US20190311180A1 - Face sensing module and computing device using same - Google Patents

Face sensing module and computing device using same Download PDF

Info

Publication number
US20190311180A1
US20190311180A1 US16/003,030 US201816003030A US2019311180A1 US 20190311180 A1 US20190311180 A1 US 20190311180A1 US 201816003030 A US201816003030 A US 201816003030A US 2019311180 A1 US2019311180 A1 US 2019311180A1
Authority
US
United States
Prior art keywords
infrared
camera
side portion
sensing module
computing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/003,030
Other versions
US10452895B1 (en
Inventor
Hsueh-Yung Tang
Chen-Kuang Yeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hon Hai Precision Industry Co Ltd
Original Assignee
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Precision Industry Co Ltd filed Critical Hon Hai Precision Industry Co Ltd
Assigned to HON HAI PRECISION INDUSTRY CO., LTD. reassignment HON HAI PRECISION INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YEH, CHEN-KUANG, TANG, HSUEH-YUNG
Publication of US20190311180A1 publication Critical patent/US20190311180A1/en
Application granted granted Critical
Publication of US10452895B1 publication Critical patent/US10452895B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/2224Studio circuitry; Studio devices; Studio equipment related to virtual studio applications
    • H04N5/2226Determination of depth image, e.g. for foreground/background separation
    • G06K9/00255
    • G06K9/00288
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/166Detection; Localisation; Normalisation using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • H04N5/2252
    • H04N5/2253
    • H04N5/2258
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Definitions

  • the present disclosure relates to facial recognition technology.
  • a computing device such as a smart phone, with facial recognition includes a housing, a depth sensor, and an RGB camera.
  • the depth sensor and the RGB camera are mounted inside the housing and at the top front of the computing device to facilitate face recognition when a user looks at the computing device.
  • the depth sensor captures data as to depth of the user's face
  • the RGB camera is configured to capture data as to color of the user's face.
  • the depth sensor includes two infrared cameras.
  • the infrared cameras and the RGB camera need to be optically aligned inside the housing. However, optical alignment of the infrared cameras and the RGB camera is often difficult. Additionally, the infrared cameras and the RGB camera may become misaligned due to handling and other everyday forces applied to the computing device.
  • FIG. 1A is a top perspective view of an embodiment of a face sensing module.
  • FIG. 1B is a bottom perspective view of the face sensing module of FIG. 1A .
  • FIG. 2 is a schematic front view of an embodiment of a computing device including the face sensing module of FIG. 1A .
  • FIG. 3A is a top perspective exploded view of the face sensing module of FIG. 1A .
  • FIG. 3B is a bottom perspective exploded view of the face sensing module of FIG. 1A .
  • FIGS. 4A-4D are top perspective views of steps of assembly of the face sensing module of FIG. 1A .
  • a computing device 200 includes a housing 230 , a speaker 220 , and a face sensing module 100 .
  • the computing device 200 may include more or less components than as described.
  • the computing device 200 may be a smart phone, tablet, laptop, or other device.
  • the computing device 200 is a smart phone.
  • the face sensing module 100 adjacent to the speaker 220 , is mounted inside the housing 230 for face recognition when a user looks at the computing device 200 .
  • the face sensing module 100 includes a frame 110 , a depth sensor 120 , and an RGB camera unit 150 .
  • the depth sensor 120 and the RGB camera unit 150 are secured to the frame 110 as a modular structure.
  • the frame 110 is made of a rigid material, such as metal or hard plastic, that is resistant to deformation.
  • the frame 110 includes a first side portion 111 , a second side portion 112 , and a cross portion 113 .
  • the cross portion 113 is connected between the first side portion 111 and the second side portion 112 .
  • the first side portion 111 , the cross portion 113 , and the second side portion 112 are positioned in a straight line.
  • the first side portion 111 has a first infrared camera receiving opening 111 a and an RGB camera receiving opening 111 b .
  • the second side portion 112 has a second infrared camera receiving opening 112 a .
  • the cross portion 113 has a light opening 113 a .
  • the cross portion 113 is recessed for receiving the speaker 220 or other components inside the housing 230 .
  • the depth sensor 120 captures data on the depth of the user's face.
  • the depth sensor 120 includes a first infrared camera unit 121 , a second infrared camera unit 122 , and an infrared light emitting unit 140 .
  • the first infrared camera unit 121 is mounted on the first side portion 111 of the frame 110 .
  • the first infrared camera unit 121 includes a first camera mount 121 b , a first infrared camera 121 a , a first circuit board 121 c , and a first connector 131 .
  • the first camera mount 121 b is received in the first infrared camera receiving opening 111 a of the first side portion 111 .
  • the first infrared camera 121 a is secured to the first camera mount 121 b .
  • the first circuit board 121 c connects the first infrared camera 121 a to the first connector 131 .
  • the first connector 131 is located outside of the first side portion 111 .
  • the first infrared camera 121 a is electrically connected to components inside the housing 230 , through the first connector 131 .
  • the second infrared camera unit 122 is mounted on the second side portion 112 of the frame 110 .
  • the second infrared camera unit 122 includes a second camera mount 122 b , a second infrared camera 122 a , a second circuit board 122 c , and a second connector 132 .
  • the second camera mount 122 b is received in the second infrared camera receiving opening 112 a of the second side portion 112 .
  • the second infrared camera 122 a is secured to the second camera mount 122 b .
  • the second circuit board 122 c connects the second infrared camera 122 a to the second connector 132 .
  • the second connector 132 is located outside of the second side portion 112 .
  • the second infrared camera 122 a is electrically connected to components inside the housing 230 , through the second connector 132 .
  • the infrared light emitting unit 140 is mounted on the cross portion 113 of the frame 110 .
  • the infrared light emitting unit 140 includes an infrared emitter 141 , an infrared controller 142 , and an infrared guide 143 .
  • the infrared emitter 141 and the infrared controller 142 are coupled to a side portion 122 d of the second circuit board 122 c , and are located under the cross portion 113 .
  • the infrared emitter 141 corresponds to the light opening 113 a of the cross portion 113 .
  • the infrared emitter 141 is an LED device.
  • the infrared controller 142 is configured to control the infrared emitter 141 .
  • the infrared guide 143 is mounted over the cross portion 113 , and covers the light opening 113 a of the cross portion 113 . Infrared light emitted by the infrared emitter 141 is emitted outside of the housing 230 through the infrared guide 143 .
  • the infrared guide 143 is columnar, and is made of a transparent and flexible material.
  • the infrared guide 143 can be bent inside the housing 230 to guide the infrared light emitted by the infrared emitter 141 to a specific portion of the housing 230 according to the design of the computing device 200 .
  • the infrared guide 143 is a silicone stick.
  • the RGB camera unit 150 is mounted on the first side portion 111 of the frame 110 .
  • the RGB camera unit 150 is configured to capture data as to color of the user's face.
  • the RGB camera unit 150 includes a third camera mount 152 , an RGB camera 151 , a third circuit board 154 , and a third connector 153 .
  • the third camera mount 152 is received in the RGB camera receiving opening 111 b of the first side portion 111 .
  • the RGB camera 151 is secured to the third camera mount 152 .
  • the third circuit board 154 connects the RGB camera 151 to the third connector 153 .
  • the third connector 153 is located outside of the first side portion 111 .
  • the RGB camera 151 is electrically connected to components inside the housing 230 , through the third connector 153 .
  • the first infrared camera 121 a , the second infrared camera 122 a , and the RGB camera 151 can be optically aligned together after being mounted on the frame 110 and before being mounted inside the housing 230 . Optical alignment of the first infrared camera 121 a , the second infrared camera 122 a , and the RGB camera 151 outside of the housing 230 is thus easier. Additionally, the frame 110 holds the first infrared camera 121 a , the second infrared camera 122 a , and the RGB camera 151 to ensure against displacement/misalignment.
  • FIGS. 4A-4D show assembly steps of the face sensing module 100 .
  • the infrared emitter 141 and the infrared controller 142 of the infrared light emitting unit 140 are coupled to the second circuit board 122 c of the second infrared camera unit 122 , to produce a first semi-finished product 100 A.
  • the first semi-finished product 100 A and the first infrared camera unit 121 are assembled on the frame 110 such that the first camera mount 121 b is received in the first infrared camera receiving opening 111 a .
  • the second camera mount 122 b is received in the second infrared camera receiving opening 112 a , and the infrared emitter 141 corresponds to the light opening 113 a .
  • the first infrared camera 121 a and the second infrared camera 122 a are then optically aligned, and then adhesive used to secure the first infrared camera unit 121 and the second infrared camera unit 122 to the frame 110 , to produce a second semi-finished product 100 B.
  • the RGB camera unit 150 is assembled on the second semi-finished product 100 B such that the third camera mount 152 is received in the RGB camera receiving opening 111 b .
  • the RGB camera 151 is then optically aligned, and then adhesive used to secure the RGB camera unit 150 to the frame 110 , to produce a third semi-finished product 100 C.
  • the infrared guide 143 of the infrared light emitting unit 140 is assembled on the third semi-finished product 100 C such that the infrared guide 143 corresponds to the infrared emitter 141 , thereby completing the assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Studio Devices (AREA)

Abstract

A face sensing module for a computing device includes a frame, a depth sensor, and an RGB camera. The frame includes first and second side portions and a cross portion. The depth sensor includes first and second infrared cameras, and an infrared light emitting unit. The first infrared camera is mounted on the first side portion. The second infrared camera is mounted on the second side portion. The infrared light emitting unit is mounted on the cross portion, with an infrared emitter and an infrared guide. Infrared light emitted is guided out. The RGB camera is mounted on the first side portion. The first and second infrared cameras and the RGB camera are optically aligned before being mounted together inside the housing of the computing device to ensure precise mountings and the durability of precise alignment notwithstanding handling by a user.

Description

    FIELD
  • The present disclosure relates to facial recognition technology.
  • BACKGROUND
  • A computing device, such as a smart phone, with facial recognition includes a housing, a depth sensor, and an RGB camera. The depth sensor and the RGB camera are mounted inside the housing and at the top front of the computing device to facilitate face recognition when a user looks at the computing device. The depth sensor captures data as to depth of the user's face, and the RGB camera is configured to capture data as to color of the user's face. The depth sensor includes two infrared cameras. The infrared cameras and the RGB camera need to be optically aligned inside the housing. However, optical alignment of the infrared cameras and the RGB camera is often difficult. Additionally, the infrared cameras and the RGB camera may become misaligned due to handling and other everyday forces applied to the computing device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
  • FIG. 1A is a top perspective view of an embodiment of a face sensing module.
  • FIG. 1B is a bottom perspective view of the face sensing module of FIG. 1A.
  • FIG. 2 is a schematic front view of an embodiment of a computing device including the face sensing module of FIG. 1A.
  • FIG. 3A is a top perspective exploded view of the face sensing module of FIG. 1A.
  • FIG. 3B is a bottom perspective exploded view of the face sensing module of FIG. 1A.
  • FIGS. 4A-4D are top perspective views of steps of assembly of the face sensing module of FIG. 1A.
  • DETAILED DESCRIPTION
  • It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
  • In FIGS. 1A-2, a computing device 200 includes a housing 230, a speaker 220, and a face sensing module 100. The computing device 200 may include more or less components than as described. The computing device 200 may be a smart phone, tablet, laptop, or other device. In the present embodiment, the computing device 200 is a smart phone. The face sensing module 100, adjacent to the speaker 220, is mounted inside the housing 230 for face recognition when a user looks at the computing device 200.
  • With reference to FIGS. 3A-3B, the face sensing module 100 includes a frame 110, a depth sensor 120, and an RGB camera unit 150. The depth sensor 120 and the RGB camera unit 150 are secured to the frame 110 as a modular structure.
  • The frame 110 is made of a rigid material, such as metal or hard plastic, that is resistant to deformation. The frame 110 includes a first side portion 111, a second side portion 112, and a cross portion 113. The cross portion 113 is connected between the first side portion 111 and the second side portion 112. The first side portion 111, the cross portion 113, and the second side portion 112 are positioned in a straight line. The first side portion 111 has a first infrared camera receiving opening 111 a and an RGB camera receiving opening 111 b. The second side portion 112 has a second infrared camera receiving opening 112 a. The cross portion 113 has a light opening 113 a. The cross portion 113 is recessed for receiving the speaker 220 or other components inside the housing 230.
  • The depth sensor 120 captures data on the depth of the user's face. The depth sensor 120 includes a first infrared camera unit 121, a second infrared camera unit 122, and an infrared light emitting unit 140.
  • The first infrared camera unit 121 is mounted on the first side portion 111 of the frame 110. The first infrared camera unit 121 includes a first camera mount 121 b, a first infrared camera 121 a, a first circuit board 121 c, and a first connector 131. The first camera mount 121 b is received in the first infrared camera receiving opening 111 a of the first side portion 111. The first infrared camera 121 a is secured to the first camera mount 121 b. The first circuit board 121 c connects the first infrared camera 121 a to the first connector 131. The first connector 131 is located outside of the first side portion 111. The first infrared camera 121 a is electrically connected to components inside the housing 230, through the first connector 131.
  • The second infrared camera unit 122 is mounted on the second side portion 112 of the frame 110. The second infrared camera unit 122 includes a second camera mount 122 b, a second infrared camera 122 a, a second circuit board 122 c, and a second connector 132. The second camera mount 122 b is received in the second infrared camera receiving opening 112 a of the second side portion 112. The second infrared camera 122 a is secured to the second camera mount 122 b. The second circuit board 122 c connects the second infrared camera 122 a to the second connector 132. The second connector 132 is located outside of the second side portion 112. The second infrared camera 122 a is electrically connected to components inside the housing 230, through the second connector 132.
  • The infrared light emitting unit 140 is mounted on the cross portion 113 of the frame 110. The infrared light emitting unit 140 includes an infrared emitter 141, an infrared controller 142, and an infrared guide 143. The infrared emitter 141 and the infrared controller 142 are coupled to a side portion 122 d of the second circuit board 122 c, and are located under the cross portion 113. The infrared emitter 141 corresponds to the light opening 113 a of the cross portion 113. The infrared emitter 141 is an LED device. The infrared controller 142 is configured to control the infrared emitter 141. The infrared guide 143 is mounted over the cross portion 113, and covers the light opening 113 a of the cross portion 113. Infrared light emitted by the infrared emitter 141 is emitted outside of the housing 230 through the infrared guide 143. The infrared guide 143 is columnar, and is made of a transparent and flexible material. The infrared guide 143 can be bent inside the housing 230 to guide the infrared light emitted by the infrared emitter 141 to a specific portion of the housing 230 according to the design of the computing device 200. Preferably, the infrared guide 143 is a silicone stick.
  • The RGB camera unit 150 is mounted on the first side portion 111 of the frame 110. The RGB camera unit 150 is configured to capture data as to color of the user's face. The RGB camera unit 150 includes a third camera mount 152, an RGB camera 151, a third circuit board 154, and a third connector 153. The third camera mount 152 is received in the RGB camera receiving opening 111 b of the first side portion 111. The RGB camera 151 is secured to the third camera mount 152. The third circuit board 154 connects the RGB camera 151 to the third connector 153. The third connector 153 is located outside of the first side portion 111. The RGB camera 151 is electrically connected to components inside the housing 230, through the third connector 153.
  • The first infrared camera 121 a, the second infrared camera 122 a, and the RGB camera 151 can be optically aligned together after being mounted on the frame 110 and before being mounted inside the housing 230. Optical alignment of the first infrared camera 121 a, the second infrared camera 122 a, and the RGB camera 151 outside of the housing 230 is thus easier. Additionally, the frame 110 holds the first infrared camera 121 a, the second infrared camera 122 a, and the RGB camera 151 to ensure against displacement/misalignment.
  • FIGS. 4A-4D show assembly steps of the face sensing module 100.
  • In FIG. 4A, the infrared emitter 141 and the infrared controller 142 of the infrared light emitting unit 140 are coupled to the second circuit board 122 c of the second infrared camera unit 122, to produce a first semi-finished product 100A.
  • In FIG. 4B, the first semi-finished product 100A and the first infrared camera unit 121 are assembled on the frame 110 such that the first camera mount 121 b is received in the first infrared camera receiving opening 111 a. The second camera mount 122 b is received in the second infrared camera receiving opening 112 a, and the infrared emitter 141 corresponds to the light opening 113 a. The first infrared camera 121 a and the second infrared camera 122 a are then optically aligned, and then adhesive used to secure the first infrared camera unit 121 and the second infrared camera unit 122 to the frame 110, to produce a second semi-finished product 100B.
  • In FIG. 4C, the RGB camera unit 150 is assembled on the second semi-finished product 100B such that the third camera mount 152 is received in the RGB camera receiving opening 111 b. The RGB camera 151 is then optically aligned, and then adhesive used to secure the RGB camera unit 150 to the frame 110, to produce a third semi-finished product 100C.
  • In FIG. 4D, the infrared guide 143 of the infrared light emitting unit 140 is assembled on the third semi-finished product 100C such that the infrared guide 143 corresponds to the infrared emitter 141, thereby completing the assembly.
  • The embodiments shown and described above are only examples. Many details are often found in this field of art thus many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.

Claims (20)

What is claimed is:
1. A face sensing module comprising:
a frame comprising:
a first side portion having a first infrared camera receiving opening and an RGB camera receiving opening;
a second side portion having a second infrared camera receiving opening; and
a cross portion having a light opening;
a depth sensor comprising:
a first infrared camera unit mounted on the first side portion of the frame, and the first infrared camera unit comprising:
a first camera mount received in the first infrared camera receiving opening of the first side portion; and
a first infrared camera secured to the first camera mount;
a second infrared camera unit mounted on the second side portion of the frame, and the second infrared camera unit comprising:
a second camera mount received in the second infrared camera receiving opening of the second side portion; and
a second infrared camera secured to the second camera mount; and
an infrared light emitting unit mounted on the cross portion of the frame, and the infrared light emitting unit comprising:
an infrared emitter corresponding to the light opening of the cross portion; and
an infrared guide covering the light opening of the cross portion; and
an RGB camera unit mounted on the first side portion of the frame, and the RGB camera unit comprising:
a third camera mount received in the RGB camera receiving opening of the first side portion; and
an RGB camera secured to the third camera mount.
2. The face sensing module of claim 1, wherein the first side portion, the cross portion, and the second side portion are positioned in a straight line.
3. The face sensing module of claim 2, wherein the cross portion is recessed.
4. The face sensing module of claim 1,
wherein the first infrared camera unit further comprises a first circuit board connecting the first infrared camera to a first connector;
wherein the second infrared camera unit further comprises a second circuit board connecting the second infrared camera to a second connector;
wherein the infrared emitter is coupled to a side portion of the second circuit board; and
wherein the RGB camera unit further comprises a third circuit board connecting the RGB camera to a third connector.
5. The face sensing module of claim 4, wherein the infrared light emitting unit further comprises an infrared controller coupled to the side portion of the second circuit board.
6. The face sensing module of claim 5,
wherein the first connector is located outside of the first side portion;
wherein the second connector is located outside of the second side portion; and
wherein the third connector is located outside of the first side portion.
7. The face sensing module of claim 1, wherein the infrared guide is made of a transparent and flexible material.
8. The face sensing module of claim 1, wherein the infrared guide is columnar.
9. The face sensing module of claim 1, wherein the infrared emitter is an LED device.
10. The face sensing module of claim 1, wherein the frame is made of a rigid material.
11. A computing device comprising:
a housing; and
a face sensing module mounted inside the housing, and the face sensing module comprising:
a frame comprising:
a first side portion having a first infrared camera receiving opening and an RGB camera receiving opening;
a second side portion having a second infrared camera receiving opening; and
a cross portion having a light opening;
a depth sensor comprising:
a first infrared camera unit mounted on the first side portion of the frame, and the first infrared camera unit comprising:
a first camera mount received in the first infrared camera receiving opening of the first side portion; and
a first infrared camera secured to the first camera mount;
a second infrared camera unit mounted on the second side portion of the frame, and the second infrared camera unit comprising:
a second camera mount received in the second infrared camera receiving opening of the second side portion; and
a second infrared camera secured to the second camera mount; and
an infrared light emitting unit mounted on the cross portion of the frame, and the infrared light emitting unit comprising:
an infrared emitter corresponding to the light opening of the cross portion; and
an infrared guide covering the light opening of the cross portion; and
an RGB camera unit mounted on the first side portion of the frame, and the RGB camera unit comprising:
a third camera mount received in the RGB camera receiving opening of the first side portion; and
an RGB camera secured to the third camera mount.
12. The computing device of claim 11, wherein the first side portion, the cross portion, and the second side portion are positioned in a straight line.
13. The computing device of claim 12, wherein the cross portion is recessed.
14. The computing device of claim 11,
wherein the first infrared camera unit further comprises a first circuit board connecting the first infrared camera to a first connector;
wherein the second infrared camera unit further comprises a second circuit board connecting the second infrared camera to a second connector;
wherein the infrared emitter is coupled to a side portion of the second circuit board; and
wherein the RGB camera unit further comprises a third circuit board connecting the RGB camera to a third connector.
15. The computing device of claim 14, wherein the infrared light emitting unit further comprises an infrared controller coupled to the side portion of the second circuit board.
16. The computing device of claim 15,
wherein the first connector is located outside of the first side portion;
wherein the second connector is located outside of the second side portion; and
wherein the third connector is located outside of the first side portion.
17. The computing device of claim 11, wherein the infrared guide is made of a transparent and flexible material.
18. The computing device of claim 11, wherein the infrared guide is columnar.
19. The computing device of claim 11, wherein the infrared emitter is an LED device.
20. The computing device of claim 11, wherein the frame is made of a rigid material.
US16/003,030 2018-04-10 2018-06-07 Face sensing module and computing device using same Active US10452895B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW107112341A 2018-04-10
TW107112341A TWI661361B (en) 2018-04-10 2018-04-10 Sensing module and electronic devices thereof
TW107112341 2018-04-10

Publications (2)

Publication Number Publication Date
US20190311180A1 true US20190311180A1 (en) 2019-10-10
US10452895B1 US10452895B1 (en) 2019-10-22

Family

ID=67764055

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/003,030 Active US10452895B1 (en) 2018-04-10 2018-06-07 Face sensing module and computing device using same

Country Status (2)

Country Link
US (1) US10452895B1 (en)
TW (1) TWI661361B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190289278A1 (en) * 2018-03-13 2019-09-19 Hon Hai Precision Industry Co., Ltd. Three-dimensional sensing module and computing device using same
US10893175B2 (en) * 2019-02-27 2021-01-12 Bendix Commercial Vehicle Systems Llc Shadowless camera housing
US10924648B2 (en) * 2018-06-02 2021-02-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic assembly and electronic device
FR3116686A1 (en) * 2020-11-26 2022-05-27 Faurecia Interieur Industrie Image capture device and vehicle comprising such an image capture device
US11425236B2 (en) * 2020-02-21 2022-08-23 Lg Electronics Inc. Mobile terminal
US11438496B2 (en) * 2020-06-30 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Multi-camera module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7187711B2 (en) * 2020-07-29 2022-12-12 深▲せん▼市康冠商用科技有限公司 Infrared touch panel bezel for attaching functional parts and display terminal using it

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602942B2 (en) * 2004-11-12 2009-10-13 Honeywell International Inc. Infrared and visible fusion face recognition system
EP2203865A2 (en) * 2007-09-24 2010-07-07 Apple Inc. Embedded authentication systems in an electronic device
KR101695809B1 (en) * 2009-10-09 2017-01-13 엘지전자 주식회사 Mobile terminal and method for controlling thereof
CN201699888U (en) * 2010-06-24 2011-01-05 柯名会 Face identification monitoring device
US20140192158A1 (en) * 2013-01-04 2014-07-10 Microsoft Corporation Stereo Image Matching
US9690984B2 (en) * 2015-04-14 2017-06-27 Microsoft Technology Licensing, Llc Two-dimensional infrared depth sensing
TWM532588U (en) * 2016-07-13 2016-11-21 zhi-xing Xu Portable electronic device and image capturing module thereof
TWM532699U (en) * 2016-07-13 2016-11-21 zhi-xing Xu Portable electronic device and image capturing module thereof
TWM550941U (en) * 2017-05-22 2017-10-21 Azurewave Technologies Inc Portable electronic device and its image capturing module and carrying component
TWM553428U (en) * 2017-07-10 2017-12-21 Azurewave Technologies Inc Portable electronic device and its image capturing module and image sensing component
US10371504B2 (en) * 2017-09-29 2019-08-06 Abl Ip Holding Llc Light fixture commissioning using depth sensing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190289278A1 (en) * 2018-03-13 2019-09-19 Hon Hai Precision Industry Co., Ltd. Three-dimensional sensing module and computing device using same
US10924648B2 (en) * 2018-06-02 2021-02-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic assembly and electronic device
US10893175B2 (en) * 2019-02-27 2021-01-12 Bendix Commercial Vehicle Systems Llc Shadowless camera housing
US11425236B2 (en) * 2020-02-21 2022-08-23 Lg Electronics Inc. Mobile terminal
US11438496B2 (en) * 2020-06-30 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Multi-camera module
FR3116686A1 (en) * 2020-11-26 2022-05-27 Faurecia Interieur Industrie Image capture device and vehicle comprising such an image capture device
US11889198B2 (en) 2020-11-26 2024-01-30 Faurecia Interieur Industrie Image capture device and vehicle comprising such an image capture device

Also Published As

Publication number Publication date
TW201944286A (en) 2019-11-16
TWI661361B (en) 2019-06-01
US10452895B1 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
US10452895B1 (en) Face sensing module and computing device using same
US11501555B2 (en) Under-screen biometric identification apparatus and electronic device
US10554868B2 (en) Camera module and mobile terminal
US20200050822A1 (en) Under-screen biometric identification apparatus and electronic device
US20200065551A1 (en) Optical fingerprint recognition assembly, display device, and terminal
CN108885696B (en) Under-screen biological feature recognition device and electronic equipment
EP3689116B1 (en) Electronic device with waterproof structure
CN105227703B (en) Glasses type terminal
EP3975529A1 (en) Electronic device having a sealed biometric input system
US20190289280A1 (en) Three-dimensional sensing module and computing device using same
CN110989321A (en) Intelligent wearable device with overturning function
CN113037894B (en) Electronic equipment
US20190289278A1 (en) Three-dimensional sensing module and computing device using same
KR20210158217A (en) Electronic device
EP3591578B1 (en) Under-screen biometric identification apparatus and electronic device
CN106817446B (en) Electronic device
CN209118009U (en) A kind of novel display device
WO2022141604A1 (en) Optical fingerprint detection apparatus and electronic device
CN108388826B (en) Electronic device
WO2022141606A1 (en) Optical fingerprint detection apparatus and electronic device
CN217216744U (en) Camera voice combined module and television
CN215581403U (en) Electronic equipment and camera assembly
US20130330066A1 (en) Electronic device with camera module and remote signal receiver
CN105786102A (en) Mobile terminal with fingerprint recognition system
US20230413427A1 (en) Electronic device comprising sealing member

Legal Events

Date Code Title Description
AS Assignment

Owner name: HON HAI PRECISION INDUSTRY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, HSUEH-YUNG;YEH, CHEN-KUANG;SIGNING DATES FROM 20180530 TO 20180605;REEL/FRAME:046021/0411

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4