr).
  • Group 5 was treated with AP-1 at times ⁇ 8 hours, ⁇ 1 hours and +8 hours and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour (C+P+AP-1 @ ⁇ 8 hr, ⁇ 1 hr, +8 hr).
  • Group 6 was treated with AP-1 at times ⁇ 8 hours and ⁇ 1 hour and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour (C+P+AP-1 @ ⁇ 8 hr, ⁇ 1 hr).
  • blood was collected from mice and neutrophil levels in blood were determined. Results of neutrophil levels in mice from each treatment group 4 days after carboplatin and paclitaxel treatment are shown in FIG. 18A .
  • a preclinical or clinical conclusion can be drawn based upon analysis of neutrophil levels in two treatment groups.
  • a preclinical conclusion can be based upon analysis of neutrophil levels in Group A and Group B as illustrated in FIG. 18B , where group A consists of mice treated with carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour, and Group B consists of mice treated with AP-1 at times ⁇ 8 hours, ⁇ 1 hours and +8 hours and carboplatin (25 mg/kg) and paclitaxel (5 mg/kg) at time 0 hour.
  • mice were divided into four treatment groups and administered vehicle control, AP-1 alone, docetaxel, or a combination of AP-1, and docetaxel.
  • the administration time(s) of AP-1 in relation to docetaxel varied, with the time of docetaxel administration being denoted as time 0 hours. Positive times (e.g. time+8 hours) indicate AP-1 treatments that occurred after treatment with docetaxel and negative times (e.g., ⁇ 1 hour) indicate AP-1 treatment before docetaxel administration.
  • AP-1 and docetaxel were administered intravenously.
  • Group 1 was treated with a vehicle control.
  • Group 2 was treated with AP-1 (2.4 mg/kg) at times ⁇ 8 hours, ⁇ 1 hour and +8 hours (AP-1 @ ⁇ 8 hr, ⁇ 1 hr, +8 hr).
  • Group 3 was treated with docetaxel (10 mg/kg) at time 0 hour.
  • Group 4 was treated with AP-1 at times ⁇ 8 hours, ⁇ 1 hour, and +8 hours and docetaxel (10 mg/kg) at time 0 hour (Docetaxel AP-1 @-h8r, ⁇ 1 hr, +8 hr). Following treatment, blood was collected from mice and neutrophil levels in blood were determined. Results of neutrophil levels in mice from each treatment group 4 days after docetaxel treatment are shown in FIG. 19 .
  • Example 31 A Phase 1b/2 Trial of AP-1 for the Prevention of Chemotherapy-Induced Myelosuppression
  • the primary objectives of the trial are:
  • the secondary objectives of the trial are:
  • An exploratory objective of the study is to assess pharmacodynamic (PD) biomarkers in blood and assess correlation with clinical response.
  • the primary phase 1b study endpoints include the proportion of patients with National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) Grade 3/4 treatment emergent adverse events (TEAEs). Secondary endpoints include:
  • Exploratory endpoints include:
  • the primary phase 2 study objective is to evaluate the myelopreservation effects of AP-1 when administered at the RP2D to patients with TP53-mutated ED SCLC undergoing 2nd line treatment with topotecan.
  • An exploratory phase 2 study objective is to assess PD biomarkers and assess correlation of PD biomarkers with clinical response.
  • the primary endpoint of the phase 2 study is the proportion of patients with Grade ⁇ 3 neutropenia in Cycle 1.
  • the secondary endpoints of the Phase 2 study are:
  • AP-1 and topotecan are administered as part of one or more treatment cycles. Treatment cycles are denoted to begin on Day 0 and end on Day 21. Topotecan is administered per standard practice on Days 1-5 of treatment cycles. Patients are randomized to receive 1 of 2 initial AP-1 dose levels, administered on Days 0-4 of each cycle, approximately 24 hours prior to each planned topotecan dose. On days when both drugs are administered (Days 1-4), AP-1 is administered after completion of topotecan infusion. On Days 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21 of treatment cycles, neither topotecan nor AP-1 is administered.
  • FIG. 20 A schematic of the SCLC Phase 1b dose optimization study design is shown in FIG. 20 .
  • Phase 1b schedule optimization and expansion stage is also included, during which AP-1 is administered 6 hours prior to topotecan.
  • FIG. 21 A schematic of the SCLC Phase 1b dose expansion study design is shown in FIG. 21 .
  • Hematologic toxicities are monitored as described for Phase 1b dose optimization.
  • Phase 2 patients with ED SCLC requiring 2nd line treatment with topotecan are randomized 1:1 to either receive topotecan alone (control arm) or topotecan with supportive AP-1 treatment (experimental arm). Monitoring of hematologic toxicities proceeds as in Phase 1b.
  • a schematic of the SCLC Phase 2 study design is shown in FIG. 22 .
  • the SCLC inclusion criteria include:
  • SCLC exclusion criteria include:
  • AP-1 and topotecan are administered as part of treatment cycles. Treatment cycles are denoted to begin on Day 0 and end on Day 21. Topotecan is given as an intravenous (IV) infusion over 30 minutes at a dose of 1.5 mg/m 2 on Days 1-5 of every treatment cycle. AP-1 is given as an IV infusion over 1 hour on Days 0-4 of every treatment cycle. The first dose of AP-1 (Day 0) is administered approximately 24 hours prior to the first topotecan dose (Day 1). On days when both drugs are administered (Days 1-4), AP-1 is administered after completion of the topotecan infusion. On Days 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21 of treatment cycles, neither topotecan nor AP-1 is administered.
  • IV intravenous
  • AP-1 dose levels are randomly assigned to initial AP-1 dose levels.
  • alternative dose levels can also be evaluated.
  • Alternative dose levels are determined based on emerging safety, tolerability, and myelopreservation activity as well as PK/PD data from previous dose levels.
  • patients are randomly assigned to Sequence A or Sequence B. All patients in both treatment arms receive topotecan at a dose of 1.5 mg/m 2 on Days 1-5 of each treatment cycle.
  • Patients randomized to Sequence A receive AP-1 as an IV infusion over 1 hour at the RP2D on Days 0-4 of Cycle 1, topotecan alone during Cycle 2, and AP-1+topotecan for all Cycles ⁇ 3.
  • Patients randomized to Sequence B receive topotecan alone during Cycle 1, AP-1 as an IV infusion over 1 hour at the RP2D on Days 0-4 of Cycle 2 and all subsequent cycles (Cycles ⁇ 3).
  • Neither topotecan nor AP-1 is administered on days 6-21 of treatment cycles.
  • Phase 2 patients randomly assigned to the experimental arm receive AP-1 as an IV infusion over 1 hour at the RP2D on Days 0-4 of every cycle and topotecan at a dose of 1.5 mg/m 2 on Days 1-5 of each cycle. Neither topotecan nor AP-1 is administered on days 6-21 of treatment cycles. Patients randomly assigned to the control arm receive topotecan per the same dose and schedule but do not receive any administrations of AP-1.
  • AEs adverse events
  • NCI CTCAE Very Clinical laboratory assessments
  • vital sign measurements blood pressure, heart rate, respiratory rate and body temperature
  • ECG 12-lead electrocardiogram
  • Blood samples for PK assessments of AP-1 are collected during Cycle 1 for patients enrolled in Phase 1b dose optimization and dose expansion (except for patients randomized to Sequence B of the SCLC cohort) and for patients randomized to the experimental arm in Phase 2.
  • blood samples for PK assessments of AP-1 are collected during Cycle 2.
  • Group 1 was treated with a vehicle control.
  • Group 2 was treated with 2.4 mg/kg AP-1 on days 0, 1, 2, 3, and 4 (0-4).
  • Group 3 was treated with 1.5 mg/kg topotecan on days 1, 2, 3, 4, and 5 (1-5).
  • Group 4 was treated with 2.4 mg/kg AP-1 on days 0-4 and 1.5 mg/kg topotecan on days 1-5.
  • AP-1 was given 30 minutes prior to topotecan.
  • Gut samples were taken from mice at days 7 and 9 post treatment to assess hypertrophy and hyperplasia.
  • a preclinical or clinical conclusion can be drawn based upon analysis of quantified pathology scores in two treatment groups.
  • a preclinical conclusion can be based upon analysis of quantified pathology scores in Group A and Group B as illustrated in FIG. 24B , where Group A consists of mice treated with 1.5 mg/kg topotecan on days 1-5 of a treatment period, and Group B consists of mice treated with topotecan on days 1-5 of a treatment period and AP-1 24 hours before the first topotecan dose and 30 minutes before each subsequent topotecan dose.
  • a method of treating a tumor in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a peptidomimetic macrocycle and a therapeutically effective amount of a first additional pharmaceutically-active agent, wherein:
  • non-cancerous tissue comprises a functional p53 protein.
  • topoisomerase inhibitor is a class I topoisomerase inhibitor.
  • topoisomerase inhibitor is a class II topoisomerase inhibitor.
  • microtubule disassembly blocker is docetaxel
  • each administration of the peptidomimetic macrocycle occurs about 12 hours to about 36 hours before each administration of the first additional pharmaceutically-active agent.
  • the therapeutically-effective amount of the peptidomimetic macrocycle is less than an amount of the peptidomimetic macrocycle that is needed to induce apoptosis in the non-cancerous tissue of the subject.
  • each L 1 and L 2 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene.
  • each L 1 and L 2 is independently alkylene or alkenylene.
  • each R 1 and R 2 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • each E is Ser or Ala, or d-Ala.
  • peptidomimetic macrocycle comprises an amino acid sequence that is at least 60% identical to an amino acid sequence listed Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • peptidomimetic macrocycle comprises an amino acid sequence that is at least 80% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • a number of neutrophils present per ⁇ L of blood in mice of Group B is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group A as illustrated in FIG. 16D .
  • a number of neutrophils present per ⁇ L of blood in mice of Group B is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group A as illustrated in FIG. 16C .
  • a measure of hypertrophy/hyperplasia in digestive tract tissue in mice of Group B is modified compared to a measure of hypertrophy/hyperplasia in digestive tract tissue in mice of Group A as illustrated in FIG. 24B .
  • digestive tract tissue samples from about 80% of mice of Group B mice have a hypertrophy/hyperplasia score of 2
  • digestive tract tissue samples from about 70% of mice of Group A have a hypertrophy/hyperplasia score of 3.
  • a number of neutrophils present per ⁇ L of blood in mice of Group B is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group A as illustrated in FIG. 18B .
  • a method of treating a cancer in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a peptidomimetic macrocycle and a therapeutically effective amount of a first additional pharmaceutically-active agent, wherein:
  • topoisomerase inhibitor is a class II topoisomerase inhibitor.
  • topoisomerase inhibitor is a class I topoisomerase inhibitor.
  • microtubule disassembly blocker is docetaxel.
  • each administration of the peptidomimetic macrocycle occurs about 12 hours to about 36 hours before each administration of the first additional pharmaceutically-active agent.
  • the therapeutically-effective amount of the peptidomimetic macrocycle is less than an amount of the peptidomimetic macrocycle that is needed to induce apoptosis in the non-cancerous tissue of the subject.
  • each L 1 and L 2 is independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene.
  • each L 1 and L 2 is independently alkylene or alkenylene.
  • each L 1 and L 2 is independently alkylene or alkenylene.
  • each R 1 and R 2 is independently hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • each R 1 and R 2 is independently hydrogen.
  • each R 1 and R 2 is independently alkyl.
  • each E is Ser or Ala, or d-Ala.
  • peptidomimetic macrocycle comprises an amino acid sequence that is at least 60% identical to an amino acid sequence listed Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • peptidomimetic macrocycle comprises an amino acid sequence that is at least 80% identical to an amino acid sequence listed in Table 1, Table 1a, Table 1b, Table 1c, Table 2a, Table 2b, Table 3, or Table 3a.
  • a number of neutrophils present per ⁇ L of blood in mice of Group B is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group A as illustrated in FIG. 16D .
  • a number of neutrophils present per ⁇ L of blood in mice of Group B is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group A as illustrated in FIG. 16C .
  • a measure of hypertrophy/hyperplasia in digestive tract tissue in mice of Group B is modified compared to a measure of hypertrophy/hyperplasia in digestive tract tissue in mice of Group A as illustrated in FIG. 24B .
  • digestive tract tissue samples from about 80% of mice of Group B mice have a hypertrophy/hyperplasia score of 2
  • digestive tract tissue samples from about 70% of mice of Group A have a hypertrophy/hyperplasia score of 3.
  • a number of neutrophils present per ⁇ L of blood in mice of Group B is increased compared to a number of neutrophils present per ⁇ L of blood in mice of Group A as illustrated in FIG. 18B .
  • a method of treating a tumor in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a peptidomimetic macrocycle and a therapeutically effective amount of a first additional pharmaceutically-active agent, wherein:
  • topoisomerase inhibitor is a class I topoisomerase inhibitor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
US16/818,284 2019-03-15 2020-03-13 Peptidomimetic macrocycles and uses thereof Abandoned US20200289609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/818,284 US20200289609A1 (en) 2019-03-15 2020-03-13 Peptidomimetic macrocycles and uses thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962819195P 2019-03-15 2019-03-15
US201962926018P 2019-10-25 2019-10-25
US16/818,284 US20200289609A1 (en) 2019-03-15 2020-03-13 Peptidomimetic macrocycles and uses thereof

Publications (1)

Publication Number Publication Date
US20200289609A1 true US20200289609A1 (en) 2020-09-17

Family

ID=72424829

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/818,284 Abandoned US20200289609A1 (en) 2019-03-15 2020-03-13 Peptidomimetic macrocycles and uses thereof

Country Status (7)

Country Link
US (1) US20200289609A1 (de)
EP (1) EP3938051A4 (de)
JP (1) JP2022525416A (de)
CN (1) CN114173878A (de)
AU (1) AU2020241429A1 (de)
CA (1) CA3132993A1 (de)
WO (1) WO2020190742A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096947A1 (en) * 2021-11-29 2023-06-01 Merck Sharp & Dohme Llc C-terminal extended p53 activator crosslinked peptidomimetic macrocycles against mdm2/mdmx
WO2023107353A3 (en) * 2021-12-10 2023-08-03 Merck Sharp & Dohme Llc P53 peptidomimetic macrocycles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177249A4 (de) * 2020-07-04 2024-07-24 Hitgen Inc Immunomodulator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2242503A4 (de) * 2008-02-08 2012-04-25 Aileron Therapeutics Inc Therapeutische peptidomimetische macrocyclen
DK2603600T3 (da) * 2010-08-13 2019-03-04 Aileron Therapeutics Inc Peptidomimetiske makrocyklusser
KR102112373B1 (ko) * 2012-02-15 2020-05-18 에일러론 테라퓨틱스 인코포레이티드 펩티드모방체 마크로사이클
BR112017005736A2 (pt) * 2014-09-24 2017-12-12 Aileron Therapeutics Inc macrociclos peptidomiméticos e formulações dos mesmos
AU2016235424A1 (en) * 2015-03-20 2017-10-05 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
EP3344275B8 (de) * 2015-09-03 2023-04-12 Aileron Therapeutics, Inc. Peptidomimetische makrozyklen und verwendungen davon
WO2017205786A1 (en) * 2016-05-27 2017-11-30 Aileron Therapeutics, Inc. Cell permeable peptidomimetic macrocycles
JP2020519595A (ja) * 2017-05-11 2020-07-02 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. ペプチド模倣大環状分子およびその使用
US11091522B2 (en) * 2018-07-23 2021-08-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hawkins, Douglas S. et al; "Inactivation of p53 enhances sensitivity to mulitple chemotherapeutic agents." Canc. Res. (1996) 56 p892-898 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096947A1 (en) * 2021-11-29 2023-06-01 Merck Sharp & Dohme Llc C-terminal extended p53 activator crosslinked peptidomimetic macrocycles against mdm2/mdmx
WO2023107353A3 (en) * 2021-12-10 2023-08-03 Merck Sharp & Dohme Llc P53 peptidomimetic macrocycles

Also Published As

Publication number Publication date
JP2022525416A (ja) 2022-05-13
CN114173878A (zh) 2022-03-11
AU2020241429A1 (en) 2021-10-07
WO2020190742A1 (en) 2020-09-24
EP3938051A1 (de) 2022-01-19
EP3938051A4 (de) 2022-12-07
CA3132993A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US20200369728A1 (en) Peptidomimetic macrocycles and uses thereof
US20230106577A1 (en) Peptidomimetic macrocycles and uses thereof
US10253067B2 (en) Peptidomimetic macrocycles and uses thereof
US20170349638A1 (en) Companion diagnostic tool for peptidomimetic macrocycles
JP2018536621A5 (de)
US11091522B2 (en) Peptidomimetic macrocycles and uses thereof
US20180371021A1 (en) Peptidomimetic macrocycles and uses thereof
US20200289609A1 (en) Peptidomimetic macrocycles and uses thereof
US20230037284A9 (en) Combination therapy of peptidomimetic macrocycles

Legal Events

Date Code Title Description
AS Assignment

Owner name: AILERON THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VUKOVIC, VOJISLAV;CARVAJAL, LUIS;ANNIS, DAVID ALLEN;REEL/FRAME:054193/0541

Effective date: 20201023

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION