US20200177079A1 - High speed, efficient sic power module - Google Patents

High speed, efficient sic power module Download PDF

Info

Publication number
US20200177079A1
US20200177079A1 US16/784,857 US202016784857A US2020177079A1 US 20200177079 A1 US20200177079 A1 US 20200177079A1 US 202016784857 A US202016784857 A US 202016784857A US 2020177079 A1 US2020177079 A1 US 2020177079A1
Authority
US
United States
Prior art keywords
power converter
converter module
mosfet
circuitry
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/784,857
Inventor
Mrinal K. Das
Adam Barkley
Henry Lin
Marcelo Schupbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Priority to US16/784,857 priority Critical patent/US20200177079A1/en
Priority to US16/851,197 priority patent/US11888392B2/en
Publication of US20200177079A1 publication Critical patent/US20200177079A1/en
Assigned to WOLFSPEED, INC. reassignment WOLFSPEED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CREE, INC.
Assigned to U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION reassignment U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOLFSPEED, INC.
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/4951Chip-on-leads or leads-on-chip techniques, i.e. inner lead fingers being used as die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49565Side rails of the lead frame, e.g. with perforations, sprocket holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • H02M2001/348
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to power converter modules, and specifically to high-frequency power converter modules utilizing silicon carbide (SiC) components.
  • SiC silicon carbide
  • Power converter modules are standalone devices that may perform a variety of functions within a power converter system.
  • power converter modules may include boost converters, buck converters, half-bridge converters, and full-bridge converters.
  • Conventional power converter modules generally include power converter circuitry utilizing silicon (Si) switching components. While effective in many applications, using power converter circuitry with silicon (Si) switching components generally limits the switching frequency at which the power converter circuitry can operate. The lower the switching frequency of the components in the power converter circuitry, the larger the filtering components such as inductors and capacitors utilized in a power converter system need to be.
  • a power converter module includes an active metal braze (AMB) substrate, power converter circuitry, and a housing.
  • the AMB substrate includes an aluminum nitride base layer, a first conductive layer on a first surface of the aluminum nitride base layer, and a second conductive layer on a second surface of the aluminum nitride base layer opposite the first surface.
  • the power converter circuitry includes a number of silicon carbide switching components coupled to one another via the first conductive layer.
  • the housing is over the power converter circuitry and the AMB substrate.
  • the first conductive layer is directly on the first surface of the aluminum nitride base layer and the second conductive layer is directly on the second surface of the aluminum nitride base layer.
  • the first conductive layer is etched to form a desired connection pattern between the silicon carbide switching components.
  • the silicon carbide switching components may be coupled to the first conductive layer via one or more wirebonds such that the power switching path has a maximum length of about 50 mm and the gate control path has a maximum length of about 20 mm.
  • the power converter circuitry is a boost converter configured to receive a direct current (DC) input voltage and provide a stepped-up DC output voltage.
  • the power converter circuitry may include a silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) coupled in series with a silicon carbide Schottky diode. Further, the power converter circuitry may be configured to provide an output voltage greater than 650V, an output power greater than 900 W, and operate at a switching frequency greater than 40 kHz. The switching losses of the power converter circuitry may be between 5 mJ/A and 100 mJ/A.
  • the insulating base layer may have a minimum thermal conductivity of 30 W/m-K in order to provide low thermal resistance between the power converter circuitry and the second conductive layer.
  • the power converter circuitry is one of a buck converter, a half-bridge converter, a full-bridge converter, a single-phase inverter, a three-phase inverter, and multilevel topologies like neutral point clamped (NPC) and transistor-type neutral point clamped (TNPC).
  • NPC neutral point clamped
  • TNPC transistor-type neutral point clamped
  • a method for manufacturing a power converter module comprises providing an active metal braze (AMB) substrate, providing power converter circuitry, and providing a housing.
  • the AMB substrate includes an aluminum nitride base layer, a first conductive layer on a first surface of the aluminum nitride base layer, and a second conductive layer on a second surface of the aluminum nitride base layer opposite the first surface.
  • the power converter circuitry includes a number of silicon carbide switching components coupled to one another via the first conductive layer.
  • the housing is provided over the power converter circuitry and the AMB substrate.
  • FIG. 1 is an isometric view of a power converter module according to one embodiment of the present disclosure.
  • FIG. 2 is a side view of a power converter module according to one embodiment of the present disclosure.
  • FIG. 3 is a schematic of power converter circuitry in a power converter module according to one embodiment of the present disclosure.
  • FIG. 4 is a schematic of a boost converter including power converter circuitry shown according to one embodiment of the present disclosure.
  • FIG. 5 is a schematic of a boost converter including power converter circuitry according to an additional embodiment of the present disclosure.
  • FIG. 6 is a schematic of a boost converter including power converter circuitry according to an additional embodiment of the present disclosure.
  • FIG. 7 is a top view of power converter circuitry according to one embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of a substrate and the power converter circuitry shown in FIG. 3 according to one embodiment of the present disclosure.
  • FIGS. 1 and 2 show an isometric view and a side view, respectively, of a power converter module 10 according to one embodiment of the present disclosure.
  • the power converter module 10 includes a housing 12 , a number of input/output (I/O) pins 14 , and a number of mounting holes 16 .
  • the housing 12 may be formed of a plastic material and have a footprint of approximately 31 mm ⁇ 66 mm ⁇ 16 mm such that the power converter module 10 is compatible with existing power converter systems that accept power converter modules of this size.
  • the principles of the present disclosure may be applied to housings of any material type and size.
  • the I/O pins 14 are coupled to various points in power converter circuitry (not shown) contained within the housing 12 , as discussed in detail below.
  • FIG. 3 is a schematic showing details of power converter circuitry 18 within the housing 12 of the power converter module 10 according to one embodiment of the present disclosure.
  • the power converter circuitry 18 is divided into two parts (referred to herein as “channels”), and includes a first metal-oxide-semiconductor field-effect transistor (MOSFET) 20 coupled in series with a first diode 22 and a second MOSFET 24 coupled in series with a second diode 26 .
  • the first MOSFET 20 includes a gate contact (G), a source contact (S), and a drain contact (D).
  • the gate contact (G) of the first MOSFET 20 is coupled to a first one of the I/O pins 14 A.
  • the source contact (S) of the first MOSFET 20 is coupled to a second, a third, and a fourth one of the I/O pins 14 B, 14 C, and 14 D.
  • a cathode of the first diode 22 is coupled to a fifth and a sixth one of the I/O pins 14 E and 14 F.
  • the drain contact (D) of the first MOSFET 20 is coupled to a ninth and a tenth one of the I/O pins 14 G and 14 H and to the anode of the first diode 22 .
  • the second MOSFET 24 includes a gate contact (G), a source contact (S), and a drain contact (D).
  • the drain contact (D) of the second MOSFET 24 is coupled to an eleventh and a twelfth one of the I/O pins 14 I and 14 J and to the anode of the second diode 26 .
  • the cathode of the second diode 26 is coupled to a thirteenth and a fourteenth one of the I/O pins 14 K and 14 L.
  • the source contact (S) of the second MOSFET 24 is coupled to a fifteenth, a sixteenth, and a seventeenth one of the I/O pins 14 M, 14 N, 14 O.
  • the gate contact (G) of the second MOSFET 24 is coupled to an eighteenth one of the I/O pins 14 P.
  • a temperature measurement resistor R_TM is coupled between a nineteenth and a twentieth one of the I/O pins 14 Q and 14 R.
  • the first MOSFET 20 and the first diode 22 form first boost converter circuitry
  • the second MOSFET 24 and the second diode 26 form second boost converter circuitry.
  • a direct current (DC) voltage is placed across the source contact (S) and the drain contact (D) of the first MOSFET 20 .
  • the DC voltage delivered to the drain contact (D) of the first MOSFET 20 may be provided via a boost inductor (not shown).
  • a switching control signal is provided to the gate contact (G) of the first MOSFET 20 , generally by gate driver circuitry (not shown).
  • the resulting voltage across the cathode of the first diode 22 and the source contact (S) of the first MOSFET 20 is a stepped-up DC output voltage.
  • the first boost converter circuitry and the second boost converter circuitry may be used to appropriately scale high-power DC voltages, which may be especially useful in applications such as solar power systems.
  • the first MOSFET 20 and the second MOSFET 24 each include a gate return terminal (I/O pin 14 B and I/O pin 14 O, respectively) coupled to the source contact (S) thereof.
  • these gate return terminals are located as close to the first MOSFET 20 and the second MOSFET 24 , respectively, as possible, such that a parasitic inductance between the gate return terminal and the source contact (S) is minimized.
  • this increases the achievable turn-on and turn-off speed of the first MOSFET 20 and the second MOSFET 24 , thereby improving the performance of the power converter circuitry 18 by reducing switching losses.
  • any of the first MOSFET 20 , the first diode 22 , the second MOSFET 24 , and the second diode 26 are silicon carbide devices, which may be referred to as switching devices. As discussed herein, switching devices are devices capable of selectively delivering power to a load. In one embodiment, the first diode 22 and the second diode 26 are Schottky diodes. Accordingly, the performance of the power converter module 10 may be significantly improved. Specifically, because silicon carbide devices are majority carrier devices, they do not suffer from reductions in switching speed due to recombination of minority carriers that produce tail or reverse recovery currents.
  • recovery currents in conventional silicon PiN diodes are on the order of ⁇ 7000 nC, while recovery currents in the power converter circuitry 18 are less than ⁇ 120 nC (>16 ⁇ reduction). Accordingly, silicon carbide devices can be operated at much higher speeds than conventional silicon devices, which provides several performance benefits for the power converter module 10 discussed below.
  • the first boost converter circuit and the second boost converter circuit may be referred to as “channels.” Each one of these channels may provide an output voltage between 650V and 1200V, an output current from 10 A to 50 A (e.g., 10 A, 20 A, 30 A, 40 A, and 50 A), and an output power between 900 W and 30 kW. Further, each one of these channels may provide an efficiency between about 96% and 99.5%, and switching losses less than or equal to about 300 W when operated at switching speeds greater than 40 kHz.
  • using silicon carbide devices also provides cost savings.
  • the size of filtering components such as inductors and capacitors used in a power converter system in which the power converter module 10 is incorporated is inversely proportional to the switching frequency of the power converter module. Further, the size of filtering components is proportional to the cost thereof. Accordingly, by using silicon carbide switching components that may be operated at high frequencies such as those above 40 kHz, the size of filtering components in a power system can be drastically reduced, thereby saving cost.
  • power converter circuitry 18 shown in FIG. 3 is shown as a two-channel boost converter, the present disclosure is not so limited. The principles of the present disclosure may be applied to power converter circuitry 18 including a buck converter, a half-bridge converter, a full-bridge converter, a single-phase inverter, a three-phase inverter, or the like.
  • FIG. 4 shows boost converter circuitry 28 including a first channel of the power converter circuitry 18 .
  • the boost converter circuitry 28 includes the first MOSFET 20 and the first diode 22 , a boost inductor 30 , an output capacitor 32 , and a voltage source 34 .
  • the boost inductor 30 is coupled between a positive output of the voltage source 34 and the drain contact (D) of the first MOSFET 20 .
  • a negative output of the voltage source 34 is coupled to the source contact (S) of the first MOSFET 20 .
  • the first diode 22 is coupled between the drain contact (D) of the first MOSFET 20 and a first load output 36 of the boost converter circuitry 28 .
  • a second load output 38 is coupled to the source contact (S) of the first MOSFET 20 .
  • the output capacitor 32 is coupled between the first load output 36 and the second load output 38 .
  • a positive voltage from the voltage source 34 is delivered to the boost inductor 30 , where energy can be stored as a magnetic field.
  • a switching control signal is delivered to the gate contact (G) of the first MOSFET 20 in order to repeatedly switch the first MOSFET 20 between an off-state and an on-state.
  • G gate contact
  • I_BOOST boost inductor
  • a load will be coupled between the first load output 36 and the second load output 38 to complete the circuit.
  • the anode of the first diode 22 is shorted to ground, and a charge on the output capacitor 32 causes the first diode 22 to remain in a blocking mode of operation. Energy stored in the output capacitor 32 causes a current to continue to flow into the load (not shown).
  • the speed at which the first MOSFET 20 is able to transition between the off-state and the on-state determines many operational characteristics of the boost converter circuitry 28 .
  • Faster switching speeds allow the boost converter circuitry 28 to operate in a continuous conduction mode in which the current supplied by the boost inductor 30 in a single switching period is reduced.
  • silicon devices cannot achieve speeds sufficient to operate in a continuous conduction mode, and instead must operate in a discontinuous conduction mode.
  • the reduced current supply requirements afforded by switching the first MOSFET 20 at high speeds results in a reduced requirement for energy storage by the boost inductor 30 , and reduced electromagnetic interference (EMI), which eases the design of electromagnetic filtering circuitry associated with the boost converter circuitry 28 .
  • EMI electromagnetic interference
  • the inductance of the boost converter can be reduced without affecting the performance of the boost converter circuitry 28 .
  • the inductance value of an inductor is proportional to the size thereof. Accordingly, the size of the boost inductor 30 can be reduced as well. Further, the inductance value and size of an inductor is proportional to the cost thereof.
  • the boost inductor 30 may be among the most expensive parts of the boost converter circuitry 28 , it may be highly beneficial to utilize the high switching speed of the first MOSFET 20 in order to reduce these costs.
  • the inductance value of the boost inductor 30 may be less than 450 ⁇ H due to the switching speeds achievable by the first MOSFET 20 as discussed herein.
  • the inductance of the boost inductor 30 may be between 25 ⁇ H and 150 ⁇ H, may be between 150 ⁇ H and 300 ⁇ H, and may be between 300 ⁇ H and 450 ⁇ H.
  • the total volume of the boost inductor 30 may be less than 7 cubic inches (e.g., between 1 cubic inch and 3 cubic inches, between 3 cubic inches and 5 cubic inches, and between 5 cubic inches and 7 cubic inches) and the total weight of the boost inductor 30 may be less than 1 pound (e.g., between 0.1 pounds and 0.3 pounds, between 0.3 pounds and 0.6 pounds, and between 0.6 pounds and 0.9 pounds) in some embodiments.
  • FIG. 5 shows the boost converter circuitry 28 according to an alternative embodiment of the present disclosure.
  • the boost converter circuitry 28 shown in FIG. 5 is substantially similar to that shown in FIG. 4 , except that the boost converter circuitry 28 shown in FIG. 5 includes an inner-loop capacitor 40 coupled between the first load output 36 and the second load output 38 (in parallel with the output capacitor 32 ).
  • the inner-loop capacitor 40 is within the power converter circuitry 18 itself.
  • the inner-loop capacitor 40 closes the loop between the cathode of the first diode 22 and the source contact (S) of the first MOSFET 20 in as short a length as possible. This improves performance of the power converter circuitry 18 by reducing parasitic inductances and thus reducing ringing and other performance-reducing phenomena.
  • the inner-loop capacitor 40 may be a high-frequency capacitor such as a ceramic capacitor, while the output capacitor 32 may be a relatively low-frequency capacitor such as an electrolytic capacitor or polymer film capacitor.
  • the output capacitor 32 and the inner-loop capacitor 40 may be any type of capacitor without departing from the principles described herein.
  • FIG. 6 shows the boost converter circuitry 28 according to an additional embodiment of the present disclosure.
  • the boost converter circuitry shown in FIG. 6 is substantially similar to that shown in FIG. 4 , except that the boost converter circuitry 28 shown in FIG. 6 includes snubber circuitry 42 coupled between the first load output 36 and the second load output 38 .
  • the snubber circuitry 42 includes a snubber capacitor 44 and a snubber resistor 46 coupled in series between the first load output 36 and the second load output 38 .
  • the snubber capacitor 44 and the snubber resistor 46 may be within the power converter circuitry 18 in order to reduce the length of the snubber loop between the cathode of the first diode 22 and the source contact (S) of the first MOSFET 20 .
  • the snubber circuitry 42 effectively reduces transient signals, occurring at the cathode of the first diode 22 . Specifically, ringing occurring due to swings in the current provided at the cathode of the first diode 22 may be significantly reduced by the snubber circuitry 42 . Reducing this ringing prevents output overshoots and undershoots, thus increasing the reliability and performance of the boost converter circuitry 28 primarily by lowering radiated and conducted EMI.
  • FIG. 7 shows a top view of a substrate 48 within the housing 12 according to one embodiment of the present disclosure.
  • the substrate 48 may be an active metal braze (AMB) substrate including an insulating aluminum nitride base layer 50 and a first conductive layer 52 on a first surface of the aluminum nitride base layer 50 .
  • AMB active metal braze
  • an active metal braze (AMB) substrate is a substrate in which conductive layers applied to a base layer have been brazed in a high temperature vacuum brazing process in order to form a strong bond between the conductive layers and the insulating base layer.
  • AMB substrates are stronger than their conventional counterparts formed from technologies such as direct bond copper (DBC) and the like.
  • Aluminum nitride generally has far superior thermal conduction properties when compared to conventional substrate materials such as aluminum oxide.
  • the increased thermal conductivity afforded by the use of the aluminum nitride base layer 50 allows for the switching components in the power converter module 10 to operate at lower temperatures, which may translate into higher power levels, higher efficiency, higher reliability, or all three.
  • the substrate 48 is an active metal braze (AMB) substrate including an insulating silicon nitride base layer 50 and a first conductive layer 52 on a first surface of the silicon nitride base layer 50 .
  • AMB active metal braze
  • Silicon nitride may have similar properties to aluminum nitride as discussed above and therefore may increase the performance of the power converter module 10 .
  • the substrate 48 may be a DBC substrate including an aluminum nitride or silicon nitride base layer, which may allow for similar performance improvements to those discussed above.
  • the first conductive layer 52 is etched to form a desired pattern on the first surface of the aluminum nitride base layer 50 .
  • Wirebonds 54 connect the first MOSFET 20 , the first diode 22 , the second MOSFET 24 , and the second diode 26 to various parts of the first conductive layer 52 in order to connect the various components as described above with respect to FIG. 3 .
  • the particular pattern of the first conductive layer 52 is chosen in order to minimize the distance from the gate contact (G) of each one of the first MOSFET 20 and the second MOSFET 24 to their respective I/O pins 14 , minimize the length of the wirebonds 54 , and optimize current flow through the power converter module 10 .
  • the pattern of the first conductive layer 52 and routing of wirebonds 54 are designed such that the power switching path has a maximum length of about 50 mm and the gate control path has a maximum length of about 20 mm.
  • the gate control path is the total distance (as determined by tracing the path) between I/O pin 14 O (shown in FIG. 3 ) and I/O pin 14 P (also shown in FIG. 3 ).
  • the power switching path is the total distance (as determined by tracing the path) between I/O pin 14 E and I/O pin 14 F to I/O pin 14 C and I/O pin 14 D (all shown in FIG. 3 ).
  • wirebonds 54 in the gate control path have a diameter of ⁇ 5 mil, while wirebonds 54 in the power switching path have a diameter ⁇ 15 mil. More or less wirebonds 54 may be used to form a particular leg of the particular conduction path based on a desired current carrying capacity thereof.
  • FIG. 8 shows a cross-sectional view of the housing 12 and the substrate 48 through line A-A′ shown in FIG. 7 .
  • the substrate 48 is mounted in the housing 12 and includes the aluminum nitride base layer 50 , the first conductive layer 52 on which the first diode 22 is attached via a die attach material 56 and connected via the wirebonds 54 , and a second conductive layer 58 .
  • the space between the substrate 48 and the housing 12 is filled with an inert gel.
  • the power converter module 10 does not include a baseplate. Accordingly, the substrate 48 must be adequately rugged in order to support the power converter circuitry 18 formed on the first conductive layer 52 .
  • the substrate 48 may have a relatively low thermal resistance such that the substrate 48 is capable of efficiently dissipating heat.
  • the insulating base layer 50 may have a minimum thermal conductivity of 30 W/m-K in order to provide low thermal resistance between the power converter circuitry 18 and the second conductive layer 58 . Accordingly, the power converter circuitry 18 may be operated in order to provide additional power output, additional efficiency, or both.

Abstract

A power converter module includes an active metal braze (AMB) substrate, power converter circuitry, and a housing. The AMB substrate includes an aluminum nitride base layer, a first conductive layer on a first surface of the aluminum nitride base layer, and a second conductive layer on a second surface of the aluminum nitride base layer opposite the first surface. The power converter circuitry includes a number of silicon carbide switching components coupled to one another via the first conductive layer. The housing is over the power converter circuitry and the AMB substrate. By using an AMB substrate with an aluminum nitride base layer, the thermal dissipation characteristics of the power converter module may be substantially improved while maintaining the structural integrity of the power converter module.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/055,872, filed on Feb. 29, 2016, which claims the benefit of U.S. provisional patent application No. 62/133,872, filed Mar. 16, 2015, the disclosures of which are incorporated herein by reference in their entireties.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to power converter modules, and specifically to high-frequency power converter modules utilizing silicon carbide (SiC) components.
  • BACKGROUND
  • Power converter modules (which, as referred to herein may also include power inverter modules) are standalone devices that may perform a variety of functions within a power converter system. For example, power converter modules may include boost converters, buck converters, half-bridge converters, and full-bridge converters. Conventional power converter modules generally include power converter circuitry utilizing silicon (Si) switching components. While effective in many applications, using power converter circuitry with silicon (Si) switching components generally limits the switching frequency at which the power converter circuitry can operate. The lower the switching frequency of the components in the power converter circuitry, the larger the filtering components such as inductors and capacitors utilized in a power converter system need to be. Accordingly, filtering components used along with power converter circuitry using silicon (Si) switching components must be quite large, thereby driving up the cost of the power converter system. Further, at high switching frequency, silicon (Si) switching components are often associated with relatively low efficiency and low power density.
  • SUMMARY
  • The present disclosure relates to power converter modules, and specifically to high-frequency power converter modules utilizing silicon carbide (SiC) components. In one embodiment, a power converter module includes an active metal braze (AMB) substrate, power converter circuitry, and a housing. The AMB substrate includes an aluminum nitride base layer, a first conductive layer on a first surface of the aluminum nitride base layer, and a second conductive layer on a second surface of the aluminum nitride base layer opposite the first surface. The power converter circuitry includes a number of silicon carbide switching components coupled to one another via the first conductive layer. The housing is over the power converter circuitry and the AMB substrate. By using an AMB substrate with an aluminum nitride base layer, the thermal dissipation characteristics of the power converter module may be substantially improved while maintaining the structural integrity of the power converter module.
  • In one embodiment, the first conductive layer is directly on the first surface of the aluminum nitride base layer and the second conductive layer is directly on the second surface of the aluminum nitride base layer.
  • In one embodiment, the first conductive layer is etched to form a desired connection pattern between the silicon carbide switching components. The silicon carbide switching components may be coupled to the first conductive layer via one or more wirebonds such that the power switching path has a maximum length of about 50 mm and the gate control path has a maximum length of about 20 mm. By minimizing the power switching path length and gate control path length, the stray inductance in the power converter module is reduced.
  • In one embodiment, the power converter circuitry is a boost converter configured to receive a direct current (DC) input voltage and provide a stepped-up DC output voltage. The power converter circuitry may include a silicon carbide metal-oxide-semiconductor field-effect transistor (MOSFET) coupled in series with a silicon carbide Schottky diode. Further, the power converter circuitry may be configured to provide an output voltage greater than 650V, an output power greater than 900 W, and operate at a switching frequency greater than 40 kHz. The switching losses of the power converter circuitry may be between 5 mJ/A and 100 mJ/A. The insulating base layer may have a minimum thermal conductivity of 30 W/m-K in order to provide low thermal resistance between the power converter circuitry and the second conductive layer.
  • In one embodiment, the power converter circuitry is one of a buck converter, a half-bridge converter, a full-bridge converter, a single-phase inverter, a three-phase inverter, and multilevel topologies like neutral point clamped (NPC) and transistor-type neutral point clamped (TNPC).
  • In one embodiment, a method for manufacturing a power converter module comprises providing an active metal braze (AMB) substrate, providing power converter circuitry, and providing a housing. The AMB substrate includes an aluminum nitride base layer, a first conductive layer on a first surface of the aluminum nitride base layer, and a second conductive layer on a second surface of the aluminum nitride base layer opposite the first surface. The power converter circuitry includes a number of silicon carbide switching components coupled to one another via the first conductive layer. The housing is provided over the power converter circuitry and the AMB substrate. By using an AMB substrate with an aluminum nitride base layer, the thermal dissipation characteristics of the power converter module may be substantially improved while maintaining the structural integrity of the power converter module.
  • Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
  • FIG. 1 is an isometric view of a power converter module according to one embodiment of the present disclosure.
  • FIG. 2 is a side view of a power converter module according to one embodiment of the present disclosure.
  • FIG. 3 is a schematic of power converter circuitry in a power converter module according to one embodiment of the present disclosure.
  • FIG. 4 is a schematic of a boost converter including power converter circuitry shown according to one embodiment of the present disclosure.
  • FIG. 5 is a schematic of a boost converter including power converter circuitry according to an additional embodiment of the present disclosure.
  • FIG. 6 is a schematic of a boost converter including power converter circuitry according to an additional embodiment of the present disclosure.
  • FIG. 7 is a top view of power converter circuitry according to one embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of a substrate and the power converter circuitry shown in FIG. 3 according to one embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
  • It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
  • Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • In light of the above, there is a need for power converter circuitry with improved performance. Specifically, there is a need for power converter circuitry capable of efficiently operating at high switching frequencies and high power densities.
  • FIGS. 1 and 2 show an isometric view and a side view, respectively, of a power converter module 10 according to one embodiment of the present disclosure. The power converter module 10 includes a housing 12, a number of input/output (I/O) pins 14, and a number of mounting holes 16. The housing 12 may be formed of a plastic material and have a footprint of approximately 31 mm×66 mm×16 mm such that the power converter module 10 is compatible with existing power converter systems that accept power converter modules of this size. Notably, the principles of the present disclosure may be applied to housings of any material type and size. The I/O pins 14 are coupled to various points in power converter circuitry (not shown) contained within the housing 12, as discussed in detail below.
  • FIG. 3 is a schematic showing details of power converter circuitry 18 within the housing 12 of the power converter module 10 according to one embodiment of the present disclosure. The power converter circuitry 18 is divided into two parts (referred to herein as “channels”), and includes a first metal-oxide-semiconductor field-effect transistor (MOSFET) 20 coupled in series with a first diode 22 and a second MOSFET 24 coupled in series with a second diode 26. Specifically, the first MOSFET 20 includes a gate contact (G), a source contact (S), and a drain contact (D). The gate contact (G) of the first MOSFET 20 is coupled to a first one of the I/O pins 14A. The source contact (S) of the first MOSFET 20 is coupled to a second, a third, and a fourth one of the I/O pins 14B, 14C, and 14D. A cathode of the first diode 22 is coupled to a fifth and a sixth one of the I/O pins 14E and 14F. The drain contact (D) of the first MOSFET 20 is coupled to a ninth and a tenth one of the I/O pins 14G and 14H and to the anode of the first diode 22.
  • Similarly, the second MOSFET 24 includes a gate contact (G), a source contact (S), and a drain contact (D). The drain contact (D) of the second MOSFET 24 is coupled to an eleventh and a twelfth one of the I/O pins 14I and 14J and to the anode of the second diode 26. The cathode of the second diode 26 is coupled to a thirteenth and a fourteenth one of the I/O pins 14K and 14L. The source contact (S) of the second MOSFET 24 is coupled to a fifteenth, a sixteenth, and a seventeenth one of the I/O pins 14M, 14N, 14O. The gate contact (G) of the second MOSFET 24 is coupled to an eighteenth one of the I/O pins 14P. A temperature measurement resistor R_TM is coupled between a nineteenth and a twentieth one of the I/O pins 14Q and 14R.
  • The first MOSFET 20 and the first diode 22 (i.e., a first channel), along with one or more external components, form first boost converter circuitry, while the second MOSFET 24 and the second diode 26 (i.e., a second channel), along with one or more external components, form second boost converter circuitry. Because the separate boost converter circuitry operates in the same manner, the principles of operation thereof will now be discussed as they relate to the first boost converter circuitry. In operation, a direct current (DC) voltage is placed across the source contact (S) and the drain contact (D) of the first MOSFET 20. In some embodiments, the DC voltage delivered to the drain contact (D) of the first MOSFET 20 may be provided via a boost inductor (not shown). Further, a switching control signal is provided to the gate contact (G) of the first MOSFET 20, generally by gate driver circuitry (not shown). The resulting voltage across the cathode of the first diode 22 and the source contact (S) of the first MOSFET 20 is a stepped-up DC output voltage. Accordingly, the first boost converter circuitry and the second boost converter circuitry may be used to appropriately scale high-power DC voltages, which may be especially useful in applications such as solar power systems.
  • Notably, the first MOSFET 20 and the second MOSFET 24 each include a gate return terminal (I/O pin 14B and I/O pin 14O, respectively) coupled to the source contact (S) thereof. Notably, these gate return terminals are located as close to the first MOSFET 20 and the second MOSFET 24, respectively, as possible, such that a parasitic inductance between the gate return terminal and the source contact (S) is minimized. Generally, this increases the achievable turn-on and turn-off speed of the first MOSFET 20 and the second MOSFET 24, thereby improving the performance of the power converter circuitry 18 by reducing switching losses.
  • Any of the first MOSFET 20, the first diode 22, the second MOSFET 24, and the second diode 26 are silicon carbide devices, which may be referred to as switching devices. As discussed herein, switching devices are devices capable of selectively delivering power to a load. In one embodiment, the first diode 22 and the second diode 26 are Schottky diodes. Accordingly, the performance of the power converter module 10 may be significantly improved. Specifically, because silicon carbide devices are majority carrier devices, they do not suffer from reductions in switching speed due to recombination of minority carriers that produce tail or reverse recovery currents. In one embodiment, recovery currents in conventional silicon PiN diodes are on the order of ˜7000 nC, while recovery currents in the power converter circuitry 18 are less than ˜120 nC (>16× reduction). Accordingly, silicon carbide devices can be operated at much higher speeds than conventional silicon devices, which provides several performance benefits for the power converter module 10 discussed below. The first boost converter circuit and the second boost converter circuit may be referred to as “channels.” Each one of these channels may provide an output voltage between 650V and 1200V, an output current from 10A to 50A (e.g., 10A, 20A, 30A, 40A, and 50A), and an output power between 900 W and 30 kW. Further, each one of these channels may provide an efficiency between about 96% and 99.5%, and switching losses less than or equal to about 300 W when operated at switching speeds greater than 40 kHz.
  • In addition to the performance benefits afforded by utilizing silicon carbide devices in the power converter module 10, using silicon carbide devices also provides cost savings. Specifically, the size of filtering components such as inductors and capacitors used in a power converter system in which the power converter module 10 is incorporated is inversely proportional to the switching frequency of the power converter module. Further, the size of filtering components is proportional to the cost thereof. Accordingly, by using silicon carbide switching components that may be operated at high frequencies such as those above 40 kHz, the size of filtering components in a power system can be drastically reduced, thereby saving cost.
  • While the power converter circuitry 18 shown in FIG. 3 is shown as a two-channel boost converter, the present disclosure is not so limited. The principles of the present disclosure may be applied to power converter circuitry 18 including a buck converter, a half-bridge converter, a full-bridge converter, a single-phase inverter, a three-phase inverter, or the like.
  • FIG. 4 shows boost converter circuitry 28 including a first channel of the power converter circuitry 18. The boost converter circuitry 28 includes the first MOSFET 20 and the first diode 22, a boost inductor 30, an output capacitor 32, and a voltage source 34. The boost inductor 30 is coupled between a positive output of the voltage source 34 and the drain contact (D) of the first MOSFET 20. A negative output of the voltage source 34 is coupled to the source contact (S) of the first MOSFET 20. The first diode 22 is coupled between the drain contact (D) of the first MOSFET 20 and a first load output 36 of the boost converter circuitry 28. A second load output 38 is coupled to the source contact (S) of the first MOSFET 20. The output capacitor 32 is coupled between the first load output 36 and the second load output 38.
  • In operation, a positive voltage from the voltage source 34 is delivered to the boost inductor 30, where energy can be stored as a magnetic field. A switching control signal is delivered to the gate contact (G) of the first MOSFET 20 in order to repeatedly switch the first MOSFET 20 between an off-state and an on-state. In the off-state of the first MOSFET 20, a positive potential across the first diode 22 due to a charge on the boost inductor 30 allows current from the boost inductor (I_BOOST) to flow to the first load output 36 and charge the output capacitor 32. While not shown, a load will be coupled between the first load output 36 and the second load output 38 to complete the circuit. In the on-state of the first MOSFET 20, the anode of the first diode 22 is shorted to ground, and a charge on the output capacitor 32 causes the first diode 22 to remain in a blocking mode of operation. Energy stored in the output capacitor 32 causes a current to continue to flow into the load (not shown).
  • Notably, the speed at which the first MOSFET 20 is able to transition between the off-state and the on-state determines many operational characteristics of the boost converter circuitry 28. Faster switching speeds allow the boost converter circuitry 28 to operate in a continuous conduction mode in which the current supplied by the boost inductor 30 in a single switching period is reduced. Generally, silicon devices cannot achieve speeds sufficient to operate in a continuous conduction mode, and instead must operate in a discontinuous conduction mode. The reduced current supply requirements afforded by switching the first MOSFET 20 at high speeds results in a reduced requirement for energy storage by the boost inductor 30, and reduced electromagnetic interference (EMI), which eases the design of electromagnetic filtering circuitry associated with the boost converter circuitry 28. Accordingly, the inductance of the boost converter can be reduced without affecting the performance of the boost converter circuitry 28. Generally, the inductance value of an inductor is proportional to the size thereof. Accordingly, the size of the boost inductor 30 can be reduced as well. Further, the inductance value and size of an inductor is proportional to the cost thereof. As the boost inductor 30 may be among the most expensive parts of the boost converter circuitry 28, it may be highly beneficial to utilize the high switching speed of the first MOSFET 20 in order to reduce these costs. In one embodiment, the inductance value of the boost inductor 30 may be less than 450 μH due to the switching speeds achievable by the first MOSFET 20 as discussed herein. For example, the inductance of the boost inductor 30 may be between 25 μH and 150 μH, may be between 150 μH and 300 μH, and may be between 300 μH and 450 μH. Further, the total volume of the boost inductor 30 may be less than 7 cubic inches (e.g., between 1 cubic inch and 3 cubic inches, between 3 cubic inches and 5 cubic inches, and between 5 cubic inches and 7 cubic inches) and the total weight of the boost inductor 30 may be less than 1 pound (e.g., between 0.1 pounds and 0.3 pounds, between 0.3 pounds and 0.6 pounds, and between 0.6 pounds and 0.9 pounds) in some embodiments.
  • FIG. 5 shows the boost converter circuitry 28 according to an alternative embodiment of the present disclosure. The boost converter circuitry 28 shown in FIG. 5 is substantially similar to that shown in FIG. 4, except that the boost converter circuitry 28 shown in FIG. 5 includes an inner-loop capacitor 40 coupled between the first load output 36 and the second load output 38 (in parallel with the output capacitor 32). Notably, the inner-loop capacitor 40 is within the power converter circuitry 18 itself. Specifically, the inner-loop capacitor 40 closes the loop between the cathode of the first diode 22 and the source contact (S) of the first MOSFET 20 in as short a length as possible. This improves performance of the power converter circuitry 18 by reducing parasitic inductances and thus reducing ringing and other performance-reducing phenomena. In the embodiment shown in FIG. 5, the inner-loop capacitor 40 may be a high-frequency capacitor such as a ceramic capacitor, while the output capacitor 32 may be a relatively low-frequency capacitor such as an electrolytic capacitor or polymer film capacitor. However, the output capacitor 32 and the inner-loop capacitor 40 may be any type of capacitor without departing from the principles described herein.
  • FIG. 6 shows the boost converter circuitry 28 according to an additional embodiment of the present disclosure. The boost converter circuitry shown in FIG. 6 is substantially similar to that shown in FIG. 4, except that the boost converter circuitry 28 shown in FIG. 6 includes snubber circuitry 42 coupled between the first load output 36 and the second load output 38. The snubber circuitry 42 includes a snubber capacitor 44 and a snubber resistor 46 coupled in series between the first load output 36 and the second load output 38. As discussed above, the snubber capacitor 44 and the snubber resistor 46 may be within the power converter circuitry 18 in order to reduce the length of the snubber loop between the cathode of the first diode 22 and the source contact (S) of the first MOSFET 20. The snubber circuitry 42 effectively reduces transient signals, occurring at the cathode of the first diode 22. Specifically, ringing occurring due to swings in the current provided at the cathode of the first diode 22 may be significantly reduced by the snubber circuitry 42. Reducing this ringing prevents output overshoots and undershoots, thus increasing the reliability and performance of the boost converter circuitry 28 primarily by lowering radiated and conducted EMI.
  • FIG. 7 shows a top view of a substrate 48 within the housing 12 according to one embodiment of the present disclosure. Notably, the substrate 48 may be an active metal braze (AMB) substrate including an insulating aluminum nitride base layer 50 and a first conductive layer 52 on a first surface of the aluminum nitride base layer 50. As discussed herein, an active metal braze (AMB) substrate is a substrate in which conductive layers applied to a base layer have been brazed in a high temperature vacuum brazing process in order to form a strong bond between the conductive layers and the insulating base layer. In general, AMB substrates are stronger than their conventional counterparts formed from technologies such as direct bond copper (DBC) and the like. Using an AMB substrate provides the necessary strength to the aluminum nitride base layer 50 to make it viable for use in the power converter module 10, which does not include a baseplate to increase the structural integrity thereof as in conventional designs. Aluminum nitride generally has far superior thermal conduction properties when compared to conventional substrate materials such as aluminum oxide. The increased thermal conductivity afforded by the use of the aluminum nitride base layer 50 allows for the switching components in the power converter module 10 to operate at lower temperatures, which may translate into higher power levels, higher efficiency, higher reliability, or all three.
  • In other embodiments, the substrate 48 is an active metal braze (AMB) substrate including an insulating silicon nitride base layer 50 and a first conductive layer 52 on a first surface of the silicon nitride base layer 50. Silicon nitride may have similar properties to aluminum nitride as discussed above and therefore may increase the performance of the power converter module 10. In another embodiment, the substrate 48 may be a DBC substrate including an aluminum nitride or silicon nitride base layer, which may allow for similar performance improvements to those discussed above.
  • The first conductive layer 52 is etched to form a desired pattern on the first surface of the aluminum nitride base layer 50. Wirebonds 54 connect the first MOSFET 20, the first diode 22, the second MOSFET 24, and the second diode 26 to various parts of the first conductive layer 52 in order to connect the various components as described above with respect to FIG. 3. The particular pattern of the first conductive layer 52 is chosen in order to minimize the distance from the gate contact (G) of each one of the first MOSFET 20 and the second MOSFET 24 to their respective I/O pins 14, minimize the length of the wirebonds 54, and optimize current flow through the power converter module 10. In one embodiment, the pattern of the first conductive layer 52 and routing of wirebonds 54 are designed such that the power switching path has a maximum length of about 50 mm and the gate control path has a maximum length of about 20 mm. As defined herein, the gate control path is the total distance (as determined by tracing the path) between I/O pin 14O (shown in FIG. 3) and I/O pin 14P (also shown in FIG. 3). Further as defined herein, the power switching path is the total distance (as determined by tracing the path) between I/O pin 14E and I/O pin 14F to I/O pin 14C and I/O pin 14D (all shown in FIG. 3). Minimizing the power switching path length and gate control path length reduces the stray inductance in the power converter module 10, which may be less than 15 nH according to some embodiments. In one embodiment, wirebonds 54 in the gate control path have a diameter of ˜5 mil, while wirebonds 54 in the power switching path have a diameter ˜15 mil. More or less wirebonds 54 may be used to form a particular leg of the particular conduction path based on a desired current carrying capacity thereof.
  • FIG. 8 shows a cross-sectional view of the housing 12 and the substrate 48 through line A-A′ shown in FIG. 7. As shown in FIG. 8, the substrate 48 is mounted in the housing 12 and includes the aluminum nitride base layer 50, the first conductive layer 52 on which the first diode 22 is attached via a die attach material 56 and connected via the wirebonds 54, and a second conductive layer 58. In some embodiments, the space between the substrate 48 and the housing 12 is filled with an inert gel. Notably, as discussed above, the power converter module 10 does not include a baseplate. Accordingly, the substrate 48 must be adequately rugged in order to support the power converter circuitry 18 formed on the first conductive layer 52. Further, as silicon carbide devices are generally high power density devices that produce a significant amount of heat, it is desirable for the substrate 48 to have a relatively low thermal resistance such that the substrate 48 is capable of efficiently dissipating heat. Using an AMB substrate as discussed above provides a strong substrate 48 that is capable of efficiently dissipating heat. In one embodiment, the insulating base layer 50 may have a minimum thermal conductivity of 30 W/m-K in order to provide low thermal resistance between the power converter circuitry 18 and the second conductive layer 58. Accordingly, the power converter circuitry 18 may be operated in order to provide additional power output, additional efficiency, or both.
  • Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims (22)

What is claimed is:
1. A power converter module comprising:
a substrate; and
power converter circuitry on the substrate, the power converter circuitry comprising a plurality of switching components coupled together via a conductive layer on the substrate and configured to selectively deliver power to a load, wherein a stray inductance of the power converter circuitry is less than 15 nH.
2. The power converter module of claim 1 wherein:
the plurality of switching components are arranged to provide a gate control path and a power switching path; and
a length of the gate control path and a length of the power switching path are arranged such that the stray inductance of the power converter circuitry is less than 15 nH.
3. The power converter module of claim 2 wherein a length of the power switching path is less than 50 mm.
4. The power converter module of claim 3 wherein a length of the gate control path is less than 20 mm.
5. The power converter module of claim 4 wherein:
the conductive layer of the substrate is etched to form a desired connection pattern between the plurality of switching components; and
the plurality of switching components are coupled to the conductive layer via one or more wirebonds.
6. The power converter module of claim 2 wherein the length of the gate control path is less than 20 mm.
7. The power converter module of claim 1 wherein the plurality of switching components comprises silicon carbide semiconductor components.
8. The power converter module of claim 1 wherein the power converter circuitry is configured to provide an output voltage greater than 650V and an output power greater than 900 W, and operate at a switching frequency greater than 40 kHz.
9. A power converter module comprising:
at least one metal-oxide semiconductor field-effect transistor (MOSFET) including a drain contact, a gate contact, and a source contact;
at least one diode including an anode coupled to the drain contact of the at least one MOSFET and a cathode; and
snubber circuitry coupled between the cathode of the at least one diode and the source contact of the at least one MOSFET.
10. The power converter module of claim 9 wherein the at least one diode is external to the at least one MOSFET.
11. The power converter module of claim 9 wherein the snubber circuitry is configured to reduce transient signals at the cathode of the at least one diode.
12. The power converter module of claim 11 wherein the snubber circuitry comprises a snubber capacitor coupled in series with a snubber resistor.
13. The power converter module of claim 9 wherein the snubber circuitry comprises a snubber capacitor coupled in series with a snubber resistor.
14. The power converter module of claim 9 wherein the power converter circuitry is configured to provide an output voltage greater than 650V and an output power greater than 900 W, and operate at a switching frequency greater than 40 kHz.
15. The power converter module of claim 9 wherein the at least one MOSFET is a silicon carbide MOSFET.
16. The power converter module of claim 15 wherein the at least one diode is a silicon carbide diode.
17. A power converter module comprising:
a substrate;
at least one metal-oxide semiconductor field-effect transistor (MOSFET) provided on the substrate, the at least one MOSFET including a drain contact, a gate contact, and a source contact;
at least one diode provided on the substrate and including an anode coupled to the drain contact of the at least one MOSFET and a cathode; and
an inner-loop capacitor provided on the substrate and coupled between the cathode of the at least one diode and the source contact of the at least one MOSFET.
18. The power converter module of claim 17 wherein the at least one diode is external to the at least one MOSFET.
19. The power converter module of claim 17 wherein the inner-loop capacitor is configured to reduce parasitic inductance at the cathode of the at least one diode.
20. The power converter module of claim 19 wherein the inner-loop capacitor is a high-frequency ceramic capacitor.
21. The power converter module of claim 17 wherein the inner-loop capacitor is a high-frequency ceramic capacitor.
22. The power converter module of claim 17 wherein the power converter circuitry is configured to provide an output voltage greater than 650V and an output power greater than 900 W, and operate at a switching frequency greater than 40 kHz.
US16/784,857 2015-03-16 2020-02-07 High speed, efficient sic power module Pending US20200177079A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/784,857 US20200177079A1 (en) 2015-03-16 2020-02-07 High speed, efficient sic power module
US16/851,197 US11888392B2 (en) 2015-03-16 2020-04-17 High speed, efficient sic power module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562133872P 2015-03-16 2015-03-16
US15/055,872 US10680518B2 (en) 2015-03-16 2016-02-29 High speed, efficient SiC power module
US16/784,857 US20200177079A1 (en) 2015-03-16 2020-02-07 High speed, efficient sic power module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/055,872 Continuation US10680518B2 (en) 2015-03-16 2016-02-29 High speed, efficient SiC power module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/851,197 Continuation US11888392B2 (en) 2015-03-16 2020-04-17 High speed, efficient sic power module

Publications (1)

Publication Number Publication Date
US20200177079A1 true US20200177079A1 (en) 2020-06-04

Family

ID=55588634

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/055,872 Active 2036-09-16 US10680518B2 (en) 2015-03-16 2016-02-29 High speed, efficient SiC power module
US16/784,857 Pending US20200177079A1 (en) 2015-03-16 2020-02-07 High speed, efficient sic power module
US16/851,197 Active 2038-02-17 US11888392B2 (en) 2015-03-16 2020-04-17 High speed, efficient sic power module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/055,872 Active 2036-09-16 US10680518B2 (en) 2015-03-16 2016-02-29 High speed, efficient SiC power module

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/851,197 Active 2038-02-17 US11888392B2 (en) 2015-03-16 2020-04-17 High speed, efficient sic power module

Country Status (4)

Country Link
US (3) US10680518B2 (en)
CN (2) CN107534031B (en)
DE (1) DE112016001261T5 (en)
WO (1) WO2016149100A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224810B2 (en) 2015-03-16 2019-03-05 Cree, Inc. High speed, efficient SiC power module
US10680518B2 (en) 2015-03-16 2020-06-09 Cree, Inc. High speed, efficient SiC power module
FR3061627B1 (en) * 2016-12-29 2019-09-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives ARCHITECTURE OF A THREE-PHASE SWITCH
USD954667S1 (en) 2017-01-13 2022-06-14 Wolfspeed, Inc. Power module
EP3396839B1 (en) * 2017-04-28 2021-12-15 Infineon Technologies AG Semiconductor arrangement with controllable semiconductor elements
EP3625882A1 (en) 2017-09-22 2020-03-25 Huawei Technologies Co., Ltd. Hybrid boost converters
JP6988345B2 (en) * 2017-10-02 2022-01-05 株式会社デンソー Semiconductor device
JP6638173B2 (en) * 2018-03-30 2020-01-29 本田技研工業株式会社 Power converter
USD883241S1 (en) * 2018-06-04 2020-05-05 Semikron Elektronik Gmbh & Co. Kg Power module
USD903590S1 (en) 2018-09-12 2020-12-01 Cree Fayetteville, Inc. Power module
USD889423S1 (en) * 2018-12-03 2020-07-07 Semikron Elektronik Gmbh & Co. Kg Power module
EP3761492B1 (en) * 2019-07-05 2023-01-04 Infineon Technologies AG Snubber circuit and power semiconductor module with snubber circuit
JP1659677S (en) * 2019-08-29 2020-05-18
JP1659675S (en) 2019-08-29 2020-05-18
JP1659673S (en) * 2019-08-29 2020-05-18
JP1659674S (en) * 2019-08-29 2020-05-18
JP1659676S (en) 2019-08-29 2020-05-18
JP1659716S (en) * 2019-08-29 2020-05-18
JP1659678S (en) 2019-08-29 2020-05-18
WO2021050912A1 (en) 2019-09-13 2021-03-18 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
USD952585S1 (en) * 2020-03-16 2022-05-24 Dynatron Corporation Vapor chamber
USD944199S1 (en) * 2020-04-30 2022-02-22 Thermo King Corporation Low power module for controller of transport climate control system
USD942392S1 (en) * 2020-04-30 2022-02-01 Thermo King Corporation High power module for controller of transport climate control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108684A1 (en) * 2004-11-24 2006-05-25 General Electric Company Power module, phase leg, and three-phase inverter
US20080180974A1 (en) * 2006-12-27 2008-07-31 Renesas Technology Corp. Power MISFET, semiconductor device and DC/DC converter
US20160308523A1 (en) * 2013-12-26 2016-10-20 Rohm Co., Ltd. Power circuit and power module
US10224810B2 (en) * 2015-03-16 2019-03-05 Cree, Inc. High speed, efficient SiC power module

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940724B2 (en) * 2003-04-24 2005-09-06 Power-One Limited DC-DC converter implemented in a land grid array package
US8518554B2 (en) * 2006-07-04 2013-08-27 Kabushiki Kaisha Toshiba Ceramic metal composite and semiconductor device using the same
US7808102B2 (en) * 2006-07-28 2010-10-05 Alpha & Omega Semiconductor, Ltd. Multi-die DC-DC boost power converter with efficient packaging
US7999369B2 (en) * 2006-08-29 2011-08-16 Denso Corporation Power electronic package having two substrates with multiple semiconductor chips and electronic components
JP2009158533A (en) 2007-12-25 2009-07-16 Takehisa Saito Light generating device
TWM367286U (en) 2008-12-22 2009-10-21 Hsin I Technology Co Ltd Structure of LED lamp tube
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US20110210708A1 (en) 2010-03-01 2011-09-01 Texas Instruments Incorporated High Frequency Power Supply Module Having High Efficiency and High Current
CN103650137B (en) 2011-07-11 2017-09-29 三菱电机株式会社 Power semiconductor modular
US8546906B2 (en) 2011-07-19 2013-10-01 The United States Of America As Represented By The Secretary Of The Army System and method for packaging of high-voltage semiconductor devices
WO2013036370A1 (en) * 2011-09-11 2013-03-14 Cree, Inc. High current density power module comprising transistors with improved layout
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US9640617B2 (en) * 2011-09-11 2017-05-02 Cree, Inc. High performance power module
FR2990795B1 (en) 2012-05-16 2015-12-11 Sagem Defense Securite ELECTRONIC POWER MODULE ARRANGEMENT
US20140070627A1 (en) * 2012-09-07 2014-03-13 International Rectifier Corporation Integrated Group III-V Power Stage
EP2997596B1 (en) 2013-05-14 2021-03-17 Cree, Inc. High performance power module
WO2015058073A1 (en) 2013-10-17 2015-04-23 Arkansas Power Electronics Int'l., Inc. High voltage power chip module
US10242969B2 (en) * 2013-11-12 2019-03-26 Infineon Technologies Ag Semiconductor package comprising a transistor chip module and a driver chip module and a method for fabricating the same
US10680518B2 (en) 2015-03-16 2020-06-09 Cree, Inc. High speed, efficient SiC power module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108684A1 (en) * 2004-11-24 2006-05-25 General Electric Company Power module, phase leg, and three-phase inverter
US20080180974A1 (en) * 2006-12-27 2008-07-31 Renesas Technology Corp. Power MISFET, semiconductor device and DC/DC converter
US20160308523A1 (en) * 2013-12-26 2016-10-20 Rohm Co., Ltd. Power circuit and power module
US10224810B2 (en) * 2015-03-16 2019-03-05 Cree, Inc. High speed, efficient SiC power module

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chen et al.,An Ultra-Fast SiC Phase-Leg Module in Modified Hybrid Packaging Structure …,09/01/2014, 2014 IEEE-ECCE, 2880-2886 (Year: 2014) *
Kim et al., Practical implementation of a silicon carbide-based 300 kHz, 1.2 kW hard-switching boost-converter ...,03/01/2015, IET, 333-341 (Year: 2015) *
Kim et al., Practical implementation of a silicon carbide-based 300 kHz, 1.2 kW hard-switching boost-converter …,03/01/2015, IET, 333-341 (Year: 2015) *

Also Published As

Publication number Publication date
US20160276927A1 (en) 2016-09-22
US11888392B2 (en) 2024-01-30
CN107534031A (en) 2018-01-02
US20200244164A1 (en) 2020-07-30
CN112103272A (en) 2020-12-18
CN107534031B (en) 2020-09-11
DE112016001261T5 (en) 2017-11-30
WO2016149100A1 (en) 2016-09-22
US10680518B2 (en) 2020-06-09

Similar Documents

Publication Publication Date Title
US11888392B2 (en) High speed, efficient sic power module
US10749520B2 (en) Power circuit and power module using MISFET having control circuit disposed between gate and source
US10224810B2 (en) High speed, efficient SiC power module
JP5798412B2 (en) Semiconductor module
US10522517B2 (en) Half-bridge power semiconductor module and manufacturing method therefor
US10784213B2 (en) Power device package
JP2018520625A (en) Power converter physical topology
JP2003164140A (en) Semiconductor conversion circuit and circuit module
WO2015175820A1 (en) HIGH CURRENT, LOW SWITCHING LOSS SiC POWER MODULE
WO2016129097A1 (en) Half-bridge power semiconductor module, and method for manufacturing same
JP2019017112A (en) Power circuit
Santi et al. Power electronic modules
Baliga et al. The BiDFET device and its impact on converters
US20230413467A1 (en) Power conversion module
CN116314170A (en) SiC double-sided cooling module with low parasitic inductance and high heat dissipation performance
US11527456B2 (en) Power module with organic layers
KR20190065768A (en) Power module using stack structure and 3 phase driving module for electric vehicle using the same
CN110429850B (en) High-efficiency GaN three-phase inverter module for new energy power generation system
JP7312561B2 (en) Power modules, switching power supplies and power control units
CN108323211B (en) Power device package
JP2012050176A (en) Power module for power conversion device
KR102413991B1 (en) PCB integral high speed switching power conversion unit
KR102114717B1 (en) SiC INVERTER DEVICE
Gurpinar et al. Power module with organic layers

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: WOLFSPEED, INC., NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:CREE, INC.;REEL/FRAME:057891/0880

Effective date: 20211001

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:WOLFSPEED, INC.;REEL/FRAME:064185/0755

Effective date: 20230623

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS