US20200028089A1 - A plurality of host materials and organic electroluminescent device comprising the same - Google Patents

A plurality of host materials and organic electroluminescent device comprising the same Download PDF

Info

Publication number
US20200028089A1
US20200028089A1 US16/481,644 US201816481644A US2020028089A1 US 20200028089 A1 US20200028089 A1 US 20200028089A1 US 201816481644 A US201816481644 A US 201816481644A US 2020028089 A1 US2020028089 A1 US 2020028089A1
Authority
US
United States
Prior art keywords
substituted
unsubstituted
alkyl
heteroaryl
mono
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/481,644
Inventor
Sang-Hee Cho
Doo-Hyeon Moon
Bitnari Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials Korea Ltd
Original Assignee
Rohm and Haas Electronic Materials Korea Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials Korea Ltd filed Critical Rohm and Haas Electronic Materials Korea Ltd
Priority claimed from PCT/KR2018/002230 external-priority patent/WO2018155942A1/en
Publication of US20200028089A1 publication Critical patent/US20200028089A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • H01L51/0059
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0056
    • H01L51/0067
    • H01L51/0069
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/5024
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present disclosure relates to a plurality of host materials and an organic electroluminescent device comprising the same.
  • An electroluminescent device is a self-light-emitting display device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer (see Appl. Phys. Lett. 51, 913, 1987).
  • An organic EL device changes electric energy into light by applying electricity to an organic electroluminescent material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes.
  • the organic layer of the organic EL device may comprise a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer (containing host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc.
  • the materials used in the organic layer can be classified into a hole injection material, a hole transport material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on their functions.
  • the organic EL device In the organic EL device, holes from the anode and electrons from the cathode are injected into a light-emitting layer by the application of electric voltage, and excitons having high energy are produced by the recombination of the holes and electrons.
  • the organic light-emitting compound moves into an excited state by the energy and emits light from an energy when the organic light-emitting compound returns to the ground state from the excited state.
  • the most important factor determining luminous efficiency in an organic EL device is light-emitting materials.
  • the light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and uniformality and stability of the formed light-emitting material layer.
  • the light-emitting material is classified into blue, green, and red light-emitting materials according to the light-emitting color, and further includes yellow or orange light-emitting materials. Furthermore, the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficiency and long lifespan.
  • a host material should have high purity and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature to achieve thermal stability, high electrochemical stability to achieve a long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
  • a light-emitting material can be used as a combination of a host and a dopant to improve color purity, luminous efficiency, and stability.
  • an EL device having excellent characteristics has a structure comprising a light-emitting layer formed by doping a dopant to a host.
  • a dopant/host material system as a light-emitting material, their selection is important since host materials greatly influence the efficiency and lifespan of the EL device.
  • Japanese Patent Application Laid-Open No. 2001-23777 discloses an organic electroluminescent device using as a compound in which a 5-membered heteroaryl containing nitrogen is condensed in an intermediate benzene ring of a phenanthrene backbone, as a host material.
  • the organic electroluminescent device comprising the compound disclosed in said reference exhibits excellent color purity characteristics of blue; however, said reference does not disclose the mixed structure of the phosphorescent light-emitting layer and still needs improvement in driving voltage, current efficiency, and driving lifespan.
  • the object of the present disclosure is to provide an organic electroluminescent device having a long lifespan while maintaining a high luminous efficiency.
  • the present inventors found that the aforementioned objective can be achieved by a plurality of host materials comprising at least one first host compound represented by the following formula 1 or 2 and at least one second host compound represented by the following formula 3, and completed the present invention.
  • X 1 represents —N ⁇ , —NR 7 —, —O— or —S—,
  • Y 1 represents —N ⁇ , —NR 8 —, —O— or —S—, provided that when X 1 represents —N ⁇ , Y 1 represents —NR 8 —, —O— or —S—, and when X 1 represents —NR 7 —, Y 1 represents —N ⁇ , —O— or —S—,
  • R 1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl,
  • R 2 to R 8 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)aryl
  • L 1 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
  • a 1, b and c each independently represent 1 or 2, d and e each independently represent an integer of 1 to 4, and
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P;
  • X 11 represents —N ⁇ , —NR 17 —, —O— or —S—,
  • Y 11 represents —N ⁇ , —NR 18 —, —O— or —S—, provided that when X 11 represents —N ⁇ , Y 11 represents —NR 18 —, —O— or —S—, and when X 11 represents —NR 17 —, Y 11 represents —N ⁇ , —O— or —S—,
  • X represents N or CH
  • R 11 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl,
  • R 12 to R 18 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)aryl
  • L 2 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
  • a′ represents 1, b′ and c′ each independently represents 1 or 2, d′ represents an integer of 1 to 4, and
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P.
  • the phenanthro oxazole-based and phenanthro thiazole-based compounds according to the present disclosure have inherently high electronegativity and electron-rich groups, as well as have a rigid property as a structure in which phenanthrene and oxazole, or phenanthrene and thiazole, etc., are fused, so that the above compounds of the present disclosure facilitate intermolecular charge transition.
  • intermolecular stacking is strengthened, implementation of horizontal molecular orientation is easier, thereby enabling fast electronic current characteristics to be implemented.
  • an organic electroluminescent device which exhibits a relatively low driving voltage by improving the interfacial characteristics and excellent luminous efficiency such as current efficiency and power efficiency, and a high purity color, while maintaining the intermolecular stacking effect with the electron transport layer by using limited structure such as triazine and pyrimidine derivatives, etc., as a light-emitting material.
  • an organic electroluminescent device having a relatively low driving voltage and excellent luminous efficiency such as current efficiency and power efficiency, and a high purity color through fast current injection characteristics and improving the interfacial characteristics by improving the intermolecular stacking and interaction.
  • FIG. 1 illustrates the current efficiency according to the luminance of the organic electroluminescent device produced in Comparative Example 2 and Device Example 1.
  • the organic electroluminescent device comprising the organic electroluminescent compound represented by formula 1, 2, or 3 above will be described in more detail as follows.
  • X 1 represents —N ⁇ , —NR 7 —, —O— or —S—
  • Y 1 represents —N ⁇ , —NR 8 —, —O— or —S—
  • X 1 represents —N ⁇ , —NR 7 —, —O— or —S—
  • one of X 1 and Y 1 may be —N ⁇ , and the other may be —NR 7 —, —O— or —S—.
  • one of X 1 and Y 1 may be —N ⁇ , and the other may be —O— or —S—.
  • both of X 1 and Y 1 may not be —O— or —S—, and when either one of X 1 and Y 1 may be —O—, the other may not be —S—.
  • X 1 may be —N ⁇
  • Y 1 may be —O—
  • X 1 may be —O—
  • Y 1 may be —N ⁇
  • X 1 may be —S—
  • Y 1 may be —N ⁇ .
  • R 1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl, preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 25-membered) heteroaryl, more preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 20-membered)heteroaryl, e.g., may be unsubstituted phenyl, unsubstituted biphenyl, unsubstituted naphthyl, fluorenyl substituted with methyl, benzofluorenyl substituted with methyl, unsubstituted dibenzofuranyl, unsubstituted dibenzothiophenyl, s
  • R 2 to R 6 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C
  • R 5 and R 6 each independently may be a substituted or unsubstituted phenyl, a substituted or unsubstituted m-biphenyl, a substituted or unsubstituted p-biphenyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted phenanthrenyl, or a substituted or unsubstituted benzofluorenyl.
  • a represents 1 or 2, preferably, 1; b and c each independently represent 1 or 2, preferably, 1; d and e each independently represent an integer of 1 to 4, preferably, 1 or 2.
  • L 1 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered) heteroarylene, preferably, a single bond, or a substituted or unsubstituted (C6-C18)arylene, more preferably, a single bond, or an unsubstituted (C6-C12)arylene, e.g., may be a single bond, or an unsubstituted phenylene.
  • the compound represented by the formula 1 or 2 is represented by any one of the following formulae 1-1 to 1-5:
  • R 1 to R 6 , L 1 and a to e are as defined in the formulae 1 and 2.
  • X 11 represents —N ⁇ , —NR 17 —, —O— or —S—
  • Y 11 represents —N ⁇ , —NR 18 —, —O— or —S—
  • X 11 represents —N ⁇ , —NR 17 —, —O— or —S—
  • one of X 11 and Y 11 may be —N ⁇ , and the other may be —NR 17 —, —O— or —S—.
  • one of X 11 and Y 11 may be —N ⁇ , and the other may be —O— or —S—.
  • both X 11 and Y 11 may not be —O— or —S—, and when either one of X 1 and Y 1 may be —O—, the other may not be —S—.
  • R 11 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl, preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 25-membered) heteroaryl, more preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 20-membered)heteroaryl, e.g., may be unsubstituted phenyl, unsubstituted biphenyl, unsubstituted naphthyl, fluorenyl substituted with methyl, a substituted or unsubstituted carbazolyl, benzofluorenyl substituted with methyl, unsubstituted dibenzofuranyl, unsubstit
  • R 12 to R 18 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C
  • R 15 and R 16 each independently may be selected from the group consisting of a substituted or unsubstituted phenyl, a substituted or unsubstituted o-biphenyl, a substituted or unsubstituted m-biphenyl, a substituted or unsubstituted p-biphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzofluorenyl, a substituted or unsubstituted benzocarbazole, and a substituted or unsubstituted benzonaphthothiophene.
  • a′ represents 1 or 2, preferably 1; b′ and c′ each independently represent 1 or 2, preferably 1; d′ represents an integer of 1 to 4, preferably, 1 or 2.
  • X represents N or CH.
  • L 2 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene, preferably, a single bond, a substituted or unsubstituted (C6-C18)arylene, more preferably, a single bond, an unsubstituted (C6-C12)arylene, e.g., may be a single bond or unsubstituted phenylene.
  • the compound represented by the formula 3 is represented by any one of the following formulae 3-1 to 3-6:
  • R 11 to R 18 , L 2 , X and a′ to d′ are as defined in the formula 3.
  • (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and tert-butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • (C3-C30)cycloalkyl is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • (3- to 7-membered)heterocycloalkyl is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably O, S, and N, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.
  • (C6-C60)aryl(ene) is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 60 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 30, more preferably 6 to 20, may be partially saturated, and may comprise a spiro structure.
  • the aryl includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
  • (3- to 30-membered)heteroaryl(ene) is meant to be an aryl having 3 to 30 ring backbone atoms, including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P.
  • the heteroaryl may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond.
  • the heteroaryl includes a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl
  • “(5- to 30-membered)heteroaryl containing nitrogen” is meant to be an aryl group having at least one N, and 5 to 30 ring backbone atoms, in which the number of ring backbone atoms is preferably 5 to 20, more preferably 5 to 15; having preferably 1 to 4 heteroatoms, and may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroary
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom is replaced with another atom or functional group (i.e., a substituent) in a certain functional group.
  • the compound represented by formula 1 or 2 may be more specifically illustrated by the following compounds, but is not limited thereto:
  • the compound represented by formula 3 may be more specifically illustrated by the following compounds, but is not limited thereto:
  • the organic electroluminescent device comprises an anode; a cathode; and at least one organic layer between the anode and the cathode.
  • the organic layer comprises a light-emitting layer comprising a host and a phosphorescent dopant.
  • the host comprises a plurality of host compounds, at least a first host compound of the plurality of host compounds is represented by formula 1 or 2 above, and a second host compound is represented by formula 3 above.
  • the light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi-layer of which two or more layers are stacked.
  • the doping concentration of the dopant compound based on the host compound is less than 20 wt %.
  • the organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the weight ratio of the first host compound to the second host compound is in the range of 1:99 to 99:1.
  • the dopant comprised in the organic electroluminescent device according to the present disclosure is preferably at least one phosphorescent dopant.
  • the phosphorescent dopant material comprised in the organic electroluminescent device according to the present disclosure is not particularly limited, but may be preferably selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
  • the dopant comprised in the organic electroluminescence device of the present disclosure may comprise the compound represented by the following Formula 101, but is not limited thereto:
  • L is selected from the following structure 1 or 2:
  • R 100 to R 103 each independently represent hydrogen, deuterium, halogen, a halogen-substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or R 100 to R 103 may be linked to adjacent substituents to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted quinoline, a substituted or unsubstituted benzofuropyridine, a substituted or unsubstituted benzothienopyridine, a substituted or unsubstituted indenopyridine,
  • the specific examples of the dopant material include the following:
  • the organic electroluminescent device of the present disclosure may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • a surface layer selected from a chalcogenide layer, a metal halide layer and a metal oxide layer may be preferably placed on an inner surface(s) of one or both electrodes.
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • Such a surface layer may provide operation stability for the organic electroluminescent device.
  • the chalcogenide includes SiO x (1 ⁇ X ⁇ 2), AlO x (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and said metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a layer selected from a hole injection layer, a hole transport layer, or an electron blocking layer, or a combination thereof may be used.
  • the hole injection layer may be formed of multi-layers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer.
  • the hole transport layer or the electron blocking layer may also be formed of multi-layers.
  • a layer selected from an electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or a combination thereof may be used.
  • the electron buffer layer may be formed of multi-layers in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer. Two compounds may be simultaneously used in each layer.
  • the hole blocking layer or the electron transport layer may also be formed of multi-layers, and each layer can comprise two or more compounds.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge-generating layer to prepare an organic electroluminescent device having two or more light-emitting layers and emitting white light.
  • dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating, etc.
  • wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating, etc.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • first and second host compounds of the present disclosure may be co-evaporated or mixture-evaporated.
  • a display system or a lighting system can be produced.
  • an organic electroluminescent compound according to the present disclosure the preparation method thereof, and the luminescent characteristics of an organic electroluminescent device comprising the same will be explained in detail with reference to the representative compounds of the present disclosure in order to understand the present disclosure in detail.
  • LUMO Large Unoccupied Molecular Orbital energy
  • HOMO Highest Occupied Molecular Orbital energy
  • triplet energy of the compounds H1-1 and H1-27 synthesized in Examples 1 and 3 above were calculated using Density Functional Theory (DFT) at B3LYP/6-31g(d) level, and are shown in the following Table 1.
  • DFT Density Functional Theory
  • LUMO and HOMO energy values measured as described above have negative values; however, for convenience, are expressed in absolute values.
  • the device characteristics of the first host compound according to one embodiment i.e., compound H1-1 represented by formula 1, and compound H1-27 represented by formula 2, can be compared and predicted.
  • compound H1-27 has a similar HOMO energy value to compound H1-1, and has a lower LUMO energy value than compound H1-1.
  • the electron carrier is sufficiently confined when compound H1-27 is used.
  • host compounds H1-1 and H1-27 are combined with a host having a strong electron current characteristic, it can be confirmed that the energy value thereof has no problem in exciplex formation.
  • triplet energy values of compounds H1-1 and H1-27 are 2.4 eV, and 2.5 eV, respectively, which are sufficient to block triplet energy of a dopant. That is, when using compound H1-1 or H1-27 as the first host compound according to one embodiment, it can be predicted that the device including one of them will exhibit similar device characteristics to the device including the other.
  • an organic electroluminescent device is produced by using only compounds H1-1 and H1-42 represented by formula 1 as the representative first host compound, and the characteristics of device thereof will be described.
  • An OLED device not according to the present disclosure was produced.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone and isopropyl alcohol, sequentially, and then was stored in isopropanol.
  • the ITO substrate was mounted on a substrate holder of a vacuum vapor deposition apparatus.
  • Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and the pressure in the chamber of the apparatus was then controlled to 10 ⁇ 7 torr.
  • Compound HT-2 was then introduced into another cell of the vacuum vapor deposition apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer.
  • a light-emitting layer was then deposited as follows.
  • Compound H1-1 as a host was introduced into one cell of the vacuum vapor deposition apparatus and compound D-39 as a dopant was introduced into another cell of the apparatus.
  • the two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 3 wt %, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • compounds ETL-1 and EIL-1 as an electron transport material in a weight ratio of 50:50 were deposited on the light-emitting layer, to form an electron transport layer having a thickness of 35 nm.
  • compound EIL-1 as an electron injection layer having a thickness of 2 nm was deposited on the electron transport layer, and an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus.
  • All the materials used for producing the OLED device were purified by vacuum sublimation at 10 ⁇ 6 torr.
  • An OLED device was produced in the same manner as in Comparative Example 1, except that compound H2-2 instead of H1-1 as a light-emitting material was used.
  • An OLED device was produced in the same manner as in Comparative Example 1, except that compound H2-1 instead of H1-1 as a light-emitting material was used.
  • OLED device were produced in the same manner as in Comparative Example 1, except that each of a first host compound and a second host compound described in the following Table 2 as a host were introduced into one cell of the vacuum vapor deposition apparatus, and compound D-39 as a dopant was introduced into another cell of the apparatus.
  • the two host materials were evaporated at the same rate of 1:1 and at the same time, the dopant was evaporated at a different rate in a doping amount of 3 wt %, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 40 nm.
  • the driving voltage, the luminous efficiency, and the CIE color coordinates at a luminance of 1,000 nits and the time taken for the light-emission to be reduced from 100% to 90% at a luminance of 5,000 nit (lifespan; T90) of the organic electroluminescent device of Comparative Examples 1 to 3 and Device Examples 1 to 3 produced as above are shown in the following Table 2.
  • the current efficiency according to the luminance of the organic electroluminescent device produced in Comparative Example 2 and Device Example 1 is shown in FIG. 1 .
  • the combination of the compounds of the present disclosure can greatly improve the efficiency and lifespan characteristics while maintaining a driving voltage similar to that of the Comparative Example.
  • the combination of light-emitting layer as the organic electroluminescent device according to one embodiment exhibits great effect on the roll-off improvement compared with the Comparative Example, which is the combination of the single light-emitting layer.

Abstract

The present disclosure relates to a plurality of host materials and an organic electroluminescent device comprising the same. The organic electroluminescent device of the present disclosure can exhibit excellent lifespan characteristics while maintaining high luminous efficiency by including a specific combination of a plurality of host compounds.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a plurality of host materials and an organic electroluminescent device comprising the same.
  • BACKGROUND ART
  • An electroluminescent device (EL device) is a self-light-emitting display device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. The first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer (see Appl. Phys. Lett. 51, 913, 1987).
  • An organic EL device (OLED) changes electric energy into light by applying electricity to an organic electroluminescent material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes. The organic layer of the organic EL device may comprise a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer (containing host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. The materials used in the organic layer can be classified into a hole injection material, a hole transport material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on their functions. In the organic EL device, holes from the anode and electrons from the cathode are injected into a light-emitting layer by the application of electric voltage, and excitons having high energy are produced by the recombination of the holes and electrons. The organic light-emitting compound moves into an excited state by the energy and emits light from an energy when the organic light-emitting compound returns to the ground state from the excited state.
  • The most important factor determining luminous efficiency in an organic EL device is light-emitting materials. The light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and uniformality and stability of the formed light-emitting material layer. The light-emitting material is classified into blue, green, and red light-emitting materials according to the light-emitting color, and further includes yellow or orange light-emitting materials. Furthermore, the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficiency and long lifespan. In particular, the development of highly excellent light-emitting material over conventional materials is urgently required, considering the EL properties necessary for medium- and large-sized OLED panels. For this, preferably, as a solvent in a solid state and an energy transmitter, a host material should have high purity and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature to achieve thermal stability, high electrochemical stability to achieve a long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
  • A light-emitting material can be used as a combination of a host and a dopant to improve color purity, luminous efficiency, and stability. Generally, an EL device having excellent characteristics has a structure comprising a light-emitting layer formed by doping a dopant to a host. When using such a dopant/host material system as a light-emitting material, their selection is important since host materials greatly influence the efficiency and lifespan of the EL device.
  • Japanese Patent Application Laid-Open No. 2001-23777 discloses an organic electroluminescent device using as a compound in which a 5-membered heteroaryl containing nitrogen is condensed in an intermediate benzene ring of a phenanthrene backbone, as a host material. The organic electroluminescent device comprising the compound disclosed in said reference exhibits excellent color purity characteristics of blue; however, said reference does not disclose the mixed structure of the phosphorescent light-emitting layer and still needs improvement in driving voltage, current efficiency, and driving lifespan.
  • DISCLOSURE Problems to be Solved
  • The object of the present disclosure is to provide an organic electroluminescent device having a long lifespan while maintaining a high luminous efficiency.
  • Solution to Problems
  • As a result of intensive studies to solve the technical problem above, the present inventors found that the aforementioned objective can be achieved by a plurality of host materials comprising at least one first host compound represented by the following formula 1 or 2 and at least one second host compound represented by the following formula 3, and completed the present invention.
  • Figure US20200028089A1-20200123-C00001
  • wherein,
  • X1 represents —N═, —NR7—, —O— or —S—,
  • Y1 represents —N═, —NR8—, —O— or —S—, provided that when X1 represents —N═, Y1 represents —NR8—, —O— or —S—, and when X1 represents —NR7—, Y1 represents —N═, —O— or —S—,
  • R1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl,
  • R2 to R8 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di-(C1-C30)alkylamino, a substituted or unsubstituted mono- or di-(C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C30) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur,
  • L1 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
  • a represents 1, b and c each independently represent 1 or 2, d and e each independently represent an integer of 1 to 4, and
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P;
  • Figure US20200028089A1-20200123-C00002
  • wherein,
  • X11 represents —N═, —NR17—, —O— or —S—,
  • Y11 represents —N═, —NR18—, —O— or —S—, provided that when X11 represents —N═, Y11 represents —NR18—, —O— or —S—, and when X11 represents —NR17—, Y11 represents —N═, —O— or —S—,
  • X represents N or CH,
  • R11 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl,
  • R12 to R18 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di-(C1-C30)alkylamino, a substituted or unsubstituted mono- or di-(C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C30) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur,
  • L2 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
  • a′ represents 1, b′ and c′ each independently represents 1 or 2, d′ represents an integer of 1 to 4, and
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P.
  • Effects of the Invention
  • The phenanthro oxazole-based and phenanthro thiazole-based compounds according to the present disclosure have inherently high electronegativity and electron-rich groups, as well as have a rigid property as a structure in which phenanthrene and oxazole, or phenanthrene and thiazole, etc., are fused, so that the above compounds of the present disclosure facilitate intermolecular charge transition. In addition, if such an intermolecular stacking is strengthened, implementation of horizontal molecular orientation is easier, thereby enabling fast electronic current characteristics to be implemented. Accordingly, it is possible to provide an organic electroluminescent device which exhibits a relatively low driving voltage by improving the interfacial characteristics and excellent luminous efficiency such as current efficiency and power efficiency, and a high purity color, while maintaining the intermolecular stacking effect with the electron transport layer by using limited structure such as triazine and pyrimidine derivatives, etc., as a light-emitting material.
  • In addition, when a light-emitting material is used as mixing the hole-type amine substituted with the phenanthro oxazole-based compounds and the phenanthro thiazole-based compounds as the first host and the electron-type azine material substituted with the phenanthro oxazole-based compounds and the phenanthro thiazole-based compounds as the second host, it is possible to implement an organic electroluminescent device having a high efficiency, long lifespan, and fast driving voltage. Generally, when the phosphorescent light-emitting material is substituted with other substituents such as a carbazole type derivative having a high dihedral angle, the driving voltage increases and the efficiency decreases due to the interruption of the electron current. However, when using the light-emitting compounds according to the present disclosure, it is possible to provide an organic electroluminescent device having a relatively low driving voltage and excellent luminous efficiency such as current efficiency and power efficiency, and a high purity color through fast current injection characteristics and improving the interfacial characteristics by improving the intermolecular stacking and interaction.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates the current efficiency according to the luminance of the organic electroluminescent device produced in Comparative Example 2 and Device Example 1.
  • EMBODIMENTS OF THE INVENTION
  • Hereinafter, the present disclosure will be described in detail. However, the following desciption is intended to explain the disclosure, and is not meant in any way to restrict the scope of the disclosure.
  • The organic electroluminescent device comprising the organic electroluminescent compound represented by formula 1, 2, or 3 above will be described in more detail as follows.
  • In formulae 1 and 2 above, X1 represents —N═, —NR7—, —O— or —S—, Y1 represents —N═, —NR8—, —O— or —S—, provided that when X1 represents —N═, Y1 represents —NR8—, —O— or —S—, and when X1 represents —NR7—, Y1 represents —N═, —O— or —S—. According to one embodiment of the present disclosure, one of X1 and Y1 may be —N═, and the other may be —NR7—, —O— or —S—. In addition, according to another embodiment of the present disclosure, one of X1 and Y1 may be —N═, and the other may be —O— or —S—. Herein, both of X1 and Y1 may not be —O— or —S—, and when either one of X1 and Y1 may be —O—, the other may not be —S—. For example, X1 may be —N═, and Y1 may be —O—, X1 may be —O—, and Y1 may be —N═, or X1 may be —S—, and Y1 may be —N═.
  • In formulae 1 and 2 above, R1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl, preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 25-membered) heteroaryl, more preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 20-membered)heteroaryl, e.g., may be unsubstituted phenyl, unsubstituted biphenyl, unsubstituted naphthyl, fluorenyl substituted with methyl, benzofluorenyl substituted with methyl, unsubstituted dibenzofuranyl, unsubstituted dibenzothiophenyl, spiro[fluorene-fluorene]yl, or spiro[fluorene-benzofluorene]yl.
  • In formulae 1 and 2 above, R2 to R6 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di-(C1-C30)alkylamino, a substituted or unsubstituted mono- or di-(C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C30) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur, preferably, each independently represent hydrogen, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (3- to 25-membered)heteroaryl, a substituted or unsubstituted mono- or di-(C6-C25)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C25) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur, more preferably, each independently represent hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, a substituted or unsubstituted di(C6-C18)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C25) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen and oxygen, and the heteroaryl may contain at least one heteroatom selected from B, N, O, S, Si, and P. For example, R5 and R6 each independently may be a substituted or unsubstituted phenyl, a substituted or unsubstituted m-biphenyl, a substituted or unsubstituted p-biphenyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted phenanthrenyl, or a substituted or unsubstituted benzofluorenyl.
  • In formulae 1 and 2 above, a represents 1 or 2, preferably, 1; b and c each independently represent 1 or 2, preferably, 1; d and e each independently represent an integer of 1 to 4, preferably, 1 or 2.
  • In formulae 1 and 2 above, L1 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered) heteroarylene, preferably, a single bond, or a substituted or unsubstituted (C6-C18)arylene, more preferably, a single bond, or an unsubstituted (C6-C12)arylene, e.g., may be a single bond, or an unsubstituted phenylene.
  • The compound represented by the formula 1 or 2 is represented by any one of the following formulae 1-1 to 1-5:
  • Figure US20200028089A1-20200123-C00003
  • In formulae 1-1 to 1-5 above, R1 to R6, L1 and a to e are as defined in the formulae 1 and 2.
  • In formula 3 above, X11 represents —N═, —NR17—, —O— or —S—, Y11 represents —N═, —NR18—, —O— or —S—, provided that when X11 represents —N═, Y11 represents —NR18—, —O— or —S—, and when X11 represents —NR17—, Y11 represents —N═, —O— or —S—. According to one embodiment of the present disclosure, one of X11 and Y11 may be —N═, and the other may be —NR17—, —O— or —S—. In addition, according to another embodiment of the present disclosure, one of X11 and Y11 may be —N═, and the other may be —O— or —S—. Herein, both X11 and Y11 may not be —O— or —S—, and when either one of X1 and Y1 may be —O—, the other may not be —S—.
  • In formula 3 above, R11 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl, preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 25-membered) heteroaryl, more preferably, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 20-membered)heteroaryl, e.g., may be unsubstituted phenyl, unsubstituted biphenyl, unsubstituted naphthyl, fluorenyl substituted with methyl, a substituted or unsubstituted carbazolyl, benzofluorenyl substituted with methyl, unsubstituted dibenzofuranyl, unsubstituted dibenzothiophenyl, unsubstituted benzonaphthofuranyl, spiro[fluorene-fluorene]yl, or spiro[fluorene-benzofluorene]yl.
  • In formula 3 above, R12 to R18 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di-(C1-C30)alkylamino, a substituted or unsubstituted mono- or di-(C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C30) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur, preferably, each independently hydrogen, a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (3- to 25-membered)heteroaryl, a substituted or unsubstituted mono- or di-(C6-C25)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C25) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur, more preferably, each independently hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted (5- to 25-membered)heteroaryl, a substituted or unsubstituted di(C6-C18)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C25) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen and sulfur, and the heteroaryl contains at least one heteroatom selected from B, N, O, S, Si, and P. For example, R15 and R16 each independently may be selected from the group consisting of a substituted or unsubstituted phenyl, a substituted or unsubstituted o-biphenyl, a substituted or unsubstituted m-biphenyl, a substituted or unsubstituted p-biphenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzofluorenyl, a substituted or unsubstituted benzocarbazole, and a substituted or unsubstituted benzonaphthothiophene.
  • In formula 3 above, a′ represents 1 or 2, preferably 1; b′ and c′ each independently represent 1 or 2, preferably 1; d′ represents an integer of 1 to 4, preferably, 1 or 2.
  • In formula 3 above, X represents N or CH.
  • In formula 3 above, L2 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene, preferably, a single bond, a substituted or unsubstituted (C6-C18)arylene, more preferably, a single bond, an unsubstituted (C6-C12)arylene, e.g., may be a single bond or unsubstituted phenylene.
  • The compound represented by the formula 3 is represented by any one of the following formulae 3-1 to 3-6:
  • Figure US20200028089A1-20200123-C00004
    Figure US20200028089A1-20200123-C00005
  • In formulae 3-1 to 3-6 above, R11 to R18, L2, X and a′ to d′ are as defined in the formula 3.
  • Herein, “(C1-C30)alkyl” is meant to be a linear or branched alkyl having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and tert-butyl, etc. “(C2-C30)alkenyl” is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc. “(C2-C30)alkynyl” is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc. “(C3-C30)cycloalkyl” is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. “(3- to 7-membered)heterocycloalkyl” is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably O, S, and N, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. “(C6-C60)aryl(ene)” is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 60 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 30, more preferably 6 to 20, may be partially saturated, and may comprise a spiro structure. The aryl includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc. “(3- to 30-membered)heteroaryl(ene)” is meant to be an aryl having 3 to 30 ring backbone atoms, including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P. The heteroaryl may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond. The heteroaryl includes a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, benzoindolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, naphthyridyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc. “(5- to 30-membered)heteroaryl containing nitrogen” is meant to be an aryl group having at least one N, and 5 to 30 ring backbone atoms, in which the number of ring backbone atoms is preferably 5 to 20, more preferably 5 to 15; having preferably 1 to 4 heteroatoms, and may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl, etc. “Halogen” includes F, Cl, Br, and I.
  • In addition, “substituted” in the expression “substituted or unsubstituted” means that a hydrogen atom is replaced with another atom or functional group (i.e., a substituent) in a certain functional group. The substituents of the substituted alkyl, the substituted alkoxy, the substituted cycloalkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted trialkylsilyl, the substituted triarylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted mono- or di-alkylamino, the substituted mono- or di-arylamino, the substituted alkylarylamino, and the substituted mono- or polycyclic, alicyclic or aromatic ring, in R1 to R8, R11 to R18, L1, and L2 of formulae 1 to 3, are each independently at least one selected from the group consisting of deuterium; halogen; cyano; carboxyl; nitro; hydroxy; (C1-C30)alkyl; halo(C1-C30)alkyl; (C2-C30)alkenyl; (C2-C30)alkynyl; (C1-C30)alkoxy; (C1-C30)alkylthio; (C3-C30)cycloalkyl; (3- to 7-membered)heterocycloalkyl; (C6-C30)aryloxy; (C6-C30)arylthio; (C6-C30)aryl- or di(C6-C30)arylamino-substituted or unsubstituted (3- to 30-membered) heteroaryl; cyano-, (3- to 30-membered)heteroaryl-, or tri(C6-C30)arylsilyl-substituted or unsubstituted (C6-C30)aryl; tri(C1-C30)alkylsilyl; tri(C6-C30)arylsilyl; di(C1-C30)alkyl(C6-C30)arylsilyl; (C1-C30)alkyldi(C6-C30)arylsilyl; amino; a mono- or di-(C1-C30)alkylamino; a mono- or di-(C6-C30)arylamino; (C1-C30)alkyl(C6-C30)arylamino; (C1-C30)alkylcarbonyl; (C1-C30)alkoxycarbonyl; (C6-C30)arylcarbonyl; di(C6-C30)arylboronyl; di(C1-C30)alkylboronyl; (C1-C30)alkyl(C6-C30)arylboronyl; (C6-C30)ar(C1-C30)alkyl; and (C1-C30)alkyl(C6-C30)aryl, preferably, are each independently at least one selected from the group consisting of (C1-C20)alkyl; (C6-C18)aryl-substituted or unsubstituted (3- to 25-membered)heteroaryl; cyano-, tri(C6-C18)arylsilyl-, or (3- to 20-membered) heteroaryl-, substituted or unsubstituted (C6-C20)aryl; tri(C6-C18)arylsilyl; and (C1-C20)alkyl(C6-C20)aryl.
  • The compound represented by formula 1 or 2 may be more specifically illustrated by the following compounds, but is not limited thereto:
  • Figure US20200028089A1-20200123-C00006
    Figure US20200028089A1-20200123-C00007
    Figure US20200028089A1-20200123-C00008
    Figure US20200028089A1-20200123-C00009
    Figure US20200028089A1-20200123-C00010
    Figure US20200028089A1-20200123-C00011
    Figure US20200028089A1-20200123-C00012
    Figure US20200028089A1-20200123-C00013
    Figure US20200028089A1-20200123-C00014
    Figure US20200028089A1-20200123-C00015
    Figure US20200028089A1-20200123-C00016
    Figure US20200028089A1-20200123-C00017
    Figure US20200028089A1-20200123-C00018
    Figure US20200028089A1-20200123-C00019
  • The compound represented by formula 3 may be more specifically illustrated by the following compounds, but is not limited thereto:
  • Figure US20200028089A1-20200123-C00020
    Figure US20200028089A1-20200123-C00021
    Figure US20200028089A1-20200123-C00022
    Figure US20200028089A1-20200123-C00023
    Figure US20200028089A1-20200123-C00024
    Figure US20200028089A1-20200123-C00025
    Figure US20200028089A1-20200123-C00026
    Figure US20200028089A1-20200123-C00027
    Figure US20200028089A1-20200123-C00028
    Figure US20200028089A1-20200123-C00029
    Figure US20200028089A1-20200123-C00030
    Figure US20200028089A1-20200123-C00031
    Figure US20200028089A1-20200123-C00032
    Figure US20200028089A1-20200123-C00033
    Figure US20200028089A1-20200123-C00034
    Figure US20200028089A1-20200123-C00035
    Figure US20200028089A1-20200123-C00036
    Figure US20200028089A1-20200123-C00037
    Figure US20200028089A1-20200123-C00038
    Figure US20200028089A1-20200123-C00039
    Figure US20200028089A1-20200123-C00040
    Figure US20200028089A1-20200123-C00041
    Figure US20200028089A1-20200123-C00042
    Figure US20200028089A1-20200123-C00043
    Figure US20200028089A1-20200123-C00044
    Figure US20200028089A1-20200123-C00045
    Figure US20200028089A1-20200123-C00046
    Figure US20200028089A1-20200123-C00047
    Figure US20200028089A1-20200123-C00048
    Figure US20200028089A1-20200123-C00049
  • The organic electroluminescent device according to the present disclosure comprises an anode; a cathode; and at least one organic layer between the anode and the cathode. The organic layer comprises a light-emitting layer comprising a host and a phosphorescent dopant. The host comprises a plurality of host compounds, at least a first host compound of the plurality of host compounds is represented by formula 1 or 2 above, and a second host compound is represented by formula 3 above.
  • In the present disclosure, the light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi-layer of which two or more layers are stacked. In the light-emitting layer, it is preferable that the doping concentration of the dopant compound based on the host compound is less than 20 wt %.
  • The organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • In the organic electroluminescent device of the present disclosure, the weight ratio of the first host compound to the second host compound is in the range of 1:99 to 99:1.
  • The dopant comprised in the organic electroluminescent device according to the present disclosure is preferably at least one phosphorescent dopant. The phosphorescent dopant material comprised in the organic electroluminescent device according to the present disclosure is not particularly limited, but may be preferably selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
  • The dopant comprised in the organic electroluminescence device of the present disclosure may comprise the compound represented by the following Formula 101, but is not limited thereto:
  • Figure US20200028089A1-20200123-C00050
  • wherein, L is selected from the following structure 1 or 2:
  • Figure US20200028089A1-20200123-C00051
  • R100 to R103 each independently represent hydrogen, deuterium, halogen, a halogen-substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or R100 to R103 may be linked to adjacent substituents to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted quinoline, a substituted or unsubstituted benzofuropyridine, a substituted or unsubstituted benzothienopyridine, a substituted or unsubstituted indenopyridine, a substituted or unsubstituted benzofuroquinoline, a substituted or unsubstituted benzothienoquinoline, or a substituted or unsubstituted indenoquinoline; R104 to R107 each independently represent hydrogen, deuterium, halogen, a halogen-substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, cyano, or a substituted or unsubstituted (C1-C30)alkoxy; or R104 to R107 may be linked to adjacent substituents to form a substituted or unsubstituted fused ring, e.g., a substituted or unsubstituted naphthyl, a substituted or unsubstituted fluorene, a substituted or unsubstituted dibenzothiophene, a substituted or unsubstituted dibenzofuran, a substituted or unsubstituted indenopyridine, a substituted or unsubstituted benzofuropyridine, or a substituted or unsubstituted benzothienopyridine; R201 to R211 each independently represent hydrogen, deuterium, halogen, a halogen-substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl; or R201 to R211 may be linked to adjacent substituents to form a substituted or unsubstituted fused ring; n represents an integer of 1 to 3.
  • The specific examples of the dopant material include the following:
  • Figure US20200028089A1-20200123-C00052
    Figure US20200028089A1-20200123-C00053
    Figure US20200028089A1-20200123-C00054
    Figure US20200028089A1-20200123-C00055
    Figure US20200028089A1-20200123-C00056
    Figure US20200028089A1-20200123-C00057
    Figure US20200028089A1-20200123-C00058
    Figure US20200028089A1-20200123-C00059
    Figure US20200028089A1-20200123-C00060
    Figure US20200028089A1-20200123-C00061
    Figure US20200028089A1-20200123-C00062
    Figure US20200028089A1-20200123-C00063
    Figure US20200028089A1-20200123-C00064
    Figure US20200028089A1-20200123-C00065
    Figure US20200028089A1-20200123-C00066
    Figure US20200028089A1-20200123-C00067
    Figure US20200028089A1-20200123-C00068
    Figure US20200028089A1-20200123-C00069
    Figure US20200028089A1-20200123-C00070
    Figure US20200028089A1-20200123-C00071
    Figure US20200028089A1-20200123-C00072
    Figure US20200028089A1-20200123-C00073
    Figure US20200028089A1-20200123-C00074
    Figure US20200028089A1-20200123-C00075
    Figure US20200028089A1-20200123-C00076
    Figure US20200028089A1-20200123-C00077
    Figure US20200028089A1-20200123-C00078
    Figure US20200028089A1-20200123-C00079
  • The organic electroluminescent device of the present disclosure may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • In addition, in the organic electroluminescent device of the present disclosure, the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • In the organic electroluminescent device of the present disclosure, at least one layer (hereinafter, “a surface layer”) selected from a chalcogenide layer, a metal halide layer and a metal oxide layer may be preferably placed on an inner surface(s) of one or both electrodes. Specifically, a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. Such a surface layer may provide operation stability for the organic electroluminescent device. Preferably, the chalcogenide includes SiOx(1≤X≤2), AlOx(1≤X≤1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and said metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
  • Between the anode and the light-emitting layer, a layer selected from a hole injection layer, a hole transport layer, or an electron blocking layer, or a combination thereof may be used. The hole injection layer may be formed of multi-layers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer. The hole transport layer or the electron blocking layer may also be formed of multi-layers.
  • Between the light-emitting layer and the cathode, a layer selected from an electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or a combination thereof may be used. The electron buffer layer may be formed of multi-layers in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer. Two compounds may be simultaneously used in each layer. The hole blocking layer or the electron transport layer may also be formed of multi-layers, and each layer can comprise two or more compounds.
  • In addition, in the organic electroluminescent device of the present disclosure, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium. Further, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge-generating layer to prepare an organic electroluminescent device having two or more light-emitting layers and emitting white light.
  • In order to form each layer of the organic electroluminescent device of the present disclosure, dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating, etc., or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating, etc., may be used.
  • When using a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • Also, the first and second host compounds of the present disclosure may be co-evaporated or mixture-evaporated.
  • By using the organic electroluminescent device of the present disclosure, a display system or a lighting system can be produced.
  • Hereinafter, an organic electroluminescent compound according to the present disclosure, the preparation method thereof, and the luminescent characteristics of an organic electroluminescent device comprising the same will be explained in detail with reference to the representative compounds of the present disclosure in order to understand the present disclosure in detail.
  • EXAMPLE 1 Preparation of Compound H1-1
  • Figure US20200028089A1-20200123-C00080
  • Compound 1-1 (4 g, 12 mmol), bis(biphenyl-4-yl)[4-(4,4,5,5-tetramethyl-[1,3,2]-dioxaboran-2-yl)phenyl]amine (6.8 g, 13 mmol), palladium(II) acetate (0.3 g, 1 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (0.9 g, 2 mmol), cesium carbonate (11.5 g, 35 mmol), 60 mL of o-xylene, 15 mL of ethanol, and 15 mL of distilled water were added into a reaction vessel and refluxed for 3 hours. After completion of the reaction, the organic layer was washed with distilled water and extracted with ethyl acetate. The organic layer was then dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain compound H1-1 (2.2 g, yield: 27%).
  • MW UV PL M.P
    H1-1 690.85 406 nm 427 nm 271 □
  • EXAMPLE 2 Preparation of Compound H1-42
  • Figure US20200028089A1-20200123-C00081
  • Compound 2-1 (4.8 g, 11.34 mmol), N-(4-bromophenyl)-N-phenyl-[1,1′-biphenyl]-4-amine (5 g, 12.47 mmol), tetrakis(triphenylphosphine)palladium (0.4 g, 0.34 mmol), sodium carbonate (3.0 g, 28.35 mmol), 57 mL of toluene, 14 mL of ethanol, and 14 mL of distilled water were added into a reaction vessel and stirred at 120□ for 4 hours. After completion of the reaction, methanol was added dropwise to the mixture, and the resulting solid was filtered. The resulting solid was purified to recrystallization by column chromatography to obtain the compound H1-42 (1.4 g, yield: 20.0%).
  • MW M.P
    H1-42 614.73 230□
  • EXAMPLE 3 Preparation of Compound H1-27
  • Figure US20200028089A1-20200123-C00082
  • Compound 3-1 (4.5 g, 16.09 mmol), 9,9-dimethyl-N-phenyl-9H-fluoren-2-amine (5.5 g, 19.31 mmol), palladium(II) acetate (0.2 g, 0.80 mmol), tri-t-butylphosphine (0.8 mL, 1.60 mmol), sodium tert-butoxide (2.3 g, 24.14 mmol), and 80 mL of o-xylene were added into a reaction vessel and refluxed at 120□ for 2 hours. After completion of the reaction, the mixture was cooled to room temperature, and the resulting solid was filtered and washed with ethyl acetate. The filtrate was distilled under reduced pressure, and the resulting solid was purified to recrystallization by column chromatography to obtain the compound H1-27 (2.4 g, yield: 28%).
  • MW M.P
    H1-27 528.64 209□
  • EXAMPLE 4 Preparation of Compound H2-1
  • Figure US20200028089A1-20200123-C00083
  • Compound 2-1 (10 g, 23.7 mmol), 2-chloro-4,6-diphenyltriazine (CAS: 3842-55-5, 5.8 g, 21.6 mmol), tetrakis(triphenylphosphine)palladium (1.2 g, 1.0 mmol), potassium carbonate (7.5 g, 59 mmol), 90 mL of toluene, 30 mL of ethanol, and 30 mL of distilled water were added into a reaction vessel and stirred at 120□ for 4 hours. After completion of the reaction, methanol was added dropwise to the mixture, and the resulting solid was filtered. The resulting solid was purified to recrystallization by column chromatography to obtain the compound H2-1 (5.7 g, yield: 50%).
  • MW UV PL M.P
    H2-1 526.18 290 nm 427 nm 291 □
  • EXAMPLE 5 Preparation of Compound H2-2
  • Figure US20200028089A1-20200123-C00084
  • Compound 2-1 (3.48 g, 8.3 mmol), 2-([1,1′-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (CAS: 1472062-94-4, 3.53 g, 9.1 mmol), tetrakis(triphenylphosphine)palladium (0.48 g, 0.41 mmol), sodium carbonate (2.2 g, 20.7 mmol), 28 mL of toluene, 7 mL of ethanol, and 7 mL of distilled water were added into a reaction vessel and stirred at 120□ for 5 hours. After completion of the reaction, methanol was added dropwise to the mixture, and the resulting solid was filtered. The resulting solid was purified to recrystallization by column chromatography to obtain the compound H2-2 (3.7 g, yield: 74%).
  • MW UV PL M.P
    H2-2 602.21 324 nm 429 nm 299□
  • LUMO (Lowest Unoccupied Molecular Orbital) energy, HOMO (Highest Occupied Molecular Orbital) energy, and triplet energy of the compounds H1-1 and H1-27 synthesized in Examples 1 and 3 above were calculated using Density Functional Theory (DFT) at B3LYP/6-31g(d) level, and are shown in the following Table 1.
  • Basically, LUMO and HOMO energy values measured as described above have negative values; however, for convenience, are expressed in absolute values. In addition, when comparing the degree of LUMO/HOMO energy values, it compares absolute values thereof.
  • TABLE 1
    Calculation value B3LYP/6-31 g*
    LUMO HOMO Triplet
    Compound Structure (eV) (eV) (eV)
    H1-1
    Figure US20200028089A1-20200123-C00085
    1.62 4.91 2.4
    H1-27
    Figure US20200028089A1-20200123-C00086
    1.37 4.90 2.5
  • Referring to Table 1 above, the device characteristics of the first host compound according to one embodiment, i.e., compound H1-1 represented by formula 1, and compound H1-27 represented by formula 2, can be compared and predicted. Specifically, compound H1-27 has a similar HOMO energy value to compound H1-1, and has a lower LUMO energy value than compound H1-1. Thus, it is predicted that the electron carrier is sufficiently confined when compound H1-27 is used. In addition, when host compounds H1-1 and H1-27 are combined with a host having a strong electron current characteristic, it can be confirmed that the energy value thereof has no problem in exciplex formation. Further, triplet energy values of compounds H1-1 and H1-27 are 2.4 eV, and 2.5 eV, respectively, which are sufficient to block triplet energy of a dopant. That is, when using compound H1-1 or H1-27 as the first host compound according to one embodiment, it can be predicted that the device including one of them will exhibit similar device characteristics to the device including the other.
  • Thus, in the following Device Example, an organic electroluminescent device is produced by using only compounds H1-1 and H1-42 represented by formula 1 as the representative first host compound, and the characteristics of device thereof will be described.
  • COMPARATIVE EXAMPLE 1 Producing a Red Light-Emitting Organic Electroluminescent Device not According to the Present Disclosure
  • An OLED device not according to the present disclosure was produced. First, a transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an OLED (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with acetone and isopropyl alcohol, sequentially, and then was stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor deposition apparatus. Compound HI-1 was introduced into a cell of the vacuum vapor deposition apparatus, and the pressure in the chamber of the apparatus was then controlled to 10−7 torr. Thereafter, an electric current was applied to the cell to evaporate the introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Compound HI-2 was then introduced into another cell of the vacuum vapor deposition apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Next, compound HT-1 was introduced into another cell of the vacuum vapor deposition apparatus. Thereafter, an electric current was applied to the cell to evaporate the introduced material, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Compound HT-2 was then introduced into another cell of the vacuum vapor deposition apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layers and the hole transport layers, a light-emitting layer was then deposited as follows. Compound H1-1 as a host was introduced into one cell of the vacuum vapor deposition apparatus and compound D-39 as a dopant was introduced into another cell of the apparatus. The two materials were evaporated at a different rate and the dopant was deposited in a doping amount of 3 wt %, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer. Next, compounds ETL-1 and EIL-1 as an electron transport material in a weight ratio of 50:50 were deposited on the light-emitting layer, to form an electron transport layer having a thickness of 35 nm. Next, compound EIL-1 as an electron injection layer having a thickness of 2 nm was deposited on the electron transport layer, and an Al cathode having a thickness of 80 nm was deposited on the electron injection layer by another vacuum vapor deposition apparatus. Thus, an OLED device was produced. All the materials used for producing the OLED device were purified by vacuum sublimation at 10−6 torr.
  • COMPARATIVE EXAMPLE 2 Producing a Red Light-Emitting Organic Electroluminescent Device not According to the Present Disclosure
  • An OLED device was produced in the same manner as in Comparative Example 1, except that compound H2-2 instead of H1-1 as a light-emitting material was used.
  • COMPARATIVE EXAMPLE 3 Producing a Red Light-Emitting Organic Electroluminescent Device not According to the Present Disclosure
  • An OLED device was produced in the same manner as in Comparative Example 1, except that compound H2-1 instead of H1-1 as a light-emitting material was used.
  • DEVICE EXAMPLES 1 to 3 Producing a Red Light-Emitting Organic Electroluminescent Device According to the Present Disclosure
  • In Device Examples 1 to 3, OLED device were produced in the same manner as in Comparative Example 1, except that each of a first host compound and a second host compound described in the following Table 2 as a host were introduced into one cell of the vacuum vapor deposition apparatus, and compound D-39 as a dopant was introduced into another cell of the apparatus. The two host materials were evaporated at the same rate of 1:1 and at the same time, the dopant was evaporated at a different rate in a doping amount of 3 wt %, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 40 nm.
  • The driving voltage, the luminous efficiency, and the CIE color coordinates at a luminance of 1,000 nits and the time taken for the light-emission to be reduced from 100% to 90% at a luminance of 5,000 nit (lifespan; T90) of the organic electroluminescent device of Comparative Examples 1 to 3 and Device Examples 1 to 3 produced as above are shown in the following Table 2. In addition, the current efficiency according to the luminance of the organic electroluminescent device produced in Comparative Example 2 and Device Example 1 is shown in FIG. 1.
  • TABLE 2
    Driving Luminous Color
    Voltage Efficiency Coordinate Lifespan
    First Host Second Host (V) (cd/A) x y (T90, hr)
    Comparative H1-1 4.5 9.3 0.659 0.336 28.5
    Example 1
    Comparative H2-2 3.1 23.4 0.670 0.330 122.0
    Example 2
    Comparative H2-1 3.1 24.5 0.669 0.330 99.3
    Example 3
    Device H1-1 H2-2 3.2 26.6 0.671 0.329 601.1
    Example 1
    Device H1-1 H2-1 3.3 26.4 0.670 0.330 623.1
    Example 2
    Device  H1-42 H2-2 3.1 28.1 0.671 0.329 683
    Example 3
  • From Device Examples 1 to 3 above, it was confirmed that the combination of the compounds of the present disclosure can greatly improve the efficiency and lifespan characteristics while maintaining a driving voltage similar to that of the Comparative Example. Specifically, referring to FIG. 1, the combination of light-emitting layer as the organic electroluminescent device according to one embodiment exhibits great effect on the roll-off improvement compared with the Comparative Example, which is the combination of the single light-emitting layer.
  • The compounds used in the Comparative Examples and Device Examples are shown in Table 3 below.
  • TABLE 3
    Hole Injection Layer/ Hole Transport Layer
    Figure US20200028089A1-20200123-C00087
    Figure US20200028089A1-20200123-C00088
    Figure US20200028089A1-20200123-C00089
    Figure US20200028089A1-20200123-C00090
    Light-Emitting Layer
    Figure US20200028089A1-20200123-C00091
    Figure US20200028089A1-20200123-C00092
    Figure US20200028089A1-20200123-C00093
    Figure US20200028089A1-20200123-C00094
    Figure US20200028089A1-20200123-C00095
    Electron Transport Layer/ Electron Injection Layer
    Figure US20200028089A1-20200123-C00096
    Figure US20200028089A1-20200123-C00097

Claims (7)

1. A plurality of host materials comprising at least one of a first host compound and at least one of a second host compound, wherein the first host compound is represented by the following formula 1 or 2, and the second host compound is represented by the following formula 3:
Figure US20200028089A1-20200123-C00098
wherein,
X1 represents —N═, —NR7—, —O— or —S—,
Y1 represents —N═, —NR8—, —O— or —S—, provided that when X1 represents —N═, Y1 represents —NR8—, —O— or —S—, and when X1 represents —NR7—, Y1 represents —N═, —O— or —S—,
R1 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl,
R2 to R8 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di-(C1-C30)alkylamino, a substituted or unsubstituted mono- or di-(C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C30) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur,
L1 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
a represents 1, b and c each independently represent 1 or 2, d and e each independently represent an integer of 1 to 4,
the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P;
Figure US20200028089A1-20200123-C00099
wherein,
X11 represents —N═, —NR17—, —O— or —S—,
Y11 represents —N═, —NR18—, —O— or —S—, provided that when X11 represents —N═, Y11 represents —NR18—, —O— or —S—, and when X11 represents —NR17—, Y11 represents —N═, —O— or —S—,
X represents N or CH,
R11 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl,
R12 to R18 each independently represent hydrogen, deuterium, halogen, cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di-(C1-C30)alkylamino, a substituted or unsubstituted mono- or di-(C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino, or may be linked to an adjacent substituent to form a substituted or unsubstituted, (C3-C30) mono- or polycyclic, alicyclic, or aromatic ring, whose carbon atom may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur,
L2 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (3- to 30-membered)heteroarylene,
a′ represents 1, b′ and c′ each independently represent 1 or 2, d′ represents an integer of 1 to 4,
the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P.
2. The host materials according to claim 1, wherein the formula 1 or 2 is represented by any one of the following formulae 1-1 to 1-5:
Figure US20200028089A1-20200123-C00100
wherein,
R1 to R6, L1 and a to e are as defined in claim 1.
3. The host materials according to claim 1, wherein the formula 3 is represented by any one of the following formulae 3-1 to 3-6:
Figure US20200028089A1-20200123-C00101
Figure US20200028089A1-20200123-C00102
wherein,
R11 to R18, L2, X and a′ to d′ are as defined in claim 1.
4. The host materials according to claim 1, wherein the substituents of the substituted alkyl, the substituted alkoxy, the substituted cycloalkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted trialkylsilyl, the substituted triarylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted triarylsilyl, the substituted mono- or di-alkylamino, the substituted mono- or di-arylamino, the substituted alkylarylamino, and the substituted mono- or polycyclic, alicyclic, or aromatic ring, in R1 to R8, R11 to R18, L1 and L2, are each independently at least one selected from the group consisting of deuterium; halogen; cyano; carboxyl; nitro; hydroxyl; (C1-C30)alkyl; halo(C1-C30)alkyl; (C2-C30)alkenyl; (C2-C30)alkynyl; (C1-C30)alkoxy; (C1-C30)alkylthio; (C3-C30)cycloalkyl; (3- to 7-membered) heterocycloalkyl; (C6-C30)aryloxy; (C6-C30)arylthio; (C6-C30)aryl- or di(C6-C30)arylamino-substituted or unsubstituted (3- to 30-membered)heteroaryl; cyano-, (3- to 30-membered)heteroaryl- or tri(C6-C30)arylsilyl-substituted or unsubstituted (C6-C30)aryl; tri(C1-C30)alkylsilyl; tri(C6-C30)arylsilyl; di(C1-C30)alkyl(C6-C30)arylsilyl; (C1-C30)alkyldi(C6-C30)arylsilyl; amino; a mono- or di-(C1-C30)alkylamino; a mono- or di-(C6-C30)arylamino; (C1-C30)alkyl(C6-C30)arylamino; (C1-C30)alkylcarbonyl; (C1-C30)alkoxycarbonyl; (C6-C30)arylcarbonyl; di(C6-C30)arylboronyl; di(C1-C30)alkylboronyl; (C1-C30)alkyl(C6-C30)arylboronyl; (C6-C30)ar(C1-C30)alkyl; and (C1-C30)alkyl(C6-C30)aryl.
5. The host materials according to claim 1, wherein the compound represented by formula 1 or 2 is selected from the group consisting of:
Figure US20200028089A1-20200123-C00103
Figure US20200028089A1-20200123-C00104
Figure US20200028089A1-20200123-C00105
Figure US20200028089A1-20200123-C00106
Figure US20200028089A1-20200123-C00107
Figure US20200028089A1-20200123-C00108
Figure US20200028089A1-20200123-C00109
Figure US20200028089A1-20200123-C00110
Figure US20200028089A1-20200123-C00111
Figure US20200028089A1-20200123-C00112
Figure US20200028089A1-20200123-C00113
Figure US20200028089A1-20200123-C00114
Figure US20200028089A1-20200123-C00115
Figure US20200028089A1-20200123-C00116
6. The host materials according to claim 1, wherein the compound represented by formula 3 is selected from the group consisting of:
Figure US20200028089A1-20200123-C00117
Figure US20200028089A1-20200123-C00118
Figure US20200028089A1-20200123-C00119
Figure US20200028089A1-20200123-C00120
Figure US20200028089A1-20200123-C00121
Figure US20200028089A1-20200123-C00122
Figure US20200028089A1-20200123-C00123
Figure US20200028089A1-20200123-C00124
Figure US20200028089A1-20200123-C00125
Figure US20200028089A1-20200123-C00126
Figure US20200028089A1-20200123-C00127
Figure US20200028089A1-20200123-C00128
Figure US20200028089A1-20200123-C00129
Figure US20200028089A1-20200123-C00130
Figure US20200028089A1-20200123-C00131
Figure US20200028089A1-20200123-C00132
Figure US20200028089A1-20200123-C00133
Figure US20200028089A1-20200123-C00134
Figure US20200028089A1-20200123-C00135
Figure US20200028089A1-20200123-C00136
Figure US20200028089A1-20200123-C00137
Figure US20200028089A1-20200123-C00138
Figure US20200028089A1-20200123-C00139
Figure US20200028089A1-20200123-C00140
Figure US20200028089A1-20200123-C00141
Figure US20200028089A1-20200123-C00142
Figure US20200028089A1-20200123-C00143
Figure US20200028089A1-20200123-C00144
Figure US20200028089A1-20200123-C00145
Figure US20200028089A1-20200123-C00146
7. An organic electroluminescent device comprising: an anode, a cathode, and at least one light-emitting layer between the anode and the cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, wherein the host comprises the host materials according to claim 1.
US16/481,644 2017-02-27 2018-02-23 A plurality of host materials and organic electroluminescent device comprising the same Abandoned US20200028089A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20170025749 2017-02-27
KR10-2017-0025749 2017-02-27
KR10-2018-0020359 2018-02-21
KR1020180020359A KR102547298B1 (en) 2017-02-27 2018-02-21 A plurality of host materials and organic electroluminescent device comprising the same
PCT/KR2018/002230 WO2018155942A1 (en) 2017-02-27 2018-02-23 A plurality of host materials and organic electroluminescent device comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002230 A-371-Of-International WO2018155942A1 (en) 2017-02-27 2018-02-23 A plurality of host materials and organic electroluminescent device comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/670,572 Continuation US11737353B2 (en) 2017-02-27 2022-02-14 Plurality of host materials and organic electroluminescent device comprising the same

Publications (1)

Publication Number Publication Date
US20200028089A1 true US20200028089A1 (en) 2020-01-23

Family

ID=63594497

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/481,644 Abandoned US20200028089A1 (en) 2017-02-27 2018-02-23 A plurality of host materials and organic electroluminescent device comprising the same
US17/670,572 Active US11737353B2 (en) 2017-02-27 2022-02-14 Plurality of host materials and organic electroluminescent device comprising the same
US18/344,288 Pending US20240057472A1 (en) 2017-02-27 2023-06-29 Plurality of host materials and organic electroluminescent device comprising the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/670,572 Active US11737353B2 (en) 2017-02-27 2022-02-14 Plurality of host materials and organic electroluminescent device comprising the same
US18/344,288 Pending US20240057472A1 (en) 2017-02-27 2023-06-29 Plurality of host materials and organic electroluminescent device comprising the same

Country Status (4)

Country Link
US (3) US20200028089A1 (en)
JP (2) JP2020510999A (en)
KR (2) KR102547298B1 (en)
CN (1) CN110291075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288263A1 (en) * 2020-03-10 2021-09-16 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus including the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200103235A (en) 2019-02-22 2020-09-02 삼성디스플레이 주식회사 Organic light-emitting device
CN110734431B (en) * 2019-11-18 2022-04-15 烟台九目化学股份有限公司 Oxazole compound containing triazine structure and application thereof
KR20210070738A (en) * 2019-12-05 2021-06-15 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
KR20210076837A (en) 2019-12-16 2021-06-24 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound, a plurality of host materials, and organic electroluminescent device comprising the same
KR20210082888A (en) 2019-12-26 2021-07-06 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
KR102511933B1 (en) * 2020-01-22 2023-03-20 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
DE102021100597A1 (en) 2020-01-31 2021-08-05 Rohm And Haas Electronic Materials Korea Ltd. ORGANIC ELECTROLUMINESCENT COMPOUND, MULTIPLE HOST MATERIALS, AND THIS COMPREHENSIVE ORGANIC ELECTROLUMINESCENT DEVICE
KR102541994B1 (en) * 2020-02-17 2023-06-12 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR102544125B1 (en) * 2020-02-17 2023-06-16 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
CN113402508A (en) * 2020-03-17 2021-09-17 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20220021651A (en) 2020-08-14 2022-02-22 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound, a plurality of host materials, and organic electroluminescent device comprising the same
US20220123223A1 (en) 2020-10-19 2022-04-21 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound, a plurality of host materials and organic electroluminescent device comprising the same
US20220144856A1 (en) 2020-11-10 2022-05-12 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound, a plurality of host materials, and organic electroluminescent device comprising the same
CN114075185B (en) * 2021-01-28 2023-09-22 陕西莱特光电材料股份有限公司 Nitrogen-containing compound, and electronic element and electronic device comprising same
CN112939890A (en) * 2021-02-04 2021-06-11 吉林奥来德光电材料股份有限公司 Heterocyclic organic photoelectric material, preparation method thereof and organic electroluminescent device
CN116601261A (en) * 2021-02-24 2023-08-15 株式会社Lg化学 Organic light emitting device
WO2022182153A1 (en) * 2021-02-24 2022-09-01 주식회사 엘지화학 Novel compound and organic light emitting device using same
CN116615421A (en) * 2021-02-24 2023-08-18 株式会社Lg化学 Novel compound and organic light emitting device comprising the same
TW202246458A (en) * 2021-02-24 2022-12-01 南韓商Lg化學股份有限公司 Organic light emitting device
CN113372289A (en) * 2021-05-25 2021-09-10 上海传勤新材料有限公司 Organic electronic material containing phenanthrene azole compound and preparation method and application thereof
CN113528123B (en) * 2021-09-16 2022-02-18 浙江华显光电科技有限公司 Host material and organic electroluminescent device comprising same
CN114057703B (en) * 2021-11-22 2024-02-02 烟台九目化学股份有限公司 chrysene furan derivative containing triazine structure and application thereof
CN117343078A (en) 2021-11-25 2024-01-05 北京夏禾科技有限公司 Organic electroluminescent material and device
WO2023132694A1 (en) * 2022-01-07 2023-07-13 주식회사 엘지화학 Organic light-emitting device
US20230292610A1 (en) 2022-03-08 2023-09-14 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound, a plurality of host materials and organic electroluminescent device comprising the same
KR20230148771A (en) * 2022-04-15 2023-10-25 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
DE102023127968A1 (en) 2022-10-14 2024-04-25 Rohm And Haas Electronic Materials Korea Ltd. ORGANIC ELECTROLUMINESCENT COMPOUND, MULTIPLE HOST MATERIALS AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
CN115974787A (en) * 2023-01-17 2023-04-18 吉林奥来德光电材料股份有限公司 Compound, preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023777A (en) 1999-07-08 2001-01-26 Toray Ind Inc Luminescent element
TWI314947B (en) * 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
JP2007110102A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Organic electroluminescence element
JP2007221097A (en) * 2006-01-23 2007-08-30 Fujifilm Corp Organic electroluminescence element
JP2007200938A (en) * 2006-01-23 2007-08-09 Fujifilm Corp Organic electroluminescence light emitting device
CN101516856B (en) * 2006-09-14 2013-01-02 西巴控股有限公司 Heterocyclic bridged biphenyls and their use in oleds
KR101758328B1 (en) * 2010-04-06 2017-07-17 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
EP2699571B1 (en) * 2011-04-18 2018-09-05 Merck Patent GmbH Materials for organic electroluminescent devices
KR101777454B1 (en) * 2014-05-26 2017-09-12 주식회사 엘지화학 Nitrogen-containing heterocyclic compounds and organic electronic device using the same
KR102112786B1 (en) * 2015-08-19 2020-05-20 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2017030283A1 (en) * 2015-08-19 2017-02-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
US9559312B1 (en) * 2016-01-07 2017-01-31 E-Ray Optoelectronics Technology Co., Ltd. Imidazole compound, material for electronic device, electroluminescent device, and electronic device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288263A1 (en) * 2020-03-10 2021-09-16 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus including the same

Also Published As

Publication number Publication date
US20220165956A1 (en) 2022-05-26
CN110291075A (en) 2019-09-27
KR20180099487A (en) 2018-09-05
KR102547298B1 (en) 2023-06-26
JP2020510999A (en) 2020-04-09
US11737353B2 (en) 2023-08-22
KR20230098747A (en) 2023-07-04
US20240057472A1 (en) 2024-02-15
JP2023011751A (en) 2023-01-24

Similar Documents

Publication Publication Date Title
US11737353B2 (en) Plurality of host materials and organic electroluminescent device comprising the same
US11807788B2 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US10547010B2 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US10749119B2 (en) Plurality of host materials and organic electroluminescent device comprising the same
US11130747B2 (en) Plurality of host materials and an organic electroluminescence device comprising the same
US20240090328A1 (en) Multi-component host material and an organic electroluminescence device comprising the same
US10818846B2 (en) Electron transport material and organic electroluminescent device comprising the same
US20190131542A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
US20210257555A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US20190288222A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US10454044B2 (en) Plurality of host materials and organic electroluminescent device comprising the same
US20170047527A1 (en) Multi-component host material and organic electroluminescent device comprising the same
US20190207125A1 (en) Organic electroluminescent device comprising an electron buffer layer and an electron transport layer
US10927103B1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US20200207713A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US20170222159A1 (en) Electron buffering material and organic electroluminescent device
US11584719B2 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US20180223184A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US20240083876A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US10069087B2 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US9698355B2 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
US11322692B2 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US20230242518A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US10629824B2 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
US10633583B2 (en) Organic electroluminescent compounds and an organic electroluminescent device comprising the same

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION