US20200140291A1 - Fluid disinfection apparatus and methods - Google Patents
Fluid disinfection apparatus and methods Download PDFInfo
- Publication number
- US20200140291A1 US20200140291A1 US16/616,204 US201816616204A US2020140291A1 US 20200140291 A1 US20200140291 A1 US 20200140291A1 US 201816616204 A US201816616204 A US 201816616204A US 2020140291 A1 US2020140291 A1 US 2020140291A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- radiation
- reflecting
- chamber
- approximately
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 237
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004659 sterilization and disinfection Methods 0.000 title abstract description 43
- 230000005855 radiation Effects 0.000 claims abstract description 200
- 230000000249 desinfective effect Effects 0.000 claims abstract description 85
- 239000000463 material Substances 0.000 claims description 20
- 238000007599 discharging Methods 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000010923 batch production Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 244000000022 airborne pathogen Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 244000000028 waterborne pathogen Species 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/26—Accessories or devices or components used for biocidal treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/11—Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/12—Apparatus for isolating biocidal substances from the environment
- A61L2202/121—Sealings, e.g. doors, covers, valves, sluices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/12—Apparatus for isolating biocidal substances from the environment
- A61L2202/122—Chambers for sterilisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3221—Lamps suspended above a water surface or pipe
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3222—Units using UV-light emitting diodes [LED]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3228—Units having reflectors, e.g. coatings, baffles, plates, mirrors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/328—Having flow diverters (baffles)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Definitions
- This disclosure relates to fluid disinfection apparatus and methods.
- Particular aspects may comprise an ultraviolet (“UV”) photo-reactor.
- UV ultraviolet
- Fluids such as air and water may be exposed to a dose of disinfecting radiation in order to kill microbes and decompose organic contaminants.
- the fluids may be directed into a chamber, and a UV radiation may be output from a point source in a chamber, such a UV LED or similar radiation source.
- the dose may be defined as an amount of energy “Q” (mJ per cm 2 ) to which the fluids are exposed from the disinfecting radiation; and calculated as the product of irradiance “I” (mW per cm 2 ) multiplied by a fluid residence time “r” (s).
- Q amount of energy
- I irradiance
- r fluid residence time
- the apparatus may comprise a body.
- the body may include an inlet extending through the body to receive a fluid at a first velocity; a reflecting chamber extending along an axis of the body; and an outlet extending through an end of the reflecting chamber to discharge the fluid from the body.
- the apparatus may comprise a fluid channel in the body to direct a fluid from the inlet into the reflecting chamber.
- the fluid may be directed into the reflecting chamber by the fluid channel at a second velocity smaller than the first velocity.
- the apparatus also may comprise a radiation source positioned to output a disinfecting radiation into the reflecting chamber toward the outlet.
- the source may be a UV LED.
- the inlet may be generally transverse with the axis, and the outlet may be generally parallel to the axis.
- the outlet may be coaxial with the axis; and the radiation source may be coaxial with the axis so that a portion of the disinfecting radiation is discharged from the outlet with the fluid.
- a portion of discharged radiation may further disinfect the fluid downstream of the apparatus.
- a cross-section of the reflecting chamber across the axis may be circular.
- the body and the reflecting chamber may include a similar shape or volume along the axis. Any shape or volume may be used.
- the similar shape or volume may be cylindrical, conical, polygonal, pyramidal, spherical, or prismatic.
- the reflecting chamber may have a length and a diameter, and the length divided by the diameter may be equal to between approximately 0.5 and approximately 2; or between approximately 0.5 and approximately 3.
- the axis may extend between a first end of the body and a second end of the body; the radiation source may be disposed at the first end; the reflecting chamber may be disposed between the first and second ends; the outlet may extend through the first end; and the inlet may be adjacent the first end.
- Interior surfaces of the reflecting chamber may include a reflective material. Any type of reflective material may be used, including UV reflective materials.
- the fluid channel may at least partially surround the reflecting chamber, and the reflecting chamber may be defined by an internal structure extending along the axis in the body.
- the radiation source may include one or more point sources; and the one or more point sources may emit the disinfecting radiation in a direction generally parallel to the axis.
- the apparatus may comprise a window disposed between the radiation source and the reflective chamber.
- the disinfecting radiation may pass through the window.
- the window also may seal the radiation source from the fluid.
- the disinfecting radiation may include a wavelength of between approximately 200 nm to approximately 320 nm; or may include a peak wavelength of between approximately 230 nm to approximately 300 nm.
- the radiation source may be a UV-LED, and may include various optical components, such as a lens.
- Another aspect of the present disclosure is an exemplary fluid disinfection method.
- This method may comprise: directing a fluid from an inlet of a body at a first velocity into a reflecting chamber at a second velocity less than the first velocity; exposing the fluid to a disinfecting radiation output into the reflecting chamber toward the outlet; and discharging the fluid from the body out of an outlet extending through an end of the reflecting chamber.
- the second velocity may be less than 50% of the first velocity.
- the body may comprise a fluid channel and directing the fluid may comprise directing the fluid through the fluid channel.
- the reflecting chamber may have a length and a diameter, and the length divided by the diameter may be equal to between approximately 0.5 and approximately 2; or between approximately 0.5 and approximately 3.
- the inlet and the outlet may be disposed at one end of the body, and directing the fluid may comprise: directing the fluid from the inlet in a first direction along to the axis; and directing the fluid into reflecting chamber in a second direction along the axis, wherein the first direction is different from the first direction.
- directing the fluid may comprise directing the fluid from the first direction to the second direction.
- directing the fluid through the fluid channel also may comprise causing the fluid to at least partially surround the reflecting chamber.
- the fluid may be directed between an interior surface of the body and an exterior surface of the reflecting chamber.
- Exposing the fluid to the disinfecting radiation may comprise outputting the disinfecting radiation from a radiation source disposed on the body.
- the method may comprise diverting the fluid from the fluid channel into the reflecting chamber with an internal surface of the body disposed adjacent the radiation source.
- the method may comprise outputting the disinfecting radiation towards the outlet, such as from one or more point sources of the radiation source.
- the inlet may be generally transverse with the outlet, and the method also may comprise discharging at least a portion of the disinfecting radiation out of the outlet with fluid.
- the method also may comprise causing the disinfecting radiation to be reflected off of reflective surfaces of the reflecting chamber.
- exposing the fluid to the disinfecting radiation may comprise outputting the radiation through a window disposed between the radiation source and reflecting chamber.
- the disinfecting radiation may have a wavelength of between approximately 200 nm to approximately 320 nm; or between approximately 230 nm to approximately 290 nm, such that exposing the fluid to the disinfecting radiation may comprise outputting UV radiation.
- Yet another aspect of the present disclosure is another disinfection apparatus.
- This apparatus may comprise: a body comprising an inlet extending through the body to receive a fluid at a first velocity; a reflecting means extending along an axis of the body; and an outlet extending through an end of the reflecting means to discharge the fluid from the body.
- the apparatus may comprise a flow means in the body to direct a fluid from the inlet into the reflecting means. The fluid may be directed by the flow means at a second velocity smaller than the first velocity.
- the apparatus also may comprise a radiation means positioned to output a disinfecting radiation into the reflecting means toward the outlet.
- the inlet may be generally transverse with the axis, and the outlet may be generally parallel to the axis.
- the outlet may be coaxial with the axis; and the radiation means may be coaxial with the axis so that a portion of the disinfecting radiation is discharged from the outlet with the fluid.
- a portion of discharged radiation may further disinfect the fluid downstream of the apparatus.
- a cross-section of the reflecting means across the axis may be circular.
- the body and the reflecting means may include a similar shape or volume along the axis. Any shape or volume may be used.
- the similar shape or volume may be cylindrical, conical, polygonal, pyramidal, spherical, or prismatic.
- the reflecting means and the radiation means may be configured to distribute the disinfecting radiation throughout the reflecting means.
- the reflecting means may have a length and a diameter, and the length divided by the diameter may be equal to between approximately 0.5 and approximately 2; or between approximately 0.5 and approximately 3.
- the axis may extend between a first end of the body and a second end of the body; the radiation means may be disposed at the first end; the reflecting means may be disposed between the first and second ends; the outlet may extend through the first end; and the inlet may be adjacent the first end.
- Interior surfaces of the reflecting means may include a UV reflective material. Any type of reflective material may be used, including UV reflective materials.
- the flow means may at least partially surround the reflecting means, and the reflecting means may be defined by an internal structure extending along the axis in the body.
- the radiation means may include one or more point sources; and the one or more point sources may emit the disinfecting radiation in a direction generally parallel to the axis.
- the apparatus also may comprise a transmitting means disposed between the radiation means and the reflective means.
- the disinfecting radiation passes through the transmitting means.
- the transmitting means may seal the radiation means from the fluid.
- the disinfecting radiation may include a wavelength of between approximately 200 nm to approximately 320 nm; or a peak wavelength of between approximately 230 nm to approximately 300 m.
- the radiation means may comprise a UV-LED, and may comprise optical means, such as a lens.
- Still yet another aspect of the present disclosure is another disinfection apparatus.
- This apparatus may comprise: a cap attached to a body; an inlet extending through the body to receive a fluid; a reflecting chamber extending along an axis of the body; and an outlet extending through the reflecting chamber to discharge the fluid from the body.
- the cap may comprise a radiation source positioned to output a disinfecting radiation into the reflecting chamber toward the outlet when attached to the body.
- the body and/or the cap may be composed of a thermally conductive material.
- the cap may be thermally coupled to the body and the radiation source so that heat from the source may be transferred into the body through the cap.
- the body and/or the cap may be thermally coupled to the fluid (e.g., in contact therewith) so that at least a portion of the heat may be transferred to the fluid to cool radiation source.
- FIG. 1 depicts an exemplary fluid disinfection apparatus.
- FIG. 2 depicts a section view of the FIG. 1 apparatus taken along a section line A-A depicted in FIG. 1 .
- FIG. 3 depicts a top-down view of the FIG. 1 apparatus taken along a section line B-B depicted in FIG. 2 .
- FIG. 4 depicts a top-down view of another exemplary fluid disinfection apparatus.
- FIG. 5 depicts a top-down view of another exemplary fluid disinfection apparatus.
- FIG. 6 depicts an exemplary fluid velocity contour.
- FIG. 8 depicts an exemplary absolute incoherent irradiance.
- FIG. 9 depicts an exemplary diagram of total power.
- FIG. 11 depicts another exemplary fluid disinfection apparatus.
- FIG. 12 depicts another exemplary fluid disinfection apparatus.
- FIG. 13 depicts another exemplary irradiance distribution.
- FIG. 14 depicts another exemplary irradiance distribution.
- FIG. 15 depicts another exemplary absolute incoherent irradiance.
- FIG. 16 depicts another exemplary fluid disinfection apparatus.
- FIG. 17 depicts another exemplary irradiance distribution.
- FIG. 18 depicts another exemplary fluid disinfection apparatus.
- FIG. 19 depicts an exemplary fluid disinfection method.
- a body comprising a reflecting chamber, a fluid channel to direct a fluid into the reflecting chamber, and a radiation source to output a dose Q (mJ per cm 2 ) of a disinfecting radiation into the reflecting chamber.
- Dose Q may be calculated as the product of irradiance “I” (mW per cm 2 ) multiplied by a fluid residence time “r” (s) (“Equation 1”).
- the reflecting chamber and fluid channel may include interconnecting volumes in the body;
- the radiation source may be a UV point source, such as a UV LED; and the disinfecting radiation may include a UV radiation.
- these examples are provided for convenience and not intended to limit the present disclosure. Accordingly, the concepts described in this disclosure may be utilized for any analogous apparatus or method, using any type of disinfecting radiation.
- axes are described.
- a set of three directional axes may be described, including an X-X axis, a Y-Y axis, and a Z-Z axis.
- Each axis may be transverse with the next so as to establish a coordinate system.
- the term “transverse” means: lying, or being across; set crosswise; or made at right angles to an axis, and includes perpendicular and non-perpendicular arrangements.
- longitudinal may be used to describe relative components and features.
- longitudinal may refer to an object having a first dimension or length that is longer in relation to a second dimension or width.
- the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that an apparatus, method, or element thereof comprising a list of elements does not include only those elements, but may include other elements not expressly listed or inherent the apparatus or method.
- the term “exemplary” is used in the sense of “example,” rather than “ideal.”
- Various terms of approximation may be used in this disclosure, including “approximately” and “generally.” Approximately means within plus or minus 10% of a stated number.
- disinfection apparatus 10 may comprise hydrodynamic and optical aspects operable with a radiation source 90 to deliver an optimal energy dose Q of a disinfecting radiation to a first fluid F 1 .
- a radiation source 90 to deliver an optimal energy dose Q of a disinfecting radiation to a first fluid F 1 .
- Numerous hydrodynamic and optical aspects of apparatus 10 are described with respect to an exemplary body 20 , shown in FIG. 1 as extending along an axis Y-Y.
- body 20 may comprise: an inlet 30 to a fluid chamber 40 , a cap 50 , a reflecting chamber 70 in fluid chamber 40 , and an outlet 80 from chamber 70 .
- Inlet 30 may extend through any portion of body 20 to input first fluid F 1 .
- inlet 30 may comprise an inlet structure 32 extending outwardly from body 20 along an axis X-X and a lumen 34 extending through body 20 along axis X-X for communication with fluid chamber 40 .
- first fluid F 1 may be input to lumen 34 from a first hose or tube engageable with inlet structure 32 .
- Fluid chamber 40 may comprise one or more interior shapes or volumes. At least two of the interior shapes volumes may be interconnecting. As shown in FIG. 2 , for example, an interior structure 42 may be located in fluid chamber 40 to define two interconnected interior shapes or volumes, including a flow channel 44 and reflecting chamber 70 .
- flow channel 44 may be a first interconnecting shape or volume on an exterior side of structure 42
- reflecting chamber 70 may be a second interconnecting shape or volume on an interior side of structure 42 .
- first fluid F 1 may: (i) enter through inlet 30 ; (ii) pass through body 20 in lumen 34 ; (iii) enter flow channel 44 ; (iv) be directed into reflecting chamber 70 by channel 44 ; (v) be exposed to the disinfecting radiation in chamber 70 ; and (v) exit through outlet 80 as a second fluid F 2 .
- second fluid F 2 may be different from first fluid F 1 .
- first fluid F 1 may contain a first quantity of contaminants (e.g., microbes and organic contaminants)
- second fluid F 2 may contain a second quantity of contaminants (e.g., microbes and organic contaminants)
- the second quantity may be less than the first quantity, making fluid F 2 disinfected relative to fluid F 1 .
- other characteristics of second fluid F 2 also may be different from first fluid F 1 , such as velocity and temperature.
- Cap 50 may be attached to any portion of body 20 and configured to seal fluid chamber 40 . As shown in FIG. 2 , cap 50 may be attached to a first end 22 of body 20 with any type of sealing elements, including adhesives, heat treatments, threads, and the like. Radiation source 90 may be attached to cap 50 and configured to output a disinfecting radiation into fluid chamber 40 .
- source 90 may include one or more point sources and associated electronic components mounted to in interior compartment 54 on an underside of cap 50 .
- the point source(s) may include an UV-LED, and the disinfecting radiation may include the UV radiation, including any combination of UV-A, UV-B, and UV-C.
- radiation source 90 and interior compartment 54 may be coaxial with axis Y-Y, as shown in FIG.
- this arrangement may allow one or more UV LEDs apply a first dose Q of UV radiation in reflecting chamber 70 and a second dose Q of UV radiation downstream of chamber 70 .
- At least one of cap 50 or first end 22 of body 20 may comprise a window 56 configured to seal radiation source 90 within compartment 54 of cap 50 .
- compartment 54 may extend into an underside of cap 50 and window 54 may be attached to the underside.
- window 54 may be composed of a radiation transparent material configured to: (i) seal radiation source 90 within interior compartment 54 when cap 50 is attached to first end 22 , and (ii) allow the disinfecting radiation to pass into chamber 40 .
- window 54 may include a quartz or quartz-like material configured to pass UV radiation there through.
- cap 50 may be composed of a thermally conductive material (e.g., aluminum). Cap 50 also may be configured to cool radiation source 90 with first fluid F 1 . For example, cap 50 may in conductive communication with first fluid F 1 and radiation source 90 when attached to body 20 , allowing a temperature of fluid F 1 to cool point source(s) of radiation source 90 . As a further example, the thermally conductive material of cap 50 also may be in conductive communication with a thermally conductive portion of body 20 , allowing all or portions of body 20 to provide an additional heat sink.
- a thermally conductive material e.g., aluminum
- Cap 50 also may be configured to cool radiation source 90 with first fluid F 1 .
- cap 50 may in conductive communication with first fluid F 1 and radiation source 90 when attached to body 20 , allowing a temperature of fluid F 1 to cool point source(s) of radiation source 90 .
- the thermally conductive material of cap 50 also may be in conductive communication with a thermally conductive portion of body 20 , allowing all
- any interior surface of fluid chamber 40 may be reflective.
- interior surfaces of reaction chamber 70 may be defined by interior structure 42 , and at least those surfaces may be made of or coated with the reflective material.
- the interior surfaces of chamber 70 may have a cylindrical surface area, and at least that surface area inside fluid chamber 40 may be reflective.
- Any type of reflective material may be used, including UV reflective materials.
- the UV reflective material may comprise one or more of a polytetrafluoroethylene (“PTFE”), a low density PTFE, aluminum, and a Teflon or Teflon-like material configured to provide high level of diffuse reflectance.
- the interior surfaces of structure 42 may comprise a semiconducting photo-catalyst material.
- the photo-catalyst material may be activated by UV radiation (e.g., UV-C) and utilized to degrade organic compounds and deactivate air and/or water borne pathogens.
- Interior surfaces of body 20 and/or exterior surfaces of interior structure 42 also may be reflective.
- interior structure 42 may be transparent to the disinfecting radiation and at least interior surface 27 of body 20 may be reflective.
- body 20 may be composed of aluminum, interior surface 27 may be coated with a UV reflective material, and interior structure 42 may be composed of a UV translucent material.
- inlet, 30 , flow channel 44 , reflecting chamber 70 , and/or outlet 80 may include mixing elements, such as baffles configured to further adjust the hydrodynamics of first fluid F 1 within fluid chamber 40 .
- Additional heating elements e.g., electric coils
- the mixing elements and/or outlet 80 may be configured to heat first fluid F 1 to a desired usage temperature.
- various surfaces of interior structure 42 may be configured as a mixing and/or heating element.
- Outlet 80 may extend through any portion of body 20 to discharge second fluid F 2 from body 20 .
- outlet 80 may comprise an outlet structure 82 extending outwardly from body 20 along axis Y-Y and a lumen 84 extending through body 20 along axis Y-Y to discharge second fluid F 2 through interior surface 23 of body 20 and/or chamber 70 .
- second fluid F 2 may be discharged from lumen 84 , out of body 20 , and into a second hose or tube engageable with outlet structure 82 .
- Portions of outlet 80 may be used to modify characteristics of first fluid F 1 . As shown in FIG.
- lumen 84 may have a consistent diameter along axis Y-Y, and outlet 80 may comprise an optional throttling portion 86 with a diameter that varies along axis Y-Y to modify (e.g., slightly increase) a velocity of first fluid F 1 before being discharged from body 20 as second fluid F 2 .
- At least an opening of lumen 84 may be coaxial with axis Y-Y, and thus aligned with radiation source 90 along axis Y-Y. Because of this alignment, a larger portion of the disinfecting radiation may be discharged from reflecting chamber 70 through lumen 84 with second fluid F 2 , allowing for further disinfection downstream of apparatus 10 .
- interior surfaces of lumen 84 and/or the second hose or tube may be made of or coated with a reflective material similar to above.
- optional throttling portion 86 may have a larger opening than lumen 84 , allowing even more the disinfecting radiation to be discharged.
- inlet 30 may be generally transverse with outlet 80 so that the interconnecting volumes of flow channel 44 and interior structure 42 may be used to modify a characteristic of first fluid F 1 .
- lumen 34 of inlet structure 32 may include a cross-sectional shape extending along axis X-X
- lumen 84 of outlet structure 82 may include a cross-sectional shape extending along axis Y-Y
- axis X-X may be generally transverse with axis Y-Y.
- the cross-sectional shape of lumen 84 and/or outlet structure 82 may be coaxial with axis Y-Y. Any shapes may be used, including the circular shapes shown in FIG. 3 .
- the characteristic may include a velocity of first fluid F 1
- fluid chamber 40 may be configured to receive first fluid F 1 at inlet 30 at a first velocity and direct fluid F 1 into reflecting chamber 70 at a second velocity less than the first velocity. At least the first velocity may be a jet flow velocity.
- Interior structure 42 may be configured to transition fluid F 1 into the second velocity in chamber 70 .
- the comparatively slower second velocity of first fluid F 1 in chamber 70 may increase the residence time for fluid F 1 , allowing for delivery of an optimal dose Q of the disinfecting radiation to fluid F 1 as it passes through body 20 .
- disinfection apparatus 10 may be configured to realize a reduced velocity in or across fluid chamber 70 and distribute the disinfecting light throughout reflecting chamber 70 , resulting in an optimal dose Q distribution across disinfection apparatus 10 , as expressed by Equation (1).
- results from an exemplary computational fluid dynamics (CFD) simulation are shown in FIG. 6 .
- the above-described configurations of fluid chamber 40 e.g., including interior structure 42
- radiation source 90 may output the disinfecting radiation into reflecting chamber 70 , and at least interior surfaces 74 of chamber 70 may be configured to maximize the effectiveness of the radiation by reflecting it within chamber 70 . As shown, a portion of the disinfecting radiation may be emitted from radiation source 90 , passed through window 56 , and reflected between interior surfaces 74 of chamber 70 .
- the cross-section of reflecting chamber 70 may be varied without affecting functionality. For example, although shown with reference to apparatus 10 , which has a circular shape, FIG. 7 may be likewise applicable to the quadrilateral shape of apparatus 110 of FIG.
- FIG. 4 which comprises an inlet 130 , a fluid chamber 140 , a flow channel 144 , a reflecting chamber 170 , and an outlet 180 similar to counterpart elements of apparatus 10 ; or the polygonal shape of apparatus 210 of FIG. 5 , which comprises an inlet 230 , a fluid chamber 240 , a flow channel 244 , a reflecting chamber 270 , and an outlet 280 similar to counterpart elements of apparatus 10 .
- An exemplary irradiance distribution for the disinfecting radiation within reflecting chamber 70 is shown in FIG. 8 . As shown, a similar irradiance may be achieved across most of reflecting chambers 70 , 170 , and 180 .
- a performance of disinfection apparatus 10 may be relative to dimensions of reflecting chamber 70 , such as an aspect ratio.
- an aspect ratio “AR” may be defined as the quotient of a first dimension or length “L” of reflecting chamber 70 along axis Y-Y divided by a second dimension or depth “D” of chamber 70 along axis X-X.
- the second dimension or depth D may be a diameter of the circular shape.
- the definition of hydraulic diameter may be used to determine the AR of non-circular shapes, such as the quadrilateral shape of reflecting chamber 170 of FIG. 4 or the polygonal shape of reflecting chamber 270 of FIG. 5 , in which the AR may be equal to the product of four multiplied by an area of the shape “A” and a wetted perimeter of the cross-section “P”.
- the AR of interior chamber 70 may significantly affect power conservation along the length L of chamber 70 .
- FIG. 8 it is shown that extending the length L of chamber 70 along axis Y-Y while maintaining a volume of chamber 70 causes the total UV power to decrease significantly along length L, resulting in a minimal dose delivery after a certain length L. Because this minimal dose may not be sufficient for disinfection, FIG. 8 also demonstrates the benefit of optimizing the AR of exemplary geometric configurations to maximize the delivery of dose Q within reflecting chamber 70 .
- FIG. 9 An exemplary average distribution of dose Q across reflecting chamber 70 is depicted in FIG. 9 , demonstrating how the optical and hydrodynamic aspects of disinfection apparatus 10 may realize an optimal distribution of dose Q.
- disinfection apparatus 10 Additional aspects of disinfection apparatus 10 are now described with reference to exemplary processes, including continuous processes and batch processes.
- first fluid F 1 passes continuously through body 20
- dimensions of reflecting chamber 70 including its AR may be optimized such that a reduced velocity of fluid F 1 is achieved within chamber 70 .
- an AR greater than or equal to 1 may be utilized.
- first fluid F 1 likewise passes continuously through body 20
- dimensions of reflecting chamber 70 may be further optimized to conserve power through body 20 and maximize the dose Q delivered to first fluid F 1 .
- the dimensions of chamber 70 may be optimized so that the disinfecting radiation is provided throughout body 20 .
- an AR of approximately 1 may be utilized to minimize power dissipation in body 20 .
- FIG. 7 shows how irradiance may be affected by optimizing the AR of reflecting chamber 70 ; and FIG. 8 shows how increasing the AR may decrease of the total power within chamber 70 if its volume is kept the same.
- AR less than or equal to 0.5 and greater than or equal to 2 may be utilized to maximize dose Q through body 20 using chamber 70 .
- FIG. 9 shows an average total distribution of dose Q within the cross-section of reflecting chamber 70 .
- a volume of first fluid F 1 may be temporarily stored inside reflecting chamber 70
- lower ARs may be used if more intense irradiance along reflecting chamber 70 is desired.
- an AR of less than 1 may be used if the power of radiation source 90 is increased.
- disinfection apparatus 310 shown conceptually in FIG. 11 ; a disinfection apparatus 410 , shown conceptually in FIG. 12 ; a disinfection apparatus 510 , shown conceptually in FIG. 16 ; and disinfection apparatus 610 , shown conceptually in FIG. 18 .
- Each variation of disinfection apparatus 10 such as apparatus 110 , 210 , 310 , 410 , 510 , and 610 , may include elements similar to those of apparatus 10 , but within the respective 100 , 200 , 300 , 400 , 500 , or 600 series of numbers, whether or not those elements are shown.
- disinfection apparatus 310 may comprise a body 320 , an inlet 330 , a fluid chamber 340 , a fluid channel 344 , a reflecting chamber 370 , an outlet 380 , and a radiation source 390 .
- Body 320 may be conical.
- body 320 of FIG. 11 includes a truncated cone shape, wherein inlet 330 and outlet 380 are at a first or base end of body 320 , and radiation source 390 is at second or truncated end 322 of body 320 .
- apparatus 310 may comprise an interior structure 342 in fluid chamber 340 to define at least two interconnected interior shapes or volumes, including flow channel 344 and reflecting chamber 370 .
- fluid channel 344 and reflecting chamber 370 also may include a truncated cone shape similar to that of body 320 along axis Y-Y.
- a first dimension of reflecting chamber 370 adjacent radiation source 390 may be smaller than a second dimension of chamber 370 adjacent outlet 380 .
- the first and second dimensions may be diameters.
- the first and second dimensions may be configured to modify a characteristic of first fluid F 1 in chamber 370 .
- the larger second dimension may increase the residence time of fluid F 1 in chamber 370 by causing vortexes and/or other turbulent flow conditions to form adjacent a lumen 384 of outlet 380 , further reducing the velocity of first fluid F 1 along axis Y-Y.
- disinfection apparatus 410 may comprise a body 420 , an inlet 430 , a fluid chamber 440 , a fluid channel 444 , a reflecting chamber 470 , an outlet 480 , and a radiation source 490 .
- Body 420 also may be conical.
- body 420 of FIG. 13 similarly includes a truncated cone shape, wherein inlet 430 and outlet 480 are at a first or truncated end 422 of body 420 , and radiation source 490 is at a second or base end of body 420 .
- apparatus 410 may comprise an interior structure 442 in fluid chamber 440 to define at least two interconnected interior shapes or volumes, including flow channel 444 and reflecting chamber 470 .
- fluid channel 444 and reflecting chamber 470 also may include a truncated cone shape similar to that of body 420 along axis Y-Y.
- a first dimension of reflecting chamber 470 adjacent radiation source 490 may be larger than a second dimension of chamber 470 adjacent outlet 480 .
- the first and second dimensions may be diameters; and may again modify a characteristic of first fluid F 1 in chamber 470 .
- the smaller first dimension may throttle fluid F 1 in chamber 470 , increasing its velocity along axis Y-Y before being discharged a lumen 484 of outlet 480 .
- apparatus 410 may be configure to receive first fluid F 1 at a first velocity at inlet 430 ; reduce the first velocity to a second, slower velocity in a first portion of chamber 470 ; and gradually transition the second velocity back to the first velocity in a second portion of chamber 470 , as may be required in a constant velocity system.
- radiation source 390 , 490 may output the disinfecting radiation into reflecting chamber 370 , 470 ; and interior surfaces 374 , 474 of chamber 370 , 470 and the geometry of the chamber 370 , 470 may be configured to maximize the effectiveness of the radiation by reflecting it within chamber 370 , 470 .
- FIGS. 13 and 14 radiation source 390 , 490 may output the disinfecting radiation into reflecting chamber 370 , 470 ; and interior surfaces 374 , 474 of chamber 370 , 470 and the geometry of the chamber 370 , 470 may be configured to maximize the effectiveness of the radiation by reflecting it within chamber 370 , 470 .
- a first portion of the disinfecting radiation may be emitted from radiation source 390 , 490 and reflected between interior surfaces 374 , 474 of reflecting chamber 370 , 470 to irradiate first fluid F 1 in chamber 370 , 470 ; and a second portion of the radiation may additionally irradiate second fluid F 2 in lumens 384 , 484 and downstream thereof.
- a first irradiance may be achieved across most of chamber 370 , 470
- a second irradiance may be achieved in lumens 384 , 484 .
- disinfection apparatus 510 may comprise a body 520 , an inlet 530 , a fluid chamber 540 , a fluid channel 544 , a reflecting chamber 570 , an outlet 580 , and a radiation source 590 .
- Body 520 may be spherical.
- body 520 of FIG. 16 includes a spherical shape, wherein inlet 530 and outlet 580 are disposed adjacent a first end of body 520 and radiation source 590 is disposed adjacent a second, opposite end of body 520 .
- apparatus 510 may comprise an interior structure 542 in fluid chamber 540 to define at least two interconnected interior shapes or volumes, including flow channel 544 and reflecting chamber 570 .
- fluid channel 544 and reflecting chamber 570 may include a spherical shape similar to that of body 520 .
- disinfection apparatus 510 may be modified to accommodate the spherical shape of body 520 , fluid channel 544 , and/or reflecting chamber 570 .
- radiation source 590 may be spaced apart from an interior surface of body 520 .
- reflecting chamber 570 may include an opening 578 in communication with fluid channel 544 and radiation source 590 may be disposed in opening 578 .
- a protrusion 554 may extend inwardly from a first end at body 520 to a second end in opening 578 .
- radiation source 590 may be located inside of protrusion 554 and configured to output the disinfecting radiation through a window 556 at the second end of protrusion 554 .
- protrusion 554 may have a curved exterior surface and/or a curved transition to body 520 to minimize interference with first fluid F 1 .
- the spherical shape of body 520 , fluid channel 544 , and/or reflecting chamber 570 may provide hydrodynamic advantages.
- fluid channel 554 may be defined by interior surfaces of body 520 and exterior surfaces of interior structure 542 , and said surfaces may have a larger surface area than the counterpart surfaces of apparatus 10 , 110 , 210 , 310 , or 410 because of the spherical shape.
- body 520 may be smaller than bodies 10 , 110 , 210 , 310 , or 410 because a first velocity of first fluid F 1 at inlet 530 may be more efficiently transitioned to a second, slower velocity because of additional drag imposed by the larger surface areas.
- the spherical shapes of apparatus 510 also may provide optical advantages.
- spherical interior surfaces 574 of reflecting chamber 570 may be configured to maximize the effectiveness of the radiation by reflecting it within body 520 and/or chamber 570 , and concentrating the reflected radiation upon a volume of first fluid F 1 at a center of chamber 570 .
- at least a portion of the disinfecting radiation may be discharged through outlet 580 with second fluid F 2 .
- disinfection apparatus 610 may comprise a body 620 , an inlet 630 , a fluid channel 644 , a reflecting chamber 670 , an outlet 680 , and a radiation source 690 . Except for the differences now described, these elements of apparatus 610 may be similar to counterpart elements of apparatus 10 .
- radiation source 690 may be more powerful than radiation source 90 , causing additional heat. Aspects of apparatus may be modified to take the heat.
- apparatus 610 may comprise a cap 650 comprising a thermally insulating layer 652 , a thermally conductive layer 653 , and a cooling device 657 .
- Thermally insulating layer 652 may be attached to one end 622 of body 620 and configured to seal fluid chamber 640 . As shown in FIG. 18 , radiation source 690 may be mounted in an interior compartment 654 of insulating layer 652 , and a window 656 may be used to seal source 690 in compartment 654 and pass the disinfecting energy into chamber 670 above. Thermally conductive layer 653 may be attached to both radiation source 690 and thermally insulating layer 652 . Accordingly, the additional heat generated by radiation source 690 may be transferred to layer 653 with limited or zero transfer to body 620 because of insulating layer 652 , which provides a thermal break between body 620 and conducting layer 653 .
- Cooling device 657 may be configured to discharge the additional heat. As shown in FIG. 18 , device 657 may comprise a fan 658 and a heat sink 659 . Heat sink 659 may be attached to or integral with thermally conductive layer 653 , and may include a plurality of fins. Fan 658 may include an electric fan that is attached to or adjacent apparatus 610 , and operable to discharge the additional heat into a surrounding environment by directing a flow of air over heat sink 659 .
- any of disinfection apparatus 10 , 110 , 210 , 310 , 410 , 510 , and 610 may similarly utilize disinfecting radiation to disinfect first fluid F 1 within a corresponding reflecting chamber 70 , 170 , 270 , 370 , 470 , 570 , or 670 .
- Hydrodynamic aspects of these chambers may substantially eliminate jet velocities that might otherwise short circuit fluid F 1 , especially where it has a high flow rate (e.g., greater than 1 gpm) and the chamber has a small volume (e.g., less than 500 mL).
- any of chambers 70 , 170 , 270 , 370 , 470 , 570 , or 670 may be configured such that fluid F 1 receives an optimal dose Q of disinfecting radiation.
- dimensions of each chamber 70 , 170 , 270 , 370 , 470 , 510 , 610 may be similarly optimized based on volume such that the UV power loss due to water and surface absorption is minimized.
- any variation of apparatus 10 may include any radiation source 90 , including any number of point sources in any arrangement. Aspects of these variations also may be combined, with each combination and iteration being part of this disclosure.
- any variation of body 20 and/or cap 50 made from any thermally conductive material such as aluminum, copper, stainless steel, and or other materials; any of which may be coupled together to cool radiation source 90 with first fluid F 1 .
- any variation or apparatus 10 may likewise include a thermal break and/or cooling device similar to those of apparatus 610 .
- disinfection apparatus 10 also may comprise a control element operable with radiation source 90 to control a flow of first fluid F 1 and/or second fluid F 2 .
- apparatus 10 , 110 , 210 , 310 , 410 , 510 , or 610 may comprise an upstream sensor configured to detect a demand for disinfected fluid and activate radiation source 90 , 190 , 290 , 390 , 490 , 590 , or 690 to meet that demand.
- apparatus 10 , 110 , 210 , 310 , 410 , 510 , or 610 may likewise comprise a downstream sensor configured to determine a disinfection level of second fluid F 2 , and close an operable valve at outlet 80 , 180 , 280 , 380 , 480 , 580 , or 680 if the disinfection level is unsatisfactory.
- FIG. 700 For ease of description, aspects of method 700 are described with reference to disinfection apparatus 10 , although similar aspects may likewise be described with reference to any of apparatus 110 , 210 , 310 , 410 , 510 , and/or 610 . As shown in FIG.
- method 700 may comprise: directing first fluid F 1 from inlet 30 of body 20 at a first velocity into reflecting chamber 70 with a second velocity less than the first velocity (a “directing step 720 ); exposing the fluid F 1 to a disinfecting radiation output into reflecting chamber 70 toward outlet 80 (an “exposing step 740 ); and discharging fluid F 1 from body 20 out of outlet 80 extending through an end of the reflecting chamber (a “discharging step 760 ”). Exemplary aspects of steps 720 , 740 , and 760 are now described.
- Directing step 720 may comprise any intermediate steps for receiving and/or directing first fluid F 1 .
- body 20 may comprise fluid channel 44 (e.g., FIG. 2 ), and directing step 720 may comprise directing the first fluid F 1 into reflecting chamber 70 through fluid channel 44 .
- reflecting chamber 70 may have a length and a diameter, and the length divided by the diameter may be equal to between approximately 0.5 and approximately 2; or between approximately 0.5 and approximately 3.
- inlet 30 and outlet 30 may at one of body 20 , and step 720 may comprise: directing first fluid F 1 from inlet 30 in a first direction along to axis Y-Y; and directing fluid F 1 into reflecting chamber 70 in a second direction different from the first direction.
- directing fluid F 1 from fluid channel 44 into reflecting chamber 70 may comprise directing the fluid F 1 from the first direction to the second direction.
- directing first fluid F 1 through fluid channel 44 may comprise causing fluid F 1 to at least partially surround chamber 70 .
- Directing fluid F 1 through fluid channel 44 also may comprise directing first fluid F 1 between interior surface 28 of the body 20 and exterior surface 41 of reflecting chamber 70 .
- step 720 may further comprise activating radiation sensor 90 in response to upstream sensor.
- Exposing step 740 may comprise any intermediate steps for disinfecting first fluid F 1 .
- step 740 may comprise outputting the disinfecting radiation from radiation source 90 , which may be disposed at end 22 of body 20 .
- Step 720 and/or 740 may comprise diverting fluid F 1 from fluid channel 44 into reflecting chamber 70 with an internal surface 27 of body 20 disposed adjacent radiation source 90 .
- Step 740 may further comprise outputting the radiation towards outlet 80 , such as from one or more point sources of radiation source 90 .
- inlet 30 may be substantially transverse with outlet 80 , and the method may further comprise discharging at least a portion of the radiation out of outlet 80 with second fluid F 2 .
- Step 740 also may comprise causing the disinfecting radiation to be reflected off of reflective surfaces of reflecting chamber 70 .
- exposing step 740 may comprise outputting the disinfecting radiation through window 56 , which may be disposed anywhere between radiation source 90 and reflecting chamber 70 .
- the disinfecting radiation may have a wavelength of between approximately 200 nm to approximately 320 nm; or between approximately 230 nm to approximately 290 nm, such that step 740 may comprise exposing fluid F 1 to a UV radiation.
- the disinfecting radiation may be output through an optical component, such as a lens configured to change an optical quality of the radiation.
- Discharging step 760 may comprise any intermediate steps for discharging first fluid F 1 from body 20 as second fluid F 2 .
- step 760 may comprise modifying characteristics of fluid F 1 , such as velocity or temperature; and/or operating a control valve at outlet 80 responsive to a downstream sensor.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/616,204 US20200140291A1 (en) | 2017-05-26 | 2018-05-25 | Fluid disinfection apparatus and methods |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762511955P | 2017-05-26 | 2017-05-26 | |
PCT/CA2018/050616 WO2018213936A1 (en) | 2017-05-26 | 2018-05-25 | Fluid disinfection apparatus and methods |
US16/616,204 US20200140291A1 (en) | 2017-05-26 | 2018-05-25 | Fluid disinfection apparatus and methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2018/050616 A-371-Of-International WO2018213936A1 (en) | 2017-05-26 | 2018-05-25 | Fluid disinfection apparatus and methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/872,672 Continuation US20230088023A1 (en) | 2017-05-26 | 2022-07-25 | Fluid disinfection apparatus and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200140291A1 true US20200140291A1 (en) | 2020-05-07 |
Family
ID=64395140
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/616,204 Abandoned US20200140291A1 (en) | 2017-05-26 | 2018-05-25 | Fluid disinfection apparatus and methods |
US17/872,672 Pending US20230088023A1 (en) | 2017-05-26 | 2022-07-25 | Fluid disinfection apparatus and methods |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/872,672 Pending US20230088023A1 (en) | 2017-05-26 | 2022-07-25 | Fluid disinfection apparatus and methods |
Country Status (7)
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113827749A (zh) * | 2021-08-18 | 2021-12-24 | 深圳市芯晶宇净化科技有限责任公司 | 一种深紫外led杀菌装置 |
WO2022067353A1 (en) * | 2020-09-28 | 2022-03-31 | Pentair, Inc. | Compact ultraviolet fluid disinfection device and method |
US11364316B2 (en) * | 2020-04-08 | 2022-06-21 | Bolb Inc. | Disinfecting fluid using disinfection light |
US11401176B2 (en) * | 2017-01-18 | 2022-08-02 | Lg Electronics Inc. | Water purifier |
JP2023527565A (ja) * | 2020-06-01 | 2023-06-29 | カオ グループ、インク. | Uv消毒システム |
CN116783147A (zh) * | 2021-01-25 | 2023-09-19 | 斯坦雷电气株式会社 | 流体杀菌装置 |
US11834353B2 (en) | 2019-07-31 | 2023-12-05 | Access Business Group International Llc | Water treatment system |
US20230399242A1 (en) * | 2021-01-05 | 2023-12-14 | Osram Gmbh | Device and method for sterilising a fluid flowing therethrough |
EP4420687A1 (fr) * | 2023-02-24 | 2024-08-28 | Mistral Constructeur | Dispositif de traitement d'un liquide par rayonnement uv-c et fontaine à eau le comportant |
US12128160B2 (en) | 2021-01-05 | 2024-10-29 | Atix Co., Ltd. | Air sterilization device |
EP4330194A4 (en) * | 2021-04-30 | 2025-03-26 | The University of British Columbia | Water treatment device with internal chamber |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11952293B2 (en) | 2019-03-07 | 2024-04-09 | International Water-Guard Industries Inc. | Apparatus for disinfecting a fluid |
JP7291597B2 (ja) * | 2019-10-11 | 2023-06-15 | 旭化成株式会社 | 殺菌装置 |
EP4069982A4 (en) * | 2019-10-28 | 2023-07-26 | The University of British Columbia | FLUID FLOW LINE WITH CONTROLLED HYDRODYNAMICS |
JP7445191B2 (ja) * | 2020-03-16 | 2024-03-07 | 東芝ライテック株式会社 | 流体殺菌装置、および流体殺菌システム |
US11511423B2 (en) | 2020-03-31 | 2022-11-29 | Uvd Robots Aps | Method of plotting ultraviolet (UV) radiation for disinfection |
CN111708159B (zh) * | 2020-06-28 | 2025-04-15 | 苏州极限深紫光电科技有限公司 | 一种光放大器及光耦合器 |
DE102020123648A1 (de) * | 2020-09-10 | 2022-03-10 | Emz-Hanauer Gmbh & Co. Kgaa | Anzeigevorrichtung für ein Haushaltsgerät |
JP7415905B2 (ja) * | 2020-12-08 | 2024-01-17 | 三菱電機株式会社 | 除菌装置及び給湯装置 |
JP6987416B1 (ja) * | 2021-06-15 | 2022-01-05 | 有限会社数研 | 空気除菌装置 |
CN116159158A (zh) * | 2023-03-02 | 2023-05-26 | 广东国志激光技术有限公司 | 一种光学散射腔 |
KR102608770B1 (ko) * | 2023-04-27 | 2023-12-01 | 홍종일 | 유용미생물배양액 공급 배관용 자외선살균장치 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07163977A (ja) * | 1993-09-22 | 1995-06-27 | Shigenobu Fujimoto | 水の処理方法及び水の処理装置 |
US6099799A (en) * | 1997-03-14 | 2000-08-08 | Pura, Inc. | Apparatus for ultraviolet disinfection of water |
DE19911443A1 (de) * | 1999-03-04 | 2000-09-07 | Marks Glibitzki | Ultraviolet - Ozon - Haushalts - Trinkwasserreiniger |
KR20000007016A (ko) * | 1999-11-19 | 2000-02-07 | 고석배 | 음료수 순간 냉각/살균장치 |
US6447721B1 (en) * | 2000-07-31 | 2002-09-10 | Remotelight, Inc. | Drinking water UV disinfection system and method |
WO2002038191A2 (en) * | 2000-11-13 | 2002-05-16 | Bayer Aktiengesellschaft | Method of inactivating microorganisms in a fluid using ultraviolet radiation |
CN2460095Y (zh) * | 2001-01-22 | 2001-11-21 | 福建新大陆环保科技有限公司 | 紫外压缩气体消毒装置 |
JP2003024748A (ja) | 2001-07-16 | 2003-01-28 | Canon Electronics Inc | 光触媒性反応装置 |
US6773584B2 (en) * | 2001-10-17 | 2004-08-10 | Honeywell International Inc. | Apparatus for disinfecting water using ultraviolet radiation |
US7169311B2 (en) * | 2001-10-17 | 2007-01-30 | Honeywell International, Inc. | Apparatus for disinfecting water using ultraviolet radiation |
EP1450870B1 (en) * | 2001-11-02 | 2006-05-31 | Honeywell International, Inc. | Ultraviolet disinfecting apparatus |
DE10221037A1 (de) * | 2002-05-10 | 2003-11-27 | Trojan Techn Inc | Doppelwandkammer zur UV-Desinfektion von Flüssigkeiten, vorzugsweise von Trink- und /oder Abwasser |
US8080165B2 (en) * | 2002-10-24 | 2011-12-20 | Georgia Tech Research Corporation | Systems and methods for disinfection |
US7396459B2 (en) * | 2003-05-05 | 2008-07-08 | George W Thorpe | Internal UV treatment of potable water systems |
US20050163648A1 (en) * | 2004-01-26 | 2005-07-28 | Liang Michael Y. | Method and apparatus for sterilizing air in large volumes by radiation of ultraviolet rays |
KR100564660B1 (ko) * | 2004-03-19 | 2006-03-29 | 코아텍주식회사 | 오존과 유해가스 분해촉매물질을 이용한 공기정화장치 |
AU2006288709B2 (en) * | 2005-09-06 | 2011-10-27 | Atlantium Technologies Ltd. | Method, device and system of illumination-based disinfection |
KR100807152B1 (ko) * | 2006-05-30 | 2008-02-28 | 센텍(주) | 오염된 공기의 정화 장치 |
JP2008194616A (ja) * | 2007-02-13 | 2008-08-28 | Fujikoo:Kk | 光触媒機能皮膜およびそれを用いた水処理方法 |
US8405046B2 (en) * | 2007-04-25 | 2013-03-26 | David Richard NeCamp | Method and apparatus for treating materials using electrodeless lamps |
US20090041632A1 (en) | 2007-08-08 | 2009-02-12 | Novapure Systems Inc. | Air Purifier System and Method |
JP5532286B2 (ja) * | 2008-12-16 | 2014-06-25 | 徹 古谷 | 流体処理装置 |
US9441196B2 (en) * | 2010-06-07 | 2016-09-13 | Genzyme Corporation | Device for viral inactivation of liquid media |
CN102001724B (zh) * | 2010-09-30 | 2012-07-04 | 南京理工大学 | 利用纳米晶二氧化钛纤维光催化反应器的循环水处理装置及工艺 |
DE102012022326A1 (de) * | 2012-11-15 | 2014-05-15 | Schott Ag | Kompaktes UV-Desinfektionssystem mit hoher Homogenität des Strahlungsfelds |
EP2948412B1 (en) * | 2013-01-24 | 2017-10-11 | Atlantium Technologies Ltd. | Method and apparatus for liquid disinfection by light emitted from light emitting diodes |
CN204111365U (zh) * | 2013-09-05 | 2015-01-21 | 首尔伟傲世有限公司 | 流水型杀菌装置及利用此的连接装置 |
EP3105187B1 (en) * | 2014-02-11 | 2017-06-21 | Philips Lighting Holding B.V. | Recipient with variable geometry for uv water purification |
US9498605B2 (en) * | 2014-03-31 | 2016-11-22 | DePuy Synthes Products, Inc. | External volume-limiting CSF drainage system |
EP3169631B1 (en) * | 2014-07-18 | 2018-08-29 | Nestec S.A. | Irradiation chamber for liquid purification apparatus, purification apparatus and beverage dispenser |
JP6571460B2 (ja) * | 2015-09-07 | 2019-09-04 | 日機装株式会社 | 殺菌装置 |
JP6080937B1 (ja) * | 2015-12-08 | 2017-02-15 | 日機装株式会社 | 流体殺菌装置 |
JP7262985B2 (ja) * | 2018-12-04 | 2023-04-24 | スタンレー電気株式会社 | 光源モジュール装置、流体殺菌装置 |
-
2018
- 2018-05-25 KR KR1020197038342A patent/KR102686645B1/ko active Active
- 2018-05-25 EP EP18805348.2A patent/EP3630205A4/en active Pending
- 2018-05-25 US US16/616,204 patent/US20200140291A1/en not_active Abandoned
- 2018-05-25 CN CN201880048750.2A patent/CN110944679B/zh active Active
- 2018-05-25 JP JP2019565236A patent/JP7121054B2/ja active Active
- 2018-05-25 TW TW107117995A patent/TW201902561A/zh unknown
- 2018-05-25 CN CN202211148767.XA patent/CN115569226A/zh active Pending
- 2018-05-25 WO PCT/CA2018/050616 patent/WO2018213936A1/en unknown
-
2022
- 2022-07-25 US US17/872,672 patent/US20230088023A1/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11401176B2 (en) * | 2017-01-18 | 2022-08-02 | Lg Electronics Inc. | Water purifier |
US11834353B2 (en) | 2019-07-31 | 2023-12-05 | Access Business Group International Llc | Water treatment system |
US11364316B2 (en) * | 2020-04-08 | 2022-06-21 | Bolb Inc. | Disinfecting fluid using disinfection light |
JP2023527565A (ja) * | 2020-06-01 | 2023-06-29 | カオ グループ、インク. | Uv消毒システム |
WO2022067353A1 (en) * | 2020-09-28 | 2022-03-31 | Pentair, Inc. | Compact ultraviolet fluid disinfection device and method |
US20230399242A1 (en) * | 2021-01-05 | 2023-12-14 | Osram Gmbh | Device and method for sterilising a fluid flowing therethrough |
US12128160B2 (en) | 2021-01-05 | 2024-10-29 | Atix Co., Ltd. | Air sterilization device |
CN116783147A (zh) * | 2021-01-25 | 2023-09-19 | 斯坦雷电气株式会社 | 流体杀菌装置 |
EP4330194A4 (en) * | 2021-04-30 | 2025-03-26 | The University of British Columbia | Water treatment device with internal chamber |
CN113827749A (zh) * | 2021-08-18 | 2021-12-24 | 深圳市芯晶宇净化科技有限责任公司 | 一种深紫外led杀菌装置 |
EP4420687A1 (fr) * | 2023-02-24 | 2024-08-28 | Mistral Constructeur | Dispositif de traitement d'un liquide par rayonnement uv-c et fontaine à eau le comportant |
FR3146140A1 (fr) * | 2023-02-24 | 2024-08-30 | Mistral Constructeur | Dispositif de traitement d’un liquide par rayonnement UV-C et fontaine à eau le comportant |
Also Published As
Publication number | Publication date |
---|---|
JP2020521556A (ja) | 2020-07-27 |
CN110944679A (zh) | 2020-03-31 |
EP3630205A4 (en) | 2021-02-24 |
KR20200021941A (ko) | 2020-03-02 |
US20230088023A1 (en) | 2023-03-23 |
CN115569226A (zh) | 2023-01-06 |
JP7121054B2 (ja) | 2022-08-17 |
CN110944679B (zh) | 2022-09-27 |
WO2018213936A1 (en) | 2018-11-29 |
TW201902561A (zh) | 2019-01-16 |
KR102686645B1 (ko) | 2024-07-22 |
EP3630205A1 (en) | 2020-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230088023A1 (en) | Fluid disinfection apparatus and methods | |
US12084360B2 (en) | UV-LED radiation photo reactor | |
US11547769B2 (en) | Light source module device and fluid sterilizing device | |
US20200230270A1 (en) | Uv-led photoreactors with controlled radiation and hydrodynamics and methods for fabrication and use of same | |
KR102762293B1 (ko) | Uv-led 광반응기들에서 유체들에 대한 방사선 선량을 제어하기 위한 방법들 및 장치들 | |
US20220176336A1 (en) | Multi-reflector photoreactor for controlled irradiation of fluid | |
EP3388087B1 (en) | Fluid sterilization device | |
JP6571773B2 (ja) | 流体を処理するための方法、システムおよび装置 | |
US20180228928A1 (en) | Fluid sterilization device and fluid sterilization method | |
US20200230281A1 (en) | Disinfection apparatus having submersible uv light devices | |
US20150246148A1 (en) | Compact system with high homogeneity of the radiation field | |
JP2020092856A (ja) | 流体殺菌装置 | |
CN108698857A (zh) | 流体净化系统和方法 | |
CN111386245A (zh) | 流体处理模组 | |
CN112624255B (zh) | 采用消毒光消毒流体 | |
WO2007082337A1 (en) | Improvements relating to water treatment apparatus | |
US20240140831A1 (en) | Water treatment device with internal chamber | |
EP4529931A1 (en) | Fluid sterilization device | |
CN117446900A (zh) | 紫外线杀菌装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACUVA TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BABAIE, ASHKAN;ADELI-KOUDEHI, BABAK;REEL/FRAME:051090/0312 Effective date: 20180904 Owner name: THE UNIVERSITY OF BRITISH COLUMBIA, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAGHIPOUR, FARIBORZ;REEL/FRAME:051090/0320 Effective date: 20180904 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |