US20190388911A1 - Method of making a nozzle - Google Patents

Method of making a nozzle Download PDF

Info

Publication number
US20190388911A1
US20190388911A1 US16/533,996 US201916533996A US2019388911A1 US 20190388911 A1 US20190388911 A1 US 20190388911A1 US 201916533996 A US201916533996 A US 201916533996A US 2019388911 A1 US2019388911 A1 US 2019388911A1
Authority
US
United States
Prior art keywords
microstructures
discrete
microstructured
pattern
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/533,996
Inventor
Jun-Ying Zhang
Michael R. Gorman
Haiyan Zhang
Raymond P. Johnston
Barry S. Carpenter
John C. Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US16/533,996 priority Critical patent/US20190388911A1/en
Publication of US20190388911A1 publication Critical patent/US20190388911A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/16Making specific metal objects by operations not covered by a single other subclass or a group in this subclass plates with holes of very small diameter, e.g. for spinning or burner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0353Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/034Moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49428Gas and water specific plumbing component making
    • Y10T29/49432Nozzle making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49428Gas and water specific plumbing component making
    • Y10T29/49432Nozzle making
    • Y10T29/49433Sprayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material

Definitions

  • the present description relates to methods of making nozzles. Specifically, the present description relates to methods of making nozzles that may be used as components of a fuel injection system.
  • the present description relates to a method of fabricating a nozzle.
  • the method involves a number of steps, including a first step of casting and curing a first material in order to form a first microstructured pattern in the first material.
  • the first microstructured pattern includes a plurality of discrete microstructures.
  • the casting and curing step may involve casting a first material in a first cast, curing the first material, and removing the material from the first cast.
  • the method further involves replicating the first microstructured pattern in a second material different than the first material to make a replicated structure.
  • the second material of the replicated structure is planarized to expose tops of the microstructures in the plurality of microstructures in the first microstructured pattern.
  • the method then includes removing the first material resulting in a nozzle having a plurality of holes in the second material and corresponding to the plurality of microstructures in the first microstructured pattern.
  • the present description relates to another method of fabricating a nozzle.
  • the method includes the first step of extruding a first material in order to form a first microstructured pattern in the first material.
  • the first microstructured pattern includes a plurality of discrete microstructures.
  • the method further involves replicating the first microstructured pattern in a second material different than the first material to make a replicated structure.
  • the second material of the replicated structure is planarized to expose tops of the microstructures in the plurality of microstructures in the first microstructured pattern.
  • the method then includes removing the first material resulting in a nozzle having a plurality of holes in the second material and corresponding to the plurality of microstructures in the first microstructured pattern.
  • FIGS. 1A-1E combine to create a flow chart of a method of fabricating a nozzle according to the present description.
  • FIGS. 2A-2B illustrate an initial cast and cure step.
  • FIG. 3 is a diagram of an apparatus used to produce a microstructured film by extrusion.
  • FIG. 4 is a schematic three-dimensional view of a microstructure.
  • FIG. 5 is a schematic three-dimensional view of a microstructure.
  • FIG. 6 is a perspective view of a film with a plurality of microstructures.
  • FIG. 7 is a backlit photomicrograph of a fuel injector nozzle produced according to Example 1.
  • FIG. 8 is a backlit photomicrograph of a fuel injector nozzle produced according to Example 2.
  • FIG. 9 is a photomicrograph of an array of microstructures according to Example 3.
  • Fuel injection is increasingly becoming the preferred method for mixing fuel and air in internal combustion engines, as fuel injection generally can be used to increase fuel efficiency of the engine and reduces hazardous emissions.
  • Fuel injectors generally include a nozzle with a plurality of nozzle through-holes for atomizing the fuel under pressure for combustion.
  • Increasingly stringent environmental standards require more efficient fuel injectors.
  • the search for more efficient fuel injectors has led to investigation of a number of varying sizes and shapes of fuel injector nozzles, such as those described in commonly owned and assigned PCT Publ. No. WO 2011/014607, the entirety of which is incorporated by reference herein in its entirety.
  • WO 2011/014607 the entirety of which is incorporated by reference herein in its entirety.
  • the search for new methods of creating highly effective nozzles has come the search for new methods of creating highly effective nozzles.
  • One such method begins with structurization using a use of two-photon process described in PCT Publ. No. WO 2011/014607, described above.
  • the present description relates to other new and effective methods of providing nozzles for use in high efficiency fuel injectors.
  • nozzle will be used throughout this description. It should be understood that the term “nozzle” may have a number of different meanings in the art. In some specific references, the term nozzle has a broad definition.
  • U.S. Patent Publication No. 2009/0308953 A1 Patent et al. discloses an “atomizing nozzle” which includes a number of elements, including an occluder chamber 50 . This differs from the understanding and definition of nozzle put forth herewith.
  • the nozzle of the current description would correspond generally to the orifice insert 24 of Palestrant et al.
  • the nozzle of the current description can be understood as the final tapered portion of an atomizing spray system from which the spray is ultimately emitted, see e.g., Merriam Webster's dictionary definition of nozzle (“a short tube with a taper or constriction used (as on a hose) to speed up or direct a flow of fluid.” Further understanding may be gained by reference to U.S. Pat. No. 5,716,009 (Ogihara et al.) issued to Nippondenso Co., Ltd. (Kariya, Japan). In this reference, again, fluid injection “nozzle” is defined broadly as the multi-piece valve element 10 (“fuel injection valve 10 acting as fluid injection nozzle . . . ”—see col.
  • nozzle as used herein would relate to first and second orifice plates 130 and 132 and potentially sleeve 138 (see FIGS. 14 and 15 of Ogihara et al.), for example, which are located immediately proximate the fuel spray.
  • a similar understanding of the term “nozzle” to that described herein is used in U.S. Pat. No. 5,127,156 (Yokoyama et al.) to Hitachi, Ltd. (Ibaraki, Japan).
  • the nozzle 10 is defined separately from elements of the attached and integrated structure, such as “swirler” 12 (see FIG. 1 (II)).
  • the above-defined understanding should be understood when the term “nozzle” is referred to throughout the remainder of the description and claims.
  • FIGS. 1A-1E provide a flow chart of one embodiment of a method for fabricating a nozzle according to the present description.
  • FIG. 1A illustrates providing a first microstructured pattern 110 in a first material 102 .
  • the first microstructured pattern 110 includes a plurality of discrete microstructures 104 .
  • Discrete microstructures have a height t 1 .
  • the first microstructured pattern is formed by a cast and cure process.
  • a simplified diagram of one such process is illustrated in FIG. 2A .
  • a cast 200 with a negative of microstructure pattern 110 is provided.
  • a given volume of curable material, in many cases a polymer, is cast into cast 200 .
  • the polymer may be a silicone, acrylic, rubber, or fluoropolymer.
  • the first uncured material 100 is cast into cast 200 , it is cured by an appropriate method.
  • the first material 100 may be cured by thermal curing, or potentially exposure to UV radiation. Other appropriate curing methods known in the art, such as applying other forms of radiation, may also be used.
  • the first microstructured material 102 may then be removed from mold 200 as shown in FIG. 2B .
  • First microstructured material 102 will contain microstructures 104 arranged in a first microstructured pattern 110 .
  • the mold and the cured first microstructured material are separated physically (i.e., by carefully pulling them apart without damaging the mold and/or the cured first microstructured material). Separation may be accomplished manually or via the use of suitable tools such as tweezers etc. The result of these steps may provide for the microstructured material 102 of FIG. 1A .
  • the first material 102 of FIG. 1A having first microstructured pattern 110 may be created by an extrusion process.
  • a close up view of exactly how the extrusion process may operate is illustrated in FIG. 3 .
  • a film may be cast between a pair of rollers that are spaced apart by a specific dimension, as is illustrated in FIG. 3 , where a film 302 is pulled from a reservoir 301 , through a die 300 by an extrusion roller 304 .
  • the film 302 is nipped between the extrusion roller 304 and a second roller 306 .
  • the second roller 306 may be a pattern roller, provided with a prescribed surface for embossing a pattern onto the film 302 .
  • the second roller 306 is provided with a plurality of prismatic structures 308 around its surface, which create complementary impressions in the upper surface 312 of the film 302 .
  • the pattern roller may have a diameter whose value lies in the range 15 cm-60 cm.
  • the extrusion roller 304 may also be provided with an embossing pattern that is used to emboss a pattern onto the lower surface 318 of the film. After passing between the rollers 304 and 306 , the film 302 cools, for example in a cooler 320 , and maintains the patterns embossed on it by the rollers 304 and 306 .
  • the extrusion roller 304 has a surface 316 that has random variations in height on the lower surface of the film 318 .
  • the upper roller 306 may be provided with many different types of embossing patterns.
  • embossing patterns that may be used on the upper roller 306 include a prismatic pattern that may correspond to, e.g., a brightness enhancement film, a lenticular pattern for a lenticular film, a hemispheric pattern, and the like.
  • the prismatic structures on the upper roller 306 may be arranged in a direction perpendicular to the direction of rotation, around the circumference of the roller 306 , rather than in a direction parallel to the direction of rotation, as shown in FIG. 3 .
  • the upper roller 306 may also be smooth to provide a flat film surface, or may be provided with a surface for embossing a pattern on the upper surface 312 of the film 302 .
  • the surface of the extrusion roller 304 may potentially include an irregular embossing pattern. After forming the plurality of microstructures on surface 312 , the sheet may be cut into more manageable sized pieces and may serve as the first material 102 having first microstructured pattern 110 in FIG. 1A .
  • the discrete microstructures 104 may be shaped such as re-closeable fasteners with posts or mushroom-shaped tops. These structures may be made by the processes shown in commonly owned and assigned U.S. Pat. Nos. 5,845,375 and 6,132,660, which are incorporated by reference herein.
  • a film having one or more structured surfaces including embossing a sheet, injection molding and compression molding.
  • a film of embossable material, applied to a web is compressively held against a pattern surface to emboss the complement of the pattern surface onto the film.
  • the embossable material may be a thermoplastic material, such as poly(ethylene teraphthlate), polaymides such as nylon, poly(styrene-acrylonitrile), poly(acrylonitrile-butadiene-styrene), polyolefins such as polypropylene, and plasticized polyvinyl alcohol.
  • the film may be cooled while being held against the patterned surface in order to solidify the material with the pattern embossed thereon.
  • the embossable material may be a curable polymer that is cured, or partially cured before the patterned surface is removed.
  • the first material 102 of FIG. 1A may be an appropriate polymer, such as a silicone, acrylic, rubber or fluoropolymer.
  • the first material 102 may be understood as a hardcoat composition formed from the reaction product of a polymerizable composition.
  • the first material may be described as a “hardcoat.”
  • the first material 102 may be a hardcoat composition formed from the reaction product of a polymerizable composition comprising one or more urethane (meth)acrylate oligomer(s).
  • the urethane (meth)acrylate oligomer is a di(meth)acrylate.
  • the term “(meth)acrylate” is used to designate esters of acrylic and methacrylic acids, and “di(meth)acrylate” designates a molecule containing two (meth)acrylate groups.
  • Oligomeric urethane (meth)acrylates may be obtained commercially; e.g., from Sartomer under the trade designation “CN 900 Series”, such as “CN981” and “CN981B88. Oligomeric urethane (meth)acrylates are also available from Cytec Industries Inc. (Woodland Park, N.J.) and Cognis (Monheim am Rhein, Germany). Oligomeric urethane (meth)acrylates may also be prepared by the initial reaction of an alkylene or aromatic diisocyanate of the formula OCN—R 3 —NCO with a polyol.
  • the polyol is a diol of the formula HO—R 4 —OH, wherein R 3 is a C 2-100 alkylene or an arylene group and R 4 is a C 2-100 alkylene or alkoxy group.
  • the intermediate product is then a urethane diol diisocyanate, which subsequently can undergo reaction with a hydroxyalkyl (meth)acrylate.
  • Suitable diisocyanates include alkylene diisocyanates such as 2,2,4-trimethylhexylene diisocyanate.
  • the urethane (meth)acrylate oligomer employed herein is preferably aliphatic.
  • the urethane (meth)acrylate oligomer contributes to the conformability and flexibility of the cured hardcoat composition.
  • a 5 micron thick film of the cured hardcoat composition is sufficiently flexible such that it can be bent around a 2 mm mandrel without cracking.
  • the hardcoat has good durability and abrasion resistance.
  • a 250 micrometer (5 mil) thick film of the cured hardcoat exhibits a change in haze of less than 10% after commonly used oscillating sand abrasion testing.
  • the kind and amount of urethane (meth)acrylate oligomer is selected in order to obtain a synergistic balance of flexibility and good abrasion resistance.
  • Suitable urethane (meth)acrylate oligomer that can be employed in the hardcoat composition is available from Sartomer Company (Exton, Pa.) under the trade designation “CN981B88”. This particular material is an aliphatic urethane (meth)acrylate oligomer available under the trade designation CN981 blended with SR238 (1,6 hexanediol diacrylate). Other suitable urethane (meth)acrylate oligomers are available from Sartomer Company under the trade designations “CN9001” and “CN991”. The physical properties of these aliphatic urethane (meth)acrylate oligomers, as reported by the supplier, are set forth in Table 1 as follows:
  • the reported tensile strength, elongation, and glass transition temperature (Tg) properties are based on a homopolymer prepared from such urethane (meth)acrylate oligomer.
  • These embodied urethane (meth)acrylate oligomers can be characterized as having an elongation of at least 20% and typically no greater than 200%; a Tg ranging from about 0 to 70° C.; and a tensile strength of at least 6.89 MPa (1,000 psi), or at least 34.48 MPa (5,000 psi).
  • urethane (meth)acrylate oligomers and other urethane (meth)acrylate oligomers having similar physical properties that can usefully be employed at concentrations ranging from at least 25 wt-%, 26 wt-%, 27 wt-%, 28 wt-%, 29 wt-%, or 30 wt-% based on wt-% solids of the hardcoat composition.
  • the hardcoat composition further includes inorganic nanoparticles such as silica
  • the total concentration of the urethane (meth)acrylate oligomer is typically higher, ranging from about 40 wt-% to about 75 wt-%.
  • the concentration of urethane (meth)acrylate oligomer can be adjusted based on the physical properties of the urethane (meth)acrylate oligomer selected.
  • the urethane (meth)acrylate oligomer is combined with at least one multi(meth)acrylate monomer comprising three or four (meth)acrylate groups.
  • the multi(meth)acrylate monomer increases the crosslinking density and thereby predominantly contributes the durability and abrasion resistance to the cured hardcoat.
  • Suitable tri(meth)acryl containing compounds include glycerol triacrylate, trimethylolpropane triacrylate, ethoxylated triacrylates (for example, ethoxylated (3) trimethylolpropane triacrylate, ethoxylated (6) trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, ethoxylated (20) trimethylolpropane triacrylate), pentaerythritol triacrylate, propoxylated triacrylates (for example, propoxylated (3) glyceryl triacrylate, propoxylated (5.5) glyceryl triacrylate, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate), trimethylolpropane triacrylate, pentaerythritol triacrylate, and tris(2-hydroxyethyl)isocyanurate triacrylate.
  • Higher functionality (meth)acryl containing compounds include ditrimethylolpropane tetraacrylate, ethoxylated (4) pentaerythritol tetraacrylate, and pentaerythritol tetraacrylate.
  • cross-linkable acrylate monomers include those available from Sartomer Company (Exton, Pa.) such as trimethylolpropane triacrylate available under the trade designation SR351, pentaerythritol triacrylate available under the trade designation SR444, dipentaerythritol triacrylate available under the trade designation SR399LV, ethoxylated (3) trimethylolpropane triacrylate available under the trade designation SR454, ethoxylated (4) pentaerythritol triacrylate, available under the trade designation SR494, and tris(2-hydroxyethyl)isocyanurate triacrylate, available under the trade designation SR368.
  • the hardcoat may additionally comprise one or more di(meth)acryl containing compounds.
  • the urethane (meth)acrylate oligomer may be purchased preblended with a di(meth)acrylate monomer such as in the case of CN988B88.
  • Suitable monomers include, for example, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, ethoxylated (10) bisphenol A diacrylate, ethoxylated (3) bisphenol A diacrylate,
  • first microstructured pattern 110 is replicated.
  • an optional seed layer 106 may be applied on the microstructured surface.
  • the top surface 108 of first material 102 is metalized or made electrically conductive by coating the top surface with a thin electrically conductive seed layer 106 similar to seed layer.
  • Conductive seed layer 106 can include any electrically conductive material that is desirable in an application.
  • Exemplary conductive materials include silver, chromium, gold and titanium as well as conductive polymers such as polyacetylene, polyphenylene vinylene, poly aniline, polythiphene and the like.
  • seed layer 106 has a thickness that is less than about 100 nm, less than about 50 nm, or less than about 40 nm, or less than about 30 nm, or less than about 20 nm.
  • seed layer 106 is used to electroplate first microstructured pattern with a second material different than the first material resulting in a layer 120 of the second material.
  • the electroplating of first microstructured pattern 110 is continued until the minimum thickness t 2 of layer 120 is greater than t 1 , the height of the microstructures 104 and, thereby, form blind holes in the layer 120 with the microstructures 104 .
  • height t 2 is substantially equal to height t 1 .
  • Suitable second materials for electroplating include silver, passivated silver, gold, rhodium, aluminum, enhanced reflectivity aluminum, copper, indium, nickel, chromium, tin, and alloys thereof.
  • the second material may be a ceramic that is deposited on first microstructured pattern.
  • a ceramic material may be formed, e.g., by a sol-gel process as described in commonly owned and assigned U.S. Pat. No. 5,453,104, or by photocuring of a ceramic-filled or pre-ceramic polymeric composition as described in commonly owned and assigned U.S. Pat. Nos. 6,572,693, 6,387,981, 6,899,948, 7,393,882, 7,297,374, and 7,582,685, each of which is herein incorporated by reference in its entirety.
  • Such ceramic materials may comprise, e.g., silica, zirconia, alumina, titania, or oxides of yttrium, strontium, barium, hafnium, niobium, tantalum, tungsten, bismuth, molybdenum, tin, zinc, lanthanide elements (i.e. elements having atomic numbers ranging from 57 to 71, inclusive), cerium and combinations thereof.
  • top surface of 122 of layer 120 is ground until tops 112 of microstructures 104 are exposed.
  • the grinding or polishing can be accomplished using any grinding method that may be desirable in an application. Exemplary grinding methods include surface grinding and mechanical milling.
  • the first material is softer than the second material.
  • the first material is polycarbonate and the second material is a nickel alloy.
  • small portions of tops 112 can be removed during the grinding process to ensure that the tops of all the microstructures in first microstructured pattern 110 are exposed. In such cases, the grinding results, as schematically illustrated in FIG.
  • a layer 124 of the second material planarizing the first microstructured pattern and exposing tops 112 of the microstructures in the plurality of microstructures in the first microstructured pattern.
  • Layer 124 of the second material has a top surface 126 that is substantially even with tops 112 of microstructures 104 .
  • the microstructures have a height t 3 that can be slightly less than t 1 .
  • the microstructures 104 are illustrated as having flattened tops initially, this need not be the case.
  • the microstructures in the initial step may have a peaked surface. This may be especially appropriate as this portion of the microstructure may act as a sacrificial portion that aids in providing optimal planarization during the grinding step.
  • a better understanding of this concept may be understood by reference to commonly owned and assigned U.S. patent Ser. No. 10/054,094, incorporated herein by reference in its entirety.
  • first material 104 is removed, resulting in a layer 130 of the second material that includes a plurality of through-holes 132 that correspond to the plurality of microstructures in first microstructured pattern 110 .
  • Holes 130 include hole entries 136 and hole exits 134 .
  • the layer 130 made up of second material may be any of the appropriate metals mentioned above, e.g. nickel, or may be, for example, ceramic.
  • the individual microstructures, each bearing a hole entry 136 and hole exit 134 may be singulated by dividing them from one another along, e.g., lines 138 .
  • the individual microstructures may then potentially be recombined in a desired pattern by an appropriate means, such as laser welding.
  • the microstructured pattern will be cast and cured or go through the extrusion process such that the final pattern matches that of the first material's first microstructured pattern.
  • the first material and the second material that includes plurality of holes are separated physically (i.e., by carefully pulling them apart without damaging the mold and/or the cured first microstructured material. Separation may be accomplished manually or via the use of suitable tools such as tweezers etc. It is also possible to remove the first material chemically, for example, by dissolving the first material in a suitable solvent such as acetone, ethyl alcohol, isopropyl alcohol or the like. Alternately one may use an etchant such as an aqueous solution of KOH. The first material and the second material may also be separated thermally by melting or burning of the first material at a suitable temperature without deforming, melting or otherwise damaging the second material.
  • suitable solvent such as acetone, ethyl alcohol, isopropyl alcohol or the like.
  • an etchant such as an aqueous solution of KOH.
  • the first material and the second material may also be separated thermally by melting or burning of the first material at a suitable temperature without de
  • the plurality of discrete microstructures formed includes a discrete microstructure that is a three-dimensional rectilinear body, a portion of a three-dimensional rectilinear body, a three-dimensional curvilinear body, a portion of a three-dimensional curvilinear body, a polyhedron, a cone, or a tapered microstructure.
  • a disclosed microstructure can be a three-dimensional rectilinear body such as a polyhedron, such as a tetrahedron or a hexahedron, a prism, or a pyramid, or a portion, or a combination, of such bodies, such as a frustum.
  • FIG. 4 is a schematic three-dimensional view of a microstructure 420 that is disposed on a substrate 410 and includes a planar or flat base 430 , a planar or flat top 440 and a side 450 that connects the top to the base.
  • Side 450 includes a plurality of planar or flat facets, such as facets 460 , 465 and 470 .
  • Microstructure 420 can be used as a mold to fabricate holes for use in, for example, a nozzle.
  • a disclosed microstructure can be a three-dimensional curvilinear body or a portion of such body, such as a segment of a sphere, an asphere, an ellipsoid, a spheroid, a paraboloid, a cone or a truncated cone, or a cylinder.
  • FIG. 5 is a schematic three-dimensional view of a microstructure 520 that is disposed on a substrate 510 and includes a planar or flat base 530 , a planar or flat top 540 and a curvilinear side 550 that connects the top to the base.
  • top 540 and base 530 have the same shape.
  • Microstructure 520 tapers narrower from base 530 to top 540 . As a result, top 540 has a smaller area than base 530 . Microstructure 520 can be used as a mold to fabricate holes for use in, for example, a nozzle.
  • the microstructured pattern 610 of film 600 may contain a plurality of microstructures 604 that are elongated.
  • the microstructures may be prisms that are elongated along the length of the film L.
  • the opening corresponding to the hole outlet may in fact be an elongated slit, such as where the tops of the elongated prism is removed along dashed line 606 .
  • the microstructures of the current description may be understood as having a “diameter” of their opening at different heights of the microstructure.
  • the diameter may be understood as the maximum distance between the edges of the microstructure at a common height.
  • the hole entry may have a diameter of less than 300 microns, or of less than 200 microns, or of less than or equal to 160 microns, or of less than 140 microns.
  • the hole exit may have a diameter of less than 300 microns, or less than 200 microns, or less than 100 microns, or less than or equal to 40 microns, or less than 25 microns.
  • the microstructures disclosed herein that serve as nozzles may be monolithic structures.
  • the microstructures that form the actual nozzles are created from, and ultimately form a common, single piece of material.
  • This may be understood as different from nozzles that are formed through a combination of a number of different parts, where such parts are potentially made up of different materials.
  • the nozzles disclosed herein may be monolithic structures.
  • a microstructure can be intentionally deformed (i.e., bent, twisted etc.). Such deformation can be used to affect the flow of fluids thorough the nozzles made using these microstructures. More specifically, by deforming the microstructures, the resulting nozzles may direct the flow of fluids in a desired direction or may lead to a desired angular/volumetric distribution of the fluids in the combustion chamber. Such deformation of the microstructures may be accomplished by thermal means, mechanical means or thermomechanical means. For example, the microstructured first material may be heated to soften and potentially even partially melt the microstructures causing them to deform under the influence of gravity or other mechanical forces. In another embodiment, the microstructures are physically bent by the action of a mechanical force on them at an angle.
  • microstructures in the form of microposts may be contacted by a force applied along a plane orthogonal to the height of the structures, where the force acts downward (in the direction of the height of the microstructures.
  • This force applied along the tops of the microstructures may be applied with a hot object at a temperature above the melting point of the first material, resulting in the melting the tips of the microposts and forming mushroom shaped microstructures.
  • the tops of the mushroom shaped microstructures lead to large cavities at the inlet side of the resulting nozzles. Such cavities may act as occlude chambers in a nozzle application.
  • arrays of microstructures may be deformed. All or some of the individual microstructures in an array may be deformed. In some cases some of the microstructures are deformed in one pattern while others are deformed in a second pattern. It is possible to have each individual microstructure within the array be deformed in a predetermined relation to the neighboring microstructures.
  • a microstructured film was prepared by following the general method described in U.S. Pat. No. 5,845,375 (Miller et. al.).
  • An ethylene-propylene copolymer (available from Dow Chemical Co. [Midland, Mich.] under the trade designation “C700-35N”) resin was melted in a 45 millimeters twin screw extruder at a temperature of 230° C. and the extruded melt was passed through a die to form a film.
  • the resulting film being about 0.15 millimeters in thickness, and having a basis weight of 120 g/m ⁇ 2 , was pressed against a microstructured tooling by feeding it through a pair of rollers.
  • the microstructured tooling was mounted onto one of the rollers and chilled to about 90-120° C. (194-248° F.).
  • the roller with the microstructured tooling was rotated at a surface speed of 0.33 m/s.
  • the microstructure on the surface of the tooling comprised cavities (i.e., prismatic holes) of approximately 120 micrometer sides and 370 micrometer deep.
  • the vacancies were arranged in a linear pattern along the x and y direction on the surface of the tooling approximately 520 micrometer apart.
  • the replica) exiting the pair of rollers had posts (corresponding to the cavities on the surface of microstructured tooling) projecting from the film surface.
  • the resulting microstructured film contained posts of approximately 120 micrometer sides and 370 micrometer depth.
  • the vacancies were arranged in a linear pattern along the x and y direction on the surface of the tooling approximately 520 micrometer apart
  • the microstructured film was electroplated with Ni following the general electroplating processes well known in the art.
  • a general description of the electroplating art can be found, for example, in “ Modern Electroplating ”, Fourth Edition, 2002, John Wiley & Sons, editors: Mordechav Schlesinger and Milan Paunovic.
  • a circular (about 3 millimeter in diameter) section of the microstructured film produced above was cut out and was adhered on a stainless steel disc with the aid of a double stick tape.
  • the surface of the film was made conductive by depositing a thin Ag film (seed layer) on the microstructured film replicas by e-beam evaporation.
  • the process of depositing thin layer of Ag is referred to as silver mirror reaction in the electroplating art.
  • Nickel was electrodeposited on the Ag coated surface of the microstructured film to replicate the microstructures.
  • Nickel electrodeposition was carried out in a nickel sulfamate bath at a pH range of 3.5-4.5 at a temperature of 54.5° C.
  • the solution contained a 0.2% of sodium dodecyl sulfate surfactant.
  • Nickel electrodeposition was carried out in four stages. In the first stage, which lasted approximately 6 hours, the current density was approximately 27 Amperes/m 2 . The second stage lasted 4 hours and featured a current density of 54 Amperes/m 2 , and the third stage lasted 4 hours and featured a current density of 108 Amperes/m 2 . The fourth stage was 34 hours at a current density of 216 Amperes/m 2 .
  • Nickel electrodepositing was completed when the thickness of nickel reached about 500 micrometers.
  • the resulting nickel replica with the microstructured film still in place was planarized and fine-polished to remove enough material so that the holes in the nickel replica were open and free of burrs.
  • the nozzle had square sided holes with approximately 120 micrometer sides. The nozzle holes were arranged in a linear pattern along the x and y direction on the surface of the tooling approximately 520 micrometer apart.
  • Example 2 was prepared in generally the same manner as Example 1.
  • a low density polyethylene (LDPE) film was provided (about 580 micrometers in thickness, prepared from TENITE 18 DOA (obtained from Eastman Chemical Company [Kingsport, Tenn.] under trade designation “TENITE 18”), with 0.5% surfactant TRITON X100 (obtained from Dow Chemical Company [Midland, Mich.] under trade designation “TRITON X100”) and minor quantities of TiO 2 pigment to make the film white in appearance.
  • TENITE 18 DOA obtained from Eastman Chemical Company [Kingsport, Tenn.] under trade designation “TENITE 18”
  • TRITON X100 obtained from Dow Chemical Company [Midland, Mich.] under trade designation “TRITON X100”
  • TiO 2 pigment minor quantities
  • U.S. Pat. No. 5,514,120 to Johnston et al. describes how the tooling was created to microreplicate the V shaped film described herein.
  • the microstructures on the surface of the tooling included linear, V-shaped groves running parallel to one another.
  • the V-shaped groves had a height of 460 micrometers and 410 micrometer pitch.
  • the resulting microstructured film was electroplated with Ni, planarized and polished using the same process described above for Example 1.
  • the nozzle of Example 2 had rectangular openings.
  • a backlit photomicrograph of the nickel fuel injector nozzle of Example 2 is provided in FIG. 8 .
  • micro-needle arrays made of polycarbonate were used as the microstructured first material.
  • the micro-needle arrays were prepared using the general processes described in commonly owned and assigned US Patent Publication No. US2009/009537 (DeVoe, et. al.). Each array had 18 micro-needles that were 900 micrometers tall and a tapered cone with a large, fixed end that was approximately 270 micrometers in diameter.
  • the micro-needles were similar in shape to those shown in FIG. 10 of US Patent Publication No. US2009/009537 (DeVoe, et. al.).
  • the conical shape made it easy to bend the needles near the top.
  • FIG. 9 is a photomicrograph of the deformed micro-needle arrays illustrates the results of bending the micron-needles over. While in this Example 3, the vise jaws were set parallel to each other; they did not need to be parallel. A non-parallel gap in the cross-web direction would result in the needles on one side of the substrate being bent more than the needles on the other.
  • microneedle pre-form was then silver sputtered, nickel electro-plated and backside ground using exactly the same processes used in Example 1 above.
  • Example 4 was prepared in generally the same manner as Example 3, except that the micro-needle arrays were deformed by pressing an aluminum cylindrical rod on the center of the micro-needle array. The deformed micro-needles were bent at their tips so as to point outward from the center of the array in a circular arrangement.
  • microneedle pre-form was then silver sputtered, nickel electro-plated and backside ground using exactly the same processes used in Example 1 above.

Abstract

Methods of making nozzles are disclosed. More specifically, methods of making nozzles that may be used as components of a fuel injection system are disclosed.

Description

    FIELD
  • The present description relates to methods of making nozzles. Specifically, the present description relates to methods of making nozzles that may be used as components of a fuel injection system.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present description relates to a method of fabricating a nozzle. The method involves a number of steps, including a first step of casting and curing a first material in order to form a first microstructured pattern in the first material. The first microstructured pattern includes a plurality of discrete microstructures. The casting and curing step may involve casting a first material in a first cast, curing the first material, and removing the material from the first cast. The method further involves replicating the first microstructured pattern in a second material different than the first material to make a replicated structure. Next, the second material of the replicated structure is planarized to expose tops of the microstructures in the plurality of microstructures in the first microstructured pattern. The method then includes removing the first material resulting in a nozzle having a plurality of holes in the second material and corresponding to the plurality of microstructures in the first microstructured pattern.
  • In another aspect, the present description relates to another method of fabricating a nozzle. The method includes the first step of extruding a first material in order to form a first microstructured pattern in the first material. The first microstructured pattern includes a plurality of discrete microstructures. The method further involves replicating the first microstructured pattern in a second material different than the first material to make a replicated structure. Next, the second material of the replicated structure is planarized to expose tops of the microstructures in the plurality of microstructures in the first microstructured pattern. The method then includes removing the first material resulting in a nozzle having a plurality of holes in the second material and corresponding to the plurality of microstructures in the first microstructured pattern.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1E combine to create a flow chart of a method of fabricating a nozzle according to the present description.
  • FIGS. 2A-2B illustrate an initial cast and cure step.
  • FIG. 3 is a diagram of an apparatus used to produce a microstructured film by extrusion.
  • FIG. 4 is a schematic three-dimensional view of a microstructure.
  • FIG. 5 is a schematic three-dimensional view of a microstructure.
  • FIG. 6 is a perspective view of a film with a plurality of microstructures.
  • FIG. 7 is a backlit photomicrograph of a fuel injector nozzle produced according to Example 1.
  • FIG. 8 is a backlit photomicrograph of a fuel injector nozzle produced according to Example 2.
  • FIG. 9 is a photomicrograph of an array of microstructures according to Example 3.
  • DETAILED DESCRIPTION
  • Fuel injection is increasingly becoming the preferred method for mixing fuel and air in internal combustion engines, as fuel injection generally can be used to increase fuel efficiency of the engine and reduces hazardous emissions. Fuel injectors generally include a nozzle with a plurality of nozzle through-holes for atomizing the fuel under pressure for combustion. Increasingly stringent environmental standards require more efficient fuel injectors. The search for more efficient fuel injectors has led to investigation of a number of varying sizes and shapes of fuel injector nozzles, such as those described in commonly owned and assigned PCT Publ. No. WO 2011/014607, the entirety of which is incorporated by reference herein in its entirety. In addition to the search for optimally sized and shaped fuel injector nozzles, has come the search for new methods of creating highly effective nozzles. One such method begins with structurization using a use of two-photon process described in PCT Publ. No. WO 2011/014607, described above. The present description relates to other new and effective methods of providing nozzles for use in high efficiency fuel injectors.
  • The term “nozzle” will be used throughout this description. It should be understood that the term “nozzle” may have a number of different meanings in the art. In some specific references, the term nozzle has a broad definition. For example, U.S. Patent Publication No. 2009/0308953 A1 (Palestrant et al.), discloses an “atomizing nozzle” which includes a number of elements, including an occluder chamber 50. This differs from the understanding and definition of nozzle put forth herewith. For example, the nozzle of the current description would correspond generally to the orifice insert 24 of Palestrant et al. In general, the nozzle of the current description can be understood as the final tapered portion of an atomizing spray system from which the spray is ultimately emitted, see e.g., Merriam Webster's dictionary definition of nozzle (“a short tube with a taper or constriction used (as on a hose) to speed up or direct a flow of fluid.” Further understanding may be gained by reference to U.S. Pat. No. 5,716,009 (Ogihara et al.) issued to Nippondenso Co., Ltd. (Kariya, Japan). In this reference, again, fluid injection “nozzle” is defined broadly as the multi-piece valve element 10 (“fuel injection valve 10 acting as fluid injection nozzle . . . ”—see col. 4, lines 26-27 of Ogihara et al.). The current definition and understanding of the term “nozzle” as used herein would relate to first and second orifice plates 130 and 132 and potentially sleeve 138 (see FIGS. 14 and 15 of Ogihara et al.), for example, which are located immediately proximate the fuel spray. A similar understanding of the term “nozzle” to that described herein is used in U.S. Pat. No. 5,127,156 (Yokoyama et al.) to Hitachi, Ltd. (Ibaraki, Japan). There, the nozzle 10 is defined separately from elements of the attached and integrated structure, such as “swirler” 12 (see FIG. 1(II)). The above-defined understanding should be understood when the term “nozzle” is referred to throughout the remainder of the description and claims.
  • FIGS. 1A-1E provide a flow chart of one embodiment of a method for fabricating a nozzle according to the present description. FIG. 1A illustrates providing a first microstructured pattern 110 in a first material 102. The first microstructured pattern 110 includes a plurality of discrete microstructures 104. Discrete microstructures have a height t1. In this first embodiment the first microstructured pattern is formed by a cast and cure process. A simplified diagram of one such process is illustrated in FIG. 2A. A cast 200 with a negative of microstructure pattern 110 is provided. A given volume of curable material, in many cases a polymer, is cast into cast 200. In some cases, the polymer may be a silicone, acrylic, rubber, or fluoropolymer. Once the first uncured material 100 has been cast into cast 200, it is cured by an appropriate method. For example, in some embodiments, the first material 100 may be cured by thermal curing, or potentially exposure to UV radiation. Other appropriate curing methods known in the art, such as applying other forms of radiation, may also be used. Once curing has occurred, the first microstructured material 102 may then be removed from mold 200 as shown in FIG. 2B. First microstructured material 102 will contain microstructures 104 arranged in a first microstructured pattern 110. Typically, the mold and the cured first microstructured material are separated physically (i.e., by carefully pulling them apart without damaging the mold and/or the cured first microstructured material). Separation may be accomplished manually or via the use of suitable tools such as tweezers etc. The result of these steps may provide for the microstructured material 102 of FIG. 1A.
  • In another embodiment, the first material 102 of FIG. 1A having first microstructured pattern 110, may be created by an extrusion process. A close up view of exactly how the extrusion process may operate is illustrated in FIG. 3. A film may be cast between a pair of rollers that are spaced apart by a specific dimension, as is illustrated in FIG. 3, where a film 302 is pulled from a reservoir 301, through a die 300 by an extrusion roller 304. The film 302 is nipped between the extrusion roller 304 and a second roller 306. Where the film 302 has a surface structure, the second roller 306 may be a pattern roller, provided with a prescribed surface for embossing a pattern onto the film 302. For example, where the film 302 is being manufactured as a prismatic film, the second roller 306 is provided with a plurality of prismatic structures 308 around its surface, which create complementary impressions in the upper surface 312 of the film 302. The pattern roller may have a diameter whose value lies in the range 15 cm-60 cm. The extrusion roller 304 may also be provided with an embossing pattern that is used to emboss a pattern onto the lower surface 318 of the film. After passing between the rollers 304 and 306, the film 302 cools, for example in a cooler 320, and maintains the patterns embossed on it by the rollers 304 and 306. In the particular embodiment shown, the extrusion roller 304 has a surface 316 that has random variations in height on the lower surface of the film 318.
  • The upper roller 306 may be provided with many different types of embossing patterns. Examples of embossing patterns that may be used on the upper roller 306 include a prismatic pattern that may correspond to, e.g., a brightness enhancement film, a lenticular pattern for a lenticular film, a hemispheric pattern, and the like. In addition, the prismatic structures on the upper roller 306 may be arranged in a direction perpendicular to the direction of rotation, around the circumference of the roller 306, rather than in a direction parallel to the direction of rotation, as shown in FIG. 3. The upper roller 306 may also be smooth to provide a flat film surface, or may be provided with a surface for embossing a pattern on the upper surface 312 of the film 302. The surface of the extrusion roller 304 may potentially include an irregular embossing pattern. After forming the plurality of microstructures on surface 312, the sheet may be cut into more manageable sized pieces and may serve as the first material 102 having first microstructured pattern 110 in FIG. 1A.
  • Besides prismatic or hemispheric shaped microstructures, a number of other commercially available products with varying microstructure patterns and shapes may be appropriate. For example, the discrete microstructures 104 may be shaped such as re-closeable fasteners with posts or mushroom-shaped tops. These structures may be made by the processes shown in commonly owned and assigned U.S. Pat. Nos. 5,845,375 and 6,132,660, which are incorporated by reference herein.
  • Other approaches may be utilized to produce a film having one or more structured surfaces, including embossing a sheet, injection molding and compression molding. In one particular approach, a film of embossable material, applied to a web, is compressively held against a pattern surface to emboss the complement of the pattern surface onto the film. The embossable material may be a thermoplastic material, such as poly(ethylene teraphthlate), polaymides such as nylon, poly(styrene-acrylonitrile), poly(acrylonitrile-butadiene-styrene), polyolefins such as polypropylene, and plasticized polyvinyl alcohol. In such embodiments, the film may be cooled while being held against the patterned surface in order to solidify the material with the pattern embossed thereon. In a variation of this approach, the embossable material may be a curable polymer that is cured, or partially cured before the patterned surface is removed.
  • As mentioned above, the first material 102 of FIG. 1A may be an appropriate polymer, such as a silicone, acrylic, rubber or fluoropolymer. In another sense, the first material 102 may be understood as a hardcoat composition formed from the reaction product of a polymerizable composition. As such, at times throughout this description, the first material may be described as a “hardcoat.” Specifically, the first material 102 may be a hardcoat composition formed from the reaction product of a polymerizable composition comprising one or more urethane (meth)acrylate oligomer(s). Typically, the urethane (meth)acrylate oligomer is a di(meth)acrylate. The term “(meth)acrylate” is used to designate esters of acrylic and methacrylic acids, and “di(meth)acrylate” designates a molecule containing two (meth)acrylate groups.
  • Oligomeric urethane (meth)acrylates may be obtained commercially; e.g., from Sartomer under the trade designation “CN 900 Series”, such as “CN981” and “CN981B88. Oligomeric urethane (meth)acrylates are also available from Cytec Industries Inc. (Woodland Park, N.J.) and Cognis (Monheim am Rhein, Germany). Oligomeric urethane (meth)acrylates may also be prepared by the initial reaction of an alkylene or aromatic diisocyanate of the formula OCN—R3—NCO with a polyol. Most often, the polyol is a diol of the formula HO—R4—OH, wherein R3 is a C2-100 alkylene or an arylene group and R4 is a C2-100 alkylene or alkoxy group. The intermediate product is then a urethane diol diisocyanate, which subsequently can undergo reaction with a hydroxyalkyl (meth)acrylate. Suitable diisocyanates include alkylene diisocyanates such as 2,2,4-trimethylhexylene diisocyanate. The urethane (meth)acrylate oligomer employed herein is preferably aliphatic.
  • The urethane (meth)acrylate oligomer contributes to the conformability and flexibility of the cured hardcoat composition. In preferred embodiments, a 5 micron thick film of the cured hardcoat composition is sufficiently flexible such that it can be bent around a 2 mm mandrel without cracking.
  • In addition to being flexible, the hardcoat has good durability and abrasion resistance. For example, a 250 micrometer (5 mil) thick film of the cured hardcoat exhibits a change in haze of less than 10% after commonly used oscillating sand abrasion testing.
  • The kind and amount of urethane (meth)acrylate oligomer is selected in order to obtain a synergistic balance of flexibility and good abrasion resistance.
  • One suitable urethane (meth)acrylate oligomer that can be employed in the hardcoat composition is available from Sartomer Company (Exton, Pa.) under the trade designation “CN981B88”. This particular material is an aliphatic urethane (meth)acrylate oligomer available under the trade designation CN981 blended with SR238 (1,6 hexanediol diacrylate). Other suitable urethane (meth)acrylate oligomers are available from Sartomer Company under the trade designations “CN9001” and “CN991”. The physical properties of these aliphatic urethane (meth)acrylate oligomers, as reported by the supplier, are set forth in Table 1 as follows:
  • TABLE 1
    Physical Properties of Aliphatic Urethane Meth(Acrylate) Oligomers
    Tensile Tg (° C.) as
    Trade Viscosity Strength Elongation determined by
    Designation Cps at 60° C. (MPa) (%) DSC
    CN981 6190 7.67 81 22
    CN981B88 1520 10.48 41 28
    CN9001 46,500 22.72 143 60
    CN991 660 37.08 79 27
  • The reported tensile strength, elongation, and glass transition temperature (Tg) properties are based on a homopolymer prepared from such urethane (meth)acrylate oligomer. These embodied urethane (meth)acrylate oligomers can be characterized as having an elongation of at least 20% and typically no greater than 200%; a Tg ranging from about 0 to 70° C.; and a tensile strength of at least 6.89 MPa (1,000 psi), or at least 34.48 MPa (5,000 psi).
  • These embodied urethane (meth)acrylate oligomers and other urethane (meth)acrylate oligomers having similar physical properties that can usefully be employed at concentrations ranging from at least 25 wt-%, 26 wt-%, 27 wt-%, 28 wt-%, 29 wt-%, or 30 wt-% based on wt-% solids of the hardcoat composition. When the hardcoat composition further includes inorganic nanoparticles such as silica, the total concentration of the urethane (meth)acrylate oligomer is typically higher, ranging from about 40 wt-% to about 75 wt-%. The concentration of urethane (meth)acrylate oligomer can be adjusted based on the physical properties of the urethane (meth)acrylate oligomer selected.
  • The urethane (meth)acrylate oligomer is combined with at least one multi(meth)acrylate monomer comprising three or four (meth)acrylate groups. The multi(meth)acrylate monomer increases the crosslinking density and thereby predominantly contributes the durability and abrasion resistance to the cured hardcoat.
  • Suitable tri(meth)acryl containing compounds include glycerol triacrylate, trimethylolpropane triacrylate, ethoxylated triacrylates (for example, ethoxylated (3) trimethylolpropane triacrylate, ethoxylated (6) trimethylolpropane triacrylate, ethoxylated (9) trimethylolpropane triacrylate, ethoxylated (20) trimethylolpropane triacrylate), pentaerythritol triacrylate, propoxylated triacrylates (for example, propoxylated (3) glyceryl triacrylate, propoxylated (5.5) glyceryl triacrylate, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate), trimethylolpropane triacrylate, pentaerythritol triacrylate, and tris(2-hydroxyethyl)isocyanurate triacrylate.
  • Higher functionality (meth)acryl containing compounds include ditrimethylolpropane tetraacrylate, ethoxylated (4) pentaerythritol tetraacrylate, and pentaerythritol tetraacrylate.
  • Commercially available cross-linkable acrylate monomers include those available from Sartomer Company (Exton, Pa.) such as trimethylolpropane triacrylate available under the trade designation SR351, pentaerythritol triacrylate available under the trade designation SR444, dipentaerythritol triacrylate available under the trade designation SR399LV, ethoxylated (3) trimethylolpropane triacrylate available under the trade designation SR454, ethoxylated (4) pentaerythritol triacrylate, available under the trade designation SR494, and tris(2-hydroxyethyl)isocyanurate triacrylate, available under the trade designation SR368.
  • The hardcoat may additionally comprise one or more di(meth)acryl containing compounds. For example, the urethane (meth)acrylate oligomer may be purchased preblended with a di(meth)acrylate monomer such as in the case of CN988B88. Suitable monomers include, for example, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol monoacrylate monomethacrylate, ethylene glycol diacrylate, alkoxylated aliphatic diacrylate, alkoxylated cyclohexane dimethanol diacrylate, alkoxylated hexanediol diacrylate, alkoxylated neopentyl glycol diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, caprolactone modified neopentylglycol hydroxypivalate diacrylate, cyclohexanedimethanol diacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, ethoxylated (10) bisphenol A diacrylate, ethoxylated (3) bisphenol A diacrylate, ethoxylated (30) bisphenol A diacrylate, ethoxylated (4) bisphenol A diacrylate, hydroxypivalaldehyde modified trimethylolpropane diacrylate, neopentyl glycol diacrylate, polyethylene glycol (200) diacrylate, polyethylene glycol (400) diacrylate, polyethylene glycol (600) diacrylate, propoxylated neopentyl glycol diacrylate, tetraethylene glycol diacrylate, tricyclodecanedimethanol diacrylate, triethylene glycol diacrylate, and tripropylene glycol diacrylate.
  • Returning to FIG. 1A, once the first microstructured pattern has been formed in first material 102 by either cast and cure method of FIGS. 2A-B or the extrusion method shown in FIG. 3 using the materials discussed above, the first microstructured pattern 110 is replicated. Looking at FIG. 1B, first, an optional seed layer 106 may be applied on the microstructured surface. The top surface 108 of first material 102 is metalized or made electrically conductive by coating the top surface with a thin electrically conductive seed layer 106 similar to seed layer.
  • Conductive seed layer 106 can include any electrically conductive material that is desirable in an application. Exemplary conductive materials include silver, chromium, gold and titanium as well as conductive polymers such as polyacetylene, polyphenylene vinylene, poly aniline, polythiphene and the like. In some cases, seed layer 106 has a thickness that is less than about 100 nm, less than about 50 nm, or less than about 40 nm, or less than about 30 nm, or less than about 20 nm.
  • Next, as schematically illustrated in FIG. 1C, seed layer 106 is used to electroplate first microstructured pattern with a second material different than the first material resulting in a layer 120 of the second material. In some cases, the electroplating of first microstructured pattern 110 is continued until the minimum thickness t2 of layer 120 is greater than t1, the height of the microstructures 104 and, thereby, form blind holes in the layer 120 with the microstructures 104. In some cases, height t2 is substantially equal to height t1. Suitable second materials for electroplating include silver, passivated silver, gold, rhodium, aluminum, enhanced reflectivity aluminum, copper, indium, nickel, chromium, tin, and alloys thereof. In other embodiments, the second material may be a ceramic that is deposited on first microstructured pattern. Such a ceramic material may be formed, e.g., by a sol-gel process as described in commonly owned and assigned U.S. Pat. No. 5,453,104, or by photocuring of a ceramic-filled or pre-ceramic polymeric composition as described in commonly owned and assigned U.S. Pat. Nos. 6,572,693, 6,387,981, 6,899,948, 7,393,882, 7,297,374, and 7,582,685, each of which is herein incorporated by reference in its entirety. Such ceramic materials may comprise, e.g., silica, zirconia, alumina, titania, or oxides of yttrium, strontium, barium, hafnium, niobium, tantalum, tungsten, bismuth, molybdenum, tin, zinc, lanthanide elements (i.e. elements having atomic numbers ranging from 57 to 71, inclusive), cerium and combinations thereof.
  • Next, top surface of 122 of layer 120 is ground until tops 112 of microstructures 104 are exposed. The grinding or polishing can be accomplished using any grinding method that may be desirable in an application. Exemplary grinding methods include surface grinding and mechanical milling. In some cases, the first material is softer than the second material. For example, in some cases, the first material is polycarbonate and the second material is a nickel alloy. In such cases, small portions of tops 112 can be removed during the grinding process to ensure that the tops of all the microstructures in first microstructured pattern 110 are exposed. In such cases, the grinding results, as schematically illustrated in FIG. 1D, in a layer 124 of the second material planarizing the first microstructured pattern and exposing tops 112 of the microstructures in the plurality of microstructures in the first microstructured pattern. Layer 124 of the second material has a top surface 126 that is substantially even with tops 112 of microstructures 104. The microstructures have a height t3 that can be slightly less than t1.
  • Although in FIGS. 1A-1D, the microstructures 104 are illustrated as having flattened tops initially, this need not be the case. In a number of embodiments the microstructures in the initial step may have a peaked surface. This may be especially appropriate as this portion of the microstructure may act as a sacrificial portion that aids in providing optimal planarization during the grinding step. A better understanding of this concept may be understood by reference to commonly owned and assigned U.S. patent Ser. No. 10/054,094, incorporated herein by reference in its entirety.
  • Next, as illustrated in FIG. 1E, first material 104 is removed, resulting in a layer 130 of the second material that includes a plurality of through-holes 132 that correspond to the plurality of microstructures in first microstructured pattern 110. Holes 130 include hole entries 136 and hole exits 134. The layer 130 made up of second material and may be any of the appropriate metals mentioned above, e.g. nickel, or may be, for example, ceramic. Optionally, the individual microstructures, each bearing a hole entry 136 and hole exit 134 may be singulated by dividing them from one another along, e.g., lines 138. The individual microstructures may then potentially be recombined in a desired pattern by an appropriate means, such as laser welding. In other embodiments, the microstructured pattern will be cast and cured or go through the extrusion process such that the final pattern matches that of the first material's first microstructured pattern.
  • Typically, the first material and the second material that includes plurality of holes are separated physically (i.e., by carefully pulling them apart without damaging the mold and/or the cured first microstructured material. Separation may be accomplished manually or via the use of suitable tools such as tweezers etc. It is also possible to remove the first material chemically, for example, by dissolving the first material in a suitable solvent such as acetone, ethyl alcohol, isopropyl alcohol or the like. Alternately one may use an etchant such as an aqueous solution of KOH. The first material and the second material may also be separated thermally by melting or burning of the first material at a suitable temperature without deforming, melting or otherwise damaging the second material.
  • In some cases, the plurality of discrete microstructures formed includes a discrete microstructure that is a three-dimensional rectilinear body, a portion of a three-dimensional rectilinear body, a three-dimensional curvilinear body, a portion of a three-dimensional curvilinear body, a polyhedron, a cone, or a tapered microstructure.
  • In some cases, a disclosed microstructure can be a three-dimensional rectilinear body such as a polyhedron, such as a tetrahedron or a hexahedron, a prism, or a pyramid, or a portion, or a combination, of such bodies, such as a frustum. For example, FIG. 4 is a schematic three-dimensional view of a microstructure 420 that is disposed on a substrate 410 and includes a planar or flat base 430, a planar or flat top 440 and a side 450 that connects the top to the base. Side 450 includes a plurality of planar or flat facets, such as facets 460, 465 and 470. Microstructure 420 can be used as a mold to fabricate holes for use in, for example, a nozzle.
  • In some cases, a disclosed microstructure can be a three-dimensional curvilinear body or a portion of such body, such as a segment of a sphere, an asphere, an ellipsoid, a spheroid, a paraboloid, a cone or a truncated cone, or a cylinder. For example, FIG. 5 is a schematic three-dimensional view of a microstructure 520 that is disposed on a substrate 510 and includes a planar or flat base 530, a planar or flat top 540 and a curvilinear side 550 that connects the top to the base. In the exemplary microstructure 520, top 540 and base 530 have the same shape. Microstructure 520 tapers narrower from base 530 to top 540. As a result, top 540 has a smaller area than base 530. Microstructure 520 can be used as a mold to fabricate holes for use in, for example, a nozzle.
  • In other cases, such as that shown in FIG. 6, the microstructured pattern 610 of film 600 may contain a plurality of microstructures 604 that are elongated. For example, as shown in FIG. 6, the microstructures may be prisms that are elongated along the length of the film L. In such a case once the tops of the microstructures are ground, the opening corresponding to the hole outlet may in fact be an elongated slit, such as where the tops of the elongated prism is removed along dashed line 606.
  • The microstructures of the current description may be understood as having a “diameter” of their opening at different heights of the microstructure. The diameter may be understood as the maximum distance between the edges of the microstructure at a common height. In some embodiments the hole entry may have a diameter of less than 300 microns, or of less than 200 microns, or of less than or equal to 160 microns, or of less than 140 microns. In some embodiments the hole exit may have a diameter of less than 300 microns, or less than 200 microns, or less than 100 microns, or less than or equal to 40 microns, or less than 25 microns. As shown in the Figures, the microstructures disclosed herein that serve as nozzles may be monolithic structures. In other words, the microstructures that form the actual nozzles are created from, and ultimately form a common, single piece of material. This may be understood as different from nozzles that are formed through a combination of a number of different parts, where such parts are potentially made up of different materials. In this regard, as shown in the above-mentioned figures, the nozzles disclosed herein may be monolithic structures.
  • In some cases, a microstructure can be intentionally deformed (i.e., bent, twisted etc.). Such deformation can be used to affect the flow of fluids thorough the nozzles made using these microstructures. More specifically, by deforming the microstructures, the resulting nozzles may direct the flow of fluids in a desired direction or may lead to a desired angular/volumetric distribution of the fluids in the combustion chamber. Such deformation of the microstructures may be accomplished by thermal means, mechanical means or thermomechanical means. For example, the microstructured first material may be heated to soften and potentially even partially melt the microstructures causing them to deform under the influence of gravity or other mechanical forces. In another embodiment, the microstructures are physically bent by the action of a mechanical force on them at an angle. Some examples of potential applications of mechanical force include squeezing the microstructures between the mandrels of a vice or forcing them through a gap narrower than the height of the microstructures. In yet another embodiment, microstructures in the form of microposts may be contacted by a force applied along a plane orthogonal to the height of the structures, where the force acts downward (in the direction of the height of the microstructures. This force applied along the tops of the microstructures may be applied with a hot object at a temperature above the melting point of the first material, resulting in the melting the tips of the microposts and forming mushroom shaped microstructures. When the nozzles are made from the mushroom shaped microstructures by the method of the invention, the tops of the mushroom shaped microstructures lead to large cavities at the inlet side of the resulting nozzles. Such cavities may act as occlude chambers in a nozzle application.
  • In yet another embodiment, arrays of microstructures may be deformed. All or some of the individual microstructures in an array may be deformed. In some cases some of the microstructures are deformed in one pattern while others are deformed in a second pattern. It is possible to have each individual microstructure within the array be deformed in a predetermined relation to the neighboring microstructures.
  • EXAMPLES
  • Objectives and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. These examples are merely for illustrative purposes only and are not meant to be limiting on the scope of the appended claims. Unless otherwise noted, all chemicals were obtained from, or are available from chemical suppliers such as Sigma-Aldrich Chemical Company, St. Louis. Mo.
  • Example 1
  • A microstructured film was prepared by following the general method described in U.S. Pat. No. 5,845,375 (Miller et. al.). An ethylene-propylene copolymer (available from Dow Chemical Co. [Midland, Mich.] under the trade designation “C700-35N”) resin was melted in a 45 millimeters twin screw extruder at a temperature of 230° C. and the extruded melt was passed through a die to form a film. The resulting film, being about 0.15 millimeters in thickness, and having a basis weight of 120 g/m−2, was pressed against a microstructured tooling by feeding it through a pair of rollers. The microstructured tooling was mounted onto one of the rollers and chilled to about 90-120° C. (194-248° F.). The roller with the microstructured tooling was rotated at a surface speed of 0.33 m/s. The microstructure on the surface of the tooling comprised cavities (i.e., prismatic holes) of approximately 120 micrometer sides and 370 micrometer deep. The vacancies were arranged in a linear pattern along the x and y direction on the surface of the tooling approximately 520 micrometer apart. When the extruded film was pressed against the microstructured tooling by the action of the second roller, the pattern of microstructures was replicated in the extruded polypropylene film. The resulting polypropylene film (i.e. the replica) exiting the pair of rollers had posts (corresponding to the cavities on the surface of microstructured tooling) projecting from the film surface. The resulting microstructured film contained posts of approximately 120 micrometer sides and 370 micrometer depth. The vacancies were arranged in a linear pattern along the x and y direction on the surface of the tooling approximately 520 micrometer apart
  • Next, the microstructured film was electroplated with Ni following the general electroplating processes well known in the art. A general description of the electroplating art can be found, for example, in “Modern Electroplating”, Fourth Edition, 2002, John Wiley & Sons, editors: Mordechav Schlesinger and Milan Paunovic. A circular (about 3 millimeter in diameter) section of the microstructured film produced above was cut out and was adhered on a stainless steel disc with the aid of a double stick tape. The surface of the film was made conductive by depositing a thin Ag film (seed layer) on the microstructured film replicas by e-beam evaporation. The process of depositing thin layer of Ag is referred to as silver mirror reaction in the electroplating art. Nickel was electrodeposited on the Ag coated surface of the microstructured film to replicate the microstructures. Nickel electrodeposition was carried out in a nickel sulfamate bath at a pH range of 3.5-4.5 at a temperature of 54.5° C. The solution contained a 0.2% of sodium dodecyl sulfate surfactant. Nickel electrodeposition was carried out in four stages. In the first stage, which lasted approximately 6 hours, the current density was approximately 27 Amperes/m2. The second stage lasted 4 hours and featured a current density of 54 Amperes/m2, and the third stage lasted 4 hours and featured a current density of 108 Amperes/m2. The fourth stage was 34 hours at a current density of 216 Amperes/m2. Nickel electrodepositing was completed when the thickness of nickel reached about 500 micrometers.
  • After the electrodeposition was completed, the resulting nickel replica with the microstructured film still in place was planarized and fine-polished to remove enough material so that the holes in the nickel replica were open and free of burrs. This was accomplished by first attaching the Ni-plated microstructured film using a wax on a grinding fixture (with the microstructured film down) of a grinder/polisher (available from Ultra Tec Manufacturing, Inc. [Santa Ana, Calif.]). Extreme care was taken to ensure that the Ni-plated microstructured film was positioned parallel to the surface of grinding fixture. The fixture was mounted on the polisher and then the Ni-plated microstructured film was planarized and ground using 100, 150, and 220 grit size abrasive films, sequentially. The grinding continued until a sufficient amount of Ni was removed, exposing the tops of posts of the microstructured polymer. The level of grinding to be done was determined based on the desired opening size of the resulting nozzle. The Ni-plated microstructured film was then polished sequentially using 9, 6, and 3 micrometer diamond lapping films. Finally the microstructured film was separated from the polished (nickel) nozzle. The nozzle had square sided holes with approximately 120 micrometer sides. The nozzle holes were arranged in a linear pattern along the x and y direction on the surface of the tooling approximately 520 micrometer apart. A backlit photomicrograph of the nickel fuel injector nozzle of Example 1 in provided in FIG. 7.
  • Example 2
  • Example 2 was prepared in generally the same manner as Example 1. For Example 2, a low density polyethylene (LDPE) film was provided (about 580 micrometers in thickness, prepared from TENITE 18 DOA (obtained from Eastman Chemical Company [Kingsport, Tenn.] under trade designation “TENITE 18”), with 0.5% surfactant TRITON X100 (obtained from Dow Chemical Company [Midland, Mich.] under trade designation “TRITON X100”) and minor quantities of TiO2 pigment to make the film white in appearance. The general methods of making structured surfaces, and in particular microstructured surfaces, on a polymeric layer such as a polymeric film are disclosed in U.S. Pat. Nos. 5,069,403 and 5,133,516, both to Marentic et al., the relevant portions of which are hereby incorporated by reference. U.S. Pat. No. 5,514,120 to Johnston et al. describes how the tooling was created to microreplicate the V shaped film described herein. The microstructures on the surface of the tooling included linear, V-shaped groves running parallel to one another. The V-shaped groves had a height of 460 micrometers and 410 micrometer pitch. When the extruded film was pressed against the microstructured tooling by the action of the second roller, the microstructure was replicated in the extruded film. The resulting LDPE microstructured film (i.e. the replica) exiting the pair of rollers had V-shaped groves of same size as the microstructured tooling
  • Next, the resulting microstructured film was electroplated with Ni, planarized and polished using the same process described above for Example 1.
  • The nozzle of Example 2 had rectangular openings. A backlit photomicrograph of the nickel fuel injector nozzle of Example 2 is provided in FIG. 8.
  • Example 3
  • In this example, hollow micro-needle arrays made of polycarbonate were used as the microstructured first material. The micro-needle arrays were prepared using the general processes described in commonly owned and assigned US Patent Publication No. US2009/009537 (DeVoe, et. al.). Each array had 18 micro-needles that were 900 micrometers tall and a tapered cone with a large, fixed end that was approximately 270 micrometers in diameter. The micro-needles were similar in shape to those shown in FIG. 10 of US Patent Publication No. US2009/009537 (DeVoe, et. al.). The conical shape made it easy to bend the needles near the top. The goal was to deform all of the micro-needle tips by bending them so that they “pointed” in an off-axis direction. The total height of the substrate plus the micro-needles was approximately 2.52 millimeter (0.099 inch). A gap between the smooth jaws of a miniature tooling vise was set to about 2.159 millimeters (0.085 inches). Once the gap was set, the polycarbonate micro-needle array was pressed by hand through the gap. All of the needles in the array were bent by a similar amount. FIG. 9 is a photomicrograph of the deformed micro-needle arrays illustrates the results of bending the micron-needles over. While in this Example 3, the vise jaws were set parallel to each other; they did not need to be parallel. A non-parallel gap in the cross-web direction would result in the needles on one side of the substrate being bent more than the needles on the other.
  • The deformed microneedle pre-form was then silver sputtered, nickel electro-plated and backside ground using exactly the same processes used in Example 1 above.
  • Example 4
  • Example 4 was prepared in generally the same manner as Example 3, except that the micro-needle arrays were deformed by pressing an aluminum cylindrical rod on the center of the micro-needle array. The deformed micro-needles were bent at their tips so as to point outward from the center of the array in a circular arrangement.
  • The deformed microneedle pre-form was then silver sputtered, nickel electro-plated and backside ground using exactly the same processes used in Example 1 above.

Claims (16)

1. A method of fabricating a nozzle comprising the steps of:
forming a first microstructured pattern in a first material, the first microstructured pattern comprising a plurality of discrete microstructures;
deforming at least one of the plurality of discrete microstructures, resulting in at least one deformed discrete microstructure;
replicating the first microstructured pattern in a second material different than the first material to make a replicated structure;
processing the replicated structure into a nozzle having a plurality of through-holes in the second material and corresponding to the plurality of microstructures in the first microstructured pattern, said processing comprising removing the first material from the replicated structure.
2. The method of claim 1 wherein said forming comprises casting and curing the first material.
3. The method of claim 1 wherein said forming comprises extruding the first material.
4. The method of claim 1, wherein the first material comprises a polymer and the second material comprises a metal.
5. The method of claim 1, wherein said processing further comprises removing enough of the second material of the replicated structure to expose tops of the microstructures in the plurality of microstructures in the first microstructured pattern.
6. The method of claim 5, wherein said removing comprises planarizing the second material.
7. The method of claim 1, wherein the second material comprises an electroplating material, and said replicating comprises electroforming the second material so as to cover over the first microstructured pattern.
8. The method of claim 7, wherein said processing further comprises removing enough of the second material from the replicated structure to expose tops of the microstructures in the plurality of microstructures in the first microstructured pattern.
9. The method of claim 1, wherein the second material comprises a ceramic.
10. The method of claim 1, wherein the plurality of discrete microstructures comprises a discrete microstructure that is at least a portion of a three-dimensional rectilinear body.
11. The method of claim 10, wherein the three-dimensional rectilinear body is an elongated prismatic structure.
12. The method of claim 1, wherein the plurality of discrete microstructures comprises a discrete microstructure that is at least a portion of a three-dimensional curvilinear body.
13. The method of claim 1, wherein said deforming comprises deforming an array of the plurality of discrete microstructures, resulting in an array of deformed discrete microstructures.
14. The method of claim 1, wherein said deforming comprises bending or twisting, resulting in at least one bent or twisted discrete microstructure.
15. The method of claim 1, wherein said deforming occurs by mechanical, thermal or thermomechanical means.
16. The method of claim 1, wherein the plurality of discrete microstructures of the first pattern comprise re-closeable fasteners with posts or mushroom-shaped tops.
US16/533,996 2011-11-02 2019-08-07 Method of making a nozzle Abandoned US20190388911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/533,996 US20190388911A1 (en) 2011-11-02 2019-08-07 Method of making a nozzle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161554561P 2011-11-02 2011-11-02
PCT/US2012/063066 WO2013067184A2 (en) 2011-11-02 2012-11-01 Method of making a nozzle
US201414354669A 2014-04-28 2014-04-28
US16/533,996 US20190388911A1 (en) 2011-11-02 2019-08-07 Method of making a nozzle

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2012/063066 Continuation WO2013067184A2 (en) 2011-11-02 2012-11-01 Method of making a nozzle
US14/354,669 Continuation US10406537B2 (en) 2011-11-02 2012-11-01 Method of making a nozzle

Publications (1)

Publication Number Publication Date
US20190388911A1 true US20190388911A1 (en) 2019-12-26

Family

ID=47192154

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/354,669 Expired - Fee Related US10406537B2 (en) 2011-11-02 2012-11-01 Method of making a nozzle
US16/533,996 Abandoned US20190388911A1 (en) 2011-11-02 2019-08-07 Method of making a nozzle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/354,669 Expired - Fee Related US10406537B2 (en) 2011-11-02 2012-11-01 Method of making a nozzle

Country Status (5)

Country Link
US (2) US10406537B2 (en)
EP (1) EP2773587B1 (en)
JP (1) JP6129197B2 (en)
CN (1) CN104053627B (en)
WO (1) WO2013067184A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104736836B (en) 2012-08-01 2019-01-11 3M创新有限公司 Fuel injector with improved fuel draining coefficient
US9924772B2 (en) * 2015-12-28 2018-03-27 Shih Ling Hsu Method for producing a clamping member of a hair clip, the clamping member, and a hair clip including two clamping members
CN108798895B (en) * 2017-04-27 2021-01-01 康明斯公司 Fuel injector cleaning systems, fluids, and methods
JP7017871B2 (en) 2017-07-06 2022-02-09 日立Astemo株式会社 Vehicle control simulation device

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991016A (en) 1982-11-18 1984-05-25 Kao Corp Processing of synthetic resin
CA1254238A (en) 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4986496A (en) 1985-05-31 1991-01-22 Minnesota Mining And Manufacturing Drag reduction article
US5133516A (en) 1985-05-31 1992-07-28 Minnesota Mining And Manufacturing Co. Drag reduction article
JPH0710471B2 (en) 1989-09-25 1995-02-08 株式会社日立製作所 Concentric coupling method for precision parts composed of multiple members, and method for assembling fuel injection nozzle using the same
US5845375A (en) 1990-09-21 1998-12-08 Minnesota Mining And Manufacturing Company Mushroom-type hook strip for a mechanical fastener
US5514120A (en) 1991-12-18 1996-05-07 Minnesota Mining And Manufacturing Company Liquid management member for absorbent articles
JPH07289953A (en) 1994-03-03 1995-11-07 Nippondenso Co Ltd Fluid injecting nozzle
DE19716513C2 (en) 1997-04-19 1999-02-11 Mtu Friedrichshafen Gmbh Fuel injection system for an internal combustion engine with a common rail
US6132660A (en) 1997-06-19 2000-10-17 3M Innovative Properties Company Method for forming headed stem mechanical fasteners
US6102299A (en) 1998-12-18 2000-08-15 Siemens Automotive Corporation Fuel injector with impinging jet atomizer
JP4800535B2 (en) 1999-10-28 2011-10-26 スリーエム イノベイティブ プロパティズ カンパニー Dental material containing nano-sized silica particles
US6387981B1 (en) 1999-10-28 2002-05-14 3M Innovative Properties Company Radiopaque dental materials with nano-sized particles
US6572693B1 (en) 1999-10-28 2003-06-03 3M Innovative Properties Company Aesthetic dental materials
JP4036592B2 (en) 1999-12-27 2008-01-23 株式会社オプトニクス精密 Orifice plate manufacturing method
JP3629698B2 (en) * 2000-10-03 2005-03-16 株式会社デンソー Fluid injection nozzle injection hole processing apparatus and fluid injection nozzle injection hole processing method
JP2002115627A (en) * 2000-10-05 2002-04-19 Optonix Seimitsu:Kk Orifice plate and its manufacturing method
JP3931802B2 (en) * 2001-12-27 2007-06-20 株式会社日立製作所 FUEL INJECTION VALVE AND DEVICE, INTERNAL COMBUSTION ENGINE, FUEL INJECTION VALVE MANUFACTURING METHOD, NOZZLE BODY, AND ITS MANUFACTURING METHOD
AU2003209430B2 (en) 2002-01-31 2008-09-11 3M Innovative Properties Company Dental pastes, dental articles, and methods
US7125510B2 (en) 2002-05-15 2006-10-24 Zhili Huang Microstructure fabrication and microsystem integration
ATE359983T1 (en) * 2002-11-25 2007-05-15 Weidmann Plastics Tech Ag METHOD FOR PRODUCING A TOOL INSERT FOR INJECTION MOLDING A PART WITH SINGLE STAGE MICROSTRUCTURES
US7804649B2 (en) * 2003-09-09 2010-09-28 3M Innovative Properties Company Microreplicated achromatic lens
JP4345522B2 (en) * 2004-03-03 2009-10-14 株式会社デンソー X-ray material processing method
JP2005305971A (en) 2004-04-26 2005-11-04 Alps Electric Co Ltd Irregularity forming apparatus, microirregularity fabricating method, and liquid crystal display element using it
JP2006002720A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Fuel injection device and method for manufacturing the same
US7297374B1 (en) 2004-12-29 2007-11-20 3M Innovative Properties Company Single- and multi-photon polymerizable pre-ceramic polymeric compositions
US7582685B2 (en) 2004-12-29 2009-09-01 3M Innovative Properties Company Multi-photon polymerizable pre-ceramic polymeric compositions
EP1894047A1 (en) 2005-06-24 2008-03-05 3M Innovative Properties Company Optical device with cantilevered fiber array and method
WO2007005632A1 (en) 2005-06-30 2007-01-11 Brp Us Inc. Fuel injector nozzle manufacturing method
WO2007112309A2 (en) 2006-03-24 2007-10-04 3M Innovative Properties Company Process for making microneedles, microneedle arrays, masters, and replication tools
JP5057868B2 (en) 2007-07-06 2012-10-24 ルネサスエレクトロニクス株式会社 Display device and display panel driver
CN101910873B (en) 2007-11-19 2012-11-07 3M创新有限公司 Articles and methods of making articles having a concavity or convexity
US20090308953A1 (en) 2008-06-16 2009-12-17 Amfog Nozzle Technology, Inc. Atomizing nozzle
US8720047B2 (en) * 2009-05-08 2014-05-13 Hoowaki, Llc Method for making microstructured objects
US8814954B2 (en) * 2009-05-08 2014-08-26 Hoowaki, Llc Method of manufacturing products having a metal surface
JP5453921B2 (en) 2009-05-20 2014-03-26 凸版印刷株式会社 Fine concavo-convex structure, manufacturing method thereof, and optical element
KR20180001595A (en) * 2009-07-30 2018-01-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Nozzle and method of making same
EP3467300A1 (en) 2011-02-02 2019-04-10 3M Innovative Properties Co. Nozzle
CN102205639A (en) * 2011-03-03 2011-10-05 北京化工大学 Method for polymer extruding and micro embossing shaping
US9358714B2 (en) 2011-12-13 2016-06-07 3M Innovative Properties Company Structured film containing beta-nucleating agent and method of making the same
US20150219051A1 (en) 2012-08-01 2015-08-06 3M Innovative Properties Company Fuel injectors with non-coined three-dimensional nozzle outlet face
US8889243B2 (en) 2012-08-16 2014-11-18 3M Innovative Properties Company Mechanical fastening nets and methods of making the same

Also Published As

Publication number Publication date
JP2015501402A (en) 2015-01-15
US10406537B2 (en) 2019-09-10
US20140283365A1 (en) 2014-09-25
EP2773587A2 (en) 2014-09-10
EP2773587B1 (en) 2020-09-23
CN104053627A (en) 2014-09-17
WO2013067184A3 (en) 2013-07-11
WO2013067184A2 (en) 2013-05-10
JP6129197B2 (en) 2017-05-17
CN104053627B (en) 2018-06-01

Similar Documents

Publication Publication Date Title
US20190388911A1 (en) Method of making a nozzle
US10539106B2 (en) Method of making a fuel injector nozzle
US6641767B2 (en) Methods for replication, replicated articles, and replication tools
JP5314752B2 (en) Method of applying a coating to a surface forming a Fresnel lens
DE60128429T2 (en) Process for the continuous production of optical objects
KR20150125993A (en) Microrelief structural body, decorative sheet, decorative resin molded body, method for producing microrelief structural body, and method for producing decorative resin molded body
DE102010002164A1 (en) Process for the production of coated moldings
DE102009019986B4 (en) Retro reflective marker
EP2613180A1 (en) Silicon contact lens
US20150328686A1 (en) Method of making a nozzle including injection molding
JP6424550B2 (en) Antireflective articles and art objects
JP2023139582A (en) Composite type optical element and method for manufacturing the same, and method for manufacturing molding die
EP3042069A1 (en) Injection molded nozzle preform with undercut micro features
JP2010249898A (en) Light diffusion film and surface light source using the same
JP2015190997A (en) Manufacturing method and evaluation method for anti-reflection article

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION